JP7459356B1 - Oxygen hydrogen bath system - Google Patents

Oxygen hydrogen bath system Download PDF

Info

Publication number
JP7459356B1
JP7459356B1 JP2023117824A JP2023117824A JP7459356B1 JP 7459356 B1 JP7459356 B1 JP 7459356B1 JP 2023117824 A JP2023117824 A JP 2023117824A JP 2023117824 A JP2023117824 A JP 2023117824A JP 7459356 B1 JP7459356 B1 JP 7459356B1
Authority
JP
Japan
Prior art keywords
hydrogen
gas
chamber
gas supply
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023117824A
Other languages
Japanese (ja)
Inventor
孝 小山
Original Assignee
株式会社 エイム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 エイム filed Critical 株式会社 エイム
Priority to JP2023117824A priority Critical patent/JP7459356B1/en
Application granted granted Critical
Publication of JP7459356B1 publication Critical patent/JP7459356B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Medical Bathing And Washing (AREA)

Abstract

【課題】より多くの水素をより速く体内に取り込んで活性酸素の削減効果を得やすくできる酸素水素浴システムを提供する。【解決手段】ガス供給口20を有し、人体を収容するチャンバ11と、空気供給管23を介してチャンバ内に酸素を含む気体を供給して内部圧力を大気圧よりも高圧にするガス供給部12と、水素供給管27を介してチャンバ内に水素ガスを供給する水素供給部13と、チャンバ内を所定の圧力範囲内に維持する排気弁28を介してチャンバから気体及び水素ガスを排出するガス排気部15と、を備え、排気弁によりチャンバ内の圧力が大気圧以上かつ排気弁の使用可能圧力以下に維持される酸素水素浴システムにおいて、ガス供給部とガス供給口との間を結ぶ流路の途中に、水素供給管からの水素ガスが合流する合流点よりもガス供給部側に近い点に流路分岐点を設け、一方の枝流路がガス供給口に向かい、他方の枝流路がガス排気部に向かうことを特徴とする。【選択図】図3[Problem] To provide an oxygen-hydrogen bath system that can take in more hydrogen faster and reduce active oxygen. [Solution] The oxygen-hydrogen bath system includes a chamber 11 that has a gas supply port 20 and accommodates a human body, a gas supply unit 12 that supplies oxygen-containing gas into the chamber via an air supply pipe 23 to make the internal pressure higher than atmospheric pressure, a hydrogen supply unit 13 that supplies hydrogen gas into the chamber via a hydrogen supply pipe 27, and a gas exhaust unit 15 that exhausts gas and hydrogen gas from the chamber via an exhaust valve 28 that maintains the pressure inside the chamber within a predetermined pressure range, and the exhaust valve maintains the pressure inside the chamber at or above atmospheric pressure and below the usable pressure of the exhaust valve. In this oxygen-hydrogen bath system, a flow path branch point is provided in the middle of the flow path connecting the gas supply unit and the gas supply port, at a point closer to the gas supply unit side than the junction where hydrogen gas from the hydrogen supply pipe joins, and one branch flow path heads toward the gas supply port and the other branch flow path heads toward the gas exhaust unit. [Selected Figure] Figure 3

Description

本発明は、酸素水素浴システムに関する。
The present invention relates to an oxygen-hydrogen bath system.

(本出願の位置付け)
本出願人は、別途、発明の名称を「酸素水素浴システム」と称する特許(特許第6133526号(以下、特許文献1)を保有しているが、本出願は、かかる特許に記載の発明の改良発明に係る出願である。
(Position of this application)
The present applicant separately owns a patent (Patent No. 6133526 (hereinafter referred to as Patent Document 1) entitled "Oxygen Hydrogen Bath System", but this application is based on the invention described in this patent. This is an application related to an improved invention.

特許第6133526号が対象とする発明は、水素水を経口摂取する場合よりも多くの水素を体内に取り込んで活性酸素の削減効果を得やすくすることができる酸素水素浴システムに係る発明であるが、近年になり、従来にも増して余剰の活性酸素を体内から排除することが健康維持のために求められるようになっている。このようなニーズを持つ人の中には、時間に追われる多忙なビジネスマンも含まれており、このようなビジネスマンは勤務中であっても短時間で酸素水素浴ができれば大きなメリットを享受できることが期待される。
同特許に記載の発明の技術的思想の基本は、酸素水素浴用のチャンバに、チャンバ外で一定の水素ガスの濃度になった空気を、一定の速度と量で供給しつつ、チャンバ内の空気の水素体積濃度を動的平衡に維持するというものである。
The invention covered by Patent No. 6133526 is an invention related to an oxygen hydrogen bathing system that allows the body to take in more hydrogen than when hydrogen water is orally ingested, making it easier to reduce active oxygen. In recent years, there has been a growing need to eliminate excess active oxygen from the body in order to maintain health. People with this need include busy businessmen who are pressed for time, and it is expected that such businessmen will enjoy great benefits if they can take an oxygen hydrogen bath in a short time even during work hours.
The basic technical idea of the invention described in this patent is to supply air that has been adjusted to a certain hydrogen gas concentration outside the chamber at a certain rate and amount to the oxygen-hydrogen bath chamber, while maintaining the hydrogen volume concentration of the air in the chamber at dynamic equilibrium.

特許第6133526号公報Patent No. 6133526

しかしながら、特許文献1に記載の発明を実施する酸素水素浴システムでは、水素ガス発生器の使用に伴う危険性の観点から、その水素ガス発生能力は100%の水素ガスを1分当り500cc発生させる能力に制限されており、かつ、チャンバ内の水素濃度は動的平衡に達したときに1.0体積%までしか維持できない。従って、これよりもより短時間で十分な量、あるいは、同じ時間内であればより多くの量の水素を体内に取り込むことに対する市場ニーズには十分対応できていない側面がある。
However, in the oxygen hydrogen bath system that implements the invention described in Patent Document 1, from the viewpoint of the danger associated with the use of a hydrogen gas generator, its hydrogen gas generation capacity is limited to 500 cc of 100% hydrogen gas per minute. capacity and the hydrogen concentration within the chamber can only be maintained up to 1.0% by volume when dynamic equilibrium is reached. Therefore, there are aspects of this method that do not fully meet the market needs for taking in a sufficient amount of hydrogen into the body in a shorter period of time, or a larger amount of hydrogen in the same amount of time.

このような場合、一般的に考えられる解決策は、システム全体を変えることなく、単に水素ガス発生器の能力を上げることがあるが、この解決策では、発生される水素ガスの量が、安全性が確認された範囲を超え、水素爆発の危険性が懸念されるので好ましくない。また、製造コストを大きく左右する新たな水素ガス発生器の導入が必要となり、製造コストが増大するために、ビジネスの観点からすると好ましくない。
In such cases, a common solution is to simply increase the capacity of the hydrogen gas generator without changing the entire system, but this solution ensures that the amount of hydrogen gas produced is This is undesirable because it exceeds the range where hydrogen has been confirmed and there is a risk of hydrogen explosion. Furthermore, it is necessary to introduce a new hydrogen gas generator, which greatly affects the manufacturing cost, which increases the manufacturing cost, which is undesirable from a business perspective.

そこで、本発明者は、特許文献1(従来技術)の酸素水素浴システムの長年の使用により発生される水素ガスの量が安全圏内となる安全性確認済の水素ガス発生器を使いつつ、かつ、製造コストが大きく増大することを回避しつつ目的を達成する解決策を鋭意研究した結果、特許文献1に記載の酸素水素浴システムに使用される水素ガス発生器を変えることなく、同システムの空気供給管の途中にシンプルな低コストのY字型ジョイントを間挿し、一方の枝管を特許文献1と同様に配管し、他方の枝管にレデューサーを間挿し、その先をT型ジョイントを介して特許文献1のガス排気部に接続するだけで、酸素水素浴システムのチャンバ内の水素濃度を、同文献に記載の発明では得られなかった水素濃度に高めて維持することができることを見出し、かかる知見に基づいて本発明を為した。
Therefore, the present inventor used a hydrogen gas generator whose safety has been confirmed, in which the amount of hydrogen gas generated through long-term use of the oxygen-hydrogen bath system of Patent Document 1 (prior art) is within the safe range, and As a result of intensive research into a solution that achieves the objective while avoiding a significant increase in manufacturing costs, the system was developed without changing the hydrogen gas generator used in the oxygen-hydrogen bath system described in Patent Document 1. A simple low-cost Y-shaped joint is inserted in the middle of the air supply pipe, one branch pipe is piped in the same manner as in Patent Document 1, a reducer is inserted in the other branch pipe, and a T-shaped joint is inserted at the end of the pipe. We have discovered that by simply connecting the gas exhaust section of Patent Document 1 through the gas exhaust section, it is possible to increase and maintain the hydrogen concentration in the chamber of the oxygen-hydrogen bath system to a level that could not be obtained with the invention described in the same document. The present invention was made based on this knowledge.

即ち、第1の発明は、ガスが導入されるガス供給口を有し、人体全体を収容可能なチャンバと、
前記ガス供給口と接続される気体供給管を有し、該気体供給管を介して前記チャンバ内に酸素を含む気体を供給して前記チャンバ内部の圧力を大気圧よりも高圧にするガス供給部と、
前記気体供給管とY字型ジョイントAを介して接続される水素供給管と、水素ガス発生器を有し、該水素供給管を介して前記チャンバ内に前記水素ガス発生器からの水素ガスを供給する水素供給部と、
前記チャンバと連通され、安全弁又はON/OFF操作によって前記チャンバ内を所定の圧力範囲内に維持する弁を有し、該弁を介して前記チャンバから前記気体及び前記水素ガスを排出するガス排気部と、
を備える酸素水素浴システムにおいて、
前記ガス供給部の前記気体供給管は、前記Y字型ジョイントAの位置よりも前記ガス供給部に近い位置に、前記ガス供給部からの前記気体の流路を2等分割するY字型ジョイントBを有し、
前記Y字型ジョイントBの一方の枝管Aは、前記水素供給管と前記Y字型ジョイントAにて合流した後前記ガス供給口に接続し、他方の枝管Bは、レデューサーを介して延在した後T型ジョイントを介してガス排気部に接続する
ことを特徴とする酸素水素浴システムである。
That is, the first invention includes a chamber that has a gas supply port into which gas is introduced and is capable of accommodating the entire human body;
A gas supply unit having a gas supply pipe connected to the gas supply port, and supplying a gas containing oxygen into the chamber through the gas supply pipe to make the pressure inside the chamber higher than atmospheric pressure. and,
A hydrogen supply pipe connected to the gas supply pipe via a Y-shaped joint A, and a hydrogen gas generator are provided, and hydrogen gas from the hydrogen gas generator is introduced into the chamber through the hydrogen supply pipe. A hydrogen supply unit that supplies hydrogen;
A gas exhaust section that communicates with the chamber and has a safety valve or a valve that maintains the inside of the chamber within a predetermined pressure range by an ON/OFF operation, and exhausts the gas and the hydrogen gas from the chamber through the valve. and,
In an oxygen-hydrogen bath system comprising:
The gas supply pipe of the gas supply section includes a Y-shaped joint that divides the flow path of the gas from the gas supply section into two equal parts at a position closer to the gas supply section than the position of the Y-shaped joint A. has B,
One branch pipe A of the Y-shaped joint B joins the hydrogen supply pipe at the Y-shaped joint A and then connects to the gas supply port, and the other branch pipe B extends through a reducer. This is an oxygen-hydrogen bath system characterized in that the gas exhaust part is connected to the gas exhaust part through a T-shaped joint after the main body.

第2の発明は、前記第1の発明において、 前記弁によって、前記チャンバ内の圧力が1.1~1.35気圧に維持され、前記チャンバ内の前記水素ガスの体積濃度が1.0~2.0体積%に維持されることを特徴とする。
A second invention is the first invention, characterized in that the pressure in the chamber is maintained at 1.1 to 1.35 atmospheres and the volume concentration of the hydrogen gas in the chamber is maintained at 1.0 to 2.0 volume % by the valve.

第3の発明は、前記第1又は第2の発明において、前記ガス供給部が前記気体を前記チャンバ内に供給している間、前記水素供給部が前記水素ガスを前記チャンバ内に供給することを特徴とする。
A third invention is that in the first or second invention, while the gas supply unit is supplying the gas into the chamber, the hydrogen supply unit supplies the hydrogen gas into the chamber. It is characterized by

なお、本願請求項1に記載の発明の構成は、既に特許となっている特許第6133526号の請求項1記載発明の構成に、下記下線が付された構成要件を加えるものであるので、この追加された構成要件特許性は十分にあると考えられる。
ガスが導入されるガス供給口を有し、人体全体を収容可能なチャンバと、
前記ガス供給口と接続される気体供給管を有し、該気体供給管を介して前 記チャンバ内に酸素を含む気体を供給して前記チャンバ内部の圧力を大気圧よりも高圧にするガス供給部と、
前記気体供給管とY字型Aジョイントを介して接続される水素供給管と、水素ガス発生器を有し、該水素供給管を介して前記チャンバ内に前記水素ガス発生器からの水素ガスを供給する水素供給部と、
前記チャンバと連通され、安全弁又はON/OFF操作によって前記チャンバ内を所定の圧力範囲内に維持する弁を有し、該弁を介して前記チャンバから前記気体及び前記水素ガスを排出するガス排気部と、
を備える酸素水素浴システムにおいて、
前記ガス供給部の前記気体供給管は、前記Y字型Aジョイントの位置よりも前記ガス供給部に近い位置に、前記ガス供給部からの前記気体の流路を2等分割するY字型Bジョイントを有し、
前記Y字型Bジョイントから延びる一方の枝管Aは、前記水素供給管と前記Y字型Aジョイントにて合流した後前記ガス供給口に接続し、他方の枝管Bは、レデューサーを介して延びた後T型ジョイントを介してガス排気部に接続する
ことを特徴とする酸素水素浴システム。
Note that the configuration of the invention as claimed in claim 1 of the present application is to add the underlined constitutional features below to the configuration of the invention as claimed in claim 1 of patent No. 6133526, which has already been patented. It is considered that the added constituent elements are sufficiently patentable.
a chamber having a gas supply port through which gas is introduced and capable of accommodating the entire human body;
A gas supply having a gas supply pipe connected to the gas supply port, and supplying a gas containing oxygen into the chamber through the gas supply pipe to make the pressure inside the chamber higher than atmospheric pressure. Department and
A hydrogen supply pipe connected to the gas supply pipe via a Y-shaped A joint , and a hydrogen gas generator are provided, and hydrogen gas from the hydrogen gas generator is introduced into the chamber through the hydrogen supply pipe. A hydrogen supply unit that supplies hydrogen;
A gas exhaust section that communicates with the chamber and has a safety valve or a valve that maintains the inside of the chamber within a predetermined pressure range by ON/OFF operation, and exhausts the gas and the hydrogen gas from the chamber via the valve. and,
In an oxygen hydrogen bath system comprising:
The gas supply pipe of the gas supply section has a Y-shape B that divides the flow path of the gas from the gas supply section into two equal parts at a position closer to the gas supply section than the position of the Y-shape A joint. has a joint,
One branch pipe A extending from the Y-shaped B joint is connected to the gas supply port after joining the hydrogen supply pipe at the Y-shaped A joint, and the other branch pipe B is connected to the gas supply port through a reducer. After extending, connect to the gas exhaust part via a T-type joint.
An oxygen-hydrogen bath system characterized by:

本発明によれば、特許文献1に記載の発明(従来技術)の酸素水素浴システムの長年の使用により、発生される水素ガスの量が安全圏内となる安全性確認済の水素ガス発生器を使いつつ、従来技術による場合よりもより多くの水素をより短い時間に人体の皮膚及び粘膜から効率よく体内に取り込んで活性酸素の削減効果を得やすくすることが期待できるだけでなく、酸素ガスと水素ガスを共に溶存型としてより多く人体に取り込んで溶存型酸素・水素を血液又は体液中で増加させることが期待できる。
According to the present invention, through the long-term use of the oxygen-hydrogen bath system of the invention (prior art) described in Patent Document 1, a hydrogen gas generator whose safety has been confirmed in which the amount of hydrogen gas generated is within a safe range is provided. Not only can it be expected that more hydrogen can be efficiently taken into the body through the skin and mucous membranes of the human body in a shorter period of time than with conventional technology, making it easier to obtain the effect of reducing active oxygen, but it is also possible to reduce the amount of oxygen gas and hydrogen. It is expected that more gases will be taken into the human body as dissolved gases, thereby increasing dissolved oxygen and hydrogen in blood or body fluids.

従来技術によるシステム概念図である。なお、図中の参照番号は、特許第6133526号公報の図面における参照番号と同じであり、かかる参照番号は、本発明の実施態様を図示する図2、図3において同じ要素を示す。FIG. 2 is a conceptual diagram of a system according to the prior art. Note that the reference numbers in the drawings are the same as those in the drawings of Japanese Patent No. 6133526, and these reference numbers indicate the same elements in FIGS. 2 and 3 illustrating embodiments of the present invention. 本発明のシステム概念図(図1の記載方法に倣った概念図)である。同図において、図1における参照番号と同じ参照番号は、図1における構成要素と同じものであることを意味する。1 is a conceptual diagram of a system of the present invention (a conceptual diagram following the description method shown in FIG. 1); In the figure, reference numbers that are the same as those in FIG. 1 mean the same components as in FIG. 1. 本発明の配管の分岐部、接続部、レデューサー部をクローズアップしたシステム概念図である。同図において、図1における参照番号と同じ参照番号は、図1における構成要素と同じものであることを意味する。1 is a schematic diagram of a system in which the branching portion, the connecting portion, and the reducer portion of the piping of the present invention are shown in close-up. In this figure, the same reference numerals as those in FIG. 1 denote the same components as those in FIG. チャンバの概念図(従来技術と同じ概念図)である。なお、図中の参照番号は、特許第6133526号公報の図面における参照番号と同じであり、かかる参照番号は、本発明の実施態様を図示する図2、図3において同じ要素を示す。FIG. 2 is a conceptual diagram of a chamber (same conceptual diagram as the conventional technology). Note that the reference numbers in the drawings are the same as those in the drawings of Japanese Patent No. 6133526, and these reference numbers indicate the same elements in FIGS. 2 and 3 illustrating embodiments of the present invention. 従来技術によるチャンバ内の水素濃度(体積%)の時間変化を示すグラフである。2 is a graph showing a change in hydrogen concentration (volume %) in a chamber over time according to a conventional technique. 本発明によるチャンバ内の水素濃度(体積%)の時間変化を示すグラフである。同図では、2本の折れ線グラフが記載されているが、上側の折れ線グラフは高速運転の場合であり、下側の折れ線グラフは通常運転の場合を示す。なお、スタートから経過時間25分までは、これら2本の折れ線グラフが重なっている。1 is a graph showing a change in hydrogen concentration (volume %) in a chamber over time according to the present invention. In the same figure, two line graphs are shown, and the upper line graph shows the case of high-speed operation, and the lower line graph shows the case of normal operation. Note that these two line graphs overlap from the start to the elapsed time of 25 minutes.

(実施形態)
本発明に係る実施形態について、以下、図を参照して説明する。
本発明は従来技術(特許文献1記載発明)の改良発明であり、従来技術のシステム構成に新たな構成要素を追加することで改良発明としている。そこで、先ず、従来技術のシステム構成と比較してどの構成要素が新たに追加されているかについての理解を容易にすべく、従来技術のシステム構成の概念図を示す図1と、本発明のシステム構成の概念図を示す図2を準備した。なお、図2のシステム構成概念図の表記は、従来技術である特許文献1におけるシステム構成図の表記を踏襲したものである。図3は、図2のシステム構成図における分岐部、接続部等をクローズアップして表記したものである。
(Embodiment)
Embodiments according to the present invention will be described below with reference to the drawings.
The present invention is an improved invention of the prior art (the invention described in Patent Document 1), and is an improved invention by adding new components to the system configuration of the prior art. First, in order to facilitate understanding of which components are newly added compared to the system configuration of the prior art, we will first introduce a conceptual diagram of the system configuration of the prior art and the system of the present invention. Figure 2, which shows a conceptual diagram of the configuration, has been prepared. Note that the notation of the system configuration conceptual diagram in FIG. 2 follows the notation of the system configuration diagram in Patent Document 1, which is a prior art. FIG. 3 is a close-up representation of branching parts, connecting parts, etc. in the system configuration diagram of FIG. 2.

本実施形態に係る酸素水素浴システム10は、不図示の人体全体を収容するチャンバ11と、チャンバ11内に空気を供給して内部の圧力を大気圧よりも高圧にするガス供給部12と、チャンバ11内に水素ガスを供給する水素供給部13と、チャンバ11から空気及び水素ガスを排出するガス排気部15と、ガス供給部12とチャンバ11とを繋ぐ管路の途中のY字型Aジョイント42及びY字型Bジョイント44と、ガス供給部12とガス排気部15とを繋ぐ管路の途中のレデューサー40と、レデューサー40から延びる配管がガス排気部15と接続する箇所のT型ジョイント46と、チャンバ内の環境を測定する計測部16と、チャンバ内の環境を制御する制御部17と、を備えている。
The oxygen hydrogen bath system 10 according to the present embodiment includes a chamber 11 that accommodates the entire human body (not shown), a gas supply section 12 that supplies air into the chamber 11 and makes the internal pressure higher than atmospheric pressure. A hydrogen supply section 13 that supplies hydrogen gas into the chamber 11 , a gas exhaust section 15 that discharges air and hydrogen gas from the chamber 11 , and a Y-shaped A in the middle of the pipe connecting the gas supply section 12 and the chamber 11 . The joint 42 and the Y-shaped B joint 44, the reducer 40 in the middle of the pipe connecting the gas supply section 12 and the gas exhaust section 15, and the T-shaped joint at the point where the pipe extending from the reducer 40 connects with the gas exhaust section 15. 46, a measurement section 16 that measures the environment inside the chamber, and a control section 17 that controls the environment inside the chamber.

本発明のシステム概念図を示す図3と、従来技術のシステム概念図を示す図1とを比較すると明らかなように、本発明のシステムにおいては、Y字型Aジョイント42と、Y字型Bジョイント44と、レデューサー40と、T型ジョイント46が、図3に示された箇所にそれぞれ配置され、これらが図3における各直線で示された配管で接続されており、これらの配管は、従来技術において使用される配管と同じ材質のものである(それぞれの配管の外径及び肉厚については、以下に述べる)。
As is clear from a comparison between FIG. 3 showing a conceptual diagram of the system of the present invention and FIG. 1 showing a conceptual diagram of a system of the prior art, in the system of the present invention, the Y-shaped A joint 42 and the Y-shaped B A joint 44, a reducer 40, and a T-shaped joint 46 are arranged at the locations shown in FIG. 3, and are connected by piping shown by straight lines in FIG. It is made of the same material as the piping used in the technology (the outside diameter and wall thickness of each piping are described below).

チャンバ11は、例えばアルミやステンレス等の円筒状金属部材で構成され、非通気性、非透湿性を有し、少なくとも1.4気圧以上の気圧に耐えられる強度を有する。チャンバ11の側面には人の出入りが可能な開口部11aが配されるとともに、開口部11aを塞ぐ開閉部18が配されている。また、チャンバ11の側面には、ガス供給部12と接続されたガス供給口20が配されている。
The chamber 11 is made of a cylindrical metal member such as aluminum or stainless steel, has air and moisture impermeability, and is strong enough to withstand an atmospheric pressure of at least 1.4 atmospheres. An opening 11a through which people can enter and exit is provided on the side of the chamber 11, and an opening/closing unit 18 for closing the opening 11a is provided. A gas supply port 20 connected to the gas supply unit 12 is also provided on the side of the chamber 11.

ガス供給部12は、空気(酸素を含む空気)を大気圧よりも高圧にしてチャンバ11内に取り込むためのコンプレッサ22と、空気供給管(気体供給管)23と、を備えている。ここで、ガス供給部12は、空気の供給圧力を調整する空気圧力調整弁をさらに備えていてもよい。なお、コンプレッサ22の代わりに大気圧よりも高圧の空気が圧入された不図示の圧力容器を備えていても構わない。
The gas supply unit 12 includes a compressor 22 for bringing air (air containing oxygen) into the chamber 11 at a pressure higher than atmospheric pressure, and an air supply pipe (gas supply pipe) 23. Here, the gas supply unit 12 may further include an air pressure adjustment valve that adjusts the supply pressure of air. Note that, instead of the compressor 22, a pressure vessel (not shown) into which air at a pressure higher than atmospheric pressure is pressurized may be provided.

ここで、コンプレッサ22で圧縮された空気(酸素を含む空気)は、空気供給管23内をチャンバ11に向かって流れるのであるが、その流路の途中に、1本の流路から流入する流量を2本の流路からそれぞれ2等分割された流量を流出させるためのY字型Aジョイント44と、水素ガス発生部13からの水素ガスの流れとコンプレッサ22からの圧縮された空気の流れとを合流させるためのY字型Bジョイント42とが間挿されている。Y字型Aジョイント44は、一般的なY字型ジョイントの構成であり、入口側の管の外径及び肉厚と出口側2本の管の外径及び肉厚が同じ構成となっている。Y字型Aジョイント44は、コンプレッサ22で圧縮された空気が通る空気供給管23の経路中に間挿されており、この圧縮された空気の量を1/2に均等分割して、それぞれ、枝管に流出させる。また、Y字型Bジョイント42も、一般的なY字型ジョイントの構成であるが、ここでは、それぞれ外径及び肉厚が異なる2本の流路を1本の流路に合流させる構成となっている。具体的には、Y字型Aジョイント44から枝分かれした枝管の一方からの空気と、水素供給部13からの水素ガスとを合流させるように構成されている。ここで合流された空気・水素混合ガスが一体となってガス供給口20を介してチャンバ11内に流入する。
Here, the air (air containing oxygen) compressed by the compressor 22 flows inside the air supply pipe 23 toward the chamber 11, but the flow rate flowing from one flow path is A Y-shaped A joint 44 for discharging the flow rate divided into two equal parts from two flow paths, a flow of hydrogen gas from the hydrogen gas generation section 13 and a flow of compressed air from the compressor 22. A Y-shaped B joint 42 is inserted for merging the two. The Y-shaped A joint 44 has the configuration of a general Y-shaped joint, and the outer diameter and wall thickness of the tube on the inlet side are the same as the outer diameter and wall thickness of the two tubes on the outlet side. . The Y-shaped A joint 44 is inserted in the path of the air supply pipe 23 through which the air compressed by the compressor 22 passes, and divides the amount of compressed air equally into 1/2, respectively. Drain into branch pipes. In addition, the Y-shaped B joint 42 also has the configuration of a general Y-shaped joint, but here, it has a configuration in which two channels with different outer diameters and wall thicknesses are merged into one channel. It has become. Specifically, it is configured so that air from one of the branch pipes branching from the Y-shaped A joint 44 and hydrogen gas from the hydrogen supply section 13 are combined. The combined air/hydrogen mixed gas flows together into the chamber 11 through the gas supply port 20 .

水素供給部13は、水を電気分解して高濃度の水素ガスを生成する水素ガス発生器25と、水素ガス発生器25とチャンバ11との間に配された水素供給弁26と、これらをつなぐ水素供給管27と、を備えている。この水素供給管27は、Y字型Bジョイントにおいて、Y字型Aジョイントからの一方の枝管と合流する。ここで、水素供給部13は、水素ガスの供給圧力を調整する不図示の水素圧力調整弁をさらに備えていてもよい。水素供給管27の先端は、チャンバ11の外側で、空気供給管23の途中の位置にあるY字型Bジョイントにおいて、空気供給管のY字型Aジョイントからの枝管と合流する。なお、水素ガス発生器25の代わりに大気圧よりも高圧の水素ガスが圧入された不図示の圧力容器を備えていても構わない。
The hydrogen supply unit 13 includes a hydrogen gas generator 25 that generates high-concentration hydrogen gas by electrolyzing water, a hydrogen supply valve 26 disposed between the hydrogen gas generator 25 and the chamber 11, and a hydrogen supply pipe 27 connecting them. The hydrogen supply pipe 27 merges with one branch pipe from the Y-shaped A joint at a Y-shaped B joint. Here, the hydrogen supply unit 13 may further include a hydrogen pressure adjustment valve (not shown) that adjusts the supply pressure of hydrogen gas. The tip of the hydrogen supply pipe 27 merges with a branch pipe from the Y-shaped A joint of the air supply pipe at a Y-shaped B joint located midway along the air supply pipe 23 outside the chamber 11. Note that instead of the hydrogen gas generator 25, a pressure vessel (not shown) into which hydrogen gas at a pressure higher than atmospheric pressure is injected may be provided.

ガス排気部15は、チャンバ11内部に導入された空気及び水素ガスをチャンバ11外へ排出する排気弁28を備えている。ガス排気部15は、制御部17によりON/OFF操作されてチャンバ11内部の圧力を所定圧力範囲内(即ち、大気圧以上かつ排気弁28の使用可能圧力以下)に維持する。ガス排気部15は、チャンバ11内の圧力が所定圧力以上になったときに自動的に内部の気体を排気する不図示の安全弁をさらに備えていてもよい。
The gas exhaust unit 15 is equipped with an exhaust valve 28 that exhausts air and hydrogen gas introduced into the chamber 11 to the outside of the chamber 11. The gas exhaust unit 15 is turned on/off by the control unit 17 to maintain the pressure inside the chamber 11 within a predetermined pressure range (i.e., above atmospheric pressure and below the usable pressure of the exhaust valve 28). The gas exhaust unit 15 may further include a safety valve (not shown) that automatically exhausts the gas inside the chamber 11 when the pressure inside the chamber 11 reaches or exceeds a predetermined pressure.

計測部16は、制御部17と接続されている。チャンバ11と制御部17とは接続されており、計測部16は、チャンバ11内の圧力を計測する圧力センサ30を備えている。
The measurement section 16 is connected to the control section 17. The chamber 11 and the control unit 17 are connected, and the measurement unit 16 includes a pressure sensor 30 that measures the pressure inside the chamber 11.

制御部17は、不図示のCPU、メモリ、ディスプレイを備えたコンピュータから構成され、圧力センサ30からのデータに基づき、チャンバ11内の環境制御を行う。例えば、コンプレッサ22や水素ガス発生器25及び水素供給用第1電磁弁26のON/OFF操作等を行う。また、排気弁28のON/OFF操作を行い、チャンバ11内の圧力調整を行う。
The control unit 17 is composed of a computer equipped with a CPU, memory, and display (not shown), and controls the environment inside the chamber 11 based on data from the pressure sensor 30. For example, it controls the ON/OFF operation of the compressor 22, the hydrogen gas generator 25, and the first hydrogen supply solenoid valve 26. It also controls the ON/OFF operation of the exhaust valve 28 to adjust the pressure inside the chamber 11.

チャンバ11内の環境は、チャンバ11内の圧力、及びチャンバ11内の水素体積濃度が動的平衡に達したときに、チャンバ内の圧力が、好ましくは、圧力が1.10気圧以上1.35気圧以下、又は1.10気圧以上かつ排気弁28の使用可能圧力以下、チャンバ11内の酸素の体積濃度が20%以上30%以下、水素の体積濃度が水素の爆発限界の最小値未満であって1.0%~2.0%となるように全体のシステムが制御される。
The environment within chamber 11 is controlled by controlling the entire system so that, when the pressure within chamber 11 and the hydrogen volume concentration within chamber 11 reach dynamic equilibrium, the pressure within the chamber is preferably 1.10 atmospheres or more and 1.35 atmospheres or less, or 1.10 atmospheres or more and less than the usable pressure of exhaust valve 28, the volume concentration of oxygen within chamber 11 is 20% or more and 30% or less, and the volume concentration of hydrogen is 1.0% to 2.0%, less than the minimum explosion limit of hydrogen.

ここで、水素供給部13は、ガス供給部12が空気を供給している間のみ水素ガスをチャンバ11に向けて供給する。なお、コンプレッサ22や水素ガス発生器25及び水素供給弁26のON/OFF操作を手動操作可能なものとしたり、各種圧力制御は利用者自身がディスプレイに表示される各種圧力等を見ながら手動により調整したりしてもよい。
Here, the hydrogen supply unit 13 supplies hydrogen gas to the chamber 11 only while the gas supply unit 12 is supplying air. The compressor 22, hydrogen gas generator 25, and hydrogen supply valve 26 may be manually turned on and off, and the various pressure controls may be manually adjusted by the user himself while watching the various pressures displayed on the display.

次に本実施形態に係る酸素水素浴システム10の作用について説明する。
まず、チャンバ11の開閉部18を開けて不図示の使用者が開口部11aよりチャンバ11内に入る。
Next, the operation of the oxygen-hydrogen bath system 10 according to this embodiment will be explained.
First, the opening/closing part 18 of the chamber 11 is opened, and a user (not shown) enters the chamber 11 through the opening 11a.

開閉部18を閉じた後、制御部17の指示によってシステム全体が稼働し始め、制御部17の指示によってガス供給部12が空気をチャンバ11内に向けて供給し、水素供給部13が水素ガスをチャンバ11内に向けて供給する。
After the opening/closing unit 18 is closed, the entire system starts operating under the instruction of the control unit 17, and under the instruction of the control unit 17, the gas supply unit 12 supplies air into the chamber 11 and the hydrogen supply unit 13 supplies hydrogen gas into the chamber 11.

このとき、制御部17は、計測部16からのデータに基づくコンプレッサ22のON/OFF操作や、水素ガス発生器25及び水素供給26のON/OFF操作による空気や水素ガスの流量制御、排気弁のON/OFF操作による内圧制御等を適宜行うことで、所望する時間内に、チャンバ11内の環境(特に、圧力と水素体積濃度の状態)が動的平衡状態にする。そして、この動的平衡状態の下で、チャンバ11内圧を1.10気圧以上1.35気圧以下、酸素の体積濃度を20%以上30%以下、水素の体積濃度を、好ましくは1.0%以上2.0%以下に維持する。
At this time, the control unit 17 controls the flow rate of air and hydrogen gas by ON/OFF operation of the compressor 22 based on the data from the measurement unit 16, the ON/OFF operation of the hydrogen gas generator 25 and the hydrogen supply 26, and controls the exhaust valve. By appropriately controlling the internal pressure through ON/OFF operations, the environment within the chamber 11 (in particular, the state of pressure and hydrogen volume concentration) is brought into a dynamic equilibrium state within a desired time. Under this dynamic equilibrium state, the internal pressure of the chamber 11 is set at 1.10 atm or more and 1.35 atm or less, the oxygen volume concentration is set at 20% or more and 30% or less, and the hydrogen volume concentration is preferably 1.0%. Maintain above 2.0% or less.

本発明においては、チャンバ11内の環境を動的平衡状態に維持することが重要なポイントの1つである。使用者(図示せず)は、所望する時間の間チャンバ11内でこの動的平衡状態の環境に身を包ませることとなる。こうして所定時間が経過した後、水素供給部13は水素ガスのチャンバ11内への供給を停止し、その後にガス供給部12は空気のチャンバ11内への供給を停止する。
In the present invention, one of the important points is to maintain the environment within the chamber 11 in a dynamic equilibrium state. A user (not shown) will immerse himself in this dynamic equilibrium environment within chamber 11 for a desired period of time. After the predetermined time has elapsed, the hydrogen supply section 13 stops supplying hydrogen gas into the chamber 11, and then the gas supply section 12 stops supplying air into the chamber 11.

この酸素水素浴システム10によれば、図5(従来技術による場合)と図6(本発明の場合)に示すとおり、チャンバ11内の水素体積濃度を、従来技術による場合よりも短い時間で、従来技術で到達できる値よりも高い値に到達させることが可能となり、また、システム内の配管構成によっては、従来技術にて使用する水素発生器と同じ水素発生器を使いつつも、最終的に到達する値を従来技術による場合の2倍近い値に到達させることができ、短時間で効率よく人体に取り込むことが期待できる。
According to this oxygen-hydrogen bath system 10, as shown in FIG. 5 (in the case of the prior art) and FIG. 6 (in the case of the present invention), the hydrogen volume concentration in the chamber 11 can be increased in a shorter time than in the case of the prior art. It is possible to reach a higher value than that possible with conventional technology, and depending on the piping configuration within the system, even though the same hydrogen generator as that used in conventional technology is used, the final It is possible to reach a value nearly twice that of the conventional technology, and it is expected that it will be efficiently absorbed into the human body in a short time.

また、あわせて、酸素を含む気体の中の酸素濃度を上げることで、大気中の酸素濃度(約21%)よりも高濃度の酸素を大気圧以上に上昇させた高圧且つ高濃度酸素の雰囲気下に人体を晒すことができ、酸素ガスを溶存型酸素としてより多く人体に取り込むことが期待できる。
In addition, by increasing the oxygen concentration in the oxygen-containing gas, we have created a high-pressure and high-concentration oxygen atmosphere that has a higher concentration of oxygen than the atmospheric pressure (approximately 21%). The human body can be exposed to the atmosphere below, and it is expected that more oxygen gas will be taken into the human body as dissolved oxygen.

特に、ガス供給部12が空気をチャンバ11内に供給している間、水素供給部13が水素ガスをチャンバ11内に供給するので、チャンバ11内が水素過多になってしまう状態を好適に抑制することができる。
In particular, while the gas supply section 12 is supplying air into the chamber 11, the hydrogen supply section 13 supplies hydrogen gas into the chamber 11, so that a situation in which the inside of the chamber 11 becomes excessively hydrogen can be suitably suppressed. can do.

また、ガス供給部12、水素供給部13、及びガス排気部15によってチャンバ11内における水素ガスの体積濃度が水素ガスの爆発限界の最小値未満となるように制御することも可能となるので、チャンバ11内で水素爆発が発生するような危険な環境になってしまうことを好適に抑えることができる。
Furthermore, it is also possible to control the volume concentration of hydrogen gas in the chamber 11 by the gas supply section 12, hydrogen supply section 13, and gas exhaust section 15 so that it is less than the minimum value of the explosion limit of hydrogen gas. It is possible to suitably prevent the chamber 11 from becoming a dangerous environment in which a hydrogen explosion occurs.

(実施例)
図6に示したチャンバ内の水素濃度の時間変化を示すグラフは、下記条件下において得られたグラフである。なお、以下における外径φ10mmの配管は肉厚が1.75mmであり、外径φ6mmの配管は肉厚が1mmであり、外径φ12mmの配管は肉厚が2mmであった。
1)Y字型Aジョイントは分岐用として構成されており、
2)Y字型Aジョイントの入口側で接続する配管の外径φ10mm
Y字型Aジョイントの出口側で接続する2本の配管の外径はそれぞれφ10mm
3)Y字型Bジョイントは合流用として構成されており、
Y字型Bジョイントの入口側で接続する2本の配管のうち、空気(酸素を含む空気)用の配管の外径はφ10mm、水素ガス用の配管の外径はφ6mm
Y字型Bジョイントの出口側で接続する1本の配管の外径はφ10mm
4)レデューサーは、流入側の外径φ10mmの配管を、外径φ12mmに拡大するレデューサー
5)T型ジョイントは流路方向変更用として構成されており、
上記レデューサーから延びる外径φ12mmの配管を、チャンバからの外径φ12mmの排気ラインの途中に接続する。
6)コンプレッサは毎分200リットルの吐出能力で運転し、水素発生器は100%純粋な水素ガスを常温で毎分500ccの生成能力で運転させた。
7)上記条件下で運転したところ、Y字型Bジョイントの出口での水素体積濃度は約3%であった。
8)なお、同じY字型Bジョイントを有するが、Y字型Aジョイントと、レデューサーと、T型ジョイントを有しない従来型システムの場合、同じコンプレッサと同じ水素発生器を使ったとき、Y字型Bジョイントの出口での水素体積濃度は約1%であった。
(Example)
The graph shown in FIG. 6 showing the change in hydrogen concentration within the chamber over time was obtained under the following conditions. Note that the pipes with an outer diameter of 10 mm in the following description had a wall thickness of 1.75 mm, the pipes with an outer diameter of 6 mm had a wall thickness of 1 mm, and the pipes with an outer diameter of 12 mm had a wall thickness of 2 mm.
1) The Y-shaped A joint is configured for branching.
2) Outer diameter of the pipe connected on the inlet side of the Y-shaped A joint: φ10mm
The outer diameter of the two pipes connected on the outlet side of the Y-shaped A joint is each φ10 mm.
3) The Y-shaped B joint is configured for merging,
Of the two pipes connected on the inlet side of the Y-shaped B joint, the outer diameter of the air (air containing oxygen) pipe is φ10 mm, and the outer diameter of the hydrogen gas pipe is φ6 mm.
The outer diameter of one pipe connected on the outlet side of the Y-shaped B joint is φ10mm.
4) The reducer is a reducer that expands the inflow side piping with an outer diameter of φ10 mm to an outer diameter of φ12 mm. 5) The T-shaped joint is configured to change the flow path direction.
A pipe with an outer diameter of 12 mm extending from the reducer is connected to the middle of an exhaust line with an outer diameter of 12 mm from the chamber.
6) The compressor was operated at a discharge capacity of 200 liters per minute, and the hydrogen generator was operated at a production capacity of 500 cc per minute of 100% pure hydrogen gas at room temperature.
7) When operated under the above conditions, the hydrogen volume concentration at the outlet of the Y-shaped B joint was approximately 3%.
8) In addition, in the case of a conventional system that has the same Y-shaped B joint but does not have a Y-shaped A joint, reducer, and T-shaped joint, when the same compressor and the same hydrogen generator are used, the Y-shaped The hydrogen volume concentration at the outlet of the Type B joint was approximately 1%.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、ガス供給部12は空気をチャンバ11内に供給するとしているが、空気に限らず、酸素を所定の濃度で含有しかつ人体に安全な気体であれば、空気に限らず他のガスであっても構わない。また、各構成要素の空間配置に制約はなく、例えば、水素ガス供給口がチャンバの下方に配される構成も本発明の範囲に含まれる。
Note that the technical scope of the present invention is not limited to the above-described embodiments, and various changes can be made without departing from the spirit of the present invention. For example, although it is assumed that the gas supply unit 12 supplies air into the chamber 11, it is not limited to air and may be any other gas as long as it contains oxygen at a predetermined concentration and is safe for the human body. It doesn't matter if there is. Further, there are no restrictions on the spatial arrangement of each component, and for example, a configuration in which the hydrogen gas supply port is arranged below the chamber is also included within the scope of the present invention.

また、計測部16は、酸素濃度センサや水素濃度センサを備えていてもよい。この場合、チャンバ11内の酸素濃度や水素濃度をリアルタイムで計測することができる。
Further, the measurement unit 16 may include an oxygen concentration sensor or a hydrogen concentration sensor. In this case, the oxygen concentration and hydrogen concentration within the chamber 11 can be measured in real time.

さらに、水素供給部13の水素供給管27は、空気供給管23と接続されているとしているが、これに限らず、チャンバに別途水素供給口を設けて空気と別々に供給できるようにしても構わない。また、このとき、チャンバ内に使用者が入った際に水素供給口から使用者の顔の位置となる近傍まで水素供給管が伸びるようにしてもよい。これによって、水素をより効率よく体内に摂取させることができる。
Further, although the hydrogen supply pipe 27 of the hydrogen supply unit 13 is connected to the air supply pipe 23, the present invention is not limited to this, and a separate hydrogen supply port may be provided in the chamber so that the hydrogen supply pipe 27 can be supplied separately from the air. I do not care. Further, at this time, the hydrogen supply pipe may extend from the hydrogen supply port to the vicinity of the user's face when the user enters the chamber. This allows hydrogen to be taken into the body more efficiently.

また、開閉部はスライド式でも構わない。さらに、使用時にはチャンバ11内 部の圧力が大気圧以上になるので、チャンバの内面側でスライドする構造がより好ましい。
Further, the opening/closing part may be of a sliding type. Furthermore, since the pressure inside the chamber 11 becomes equal to or higher than atmospheric pressure during use, a structure that slides on the inner surface of the chamber is more preferable.

10 酸素水素浴システム
11 チャンバ
12 ガス供給部
13 水素供給部
15 ガス排気部
20 ガス供給口
23 空気供給管
27 水素供給管
28 排気弁)
40 レデューサー
42 Y字型Bジョイント
44 Y字型Aジョイント
46 T型ジョイント


10 Oxygen hydrogen bath system 11 Chamber 12 Gas supply section 13 Hydrogen supply section 15 Gas exhaust section 20 Gas supply port 23 Air supply pipe 27 Hydrogen supply pipe 28 Exhaust valve)
40 Reducer 42 Y-shaped B joint 44 Y-shaped A joint 46 T-shaped joint


Claims (3)

ガスが導入されるガス供給口を有し、人体全体を収容可能なチャンバと、
前記ガス供給口と接続される気体供給管を有し、該気体供給管を介して前 記チャンバ内に酸素を含む気体を供給して前記チャンバ内部の圧力を大気圧よりも高圧にするガス供給部と、
前記気体供給管とY字型Aジョイントを介して接続される水素供給管と、水素ガス発生器を有し、該水素供給管を介して前記チャンバ内に前記水素ガス発生器からの水素ガスを供給する水素供給部と、
前記チャンバと連通され、安全弁又はON/OFF操作によって前記チャンバ内を所定の圧力範囲内に維持する弁を有し、該弁を介して前記チャンバから前記気体及び前記水素ガスを排出するガス排気部と、
を備える酸素水素浴システムにおいて、
前記ガス供給部の前記気体供給管は、前記Y字型Aジョイントの位置よりも前記ガス供給部に近い位置に、前記ガス供給部からの前記気体の流路を2等分割するY字型Bジョイントを有し、
前記Y字型Bジョイントから延びる一方の枝管Aは、前記水素供給管と前記Y字型Aジョイントにて合流した後前記ガス供給口に接続し、他方の枝管Bは、レデューサーを介して延びた後T型ジョイントを介してガス排気部に接続する
ことを特徴とする酸素水素浴システム。
a chamber having a gas supply port through which gas is introduced and capable of accommodating the entire human body;
A gas supply having a gas supply pipe connected to the gas supply port, and supplying a gas containing oxygen into the chamber through the gas supply pipe to make the pressure inside the chamber higher than atmospheric pressure. Department and
A hydrogen supply pipe connected to the gas supply pipe via a Y-shaped A joint, and a hydrogen gas generator are provided, and hydrogen gas from the hydrogen gas generator is introduced into the chamber through the hydrogen supply pipe. A hydrogen supply unit that supplies hydrogen;
A gas exhaust section that communicates with the chamber and has a safety valve or a valve that maintains the inside of the chamber within a predetermined pressure range by an ON/OFF operation, and exhausts the gas and the hydrogen gas from the chamber through the valve. and,
In an oxygen-hydrogen bath system comprising:
The gas supply pipe of the gas supply section has a Y-shape B that divides the flow path of the gas from the gas supply section into two equal parts at a position closer to the gas supply section than the position of the Y-shape A joint. has a joint,
One branch pipe A extending from the Y-shaped B joint is connected to the gas supply port after joining the hydrogen supply pipe at the Y-shaped A joint, and the other branch pipe B is connected to the gas supply port through a reducer. An oxygen-hydrogen bath system characterized in that the extended end is connected to a gas exhaust part through a T-shaped joint.
前記弁によって、前記チャンバ内の圧力が1.1~1.35気圧に維持され、前記チャンバ内の前記水素ガスの体積濃度が1.0~2.0体積%に維持されることを特徴とする請求項1記載の酸素水素浴システム。
The pressure in the chamber is maintained at 1.1 to 1.35 atmospheres by the valve, and the volume concentration of the hydrogen gas in the chamber is maintained at 1.0 to 2.0% by volume. The oxygen-hydrogen bath system according to claim 1.
前記ガス供給部が前記気体を前記チャンバ内に供給している間、前記水素供給部が前記水素ガスを前記チャンバ内に供給する請求項1又は2に記載の酸素水素浴システム。


The oxygen-hydrogen bath system according to claim 1 or 2, wherein the hydrogen supply unit supplies the hydrogen gas into the chamber while the gas supply unit supplies the gas into the chamber.


JP2023117824A 2023-07-19 2023-07-19 Oxygen hydrogen bath system Active JP7459356B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023117824A JP7459356B1 (en) 2023-07-19 2023-07-19 Oxygen hydrogen bath system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023117824A JP7459356B1 (en) 2023-07-19 2023-07-19 Oxygen hydrogen bath system

Publications (1)

Publication Number Publication Date
JP7459356B1 true JP7459356B1 (en) 2024-04-01

Family

ID=90474205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023117824A Active JP7459356B1 (en) 2023-07-19 2023-07-19 Oxygen hydrogen bath system

Country Status (1)

Country Link
JP (1) JP7459356B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133526B1 (en) 2016-07-14 2017-05-24 株式会社 エイム Oxygen hydrogen bath system
WO2019064893A1 (en) 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 Hydrogen-containing gas supply system and hydrogen house

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133526B1 (en) 2016-07-14 2017-05-24 株式会社 エイム Oxygen hydrogen bath system
WO2019064893A1 (en) 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 Hydrogen-containing gas supply system and hydrogen house

Similar Documents

Publication Publication Date Title
CN104039136B (en) The apparatus of oxygen supply of organ perfusion's system
US7306657B2 (en) Oxygen concentrating apparatus
US8667963B2 (en) Ventilator circuit for oxygen generating system
JP6133526B1 (en) Oxygen hydrogen bath system
ES2140664T3 (en) MEDICAL INSUFLATOR WITH AUTOMATIC REGULATION OF THE GASEOUS FLOW.
CN111219591B (en) Gas cylinder type pressure stabilizing dual-mode oxygen supply device
JP7459356B1 (en) Oxygen hydrogen bath system
US20190232238A1 (en) Apparatus for generating ultrafine bubbles of molecular hydrogen in water
CN201192486Y (en) Oxygenation chamber structure of film oxygenator
AU2012251678B2 (en) Exchanger device
CN210447462U (en) Hydrogen-oxygen mixed gas oxygen supply and exhaust system of hyperbaric oxygen chamber
CN206228666U (en) A kind of oxygen closes drainage tube, oxygenation device
JP2012152288A (en) Blood purification device
JP2017221591A (en) Depression therapeutic agent supply device
CN106215262B (en) Oxygenation device and oxygen close method in a kind of venous lumen
JP2627520B2 (en) Endoscope air supply device
CN106237414B (en) A kind of vein micro-nano mist oxygen device and oxygen therapy method
JP2002037191A (en) Underwater respiratory device
CN111282125A (en) Method and device for safely preparing oxyhydrogen gas for delivery and breathing and nasal inhalation tube
CN106421949B (en) A kind of oxygen closes drainage tube, oxygenation device and oxygen and closes method
WO2018152892A1 (en) Weak acid solvent generator
CN221035252U (en) Medical gas pressure reducing box
US20030127099A1 (en) Demand valve which can be used in oxygen therapy
JPWO2023008433A5 (en)
CN211750688U (en) Oxygen supply buffering and humidifying device with continuous micro-resistance in oxygen cabin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231113

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240319

R150 Certificate of patent or registration of utility model

Ref document number: 7459356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150