JP7458800B2 - Composite plating material and its manufacturing method - Google Patents

Composite plating material and its manufacturing method Download PDF

Info

Publication number
JP7458800B2
JP7458800B2 JP2020013117A JP2020013117A JP7458800B2 JP 7458800 B2 JP7458800 B2 JP 7458800B2 JP 2020013117 A JP2020013117 A JP 2020013117A JP 2020013117 A JP2020013117 A JP 2020013117A JP 7458800 B2 JP7458800 B2 JP 7458800B2
Authority
JP
Japan
Prior art keywords
composite
plating
silver
composite plating
plating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020013117A
Other languages
Japanese (ja)
Other versions
JP2021119257A (en
Inventor
隆夫 冨谷
有紀也 加藤
龍大 土井
浩隆 小谷
宏人 成枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2020013117A priority Critical patent/JP7458800B2/en
Publication of JP2021119257A publication Critical patent/JP2021119257A/en
Application granted granted Critical
Publication of JP7458800B2 publication Critical patent/JP7458800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

本発明は、複合めっき材およびその製造方法に関する。 The present invention relates to a composite plating material and a method for manufacturing the same.

従来、自動車などに用いられるスイッチやコネクタ、端子などの摺動接点部品などの材料として、摺動過程における加熱による銅や銅合金などの導体素材の酸化を防止するために、導体素材に銀めっきを形成した銀めっき材が使用されている。 Traditionally, conductor materials such as copper and copper alloys have been plated with silver to prevent them from oxidizing due to heating during the sliding process, as materials for sliding contact parts such as switches, connectors, and terminals used in automobiles. A silver-plated material is used.

しかし、銀めっきは、軟質で摩耗しやすく、一般的に摩擦係数が高いため、摺動により摩耗して素材(基材)が露出しやすいという問題がある。この問題を解消するため、銀の合金めっき皮膜や黒鉛粒子を銀マトリックス中に分散させた銀の複合めっき皮膜を電気めっきで導体素材上に形成して、耐摩耗性を向上させる方法が提案されている。 However, silver plating is soft and easily abraded, and generally has a high coefficient of friction, so there is a problem that the material (base material) is easily exposed due to abrasion due to sliding. To solve this problem, a method has been proposed in which a composite silver plating film in which silver alloy plating film or graphite particles are dispersed in a silver matrix is formed on the conductor material by electroplating to improve wear resistance. ing.

特許文献1の[0034]には、酸化処理を行った炭素粒子80g/Lを120g/Lのシアン化銀カリウムと100g/Lのシアン化カリウムとからなるシアン銀めっき液中に添加して分散および懸濁させた後、銀マトリックス配向調整剤としてセレノシアン酸カリウム(KSeCN)を添加することにより、銀と炭素粒子の複合めっき液を作製することが記載されている。 [0034] of Patent Document 1 discloses that 80 g/L of oxidized carbon particles are added to a cyan silver plating solution consisting of 120 g/L potassium silver cyanide and 100 g/L potassium cyanide, and then dispersed and suspended. It is described that a composite plating solution of silver and carbon particles is prepared by adding potassium selenocyanate (KSeCN) as a silver matrix alignment agent after making the solution cloudy.

そして、これらの複合めっき液を使用して、それぞれ液温25℃、電流密度1A/dmで電気めっきを行い、素材としての厚さ0.3mmの銅板上に膜厚5μmの銀と炭素粒子の複合めっき皮膜が形成された複合めっき材を作製することが記載されている。 Using these composite plating solutions, electroplating was carried out at a solution temperature of 25°C and a current density of 1A/ dm2 to form a film of silver and carbon particles with a thickness of 5μm on a copper plate with a thickness of 0.3mm as a material. It is described that a composite plating material having a composite plating film formed thereon is produced.

また、めっき膜の密着性を向上させるために、複合めっき皮膜を形成する前に3g/Lのシアン銀カリウムと100g/Lのシアン化カリウムとからなる組成のAgストライクめっき浴中において、液温25℃、電流密度3A/dmでAgストライクめっきを行うことが記載されている。 In addition, in order to improve the adhesion of the plating film, before forming the composite plating film, the liquid temperature was 25°C in an Ag strike plating bath with a composition of 3 g/L cyanide silver potassium and 100 g/L potassium cyanide. , it is described that Ag strike plating is performed at a current density of 3 A/dm 2 .

特許文献2の[0011]には、銀、シアン化カリウム、水酸化カリウム、グラファイト粉、めっき液へのグラファイト粉末の分散助剤をめっき液中に含有させ、銀板をアノードとし、浴温度を20℃とし、電流密度を1A/dmとし、撹拌し、めっきを形成することが記載されている。 In [0011] of Patent Document 2, silver, potassium cyanide, potassium hydroxide, graphite powder, and a dispersion aid for graphite powder in the plating solution are contained in the plating solution, the silver plate is used as an anode, and the bath temperature is 20°C. It is described that plating is formed by stirring at a current density of 1 A/dm 2 .

特開2011-74499号公報Japanese Patent Application Publication No. 2011-74499 特開平9-7445号公報Japanese Patent Application Publication No. 9-7445

本発明者の調べにより、特許文献1および2に記載の手法で得られるめっき材を用いてスイッチやコネクタ、端子などの接点部品をプレス加工などにより成形する際に、曲げ加工性に関して改善の余地があることが判明した。 The inventors' research has revealed that there is room for improvement in bending workability when forming contact parts such as switches, connectors, and terminals by press working using the plated materials obtained by the methods described in Patent Documents 1 and 2.

また、特許文献1および2に記載の手法はシアン浴を使用しており、めっき浴の廃水処理の際にシアン無害化のための費用が嵩む。 Further, the methods described in Patent Documents 1 and 2 use a cyanide bath, which increases the cost for rendering cyanide harmless during wastewater treatment of the plating bath.

本発明の課題は、優れた耐摩耗性および優れた曲げ加工性を備える複合めっき材を提供することにある。
本発明の課題は、非シアン浴を使用しつつ優れた耐摩耗性および優れた曲げ加工性を備える複合めっき材の製造方法を提供することにある。
An object of the present invention is to provide a composite plated material having excellent wear resistance and excellent bending workability.
An object of the present invention is to provide a method for manufacturing a composite plated material having excellent wear resistance and excellent bending workability while using a non-cyanide bath.

本発明の第1の態様は、
銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜が基材上に形成された複合めっき材において、
複合めっき皮膜の炭素の含有量が0.2~10.0質量%であり、
複合めっき皮膜表面の銀粒子状構造のうち短径に対する長径の比が2以上である銀粒子状構造の個数の割合が30%以上である、複合めっき材である。
The first aspect of the present invention is
In a composite plating material in which a composite plating film made of a composite material containing carbon particles in a silver layer is formed on a base material,
The carbon content of the composite plating film is 0.2 to 10.0% by mass,
This is a composite plating material in which the ratio of the number of silver particle structures having a ratio of the major axis to the minor axis of 2 or more among the silver particle structures on the surface of the composite plating film is 30% or more.

本発明の第2の態様は、第1の態様に記載の態様であって、
前記複合めっき皮膜の表面の炭素粒子が占める割合が5~85面積%である。
A second aspect of the present invention is the aspect described in the first aspect, comprising:
The proportion of carbon particles on the surface of the composite plating film is 5 to 85% by area.

本発明の第3の態様は、第1または第2の態様に記載の態様であって、
前記複合めっき皮膜の厚さが0.5~25μmである。
A third aspect of the present invention is the aspect described in the first or second aspect,
The thickness of the composite plating film is 0.5 to 25 μm.

本発明の第4の態様は、第1~第3のいずれかの態様に記載の態様であって、
前記基材は銅または銅合金である。
A fourth aspect of the present invention is the aspect according to any one of the first to third aspects,
The base material is copper or a copper alloy.

本発明の第5の態様は、第1~第4のいずれかの態様に記載の態様であって、
前記基材と前記複合めっき皮膜との間に下地めっき層が形成されている。
A fifth aspect of the present invention is the aspect according to any one of the first to fourth aspects,
A base plating layer is formed between the base material and the composite plating film.

本発明の第6の態様は、第5の態様に記載の態様であって、
前記下地めっき層がニッケルめっき層、銅めっき層から選ばれる少なくともひとつからなる。
A sixth aspect of the present invention is the aspect described in the fifth aspect, comprising:
The base plating layer consists of at least one selected from a nickel plating layer and a copper plating layer.

本発明の第7の態様は、第1~第6のいずれかの態様に記載の態様であって、
前記銀粒子状構造は電着組織である。
A seventh aspect of the present invention is the aspect according to any one of the first to sixth aspects,
The silver particle structure is an electrodeposited structure.

本発明の第8の態様は、
炭素粒子と鉄を含有する非シアン系の銀めっき液を用いて電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜を基材上に形成する複合めっき材の製造方法であって、複合めっき皮膜の炭素の含有量を0.2~10.0質量%とし、複合めっき皮膜表面の銀粒子状構造のうち短径に対する長径の比が2以上である銀粒子状構造の個数の割合を30%以上とする、複合めっき材の製造方法である。
The eighth aspect of the present invention is
A composite plating material that forms a composite plating film made of a composite material containing carbon particles in the silver layer on a base material by electroplating using a non-cyanide silver plating solution containing carbon particles and iron. A method for producing a composite plating film in which the carbon content of the composite plating film is 0.2 to 10.0% by mass, and the ratio of the major axis to the short axis of the silver particle structure on the surface of the composite plating film is 2 or more. This is a method for manufacturing a composite plating material in which the ratio of the number of particulate structures is 30% or more.

本発明の第9の態様は、第8の態様に記載の態様であって、
前記銀めっき液はスルホン酸系銀めっき液である。
A ninth aspect of the present invention is the aspect described in the eighth aspect, comprising:
The silver plating solution is a sulfonic acid silver plating solution.

本発明の第10の態様は、第8または第9の態様に記載の態様であって、
前記銀めっき液中の鉄の濃度が5質量ppm以上である。
A tenth aspect of the present invention is the eighth or ninth aspect of the present invention,
The silver plating solution has an iron concentration of 5 ppm by mass or more.

本発明の第11の態様は、第8~第10のいずれかの態様に記載の態様であって、
前記電気めっきの電流密度を8A/dm以下とする。
An eleventh aspect of the present invention is the aspect according to any one of the eighth to tenth aspects,
The current density of the electroplating is 8 A/ dm2 or less.

本発明の第12の態様は、第8~第11のいずれかの態様に記載の態様であって、
前記炭素粒子が、酸化処理を行った炭素粒子である。
A twelfth aspect of the present invention is the aspect according to any one of the eighth to eleventh aspects,
The carbon particles are carbon particles that have been subjected to an oxidation treatment.

本発明の第13の態様は、第8~第12のいずれかの態様に記載の態様であって、
前記基材上に下地めっき層を形成した後、前記複合めっき皮膜を形成する。
A thirteenth aspect of the present invention is the aspect according to any one of the eighth to twelfth aspects,
After a base plating layer is formed on the substrate, the composite plating film is formed.

本発明の第14の態様は、第13の態様に記載の態様であって、
前記下地めっき層がニッケルめっき層、銅めっき層から選ばれる少なくともひとつからなる。
A fourteenth aspect of the present invention is the aspect described in the thirteenth aspect,
The base plating layer consists of at least one selected from a nickel plating layer and a copper plating layer.

本発明の第15の態様は、第1~7のいずれかの態様に記載の複合めっき材を材料として用いた、接点部品である。 A fifteenth aspect of the present invention is a contact component using the composite plating material according to any one of the first to seventh aspects as a material.

本発明によれば、優れた耐摩耗性および優れた曲げ加工性を備える複合めっき材を提供できる。本発明によれば、非シアン浴を使用しつつ優れた耐摩耗性および優れた曲げ加工性を備える複合めっき材の製造方法を提供できる。 According to the present invention, a composite plated material having excellent abrasion resistance and excellent bending workability can be provided. According to the present invention, a method for manufacturing a composite plated material having excellent abrasion resistance and excellent bending workability while using a non-cyanide bath can be provided.

図1(a)は、実施例1の複合めっき皮膜の表面のBSE像(1000倍)を示す写真であり、図1(b)は、実施例1の複合めっき皮膜の表面のBSE像(5000倍)を示す写真である。FIG. 1(a) is a photograph showing a BSE image (1000x) of the surface of the composite plating film of Example 1, and FIG. 1(b) is a photograph showing a BSE image (5000x) of the surface of the composite plating film of Example 1. 図2(a)は、実施例2の複合めっき皮膜の表面のBSE像(1000倍)を示す写真であり、図2(b)は、実施例2の複合めっき皮膜の表面のBSE像(5000倍)を示す写真である。FIG. 2(a) is a photograph showing a BSE image (1000 times magnification) of the surface of the composite plating film of Example 2, and FIG. 2(b) is a photograph showing a BSE image (5000 times magnification) of the surface of the composite plating film of Example 2. This is a photograph showing the 図3(a)は、実施例3の複合めっき皮膜の表面のBSE像(1000倍)を示す写真であり、図3(b)は、実施例3の複合めっき皮膜の表面のBSE像(5000倍)を示す写真である。FIG. 3(a) is a photograph showing a BSE image (1000 times magnification) of the surface of the composite plating film of Example 3, and FIG. 3(b) is a photograph showing a BSE image (5000 times magnification) of the surface of the composite plating film of Example 3. This is a photograph showing the 図4(a)は、実施例4の複合めっき皮膜の表面のBSE像(1000倍)を示す写真であり、図4(b)は、実施例4の複合めっき皮膜の表面のBSE像(5000倍)を示す写真である。FIG. 4(a) is a photograph showing a BSE image (1000 times magnification) of the surface of the composite plating film of Example 4, and FIG. 4(b) is a photograph showing a BSE image (5000 times magnification) of the surface of the composite plating film of Example 4. This is a photograph showing the 図5(a)は、実施例5の複合めっき皮膜の表面のBSE像(1000倍)を示す写真であり、図5(b)は、実施例5の複合めっき皮膜の表面のBSE像(5000倍)を示す写真である。FIG. 5(a) is a photograph showing a BSE image (1000x) of the surface of the composite plating film of Example 5, and FIG. 5(b) is a photograph showing a BSE image (5000x) of the surface of the composite plating film of Example 5. 図6(a)は、実施例6の複合めっき皮膜の表面のBSE像(1000倍)を示す写真であり、図6(b)は、実施例6の複合めっき皮膜の表面のBSE像(5000倍)を示す写真である。FIG. 6(a) is a photograph showing a BSE image (1000 times magnification) of the surface of the composite plating film of Example 6, and FIG. 6(b) is a photograph showing a BSE image (5000 times magnification) of the surface of the composite plating film of Example 6. This is a photograph showing the 図7(a)は、比較例2の複合めっき皮膜の表面のBSE像(1000倍)を示す写真であり、図7(b)は、比較例2の複合めっき皮膜の表面のBSE像(5000倍)を示す写真である。FIG. 7(a) is a photograph showing a BSE image (1000 times magnification) of the surface of the composite plating film of Comparative Example 2, and FIG. 7(b) is a photograph showing a BSE image (5000 times magnification) of the surface of the composite plating film of Comparative Example 2. This is a photograph showing the 図8は、実施例2の複合めっき皮膜の断面のBSE像(10000倍)を示す写真である。FIG. 8 is a photograph showing a BSE image (10,000 times magnification) of a cross section of the composite plating film of Example 2. 図9は、比較例2の複合めっき皮膜の断面のBSE像(10000倍)を示す写真である。FIG. 9 is a photograph showing a BSE image (10,000 times) of a cross section of the composite plating film of Comparative Example 2. 図10は、曲げ加工性試験後の実施例5の複合めっき皮膜の表面のW字の真ん中の山折り部分を含むレーザー顕微鏡像(100倍)を示す写真である。FIG. 10 is a photograph showing a laser microscope image (100x magnification) including a mountain fold in the middle of the W-shape on the surface of the composite plating film of Example 5 after the bending process test. 図11は、曲げ加工性試験後の比較例3の複合めっき皮膜の表面のW字の真ん中の山折り部分を含むレーザー顕微鏡像(100倍)を示す写真である。FIG. 11 is a photograph showing a laser microscope image (100x) including the central folded portion of the W shape on the surface of the composite plating film of Comparative Example 3 after the bending workability test.

以下、本実施形態について説明する。本明細書における「~」は所定の数値以上かつ所定の数値以下を指す。 This embodiment will be described below. In this specification, "~" refers to a value greater than or equal to a predetermined value and less than or equal to a predetermined value.

(複合めっき皮膜)
本発明の実施形態に係る複合めっき材は、銀(Ag)層中に炭素粒子を含有する複合材からなる複合めっき皮膜が基材上に形成された複合めっき材において、複合めっき皮膜の炭素の含有量が0.2~10.0質量%であり、複合めっき皮膜表面の銀(Ag)粒子状構造のうち短径に対する長径の比が2以上である銀(Ag)粒子状構造の個数の割合が30%以上であることを特徴とする。
本発明において「銀粒子状構造」とは、複合めっき皮膜の表面をBSE像(反射電子像)で観察したときに銀の粒子が表面に付着しているように見える構造をいう。表面に付着しているように見える銀の粒子それぞれの長径と短径のことを、「銀粒子状構造」の長径と短径と称する。
(composite plating film)
A composite plating material according to an embodiment of the present invention is a composite plating material in which a composite plating film made of a composite material containing carbon particles in a silver (Ag) layer is formed on a base material. The content is 0.2 to 10.0% by mass, and the number of silver (Ag) particulate structures in which the ratio of the major axis to the minor axis is 2 or more among the silver (Ag) particle structures on the surface of the composite plating film. It is characterized by a ratio of 30% or more.
In the present invention, the term "silver particle structure" refers to a structure in which silver particles appear to be attached to the surface of a composite plating film when observed using a BSE image (backscattered electron image). The major axis and minor axis of each silver particle that appears to be attached to the surface are referred to as the major axis and minor axis of the "silver particle structure."

この構成により、本発明の複合めっき材は優れた耐摩耗性および優れた曲げ加工性を有する。 With this configuration, the composite plated material of the present invention has excellent wear resistance and excellent bending workability.

本発明の複合めっき皮膜中の炭素の含有量(質量%)は、以下の手法により求めた。まず、複合めっき材(基材を含む)から切り出した試料を銀(Ag)および炭素(C)の分析用にそれぞれ用意し、一方の試料を溶解して試料中のAg含有量(X質量%)を誘導結合プラズマ発光分光分析法にて求めるとともに、他方の試料中のC含有量(Y質量%)を微量炭素・硫黄分析装置を用いて赤外線吸収法によって求め、複合めっき皮膜中のC含有量をY/(X+Y)として算出する。 The carbon content (mass%) in the composite plating film of the present invention was determined by the following method. First, samples cut from the composite plating material (including the base material) were prepared for analysis of silver (Ag) and carbon (C), and one sample was dissolved to determine the Ag content (X mass %) in the sample. ) was determined by inductively coupled plasma emission spectroscopy, and the C content (Y mass %) in the other sample was determined by infrared absorption using a trace carbon/sulfur analyzer, and the C content in the composite plating film was determined by infrared absorption method using a trace carbon/sulfur analyzer. Calculate the amount as Y/(X+Y).

複合めっき材における複合めっき皮膜中の炭素の含有量は0.2~10.0質量%(下限は好適には0.3質量%、更に好適には0.4質量%。上限は好適には5.0質量%、更に好適には3.0質量%)とする。これにより、複合めっき材の耐摩耗性が向上し、低い摩擦係数を示すと考えられる。 The carbon content in the composite plating film of the composite plating material is 0.2 to 10.0 mass% (the lower limit is preferably 0.3 mass%, more preferably 0.4 mass%; the upper limit is preferably 5.0 mass%, more preferably 3.0 mass%). This is believed to improve the wear resistance of the composite plating material and to provide a low coefficient of friction.

また、本発明の複合めっき材の複合めっき皮膜の表面の銀粒子状構造の短径に対する長径の比が2以上である銀(Ag)粒子状構造の個数の割合の求め方について説明する。
まず、電子顕微鏡を用い複合めっき皮膜表面の5000倍のBSE像(反射電子像)で観察される全ての銀粒子状構造について、長径(銀粒子状構造の輪郭に外接する長方形の面積が最小となる長方形の長辺の長さ)と、短径(その長方形の短辺の長さ)を測定し、短径に対する長径の比(長径/短径(アスペクト比))を算出する。
Furthermore, a method for determining the ratio of the number of silver (Ag) particulate structures in which the ratio of the major axis to the minor axis of the silver particulate structure on the surface of the composite plating film of the composite plating material of the present invention is 2 or more will be explained.
First, for all silver particle structures observed in a 5000x BSE image (backscattered electron image) of the surface of the composite plating film using an electron microscope, the long axis (the area of the rectangle circumscribing the outline of the silver particle structure is the smallest) The length of the long side of the rectangle) and the short axis (the length of the short side of the rectangle) are measured, and the ratio of the long axis to the short axis (long axis/breadth axis (aspect ratio)) is calculated.

その際、前記BSE像の画像(写真)の端部において粒径(長径および短径)を確認できない銀粒子状構造は含めない。また、Ag粒子状構造ではないもの(例えば実施例1に係る図1(b)中の(灰色~黒色の粗大な粒子として観察される)炭素粒子)は含めない。 At that time, silver particle-like structures whose particle diameters (length and breadth) cannot be confirmed at the edges of the BSE image (photograph) are not included. In addition, those that do not have an Ag particulate structure (for example, carbon particles (observed as gray to black coarse particles) in FIG. 1(b) according to Example 1) are not included.

アスペクト比が2以上である銀粒子状構造の個数を、銀粒子状構造の総数で除して個数の割合を算出し、銀粒子状構造の短径に対する長径の比(アスペクト比)が2以上である銀粒子状構造の個数の割合を求めた。 The number of silver particle structures with an aspect ratio of 2 or more is divided by the total number of silver particle structures to calculate the number ratio, and the ratio of the major axis to the short axis (aspect ratio) of the silver particle structure is 2 or more. The ratio of the number of silver particle structures was determined.

本発明の複合めっき材は、前記のアスペクト比が2以上である銀粒子状構造の個数の割合が30%以上であり、35%以上であることがより好ましく、40%以上であることが更に好ましい。上限は特に規定しないが90%以下あるいは80%以下としてもよい。 In the composite plating material of the present invention, the ratio of the number of silver particle structures having an aspect ratio of 2 or more is 30% or more, more preferably 35% or more, and still more preferably 40% or more. preferable. Although the upper limit is not particularly specified, it may be 90% or less or 80% or less.

このようなアスペクト比が大きい銀粒子状構造を多く有することにより、複合めっき材の曲げ加工性が向上すると推測される。 It is presumed that the bending workability of the composite plated material is improved by having many silver particle structures with such a large aspect ratio.

前記複合めっき皮膜の表面の炭素粒子が占める割合(面積率)が5~85面積%(より好適には7~80面積%、更に好適には10~75面積%)であることが好ましい。 The ratio (area ratio) occupied by carbon particles on the surface of the composite plating film is preferably 5 to 85 area % (more preferably 7 to 80 area %, still more preferably 10 to 75 area %).

前記複合めっき皮膜の厚さは0.5~25μmであるのが好ましい。この範囲であると、耐摩耗性を十分確保でき、且つ生産効率も良好である。これより薄いと耐摩耗性が低下する恐れがあり、また厚いと銀めっきのコストが高くなる。複合めっきの厚さは1~22μmであることがより好ましい。 The thickness of the composite plating film is preferably 0.5 to 25 μm. Within this range, sufficient wear resistance can be ensured and production efficiency is also good. If it is thinner than this, the abrasion resistance may decrease, and if it is thicker, the cost of silver plating will increase. More preferably, the thickness of the composite plating is 1 to 22 μm.

前記基材には限定は無いが銅または銅合金であってもよい。
また、前記基材と前記複合めっき皮膜との間に下地めっき層が形成されていてもよい。 前記下地めっき層を形成する場合は、ニッケルめっき層、銅めっき層から選ばれる少なくともひとつからなることが好ましい。
The base material is not limited, but may be copper or a copper alloy.
Moreover, a base plating layer may be formed between the base material and the composite plating film. When forming the base plating layer, it is preferably made of at least one selected from a nickel plating layer and a copper plating layer.

また、前記銀粒子状構造は電着組織であることが好ましい。 Further, it is preferable that the silver particle structure is an electrodeposited structure.

本発明の実施形態に係る複合めっき皮膜の表面を観察すると、Ag粒子状構造は板状(或いは針状)の形を呈していることが認められる。このような板状で且つアスペクト比が大きい銀粒子状構造を多く有することにより、複合めっき材の曲げ加工性が向上していると推測される。 When observing the surface of the composite plating film according to an embodiment of the present invention, it is recognized that the Ag particulate structures are plate-like (or needle-like). It is presumed that the presence of many such plate-like silver particulate structures with a large aspect ratio improves the bending workability of the composite plating material.

複合めっき皮膜中におけるAgの含有量には限定は無いが、(炭素を除く残部はほぼAgからなり)例えば90質量%以上とする。 Although there is no limitation on the content of Ag in the composite plating film, it is set to, for example, 90% by mass or more (the remainder excluding carbon is substantially composed of Ag).

(複合めっき材の製造方法)
本発明の複合めっき材の製造方法の実施の形態としては、炭素粒子と鉄を含有する非シアン系の銀めっき液を用いて電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜を基材上に形成する複合めっき材の製造方法であって、複合めっき皮膜の炭素の含有量を0.2~10.0質量%とし、複合めっき皮膜表面の銀粒子状構造のうち短径に対する長径の比が2以上である銀粒子状構造の個数の割合を30%以上とすることを特徴とする。
(Manufacturing method of composite plating material)
In an embodiment of the method for producing a composite plated material of the present invention, a composite plate containing carbon particles in the silver layer is electroplated using a non-cyanide silver plating solution containing carbon particles and iron. A method for manufacturing a composite plating material in which a composite plating film made of a composite plating film is formed on a base material, the carbon content of the composite plating film being 0.2 to 10.0% by mass, and silver particles on the surface of the composite plating film being It is characterized in that the ratio of the number of silver particle-like structures in which the ratio of the major axis to the minor axis is 2 or more among the silver particle-like structures is 30% or more.

本発明では非シアン系の銀めっき液(浴)を使用する。本明細書における「シアン」とは、シアン化物イオンを有する物質の総称である。つまり、本明細書における「非シアン浴」とは、シアンを含有しないまたは含有するとしても銀めっき液全体の1mg/L以下の状態のものをいう。 In the present invention, a non-cyanide silver plating solution (bath) is used. "Cyanide" in this specification is a general term for substances containing cyanide ions. In other words, the term "non-cyanide bath" as used herein refers to a bath that does not contain cyanide, or even if it does contain cyanide, the amount is 1 mg/L or less of the entire silver plating solution.

非シアン系の銀めっき液には限定は無いが、例えばスルホン酸系銀めっき液を使用してもよい。スルホン酸系銀めっき液は、Agイオン源としてのスルホン酸銀と、錯化材としてのスルホン酸を含み、光沢剤などの添加剤を含んでもよい。この銀めっき液中のAg濃度は、5~150g/Lであるのが好ましく、10~120g/Lであるのが更に好ましく、20~100g/Lであるのが最も好ましい。このスルホン酸系銀めっき液に含まれるスルホン酸銀として、メタンスルホン酸銀、アルカノールスルホン酸銀、フェノールスルホン酸銀などを使用することができる。スルホン酸系銀めっき液以外には、塩化銀-ヨウ化カリウム浴、塩化銀-チオ硫酸ナトリウム浴などが挙げられる。 Although there are no limitations on the non-cyanide silver plating solution, for example, a sulfonic acid silver plating solution may be used. The sulfonic acid-based silver plating solution contains silver sulfonate as an Ag ion source, sulfonic acid as a complexing agent, and may also contain additives such as brighteners. The Ag concentration in this silver plating solution is preferably 5 to 150 g/L, more preferably 10 to 120 g/L, and most preferably 20 to 100 g/L. As the silver sulfonate contained in this sulfonic acid silver plating solution, silver methanesulfonate, silver alkanolsulfonate, silver phenolsulfonate, etc. can be used. Other than sulfonic acid silver plating solutions, silver chloride-potassium iodide baths, silver chloride-sodium thiosulfate baths, etc. may be used.

本実施形態における銀めっき液にはFe(鉄)が含有される。 The silver plating solution in this embodiment contains Fe (iron).

Feの態様には限定は無く、イオン(2価鉄、3価鉄)であってもよい。銀めっき液中のFe濃度(質量ppm=mg/L。以降、単にppm。)は、銀めっき液中のFeイオンの総量の濃度を指す。また、Feを銀めっき液に含有させるタイミングにも限定は無く、炭素粒子の添加前、添加中、添加後であってもよい。 There is no limitation on the form of Fe, and it may be an ion (divalent iron, trivalent iron). The Fe concentration in the silver plating solution (mass ppm=mg/L, hereinafter simply referred to as ppm) refers to the total concentration of Fe ions in the silver plating solution. Further, there is no limitation on the timing at which Fe is added to the silver plating solution, and it may be before, during, or after the addition of carbon particles.

銀めっき液中のFeの濃度は5ppm以上であるのが好ましく、10ppm以上であるのがより好ましく、20ppm以上であるのが更に好ましい。Feを銀めっき液中に含有させることにより、銀粒子状構造のアスペクト比を大きくすることができ、その個数の割合も十分とすることができると考えられる。上限については、適切に複合めっき皮膜を作製できれば限定は無いが、例えば10000ppm(すなわち1質量%)以下が挙げられる。 The concentration of Fe in the silver plating solution is preferably 5 ppm or more, more preferably 10 ppm or more, and even more preferably 20 ppm or more. It is considered that by incorporating Fe into the silver plating solution, the aspect ratio of the silver particle structure can be increased and the ratio of the number thereof can also be made sufficient. As for the upper limit, there is no limitation as long as a composite plating film can be appropriately produced, but examples include 10,000 ppm (i.e., 1% by mass) or less.

Agめっき液中のFeの濃度を規定することで、複合めっき皮膜表面の銀粒子状構造のうち短径に対する長径の比が2以上である銀粒子状構造の個数の割合を30%以上(好ましくは35%以上、更に好ましくは40%以上)とすることができる。 By specifying the concentration of Fe in the Ag plating solution, the ratio of the number of silver particle structures on the surface of the composite plating film, in which the ratio of the major axis to the minor axis is 2 or more, is set to 30% or more (preferably (35% or more, more preferably 40% or more).

本実施形態における銀めっき液中にはFeとともに炭素粒子を含有する。銀めっき液中の炭素粒子の含有量は10~200g/Lであるのが好ましく、20~100g/Lとするのが更に好ましい。10g/L以上とすると、複合めっき皮膜中への炭素の含有量を適度に保て、200g/Lを超える量を添加しても、複合めっき皮膜中の炭素の含有量を多くすることはできない。 The silver plating solution in this embodiment contains carbon particles as well as Fe. The content of carbon particles in the silver plating solution is preferably 10 to 200 g/L, more preferably 20 to 100 g/L. When the amount is 10 g/L or more, the carbon content in the composite plating film can be maintained at a moderate level, and even if the amount exceeds 200 g/L, the carbon content in the composite plating film cannot be increased. .

基材上に複合めっき皮膜を形成する際の電気めっきの液温は、好ましくは10~60℃、更に好ましくは15~55℃である。 The electroplating solution temperature when forming a composite plating film on a substrate is preferably 10 to 60°C, more preferably 15 to 55°C.

複合銀めっき皮膜の炭素の含有量を0.2~10.0質量%(下限は好適には0.3質量%、更に好適には0.4質量%。上限は好適には5.0質量%、4.0質量%、更に好適には3.0質量%)となる条件で銀めっき材を形成する。 The carbon content of the composite silver plating film is 0.2 to 10.0% by mass (the lower limit is preferably 0.3% by mass, more preferably 0.4% by mass; the upper limit is preferably 5.0% by mass) %, 4.0% by mass, more preferably 3.0% by mass).

また、複合銀めっき皮膜の表面の炭素粒子が占める割合(面積率を)5~85%(好適には7%以上80%以下、更に好適には10%以上75%以下)となる条件で銀めっき材を形成するのが好ましい。 In addition, the carbon particles on the surface of the composite silver plating film may account for 5 to 85% (area ratio) of 5% to 85% (preferably 7% to 80%, more preferably 10% to 75%). It is preferable to form a plating material.

電気めっきの際の電流密度は、好ましくは8A/dm以下であり、より好ましくは7A/dm、さらに好ましくは0.5~7A/dmである。この規定により、炭素粒子が複合めっき皮膜に巻き込まれやすくなると考えられる。 The current density during electroplating is preferably 8 A/dm 2 or less, more preferably 7 A/dm 2 , and further preferably 0.5 to 7 A/dm 2. This regulation is believed to facilitate the inclusion of carbon particles in the composite plating film.

炭素粒子の添加前に、炭素粒子の酸化処理(有機物除去)を行うのが好ましい。 It is preferable to oxidize the carbon particles (remove organic substances) before adding the carbon particles.

このように酸化処理した後の炭素粒子を銀めっき液に含有させる(添加する)ことにより、分散剤などの添加物を使用することなく銀めっき中に炭素粒子を良好に分散させた銀めっき液が得られる。この銀めっき液を使用して電気めっきを行うことにより、銀めっき皮膜中に炭素粒子を含有する複合めっき皮膜が基材上に形成される。 By incorporating (adding) the carbon particles that have been oxidized into the silver plating solution, we have created a silver plating solution that allows the carbon particles to be well dispersed in the silver plating without using additives such as dispersants. is obtained. By performing electroplating using this silver plating solution, a composite plating film containing carbon particles in the silver plating film is formed on the base material.

また、前記基材上に下地めっき皮膜を形成した後、前記複合めっき皮膜を形成してもよい。この下地めっき皮膜としては限定は無いが、例えばNiめっき皮膜、Cuめっき皮膜から選ばれる少なくともひとつからなる下地めっき皮膜を施しても構わない。下地のNiめっき皮膜、Cuめっき皮膜は積層して複数の層としてもよい。Niめっき皮膜、Cuめっき皮膜を形成する具体的な手法としては公知の手法を採用しても構わない。 The composite plating film may be formed after forming an undercoat plating film on the substrate. There are no limitations on the undercoat plating film, but it may be, for example, an undercoat plating film consisting of at least one selected from a Ni plating film and a Cu plating film. The undercoat Ni plating film and the Cu plating film may be laminated to form multiple layers. A known method may be used as a specific method for forming the Ni plating film and the Cu plating film.

後掲の実施例の項目が示すように、本実施形態の場合、特許文献1の[0022]に記載の銀マトリックス配向調整剤を添加せずとも(すなわち複合めっき皮膜中にセレンを実質的に存在させずとも(Se≦10ppm))、耐摩耗性に関して良好な試験結果が得られることも、本発明の技術的特徴の一つである。銀マトリックス配向調整剤の添加の有無は、銀めっき液の種類に応じて決定すればよい。 As shown in the Examples section below, in the present embodiment, good test results for wear resistance can be obtained without adding the silver matrix orientation adjuster described in [0022] of Patent Document 1 (i.e., even if selenium is not substantially present in the composite plating film (Se≦10 ppm)), which is one of the technical features of the present invention. The addition of a silver matrix orientation adjuster can be determined according to the type of silver plating solution.

以上の作業により、非シアン浴を使用しつつ優れた耐摩耗性および優れた曲げ加工性を備える複合めっき皮膜すなわち複合めっき材が製造可能となる。 Through the above operations, it becomes possible to manufacture a composite plating film, that is, a composite plating material, which has excellent wear resistance and excellent bending workability while using a non-cyanide bath.

本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。 The technical scope of the present invention is not limited to the embodiments described above, but also includes various modifications and improvements within the scope of deriving specific effects obtained by the constituent elements of the invention and their combinations.

例えば、後掲の各実施例のように、基材と複合めっき皮膜の密着性を向上させるために、該複合めっき皮膜を形成する前に、基材に対してAgストライクめっきを施してもよい。なお、このAgストライクめっきは、特許文献1の[0034]や特開2007-16250号公報の[0024]に記載されたAgストライクめっきに係る手法を採用しても構わない。なお、Agストライクめっきと区別するために、本実施形態で述べた複合めっき皮膜のことを「本めっき皮膜(層)」とも言う。 For example, in order to improve the adhesion between the base material and the composite plating film, Ag strike plating may be applied to the base material before forming the composite plating film, as in each of the Examples below. . Note that, for this Ag strike plating, the method related to Ag strike plating described in [0034] of Patent Document 1 and [0024] of JP-A No. 2007-16250 may be adopted. Note that, in order to distinguish it from Ag strike plating, the composite plating film described in this embodiment is also referred to as a "main plating film (layer)."

また、前記複合めっき材を材料として用いて、スイッチやコネクタ、端子等の接点部品とすると、耐摩耗性および曲げ加工性に優れたものを得ることができる。 Further, when the composite plating material is used as a material to make contact parts such as switches, connectors, terminals, etc., products with excellent wear resistance and bending workability can be obtained.

次に実施例を示し、本発明について具体的に説明する。本発明は、以下の実施例に限定されるものではない。なお、以下に記載のない内容は、本実施形態で述べた内容と同様とする。 Next, the present invention will be specifically explained with reference to Examples. The present invention is not limited to the following examples. Note that contents not described below are the same as those described in this embodiment.

[実施例1]
炭素粒子として長径5μmの鱗片状黒鉛粒子(日本黒鉛工業株式会社製の天然黒鉛J-CPB)80gを1.4Lの純水中に添加し、この混合溶液を撹拌しながら50℃に昇温させた。この混合溶液に対し、水酸化カリウム2.6gを含む水溶液25mLを添加し、5分間撹拌した。次に、この混合溶液に対し、酸化剤として27gの過硫酸カリウムを含む水溶液0.6Lを徐々に滴下した後、2時間撹拌して酸化処理を行い、その後、ろ紙によりろ別を行ない、水洗を行った。上記の酸化処理により、炭素粒子に付着していた炭化水素などの疎水性物質を除去した炭素粒子を準備した。
[Example 1]
80 g of scaly graphite particles (natural graphite J-CPB manufactured by Nippon Graphite Industries Co., Ltd.) with a major diameter of 5 μm as carbon particles were added to 1.4 L of pure water, and the mixed solution was heated to 50 ° C. while stirring. Ta. To this mixed solution, 25 mL of an aqueous solution containing 2.6 g of potassium hydroxide was added and stirred for 5 minutes. Next, 0.6 L of an aqueous solution containing 27 g of potassium persulfate as an oxidizing agent was gradually added dropwise to this mixed solution, and the mixture was stirred for 2 hours for oxidation treatment. After that, it was filtered through filter paper and washed with water. I did it. Carbon particles were prepared from which hydrophobic substances such as hydrocarbons attached to the carbon particles were removed by the above oxidation treatment.

また、基材としての厚さ0.2mmの銅合金板(1.0質量%のNiと0.9質量%のSnと0.05質量%のPを含み残部がCuである銅合金の板材)(DOWAメタルテック株式会社製のNB109 EH)を用意し、大和化成株式会社製ダインシルバーGPE-STからなる非シアン系Agめっき浴(スルホン酸浴)中に前記基材を浸漬し、基材をカソードとし、(チタンのメッシュ素材を白金めっきした)チタン白金メッシュ電極板をアノードとして、液温25℃、電流密度5A/dm、めっき時間30秒間として電気めっき(Agストライクめっき)を行った。 In addition, a copper alloy plate (a copper alloy plate material containing 1.0 mass% Ni, 0.9 mass% Sn, 0.05 mass% P, and the balance Cu) (NB109 EH manufactured by Dowa Metaltech Co., Ltd.) having a thickness of 0.2 mm was prepared as a substrate, and the substrate was immersed in a non-cyanide Ag plating bath (sulfonic acid bath) made of Dynesilver GPE-ST manufactured by Daiwa Kasei Co., Ltd., and electroplating (Ag strike plating) was performed with the substrate as the cathode and a titanium platinum mesh electrode plate (platinized titanium mesh material) as the anode at a solution temperature of 25°C, a current density of 5 A/ dm2 , and a plating time of 30 seconds.

次に、上記の酸化処理を行った炭素粒子を、大和化成株式会社製ダインシルバーGPE-PLからなる非シアン浴中に添加して分散および懸濁させ、更に酸化鉄(Fe)を0.04g/Lを添加し、Feと炭素粒子を含有した銀めっき液を作製した。この非シアン浴はスルホン酸系銀めっき液(スルホン酸浴)であり、Agはスルホン酸銀として含有され、錯化剤としてスルホン酸が含有される。なお、銀めっき液中のFeの濃度は27ppmであり、Ag濃度は30g/Lであり、炭素粒子濃度(炭素粒子含有量)は80g/Lである。 Next, the carbon particles subjected to the above oxidation treatment were added to a non-cyanide bath consisting of Dyne Silver GPE-PL manufactured by Daiwa Kasei Co., Ltd. to disperse and suspend them, and further iron oxide (Fe 2 O 3 ) was added. A silver plating solution containing Fe and carbon particles was prepared by adding 0.04 g/L. This non-cyanide bath is a sulfonic acid silver plating solution (sulfonic acid bath), and contains Ag as silver sulfonate and sulfonic acid as a complexing agent. Note that the Fe concentration in the silver plating solution was 27 ppm, the Ag concentration was 30 g/L, and the carbon particle concentration (carbon particle content) was 80 g/L.

Agストライクめっきが形成された基材をカソードとし、Ag電極板をアノードとして、上記銀めっき液中に浸漬して、液温25℃、撹拌速度400rpm、電流密度3A/dm、めっき時間100秒で電気めっき(本めっき)を行い、上記基材上にAgストライクめっき層を介して厚さ2μmの銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜が基材上に形成された複合めっき材を作製した。なお、前記銀めっき液は容量1L、直径110mmのビーカーに1L建浴し、撹拌には、アズワン製のマグネチックスターラーREXIM RS-1DN(十字撹拌子 幅38.1mm 高さ15.8mm)を用いた。 The base material on which Ag strike plating was formed was used as a cathode, and the Ag electrode plate was used as an anode, and was immersed in the above silver plating solution at a solution temperature of 25° C., a stirring speed of 400 rpm, a current density of 3 A/dm 2 , and a plating time of 100 seconds. Electroplating (main plating) was performed on the base material, and a composite plating film consisting of a composite material containing carbon particles in a 2 μm thick silver layer was formed on the base material via an Ag strike plating layer. A composite plated material was produced. In addition, 1 L of the silver plating solution was prepared in a beaker with a capacity of 1 L and a diameter of 110 mm, and for stirring, a magnetic stirrer REXIM RS-1DN (cross stirrer, width 38.1 mm, height 15.8 mm) manufactured by As One was used. there was.

「複合めっき皮膜の厚さ」は、蛍光X線膜厚計(株式会社日立ハイテクサイエンス製 FT9450)を用い、サンプルの中央部分の直径1.0mmの範囲を測定して得た。 The "thickness of the composite plating film" was obtained by measuring a 1.0 mm diameter range at the center of the sample using a fluorescent X-ray film thickness meter (FT9450, manufactured by Hitachi High-Tech Science Co., Ltd.).

「複合めっき皮膜表面の銀粒子状構造のうち短径に対する長径の比が2以上である銀粒子状構造の個数の割合(%)」は、まず、卓上顕微鏡TM4000 Plus(株式会社日立ハイテクノロジーズ製)を用い、複合銀めっき皮膜の表面を加速電圧15kVで5000倍に拡大して観察して得たBSE像(反射電子像の写真)上の全てのAg粒子状構造について、写真上で観察される長径(銀粒子状構造の輪郭に外接する長方形の面積が最小となる長方形の長辺の長さ)と、短径(その長方形の短辺の長さ)を測定し、短径に対する長径の比(長径/短径(アスペクト比))を算出した。その際、前記BSE像の画像(写真)の端部において粒径を確認できない銀粒子状構造は含めず、また、Ag粒子状構造ではないもの(炭素粒子等)、炭素粒子で一部が隠れて粒径が確認できないAg粒子状構造は含めない。このようにして測定、算出した結果より、アスペクト比が2以上である銀粒子状構造の個数を、銀粒子状構造の総数で除して個数の割合を算出し、銀粒子状構造の短径に対する長径の比(アスペクト比)が2以上である銀粒子状構造の個数の割合を求めた。 The "proportion (%) of the number of silver particulate structures on the surface of the composite plating film having a ratio of the long diameter to the short diameter of 2 or more" was calculated by first observing the surface of the composite silver plating film at 5000 times magnification with a tabletop microscope TM4000 Plus (manufactured by Hitachi High-Technologies Corporation) at an accelerating voltage of 15 kV and measuring the long diameter (the length of the long side of the rectangle that circumscribes the outline of the silver particulate structure) and the short diameter (the length of the short side of the rectangle) observed on the photograph for all Ag particulate structures, and calculating the ratio of the long diameter to the short diameter (long diameter/short diameter (aspect ratio)). In this case, silver particulate structures whose particle diameter cannot be confirmed at the end of the image (photograph) of the BSE image are not included, and those that are not Ag particulate structures (carbon particles, etc.) and Ag particulate structures whose particle diameter cannot be confirmed because they are partially hidden by carbon particles are not included. From the results of the measurements and calculations, the number of silver particulate structures with an aspect ratio of 2 or more was divided by the total number of silver particulate structures to calculate the percentage of the number, and the percentage of the number of silver particulate structures with a ratio of the major axis to the minor axis (aspect ratio) of 2 or more was determined.

「複合めっき皮膜中の炭素の含有量(質量%)」は、以下の手法により求めた。
まず、複合めっき材(基材を含む)から切り出した試料を銀(Ag)および炭素(C)の分析用にそれぞれ用意し、一方の試料を溶解して試料中のAgの含有量(X質量%)をICP-OES(株式会社日立ハイテクサイエンス製SPS 5100)(プラズマ分光分析法)にて求め、他方の試料中のCの含有量(Y質量%)を微量炭素・硫黄分析装置(株式会社堀場製作所製EMIA-810W)(赤外線吸収法)で求めた。
そして、複合めっき皮膜中の炭素の含有量を、Y/(X+Y)として算出した。
The "carbon content (mass%) in the composite plating film" was determined by the following method.
First, samples cut from the composite plating material (including the base material) were prepared for silver (Ag) and carbon (C) analysis, and one sample was dissolved to determine the Ag content (X mass) in the sample. %) using ICP-OES (SPS 5100 manufactured by Hitachi High-Tech Science Co., Ltd.) (plasma spectrometry), and the C content (Y mass %) in the other sample was determined using a trace carbon and sulfur analyzer (Co., Ltd.). It was determined using EMIA-810W (manufactured by Horiba, Ltd.) (infrared absorption method).
Then, the carbon content in the composite plating film was calculated as Y/(X+Y).

銀めっき液中の「Fe濃度(ppm)」は、上記ICP-OES(日立ハイテクサイエンス製SPS 5100)(プラズマ分光分析法)にて求めた。
銀めっき液中の「Ag濃度(g/L)」は、Ag滴定法(フォルハルト法)にて求めた。その際、硫化ナトリウム、濃硝酸、鉄ミョウバン指示薬、チオシアン酸アンモニウムを使用した。
The "Fe concentration (ppm)" in the silver plating solution was determined by the above-mentioned ICP-OES (SPS 5100 manufactured by Hitachi High-Tech Science) (plasma spectrometry).
"Ag concentration (g/L)" in the silver plating solution was determined by Ag titration method (Volhard method). At that time, sodium sulfide, concentrated nitric acid, iron alum indicator, and ammonium thiocyanate were used.

「複合めっき皮膜の表面の炭素粒子が占める割合(面積率)」は、複合めっき皮膜の表面を観察することにより得た。具体的には、先に挙げた卓上顕微鏡TM4000 Plus(株式会社日立ハイテクノロジーズ製)加速電圧5kVで1000倍に拡大した反射電子組成(BSE)像をGIMP 2.10.10(画像解析ソフト)にて2値化し、炭素が占める面積率を算出した。更に具体的には、全ピクセルのうち最も高い輝度を255、最も低い輝度を0としたとき、輝度が127以下のピクセルが黒、輝度が127を超えるピクセルが白になるように階調を二値化し、銀の部分(白い部分)と炭素粒子の部分(黒い部分)に分離して、画像全体のピクセル数Xに対する炭素粒子の部分のピクセル数Yの比Y/Xを、表面の炭素粒子が占める割合(面積率(%))として算出した。 The "proportion (area ratio) occupied by carbon particles on the surface of the composite plating film" was obtained by observing the surface of the composite plating film. Specifically, a backscattered electron composition (BSE) image magnified 1000 times at an accelerating voltage of 5 kV from the tabletop microscope TM4000 Plus (manufactured by Hitachi High-Technologies Corporation) mentioned above was converted into GIMP 2.10.10 (image analysis software). The area ratio occupied by carbon was calculated. More specifically, when the highest brightness of all pixels is 255 and the lowest brightness is 0, the gradation is divided so that pixels with a brightness of 127 or less are black and pixels with a brightness over 127 are white. The ratio Y/X of the number of pixels Y in the carbon particle portion to the number It was calculated as the percentage occupied by the area (area ratio (%)).

「耐摩耗性」は、山崎精機研究所製の摺動試験機(CRS-G2050-DWA)により測定した。 "Abrasion resistance" was measured using a sliding tester (CRS-G2050-DWA) manufactured by Yamazaki Seiki Institute.

実施例1に係る平板状の複合めっき材(評価サンプル)に対して摺動させるインデントとしては、上記銅合金板を内径1.0mmにてプレス加工(いわゆるインデント加工)した後、10質量%のシアン化銀ナトリウムと30質量%のシアン化ナトリウムと50mL/LのニッシンブライトN(光沢剤、6質量%の三酸化二アンチモンを含む)(日進化成株式会社製)を含むAg-Sb合金めっき液(シアン浴)を使用し、2質量%のSbを含有し、ビッカース硬さ(HV)が180、厚さ20μmのAgSbめっき層を形成したものを凸形状の圧子として使用した。このインデントを上記摺動試験機にかけ、実施例1に係る複合めっき材に対し、往復3000回(または素地が露出するまでの間)、接触荷重2N、摺動速度3mm/s、摺動距離10mmにて、摺動を続行した。 The indentation to be slid on the flat plated composite plated material (evaluation sample) according to Example 1 was performed by pressing the copper alloy plate with an inner diameter of 1.0 mm (so-called indentation processing), and then adding 10% by mass of Ag-Sb alloy plating containing sodium silver cyanide, 30% by mass of sodium cyanide, and 50mL/L of Nissin Bright N (brightening agent, including 6% by mass of diantimony trioxide) (manufactured by Nichijo Seijin Co., Ltd.) An AgSb plating layer containing 2% by mass of Sb, having a Vickers hardness (HV) of 180, and a thickness of 20 μm was formed using a cyan bath as a convex indenter. This indentation was subjected to the above-mentioned sliding test machine, and the composite plated material according to Example 1 was tested 3000 times back and forth (or until the substrate was exposed) at a contact load of 2N, a sliding speed of 3mm/s, and a sliding distance of 10mm. At that point, sliding continued.

「平均摩擦係数」は1回の往復摺動中の往路の摺動距離の半分まで移動したときの水平方向にかかる力(F)を測定し、μ(摩擦係数)=F/N(Nは垂直抗力で2N)より摩擦係数を算出し、この往復摺動を3000回(または素地露出まで)行って、各回の摩擦係数を算出し、平均した値を平均摩擦係数とした。平均摩擦係数が0.8以下であれば良好とした。より好ましくは0.6以下である。 The "average friction coefficient" was calculated by measuring the force (F) applied in the horizontal direction when the material had moved half the sliding distance of the outward movement during one reciprocating slide, and calculating the friction coefficient from μ (friction coefficient) = F/N (N is the normal force of 2N). This reciprocating slide was performed 3,000 times (or until the base material was exposed), and the friction coefficient for each slide was calculated and the average value was taken as the average friction coefficient. An average friction coefficient of 0.8 or less was considered to be good. It is more preferable that it is 0.6 or less.

「平均接触抵抗(接触信頼性)」は往復摺動中の往路の摺動距離の半分まで移動したときに測定した抵抗値をその摺動回数の測定値とし、前記往復摺動を3000回(または素地露出まで)行ったときの接触抵抗の平均を平均接触抵抗とした。接触抵抗が3mΩ以下であれば、接触信頼性が良好であるとみなす。より好ましくは1.2mΩ以下である。 "Average contact resistance (contact reliability)" is the resistance value measured when moving to half of the sliding distance on the outward path during reciprocating sliding, and is the measured value of the number of sliding movements, and the reciprocating sliding is repeated 3000 times ( The average contact resistance was taken as the average contact resistance. If the contact resistance is 3 mΩ or less, the contact reliability is considered to be good. More preferably, it is 1.2 mΩ or less.

「曲げ加工性」は、JIS H 3130に準拠して調べた。具体的には、複合めっき材がWの形になるように折り曲げた。荷重は15kNとし、負荷時間は5秒とし、折り曲げの際の横幅(W字の奥行方向の幅)は10mmとした。W字の真ん中の山折り部が含まれるように、曲げ肌表面を、レーザー顕微鏡(株式会社キーエンス製 VK-X100 倍率100倍)にて確認した。山折り部におけるシワ幅が30μm以下であれば、曲げ加工性が良好であるとみなす。 "Bending workability" was examined in accordance with JIS H 3130. Specifically, the composite plated material was bent into a W shape. The load was 15 kN, the loading time was 5 seconds, and the width at the time of bending (width in the depth direction of the W-shape) was 10 mm. The bent skin surface was confirmed using a laser microscope (manufactured by Keyence Corporation, VK-X100, magnification: 100x) to ensure that the mountain fold in the middle of the W-shape was included. If the wrinkle width at the mountain fold portion is 30 μm or less, it is considered that the bending workability is good.

以上の各種内容をまとめたのが以下の各表である。
表1は、各実施例および各比較例における複合めっき材の製造条件を示した表である。
表2は、各実施例および各比較例における複合めっき材の厚さや組成等を示した表である。
表3は、各実施例および各比較例における複合めっき材の特性を示した表である。

Figure 0007458800000001
Figure 0007458800000002
Figure 0007458800000003
The following tables summarize the various contents mentioned above.
Table 1 is a table showing manufacturing conditions of composite plating materials in each example and each comparative example.
Table 2 is a table showing the thickness, composition, etc. of the composite plating materials in each Example and each Comparative Example.
Table 3 is a table showing the characteristics of the composite plating materials in each Example and each Comparative Example.
Figure 0007458800000001
Figure 0007458800000002
Figure 0007458800000003

[実施例2]
Agめっき液中のAg濃度を20g/Lとし、本めっきの時間を250秒とした以外は、実施例1と同様の方法で複合めっき材を作製し、厚さが5μmの複合めっき皮膜が基材に形成された複合めっき材を得た。
製造条件および評価結果などは表1~3に記載のとおりである(以降の例においても同様)。
[Example 2]
A composite plating material was prepared in the same manner as in Example 1, except that the Ag concentration in the Ag plating solution was 20 g/L and the main plating time was 250 seconds. A composite plated material formed on the material was obtained.
The manufacturing conditions and evaluation results are as shown in Tables 1 to 3 (the same applies to the following examples).

[実施例3]
Agめっき液中のAg濃度を50g/L、電流密度を7A/dm、本めっきの時間を220秒とした以外は、実施例1と同様の方法で複合めっき材を作製し、厚さが10μmの複合めっき皮膜が基材に形成された複合めっき材を得た。
[Example 3]
A composite plated material was prepared in the same manner as in Example 1, except that the Ag concentration in the Ag plating solution was 50 g/L, the current density was 7 A/dm 2 , and the main plating time was 220 seconds. A composite plating material was obtained in which a 10 μm composite plating film was formed on a base material.

[実施例4]
Agストライクめっきを形成する前に、Niからなる下地めっき皮膜(層)を形成した。具体的には、Ni濃度78g/L、ホウ酸濃度40g/Lのスルファミン酸Niめっき浴中において、液温55℃、電流密度6A/dm、めっき時間43秒として、Ni下地めっきを行い、銅基材上に厚さ0.5μmのNi下地めっき皮膜(層)を形成した。次いでAgストライクめっきをNi下地めっき層上に実施例1と同様の方法で形成した。その後、本めっきの電流密度を5A/dm、めっき時間を450秒とした以外は、実施例1と同様の方法で複合めっき材を作製し、厚さが15μmの複合めっき皮膜がNi下地めっ層を介して基材上に形成された複合めっき材を得た。
[Example 4]
Before forming the Ag strike plating, a Ni undercoat plating film (layer) was formed. Specifically, Ni undercoat plating was performed in a Ni sulfamate plating bath with a Ni concentration of 78 g/L and a boric acid concentration of 40 g/L at a liquid temperature of 55° C., a current density of 6 A/dm 2 , and a plating time of 43 seconds to form a Ni undercoat plating film (layer) with a thickness of 0.5 μm on the copper substrate. Then, Ag strike plating was formed on the Ni undercoat plating layer in the same manner as in Example 1. Thereafter, a composite plating material was produced in the same manner as in Example 1, except that the current density of the main plating was 5 A/dm 2 and the plating time was 450 seconds, and a composite plating material in which a composite plating film with a thickness of 15 μm was formed on the substrate via the Ni undercoat plating layer was obtained.

[実施例5]
Agめっき液中に0.06g/Lの酸化鉄(Fe)を添加してFeの濃度を40ppmとし、本めっきのめっき時間を1000秒とした以外は、実施例1と同様の方法で複合めっき材を作製し、厚さが20μmの複合めっき皮膜が基材上に形成された複合めっき材を得た。
[Example 5]
The same method as in Example 1 except that 0.06 g/L of iron oxide (Fe 2 O 3 ) was added to the Ag plating solution to make the Fe concentration 40 ppm, and the plating time of the main plating was 1000 seconds. A composite plated material was produced in which a composite plated film with a thickness of 20 μm was formed on the base material.

[実施例6]
Agめっき液中に0.03g/Lの酸化鉄(Fe)を添加してFeの濃度を20ppmとし、炭素粒子濃度を30g/L、本めっきの電流密度を2A/dm、めっき時間を350秒とした以外は、実施例1と同様の方法で複合めっき材を作製し、厚さが5μmの複合めっき皮膜が基材上に形成された複合めっき材を得た。
[Example 6]
0.03 g/L of iron oxide (Fe 2 O 3 ) was added to the Ag plating solution to make the Fe concentration 20 ppm, the carbon particle concentration was 30 g/L, the current density for main plating was 2 A/dm 2 , and the plating A composite plated material was produced in the same manner as in Example 1, except that the time was changed to 350 seconds, and a composite plated material was obtained in which a composite plated film with a thickness of 5 μm was formed on the base material.

[比較例1]
Agめっき液中に0.006g/Lの酸化鉄(Fe)を添加してFeの濃度を4ppmとし、Ag濃度を15g/Lとした以外は、実施例1と同様の方法で複合めっき材を作製し、厚さが2μmの複合めっき皮膜が基材上に形成された複合めっき材を得た。
[Comparative example 1]
Composite was prepared in the same manner as in Example 1, except that 0.006 g/L of iron oxide (Fe 2 O 3 ) was added to the Ag plating solution to make the Fe concentration 4 ppm, and the Ag concentration was 15 g/L. A plating material was produced, and a composite plating material in which a 2 μm thick composite plating film was formed on a base material was obtained.

[比較例2]
Agめっき液中に0.03g/Lの酸化鉄(Fe)を添加してFeの濃度を20ppmとし、本めっきの電流密度を9A/dm、めっき時間を85秒とした以外は、実施例1と同様の方法で複合めっき材を作製し、厚さが5μmの複合めっき皮膜が基材上に形成された複合めっき材を得た。
[Comparative example 2]
Except that 0.03 g/L of iron oxide (Fe 2 O 3 ) was added to the Ag plating solution to make the Fe concentration 20 ppm, the current density of the main plating was 9 A/dm 2 , and the plating time was 85 seconds. A composite plated material was produced in the same manner as in Example 1, and a composite plated material in which a 5 μm thick composite plating film was formed on the base material was obtained.

[比較例3]
Agめっき液中に0.006g/Lの酸化鉄(Fe)を添加してFeの濃度を4ppmとし、Agめっきの時間を1000秒とした以外は、実施例1と同様の方法で複合めっき材を作製し、厚さが20μmの複合めっき皮膜が基材上に形成された複合めっき材を得た。
[Comparative example 3]
The same method as in Example 1 was used except that 0.006 g/L of iron oxide (Fe 2 O 3 ) was added to the Ag plating solution to make the Fe concentration 4 ppm, and the Ag plating time was 1000 seconds. A composite plated material was produced, and a composite plated material in which a composite plated film with a thickness of 20 μm was formed on a base material was obtained.

[比較例4]
比較例4ではめっき浴を(従来と同様の)シアン浴とした。具体的な内容は以下の通りである。
比較例4においては、3g/Lのシアン化銀カリウムと、100g/Lのシアン化カリウムとからなるAgストライク用シアンめっき液を使用し、電流密度は5A/dm、めっき時間は30秒でAgストライクめっきを行った。
その後、150g/Lのシアン化銀カリウムと、90g/Lのシアン化カリウムと、3.6mg/L(ppm)のセレノシアン酸カリウムとからなるシアン系の銀めっき液を作製し、この銀めっき液中に実施例1に記載の酸化処理済み炭素粒子を添加し、さらに酸化鉄(Fe)を0.045g/L添加した。銀めっき液中のFeの濃度は30ppmであり、Ag濃度は80g/Lであり、炭素粒子濃度(炭素粒子含有量)は80g/Lである。 このシアン銀めっき液を使用し、本めっきを行った。本めっきにおいては、電流密度は3A/dm、めっき時間を250秒とした。上記の内容以外は、実施例1と同様の方法で複合めっき材を作製し、厚さが5μmの複合めっき皮膜が基材上に形成された複合めっき材を得た。
[Comparative example 4]
In Comparative Example 4, the plating bath was a cyan bath (similar to the conventional one). The specific contents are as follows.
In Comparative Example 4, a cyan plating solution for Ag strike consisting of 3 g/L potassium silver cyanide and 100 g/L potassium cyanide was used, and the Ag strike was achieved at a current density of 5 A/dm 2 and a plating time of 30 seconds. Plating was performed.
After that, a cyanide-based silver plating solution consisting of 150 g/L potassium cyanide, 90 g/L potassium cyanide, and 3.6 mg/L (ppm) potassium selenocyanate was prepared, and in this silver plating solution, The oxidized carbon particles described in Example 1 were added, and 0.045 g/L of iron oxide (Fe 2 O 3 ) was further added. The Fe concentration in the silver plating solution is 30 ppm, the Ag concentration is 80 g/L, and the carbon particle concentration (carbon particle content) is 80 g/L. Main plating was performed using this cyan silver plating solution. In this plating, the current density was 3 A/dm 2 and the plating time was 250 seconds. A composite plated material was produced in the same manner as in Example 1 except for the above, and a composite plated material was obtained in which a 5 μm thick composite plating film was formed on the base material.

[検討]
図1(a)は、実施例1の複合めっき皮膜の表面のBSE像(1000倍)を示す写真であり、図1(b)は、実施例1の複合めっき皮膜の表面のBSE像(5000倍)を示す写真である。 図2~6は、同様に、実施例2~6の複合めっき皮膜の表面のBSE像を示す写真である。
図7は、同様に、比較例2の複合めっき皮膜の表面のBSE像を示す写真である。
図8は、実施例2の複合めっき皮膜の断面のBSE像(10000倍)を示す写真である。
図9は、比較例2の複合めっき皮膜の断面のBSE像(10000倍)を示す写真である。
図10は、曲げ加工性試験後の実施例5の複合めっき皮膜の表面のW字の真ん中の山折り部分を含むレーザー顕微鏡像(100倍)を示す写真である。
図11は、曲げ加工性試験後の比較例3の複合めっき皮膜の表面のW字の真ん中の山折り部分を含むレーザー顕微鏡像(100倍)を示す写真である。
[Consider]
FIG. 1(a) is a photograph showing a BSE image (1000 times magnification) of the surface of the composite plating film of Example 1, and FIG. 1(b) is a photograph showing a BSE image (5000 times magnification) of the surface of the composite plating film of Example 1. This is a photograph showing the Similarly, FIGS. 2 to 6 are photographs showing BSE images of the surfaces of the composite plating films of Examples 2 to 6.
Similarly, FIG. 7 is a photograph showing a BSE image of the surface of the composite plating film of Comparative Example 2.
FIG. 8 is a photograph showing a BSE image (10,000 times magnification) of a cross section of the composite plating film of Example 2.
FIG. 9 is a photograph showing a BSE image (10,000 times) of a cross section of the composite plating film of Comparative Example 2.
FIG. 10 is a photograph showing a laser microscope image (100x magnification) including a mountain fold in the middle of the W-shape on the surface of the composite plating film of Example 5 after the bending process test.
FIG. 11 is a photograph showing a laser microscope image (100x magnification) including a mountain-folded portion in the middle of the W-shape on the surface of the composite plating film of Comparative Example 3 after the bending workability test.

図1~6が示すように、各実施例では複合めっき皮膜においてAgの電着組織として板状(或いは針状)のAg粒子状構造が観察され、また、表3に示すように複合めっき皮膜表面の銀粒子状構造のうち短径に対する長径の比(アスペクト比)が2以上である銀粒子状構造の個数の割合が30%以上であった。 As shown in FIGS. 1 to 6, in each example, a plate-like (or needle-like) Ag particle structure was observed as the electrodeposition structure of Ag in the composite plating film, and as shown in Table 3, the composite plating film Among the silver particle structures on the surface, the ratio of the number of silver particle structures having a ratio of the major axis to the minor axis (aspect ratio) of 2 or more was 30% or more.

その一方、比較例の複合めっき皮膜では、図7(比較例2)や表3に示すように前記アスペクト比が2以上である銀粒子状構造の個数の割合が30%未満であった。 On the other hand, in the composite plating film of the comparative example, as shown in Figure 7 (Comparative Example 2) and Table 3, the proportion of silver particle structures with the aspect ratio of 2 or more was less than 30%.

表3が示すように、各実施例では全ての試験項目において良好な結果を示した。各実施例によれば、優れた曲げ加工性を備える複合めっき皮膜および複合めっき材が得られた。それと同時に、優れた耐摩耗性および低い摩擦係数を有し、接触信頼性にも優れていた。 As shown in Table 3, each Example showed good results in all test items. According to each Example, a composite plating film and a composite plating material having excellent bending workability were obtained. At the same time, it had excellent wear resistance, a low coefficient of friction, and excellent contact reliability.

その一方、比較例2~4では、曲げ加工性において良好ではなかった。 On the other hand, Comparative Examples 2 to 4 did not have good bending workability.

曲げ加工性については、図10(実施例5)と図11(比較例3)を比較すると、実施例5の方がシワの幅が明らかに小さいことがわかる。 Regarding bending workability, when comparing FIG. 10 (Example 5) and FIG. 11 (Comparative Example 3), it can be seen that the width of the wrinkles is clearly smaller in Example 5.

なお、比較例1では、曲げ加工性こそ比較的良好であったものの耐摩耗性、摩擦係数という点で難があった。
これに対し複合めっき皮膜の厚さが同じ2μmである(膜厚が比較的薄い)実施例1は、高い耐摩耗性を有し、且つ曲げ加工性にも優れている。これは複合めっき皮膜表面の銀粒子状構造のうち短径に対する長径の比(アスペクト比)が2以上である銀粒子状構造の個数の割合が30%以上である組織を有することにより、このような特性の両立が実現されると推測される。
In addition, in Comparative Example 1, although the bending workability was relatively good, there were problems in terms of wear resistance and friction coefficient.
On the other hand, Example 1, in which the composite plating film has the same thickness of 2 μm (relatively thin film), has high wear resistance and excellent bending workability. This is because the composite plating film has a structure in which the ratio of the number of silver particle structures with a ratio of the major axis to the minor axis (aspect ratio) of 2 or more among the silver particle structures on the surface of the composite plating film is 30% or more. It is assumed that both of these characteristics will be achieved.

Claims (13)

銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜が基材上に形成された複合めっき材において、
複合めっき皮膜の炭素の含有量が0.2~10.0質量%であり、
複合めっき皮膜表面の銀粒子状構造のうち短径に対する長径の比が2以上である銀粒子状構造の個数の割合が30%以上である、複合めっき材。
In a composite plating material in which a composite plating film made of a composite material containing carbon particles in a silver layer is formed on a base material,
The carbon content of the composite plating film is 0.2 to 10.0% by mass,
A composite plating material, wherein the ratio of the number of silver particle structures having a ratio of the major axis to the minor axis of 2 or more among the silver particle structures on the surface of the composite plating film is 30% or more.
前記複合めっき皮膜の表面の炭素粒子が占める割合が5~85面積%である、請求項1に記載の複合めっき材。 The composite plating material according to claim 1, wherein the proportion of carbon particles on the surface of the composite plating film is 5 to 85% by area. 前記複合めっき皮膜の厚さが0.5~25μmである、請求項1または2に記載の複合めっき材。 The composite plating material according to claim 1 or 2, wherein the composite plating film has a thickness of 0.5 to 25 μm. 前記基材は銅または銅合金である、請求項1~3のいずれかに記載の複合めっき材。 The composite plating material according to any one of claims 1 to 3, wherein the base material is copper or a copper alloy. 前記基材と前記複合めっき皮膜との間に下地めっき層が形成されている、請求項1~4のいずれかに記載の複合めっき材。 The composite plating material according to any one of claims 1 to 4, wherein a base plating layer is formed between the base material and the composite plating film. 前記下地めっき層がニッケルめっき層、銅めっき層から選ばれる少なくともひとつからなる、請求項5に記載の複合めっき材。 The composite plating material according to claim 5, wherein the base plating layer consists of at least one selected from a nickel plating layer and a copper plating layer. 前記銀粒子状構造は電着組織である、請求項1~6のいずれかに記載の複合めっき材。 The composite plating material according to any one of claims 1 to 6, wherein the silver particle structure is an electrodeposited structure. 炭素粒子と鉄を含有する非シアン系の銀めっき液を用いて電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜を基材上に形成する複合めっき材の製造方法であって、複合めっき皮膜の炭素の含有量を0.2~10.0質量%とし、複合めっき皮膜表面の銀粒子状構造のうち短径に対する長径の比が2以上である銀粒子状構造の個数の割合を30%以上とし、
前記銀めっき液中の鉄の濃度が5質量ppm以上であり、
前記電気めっきの電流密度を8A/dm 以下とする、複合めっき材の製造方法。
A composite plating material that forms a composite plating film made of a composite material containing carbon particles in the silver layer on a base material by electroplating using a non-cyanide silver plating solution containing carbon particles and iron. A method for producing a composite plating film in which the carbon content of the composite plating film is 0.2 to 10.0% by mass, and the ratio of the major axis to the short axis of the silver particle structure on the surface of the composite plating film is 2 or more. The proportion of the number of particulate structures is 30% or more ,
The concentration of iron in the silver plating solution is 5 mass ppm or more,
A method for producing a composite plated material, wherein the current density of the electroplating is 8 A/dm 2 or less.
前記銀めっき液はスルホン酸系銀めっき液である、請求項8に記載の複合めっき材の製造方法。 The method for producing a composite plated product according to claim 8, wherein the silver plating solution is a sulfonic acid-based silver plating solution. 前記炭素粒子が、酸化処理を行った炭素粒子である、請求項8または9に記載の複合めっき材の製造方法。 The method for manufacturing a composite plating material according to claim 8 or 9 , wherein the carbon particles are carbon particles subjected to an oxidation treatment. 前記基材上に下地めっき層を形成した後、前記複合めっき皮膜を形成する、請求項8~10のいずれかに記載の複合めっき材の製造方法。 The method for producing a composite plating material according to any one of claims 8 to 10 , wherein the composite plating film is formed after forming a base plating layer on the base material. 前記下地めっき層がニッケルめっき層、銅めっき層から選ばれる少なくともひとつからなる、請求項11に記載の複合めっき材の製造方法。 12. The method for manufacturing a composite plated material according to claim 11 , wherein the base plating layer consists of at least one selected from a nickel plating layer and a copper plating layer. 請求項1~7のいずれかに記載の複合めっき材を材料として用いた、接点部品。 A contact component using the composite plating material according to any one of claims 1 to 7 as a material.
JP2020013117A 2020-01-30 2020-01-30 Composite plating material and its manufacturing method Active JP7458800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020013117A JP7458800B2 (en) 2020-01-30 2020-01-30 Composite plating material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020013117A JP7458800B2 (en) 2020-01-30 2020-01-30 Composite plating material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021119257A JP2021119257A (en) 2021-08-12
JP7458800B2 true JP7458800B2 (en) 2024-04-01

Family

ID=77195427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020013117A Active JP7458800B2 (en) 2020-01-30 2020-01-30 Composite plating material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7458800B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114197017B (en) * 2021-12-08 2023-10-20 国网江西省电力有限公司电力科学研究院 Composite coating and preparation method and application thereof
JP7459202B1 (en) * 2022-09-22 2024-04-01 株式会社神戸製鋼所 Terminal material and terminal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190648A (en) 2004-12-10 2006-07-20 Toyo Kohan Co Ltd Plated sheet steel for battery case, battery case using the plated sheet steel for battery case, and battery using the battery case
JP2008127641A (en) 2006-11-22 2008-06-05 Dowa Metaltech Kk Method for producing composite plated material
JP2011074499A (en) 2011-01-05 2011-04-14 Dowa Holdings Co Ltd Composite plating material and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190648A (en) 2004-12-10 2006-07-20 Toyo Kohan Co Ltd Plated sheet steel for battery case, battery case using the plated sheet steel for battery case, and battery using the battery case
JP2008127641A (en) 2006-11-22 2008-06-05 Dowa Metaltech Kk Method for producing composite plated material
JP2011074499A (en) 2011-01-05 2011-04-14 Dowa Holdings Co Ltd Composite plating material and method for producing the same

Also Published As

Publication number Publication date
JP2021119257A (en) 2021-08-12

Similar Documents

Publication Publication Date Title
US11926917B2 (en) Composite plating material and method for producing the same
JP4749746B2 (en) Tin plating material and method for producing the same
KR101759761B1 (en) Layered composite material for sliding elements, method for producing same and use thereof
TWI453307B (en) Composite coatings for whisker reduction
JP7458800B2 (en) Composite plating material and its manufacturing method
JP7130821B2 (en) Silver-plated material and its manufacturing method
WO2021171818A1 (en) Silver-plated material and method for producing same
US20230175160A1 (en) Composite material, method for producing composite material, and terminal
JP6804574B2 (en) Composite plating material and its manufacturing method
JP6978568B2 (en) Composite plating material and its manufacturing method
WO2023276507A1 (en) Silver-plated material and method for manufacturing same
JP7233991B2 (en) Composite plated material and its manufacturing method
CN115398041A (en) Silver-plated material, method for producing same, and terminal member
JP7341871B2 (en) Composite plating material and its manufacturing method
JP2023152637A (en) Silver-plated material and method for producing the same
JP2021134425A (en) Silver-plated material and method for producing the same
JP2022076573A (en) Composite plated material, and method of producing the same
JP2021110001A (en) Composite plated material
JP2014145127A (en) Plating solution and plating material
JPS6070197A (en) Silver alloy plating method
JP5872920B2 (en) Plating material for electronic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240319

R150 Certificate of patent or registration of utility model

Ref document number: 7458800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150