JP7458274B2 - superconducting electromagnet - Google Patents

superconducting electromagnet Download PDF

Info

Publication number
JP7458274B2
JP7458274B2 JP2020151418A JP2020151418A JP7458274B2 JP 7458274 B2 JP7458274 B2 JP 7458274B2 JP 2020151418 A JP2020151418 A JP 2020151418A JP 2020151418 A JP2020151418 A JP 2020151418A JP 7458274 B2 JP7458274 B2 JP 7458274B2
Authority
JP
Japan
Prior art keywords
superconducting electromagnet
current switch
persistent current
support member
main coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020151418A
Other languages
Japanese (ja)
Other versions
JP2022045693A (en
Inventor
圭 小柳
寛史 宮崎
貞憲 岩井
正平 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020151418A priority Critical patent/JP7458274B2/en
Publication of JP2022045693A publication Critical patent/JP2022045693A/en
Application granted granted Critical
Publication of JP7458274B2 publication Critical patent/JP7458274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明の実施形態は、熱伝導方式で冷却する超電導電磁石に関する。 Embodiments of the present invention relate to superconducting electromagnets that are cooled by thermal conduction.

永久電流を循環させて誘導磁場を発生させる超電導電磁石の冷却は、液体ヘリウム浸漬方式が従来主流であった。近年、極低温冷凍機から供給される冷熱を超電導電磁石に伝導させる熱伝導方式が検討されている。これら二つの方式のいずれであっても、超電導電磁石の起動時に、永久電流スイッチ(PCS)が使用される。すなわち、永久電流スイッチをOFF設定にし、電源から励磁電流を供給して主コイルに誘導磁場を発生させる(ドリブンモード)。しかる後に、永久電流スイッチをON設定に切り替え、さらに励磁電流の供給を徐々に減らして、永久電流モード(PCモード)に移行させる。 Liquid helium immersion has traditionally been the mainstream method for cooling superconducting electromagnets, which generate induced magnetic fields by circulating persistent currents. In recent years, a heat conduction method that conducts cold heat supplied from a cryogenic refrigerator to a superconducting electromagnet has been studied. In either of these two systems, a persistent current switch (PCS) is used when starting the superconducting electromagnet. That is, the persistent current switch is set to OFF, and an exciting current is supplied from the power source to generate an induced magnetic field in the main coil (driven mode). Thereafter, the persistent current switch is switched to the ON setting, and the supply of excitation current is gradually reduced to shift to persistent current mode (PC mode).

永久電流スイッチは、超電導線材の無誘導巻コイルとヒータ線とを備えている。そして、冷却状態の無誘導巻コイルを加熱/除熱することで常電導状態/超電導状態を切り替え、永久電流スイッチのOFF/ON設定がなされる。 The persistent current switch is equipped with a non-inductively wound coil of superconducting wire and a heater wire. The non-inductively wound coil, which is in a cooled state, is heated/removed from the heat to switch between a normal conductive state and a superconductive state, thereby setting the persistent current switch to OFF/ON.

冷却が液体ヘリウム浸漬方式の場合、永久電流スイッチのOFF設定時の発熱は、無誘導巻コイルを昇温させる以外は、冷媒である液体ヘリウム中に散逸されてしまう。このため、永久電流スイッチのOFF設定時の発熱が主コイル及び引出線に影響を及ぼすことについて、検討する必要性は特になかった。 When cooling is performed using a liquid helium immersion method, the heat generated when the persistent current switch is set to OFF is dissipated into the liquid helium coolant except for raising the temperature of the non-inductively wound coil. Therefore, there was no particular need to consider the effect of heat generation when the persistent current switch is set to OFF on the main coil and the lead wire.

2018-010948号公報Publication No. 2018-010948

しかし冷却が熱伝導方式の場合、永久電流スイッチのOFF設定時の発熱の一部は、主コイルにまで到達してしまう。この到達熱により主コイル並びに引出線の温度が上昇し、超電導の臨界点を超えて常伝導転移(クエンチ)に至ることが懸念される。 However, when cooling is performed using a heat conduction method, part of the heat generated when the persistent current switch is set to OFF reaches the main coil. There is a concern that the temperature of the main coil and the leader wire will rise due to this reached heat, exceeding the critical point of superconductivity and leading to normal conduction transition (quench).

また主コイルの超電導線材のマトリクスに純銅が用いられているのに対し、永久電流スイッチの超電導線材にはマトリクスに高抵抗の合金(CuNi)が用いられている。これは、上述したドリブンモードにおいて、永久電流スイッチへの電流分流を抑制し、主コイルにおいて十分な誘導磁場を発生させるためである。 Furthermore, while pure copper is used for the matrix of the superconducting wire of the main coil, a high-resistance alloy (CuNi) is used for the matrix of the superconducting wire of the persistent current switch. This is to suppress current shunting to the persistent current switch and generate a sufficient induced magnetic field in the main coil in the above-mentioned driven mode.

ところで、CuNiマトリクスを持つ線材は、銅マトリクスを持つ超電導線材と比べて安定性が低く、磁気的不安定性によってクエンチが生じ易い。このため永久電流スイッチを熱伝導方式で冷却する場合、液体ヘリウム浸漬方式による冷却の場合と比較して、永久電流スイッチの引出線の不安定性はさらに顕著になる。そして、機器の定格に満たない低い電流値でもクエンチ発生のリスクが高まる。 By the way, a wire having a CuNi matrix has lower stability than a superconducting wire having a copper matrix, and is more likely to be quenched due to magnetic instability. For this reason, when the persistent current switch is cooled by the thermal conduction method, the instability of the leader wire of the persistent current switch becomes more significant than when cooling by the liquid helium immersion method. Furthermore, even a low current value that is below the equipment's rating increases the risk of quenching.

本発明の実施形態はこのような事情を考慮してなされたもので、熱伝導方式で冷却するに際し、クエンチ発生のリスクを低減する超電導電磁石を提供することを目的とする。 The embodiment of the present invention was made in consideration of these circumstances, and aims to provide a superconducting electromagnet that reduces the risk of quenching when cooled using a thermal conduction method.

本発明の実施形態に係る超電導電磁石において、誘導磁場を生成する主コイルと、前記主コイルと閉回路を形成し常電導状態/超電導状態が切り替え可能な永久電流スイッチと、前記永久電流スイッチの無誘導巻コイルから引き出され前記主コイルの両側の端線のそれぞれに接続する第1引出線及び第2引出線と、前記主コイルを支持するとともに極低温冷凍機が発生した冷熱を前記主コイルに伝達する伝熱部材と、前記伝熱部材に一端が接続し他端において前記永久電流スイッチを支持するとともに前記永久電流スイッチに伝達される前記冷熱の主経路を成す支持部材と、前記支持部材において前記第1引出線が電気的に接触する第1部位と前記第2引出線が電気的に接触する第2部位とを長手方向に沿って分離させる分離構造と、を備え、前記伝熱部材と前記支持部材は電気絶縁されている A superconducting electromagnet according to an embodiment of the present invention comprises: a main coil that generates an induced magnetic field; a persistent current switch that forms a closed circuit with the main coil and is switchable between a normal conducting state and a superconducting state; a first lead wire and a second lead wire that are drawn from a non-inductive winding coil of the persistent current switch and connected to each of end wires on both sides of the main coil; a heat transfer member that supports the main coil and transfers cold generated by a cryogenic refrigerator to the main coil; a support member having one end connected to the heat transfer member and the other end that supports the persistent current switch and forms a main path of the cold transferred to the persistent current switch; and a separation structure that separates, in the support member, a first portion with which the first lead wire is in electrical contact and a second portion with which the second lead wire is in electrical contact along the longitudinal direction, wherein the heat transfer member and the support member are electrically insulated .

本発明の実施形態により、熱伝導方式で冷却するに際し、クエンチ発生のリスクを低減する超電導電磁石が提供される。 Embodiments of the present invention provide a superconducting electromagnet that reduces the risk of quenching when cooled by thermal conduction.

本発明の実施形態に係る超電導電磁石の縦断面を示す構成図。FIG. 1 is a configuration diagram showing a longitudinal section of a superconducting electromagnet according to an embodiment of the present invention. (A)図1の領域Aで示される超電導電磁石の部分の縦断面図、(B)その上面図。(A) A vertical cross-sectional view of a portion of the superconducting electromagnet shown in area A in FIG. 1, and (B) a top view thereof. 実施形態に係る超電導電磁石の回路図。A circuit diagram of a superconducting electromagnet according to an embodiment. (A)主コイルの超電導線材の断面を示す概念図、(B)永久電流スイッチの超電導線材の断面を示す概念図。(A) A conceptual diagram showing a cross section of a superconducting wire of a main coil, and (B) a conceptual diagram showing a cross section of a superconducting wire of a persistent current switch. 超電導線材を構成する超電導体及びマトリクス体の温度に対する電気抵抗値の変化を示すグラフ。1 is a graph showing changes in electrical resistance values with respect to temperature of a superconductor and a matrix body that constitute a superconducting wire. 超電導状態の三つの臨界点(臨界電流Ic,臨界温度Tc,臨界磁場Hc)を説明するグラフ。1 is a graph illustrating three critical points (critical current Ic, critical temperature Tc, critical magnetic field Hc) in the superconducting state. (A)(B)(C)(D)超電導電磁石の励磁工程を説明するグラフ。(A) (B) (C) (D) Graphs explaining the excitation process of a superconducting electromagnet. 電気接続部の側面図。Side view of electrical connections. (A)(B)支持部材に配置された第1引出線及び第2引出線の断面図。(A) (B) Cross-sectional views of the first leader line and the second leader line arranged on the support member. (A)支持部材に支持される永久電流スイッチ(第1例)の縦断面図、(B)その底面図。(A) A vertical cross-sectional view of a persistent current switch (first example) supported by a support member, and (B) a bottom view thereof. (A)支持部材に支持される永久電流スイッチ(第2例)の側面図、(B)その水平断面図。(A) A side view of a persistent current switch (second example) supported by a support member, (B) a horizontal sectional view thereof. (A)支持部材の第1例を示す側面図、(B)支持部材の第2例を示す側面図。FIG. 1A is a side view showing a first example of a support member, and FIG. 1B is a side view showing a second example of a support member.

以下、本発明の実施形態を添付図面に基づいて説明する。図1は本発明の実施形態に係る超電導電磁石10の縦断面を示す構成図である。図2(A)は、図1の領域Aで示される超電導電磁石10の部分の縦断面図である。図2(B)はその上面図である。 Embodiments of the present invention will be described below based on the accompanying drawings. FIG. 1 is a configuration diagram showing a longitudinal section of a superconducting electromagnet 10 according to an embodiment of the present invention. FIG. 2(A) is a longitudinal cross-sectional view of a portion of the superconducting electromagnet 10 shown in area A in FIG. FIG. 2(B) is a top view thereof.

このように超電導電磁石10は、誘導磁場16を生成する主コイル15と、この主コイル15と閉回路を形成し常電導状態/超電導状態が切り替え可能な永久電流スイッチ25と、この永久電流スイッチ25の無誘導巻コイル26から引き出され主コイル15の両側の端線17,18の各々に接続する第1引出線11及び第2引出線12と、主コイル15を支持するとともに極低温冷凍機40が発生した冷熱を主コイル15に伝達する伝熱部材45と、この伝熱部材45に一端が接続し他端において永久電流スイッチ25を支持するとともに永久電流スイッチ25に伝達される冷熱の主経路を成す支持部材20と、この支持部材20において第1引出線11が電気的に接触する第1部位21と第2引出線12が電気的に接触する第2部位22とを長手方向に沿って分離させる分離構造と、を備えている。 The superconducting electromagnet 10 thus comprises a main coil 15 that generates an induced magnetic field 16, a persistent current switch 25 that forms a closed circuit with the main coil 15 and can switch between a normal conductive state and a superconductive state, a first lead 11 and a second lead 12 that are drawn from the non-inductive winding coil 26 of the persistent current switch 25 and connected to the end wires 17, 18 on both sides of the main coil 15, a heat transfer member 45 that supports the main coil 15 and transfers the cold generated by the cryogenic refrigerator 40 to the main coil 15, a support member 20 that has one end connected to the heat transfer member 45 and the other end that supports the persistent current switch 25 and forms the main path of the cold transferred to the persistent current switch 25, and a separation structure that separates the first portion 21 with which the first lead 11 is in electrical contact and the second portion 22 with which the second lead 12 is in electrical contact along the longitudinal direction of the support member 20.

上述した主コイル15、永久電流スイッチ25、伝熱部材45及び支持部材20は、超電導転移の臨界温度Tc以下に保たれる必要があるため、断熱真空容器28に収容されている。この断熱真空容器28は、超電導電磁石10が設置される環境(室温:約300K)からの熱侵入の影響を低減するためさらに輻射シールド29を構成に持つ。なお輻射シールド29、伝熱部材45及び永久電流スイッチ25の重量は、図示されない部材により断熱真空容器28から支持されている。 The main coil 15, persistent current switch 25, heat transfer member 45, and support member 20 described above are housed in an insulated vacuum container 28 because they need to be kept below the critical temperature Tc for superconducting transition. This insulating vacuum container 28 further includes a radiation shield 29 in order to reduce the influence of heat intrusion from the environment in which the superconducting electromagnet 10 is installed (room temperature: approximately 300 K). Note that the weight of the radiation shield 29, heat transfer member 45, and persistent current switch 25 is supported from the heat insulating vacuum container 28 by a member not shown.

実施形態において極低温冷凍機40としてGM冷凍機40が例示されている。GM冷凍機40の第1冷凍ステージ41と輻射シールド29とが接続され、第2冷凍ステージ42と伝熱部材45とが接続されている。コンプレッサ(図示略)からGM冷凍機40に封入される作動ガス(Heガス等)の断熱圧縮の効果により、輻射シールド29は40K程度に冷却され伝熱部材45は4K程度に冷却される。 In the embodiment, a GM refrigerator 40 is illustrated as the cryogenic refrigerator 40. The first freezing stage 41 and the radiation shield 29 of the GM refrigerator 40 are connected, and the second freezing stage 42 and the heat transfer member 45 are connected. The radiation shield 29 is cooled to about 40K and the heat transfer member 45 is cooled to about 4K due to the effect of adiabatic compression of the working gas (He gas, etc.) sealed into the GM refrigerator 40 from a compressor (not shown).

なお採用される極低温冷凍機40は、上述したGM冷凍機に限定されるものではない。パルスチューブ冷凍機、クロード冷凍機、スターリング冷凍機など、極低温を生成するものであれば適宜採用される。 Note that the cryogenic refrigerator 40 employed is not limited to the GM refrigerator described above. Any device that generates extremely low temperatures, such as a pulse tube refrigerator, Claude refrigerator, or Stirling refrigerator, may be used as appropriate.

伝熱部材45は、機械剛性が高く、磁化せず、熱伝導率が大きい、例えば銅、銅合金、アルミニウム、アルミ合金等の材質で構成される。そして伝熱部材45は、断熱真空容器28の内側から支持部材(図示略)で支持され、当接する極低温冷凍機40から冷熱の供給を受ける。この極低温冷凍機40から供給された冷熱は、伝熱部材45を伝達して支持される主コイル15及びその端線17,18並びに電気接続部30に供給される。さらに極低温冷凍機40から供給された冷熱は、伝熱部材45及び電気接続部30を経由して、支持部材20に伝達され、永久電流スイッチ25に供給される。 The heat transfer member 45 is made of a material that has high mechanical rigidity, is not magnetized, and has high thermal conductivity, such as copper, copper alloy, aluminum, or aluminum alloy. The heat transfer member 45 is supported by a support member (not shown) from inside the insulated vacuum vessel 28, and receives cold heat from the abutting cryogenic refrigerator 40. The cold heat supplied from the cryogenic refrigerator 40 is supplied to the main coil 15 and its end wires 17 and 18, which are supported by the heat transfer member 45, and to the electrical connection portion 30. The cold heat supplied from the cryogenic refrigerator 40 is further transmitted to the support member 20 via the heat transfer member 45 and the electrical connection portion 30, and is supplied to the persistent current switch 25.

支持部材20は、基端が伝熱部材45及び電気接続部30に固定され、先端で永久電流スイッチ25を支持している。さらに支持部材20は、永久電流スイッチ25の無誘導巻コイル26から電気接続部30に延びる第1引出線11及び第2引出線12の渡り区間を形成している。このように支持部材20は、伝熱部材45から永久電流スイッチ25に冷熱を伝達するとともに第1引出線11及び第2引出線12を支持している。なお支持部材20の材料は、極低温において熱伝導率及び電気伝導率の高い銅またはアルミニウムを使用しても良いし、金または銀またはそれらを含む合金を使用しても良い。 The support member 20 has its base end fixed to the heat transfer member 45 and the electrical connection part 30, and supports the persistent current switch 25 at its distal end. Further, the support member 20 forms a transition section for the first leader wire 11 and the second leader wire 12 extending from the non-inductively wound coil 26 of the persistent current switch 25 to the electrical connection portion 30. In this way, the support member 20 transfers cold heat from the heat transfer member 45 to the persistent current switch 25, and supports the first leader wire 11 and the second leader wire 12. As the material of the support member 20, copper or aluminum having high thermal conductivity and electrical conductivity at extremely low temperatures may be used, or gold or silver or an alloy containing them may be used.

なお永久電流スイッチ25の重量は、支持部材20に全て負担される場合もあるし、重量の一部が、断熱真空容器28又は伝熱部材45から直接伸びる支持部材(図示略)により支持される場合もある。また永久電流スイッチ25に供給される冷熱も、主要経路である支持部材20を経由する以外に、伝熱部材45から伸びるその他の伝熱部材(図示略)により伝達される場合もある。 Note that the weight of the persistent current switch 25 may be entirely borne by the support member 20, or a portion of the weight may be supported by a support member (not shown) extending directly from the heat-insulating vacuum container 28 or the heat transfer member 45. In some cases. Furthermore, the cold heat supplied to the persistent current switch 25 may also be transmitted through another heat transfer member (not shown) extending from the heat transfer member 45, in addition to passing through the support member 20, which is the main path.

図3は実施形態に係る超電導電磁石10の回路図である。このように超電導電磁石10は、励磁電源35に対し永久電流スイッチ25及び主コイル15が並列接続している。このように回路が形成されることにより、ドリブンモードにおいて励磁電源35及び主コイル15が閉回路を形成し、永久電流モード(PCモード)において主コイル15及び永久電流スイッチ25が閉回路を形成する。 Figure 3 is a circuit diagram of the superconducting electromagnet 10 according to the embodiment. In this manner, the superconducting electromagnet 10 has the persistent current switch 25 and the main coil 15 connected in parallel to the excitation power supply 35. By forming a circuit in this manner, the excitation power supply 35 and the main coil 15 form a closed circuit in the driven mode, and the main coil 15 and the persistent current switch 25 form a closed circuit in the persistent current mode (PC mode).

主コイル15は、超電導線材が一方向に巻回して構成され、電流が流れることで誘導磁場16を生成する。永久電流スイッチ25は、超電導線材がそれぞれ逆方向に巻回された二つのコイルが直列に接続され、電流が流れても誘導磁場を生成しない無誘導巻コイル26が配置されている。そして永久電流スイッチ25の発熱部27は、無誘導巻コイル26に近接配置される電気抵抗体37と、この電気抵抗体37に供給する電力を制御して発熱させ超電導状態の無誘導巻コイル26を常電導状態に変化させる電力制御器36と、を有している。 The main coil 15 is constructed by winding a superconducting wire in one direction, and generates an induced magnetic field 16 when a current flows therethrough. The persistent current switch 25 includes two coils in which superconducting wires are wound in opposite directions connected in series, and a non-inductively wound coil 26 that does not generate an induced magnetic field even when current flows. The heat generating section 27 of the persistent current switch 25 includes an electric resistor 37 disposed close to the non-inductive wound coil 26, and a non-inductive wound coil 26 in a superconducting state by controlling the electric power supplied to the electric resistor 37 to generate heat. and a power controller 36 for changing the power to a normal conduction state.

主コイル15から引き出される一対の端線17,18の終端は、それぞれ電気接続部30に接続されている。また永久電流スイッチ25から引き出される一対の第1引出線11及び第2引出線12の終端も、電気接続部30に接続されている。このように主コイル15と永久電流スイッチ25は並列に接続し閉回路を形成する。 The terminal ends of a pair of end wires 17 and 18 drawn out from the main coil 15 are each connected to an electrical connection part 30. Further, the terminal ends of the pair of first leader wire 11 and second leader wire 12 drawn out from the persistent current switch 25 are also connected to the electrical connection section 30 . In this way, the main coil 15 and persistent current switch 25 are connected in parallel to form a closed circuit.

図4(A)主コイル15の超電導線材の断面を示す概念図である。また図4(B)は永久電流スイッチ25の無誘導巻コイル26の超電導線材の断面を示す概念図である。このように超電導線材は、設定温度によって超電導状態と常電導状態とが切り替わる超電導体46と、設定温度によらず常電導状態を示すマトリクス体47(47a,47b)とから構成されている。なお、マトリクス体47と超電導体46とは、断面視において海島状に形成されているが、このような構造に限定されるものではなく例えば層状に形成される場合もある。 FIG. 4(A) is a conceptual diagram showing a cross section of the superconducting wire of the main coil 15. Further, FIG. 4(B) is a conceptual diagram showing a cross section of the superconducting wire of the non-inductively wound coil 26 of the persistent current switch 25. In this way, the superconducting wire is composed of a superconductor 46 that switches between a superconducting state and a normal conducting state depending on the set temperature, and a matrix body 47 (47a, 47b) that exhibits a normal conducting state regardless of the set temperature. Although the matrix body 47 and the superconductor 46 are formed in a sea-island shape when viewed in cross section, they are not limited to such a structure, and may be formed, for example, in a layered manner.

図5は、超電導線材を構成する超電導体46及びマトリクス体47(47a,47b)の温度に対する電気抵抗値の変化を示すグラフである。超電導体46は、臨界温度Tcよりも低温では、電気抵抗値がゼロとなり、永久電流を流すことができる。一方で、超電導体46は、臨界温度Tcを超えると急激に電気抵抗値が上昇し、さらに温度上昇とともに電気抵抗値は上昇する。なお実施形態において、広く実用化されているNbTi合金が超電導体46として例示されているが、これに限定されることは無い。 FIG. 5 is a graph showing changes in electrical resistance values with respect to temperature of the superconductor 46 and matrix body 47 (47a, 47b) that constitute the superconducting wire. The superconductor 46 has an electrical resistance value of zero at a temperature lower than the critical temperature Tc, and a persistent current can flow therethrough. On the other hand, in the superconductor 46, the electrical resistance value rapidly increases when the critical temperature Tc is exceeded, and the electrical resistance value further increases as the temperature rises. In the embodiment, the NbTi alloy, which is widely used in practical use, is exemplified as the superconductor 46, but the superconductor 46 is not limited thereto.

主コイル15のマトリクス体47aは電気抵抗値の小さい無酸素胴で構成され、無誘導巻コイル26のマトリクス体47bは無酸素胴よりも電気抵抗値の大きい銅合金で構成されている。このように無誘導巻コイル26のマトリクス体47bの電気抵抗値を大きくする理由は、後述するように、永久電流スイッチ25がOFF設定される(電気抵抗体37が発熱する)ドリブンモードにおいて、十分大きな電気抵抗値を有する必要があるためである。 The matrix body 47a of the main coil 15 is made of an oxygen-free cylinder with a small electrical resistance, and the matrix body 47b of the non-inductive winding coil 26 is made of a copper alloy with a higher electrical resistance than the oxygen-free cylinder. The reason for making the electrical resistance of the matrix body 47b of the non-inductive winding coil 26 large in this way is that it needs to have a sufficiently large electrical resistance in the driven mode in which the persistent current switch 25 is set to OFF (the electrical resistor 37 generates heat), as described below.

図6は、超電導状態の三つの臨界点(臨界電流Ic,臨界温度Tc,臨界磁場Hc)を説明するグラフである。これら臨界点をいずれか一つでも超過してしまうと、超電導線材は、超電導状態から常電導状態に転移(クエンチ)して、焼損する場合がある。またこのグラフから解るように、超電導線材の温度が臨界温度Tcよりも低温であっても、設定温度がT1からT2に上昇すると臨界電流I1からI2に低下してしまう。このため永久電流スイッチ25をOFF設定するときの電気抵抗体37の発熱が、引出線11,12に極力伝達されない工夫も必要である。 Figure 6 is a graph explaining the three critical points of the superconducting state (critical current Ic, critical temperature Tc, critical magnetic field Hc). If any one of these critical points is exceeded, the superconducting wire may transition (quench) from the superconducting state to the normal conducting state and burn out. As can be seen from this graph, even if the temperature of the superconducting wire is lower than the critical temperature Tc, the critical current will decrease from I1 to I2 when the set temperature rises from T1 to T2. For this reason, it is necessary to devise a way to prevent the heat generated by the electrical resistor 37 when the persistent current switch 25 is set to OFF from being transmitted to the leads 11 and 12 as much as possible.

図7のグラフに基づいて(適宜、図3参照)、超電導電磁石10の励磁工程を説明する。まず主コイル15及び永久電流スイッチ25を共に超電導状態を示す温度T1まで冷却する。次に図7(A)に示すように、発熱部27の制御を有効にして電気抵抗体37を発熱させ、図7(B)に示すように、永久電流スイッチ25の無誘導巻コイル26が常電導状態を示す温度T3まで昇温させる。時点t1から開始した昇温過程において、コイル温度が臨界温度Tcを超えた時点t2で、永久電流スイッチ25はOFF設定となり、励磁電源35と主コイル15を含む閉回路が形成される。 The excitation process of the superconducting electromagnet 10 will be described based on the graph in Figure 7 (see Figure 3 as appropriate). First, the main coil 15 and the persistent current switch 25 are both cooled to temperature T1, which indicates a superconducting state. Next, as shown in Figure 7 (A), the control of the heating unit 27 is enabled to heat the electrical resistor 37, and as shown in Figure 7 (B), the temperature is raised to temperature T3, which indicates a normal conducting state for the non-inductive winding coil 26 of the persistent current switch 25. In the temperature raising process that begins at time t1, at time t2 when the coil temperature exceeds the critical temperature Tc, the persistent current switch 25 is set to OFF, and a closed circuit including the excitation power supply 35 and the main coil 15 is formed.

図7(C)に示すように、永久電流スイッチ25がOFF設定となった時点t2において励磁電源35を起動し、励磁電流値A1が正の傾きを有するように、主コイル15の閉回路に電流を流す。そして、この励磁電流値A1が定格値に到達したところで、主コイル15の閉回路に流す電流を一定にし、ドリブンモードが達成される。 As shown in FIG. 7(C), the excitation power supply 35 is started at time t2 when the persistent current switch 25 is set to OFF, and the closed circuit of the main coil 15 is turned on so that the excitation current value A1 has a positive slope. Flow an electric current. Then, when this excitation current value A1 reaches the rated value, the current flowing through the closed circuit of the main coil 15 is made constant, and the driven mode is achieved.

ドリブンモードに到達した後、図7(A)に示すように時点t3において、発熱部27の制御を無効にする。すると図7(B)に示すように永久電流スイッチ25の温度は降下する。時点t3から開始した降温過程において、コイル温度が臨界温度Tcを下回った時点t4で、永久電流スイッチ25はON設定となる。なおこの降温過程において永久電流スイッチ25から伝熱部材45への熱伝達が速やかであることが、時点t3と時点t4との時間差を短縮し、永久電流スイッチ25のON設定を早期に達成でき好ましい。この要請事項は、上述した引出線11,12の昇温抑制の要請とトレードオフの関係にあるが、バランスを考慮した設計がなされている。 After reaching the driven mode, the control of the heat generating section 27 is disabled at time t3 as shown in FIG. 7(A). Then, the temperature of the persistent current switch 25 drops as shown in FIG. 7(B). In the temperature decreasing process starting from time t3, the persistent current switch 25 is set to ON at time t4 when the coil temperature falls below the critical temperature Tc. In addition, it is preferable that the heat transfer from the persistent current switch 25 to the heat transfer member 45 be rapid during this temperature-lowering process, since this will shorten the time difference between time t3 and time t4, and the ON setting of the persistent current switch 25 can be achieved quickly. . Although this requirement is in a trade-off relationship with the above-mentioned requirement to suppress the temperature rise of the lead wires 11 and 12, the design is made with balance in mind.

永久電流スイッチ25がON設定に回復した時点t4において、主コイル15及び永久電流スイッチ25の閉回路が形成される。すると、図7(C)に示すように、励磁電流値A1が負の傾きを有するように、励磁電源35が制御される。この過程においてレンツの法則に基づき、図7(D)に示すように、主コイル15を貫通する誘導磁場16を変化させないよう主コイル15及び永久電流スイッチ25の閉回路に永久電流が誘導される。この永久電流の電流値A2は、励磁電流値A1の減少に反比例して増加し、励磁電流値A1が0になった時点t5において一定値となる。この時点t5において、起電力無しで主コイル15に定常電流が流れ続ける永久電流モードが達成される。 At time t4 when the persistent current switch 25 returns to the ON setting, a closed circuit between the main coil 15 and the persistent current switch 25 is formed. Then, as shown in FIG. 7(C), the excitation power source 35 is controlled so that the excitation current value A1 has a negative slope. In this process, based on Lenz's law, a persistent current is induced in the closed circuit of the main coil 15 and persistent current switch 25 so as not to change the induced magnetic field 16 passing through the main coil 15, as shown in FIG. 7(D). . The current value A2 of this persistent current increases in inverse proportion to the decrease in the excitation current value A1, and becomes a constant value at the time t5 when the excitation current value A1 becomes zero. At this time t5, a persistent current mode is achieved in which a steady current continues to flow through the main coil 15 without any electromotive force.

図2に戻って説明を続ける。電気接続部30は、主コイル15の一方の端線17と第1引出線11とを溶融金属に浸漬後に凝固させたものを収容する第1容器31と、主コイル15の他方の端線18と第2引出線12とを溶融金属に浸漬後に凝固させたものを収容する第2容器32と、から構成される。このように電気接続部30は、永久電流スイッチ30の第1引出線11及び第2引出線12の各々を、主コイル15の端線17,18の各々に電気接続させ、閉回路を形成するものである。 Returning to FIG. 2, the explanation will be continued. The electrical connection section 30 includes a first container 31 containing one end wire 17 of the main coil 15 and the first leader wire 11 that have been solidified after being immersed in molten metal, and a first container 31 that accommodates one end wire 17 of the main coil 15 and the first lead wire 11 that have been solidified after being immersed in molten metal, and a first container 31 that accommodates one end wire 17 of the main coil 15 and the first lead wire 11 that have been solidified after being immersed in molten metal, and and a second container 32 that accommodates the second lead wire 12 immersed in molten metal and then solidified. In this way, the electrical connection section 30 electrically connects each of the first leader wire 11 and the second leader wire 12 of the persistent current switch 30 to each of the end wires 17 and 18 of the main coil 15 to form a closed circuit. It is something.

第1容器31及び第2容器32は、銅、アルミニウム、銀等といった電気伝導性及び熱伝導性に優れる金属製である。そして、容器31,32に収容される金属はハンダ等の低融点で電気伝導率の高い合金が用いられる。そして、主コイル15の端線17,18及び第1引出線11及び第2引出線12は、それぞれ比表面積が大きくなるよう束ねられた状態で、第1容器31及び第2容器32に浸漬されている。 The first container 31 and the second container 32 are made of a metal having excellent electrical conductivity and thermal conductivity, such as copper, aluminum, silver, or the like. As the metal contained in the containers 31 and 32, an alloy having a low melting point and high electrical conductivity, such as solder, is used. Then, the end wires 17 and 18 of the main coil 15 and the first leader wire 11 and the second leader wire 12 are immersed in the first container 31 and the second container 32 in a bundled state so that the specific surface area becomes large, respectively. ing.

さらに、第1容器31及び第2容器32の各々と伝熱部材45との間には、両者を連結し電気絶縁性を確保しつつ熱伝導させる電気絶縁体38が設けられている。さらに支持部材20の第1部位21の一端は、第1容器31及び電気絶縁体38を介して伝熱部材45に接続し、第2部位22の一端は、第2容器32及び電気絶縁体38を介して伝熱部材45に接続している。 Further, an electrical insulator 38 is provided between each of the first container 31 and the second container 32 and the heat transfer member 45 to connect them and conduct heat while ensuring electrical insulation. Further, one end of the first portion 21 of the support member 20 is connected to the heat transfer member 45 via the first container 31 and the electrical insulator 38, and one end of the second portion 22 is connected to the second container 32 and the electrical insulator 38. It is connected to the heat transfer member 45 via.

シート状の電気絶縁体38が介在することで、電気的には絶縁しつつコンダクタンスの小さい熱接触をとることができる。電気絶縁体38としては、例えば、ポリイミドなどのシートや、その他に繊維強化プラスチック、窒化アルミニウム(AlN)、窒化ホウ素、アルミナ、ポリアミド(ナイロン)、ポリエチレン、塩化ビニル、フッ素樹脂あるいはそれらを成分として含む材料等が挙げられる。また電気絶縁体38は、シート状のもの以外に、伝熱部材45の表面に塗布された後に硬化する材料を採用することもできる。 The interposition of the sheet-shaped electrical insulator 38 makes it possible to maintain electrical insulation while providing thermal contact with low conductance. The electrical insulator 38 may be, for example, a sheet of polyimide, fiber-reinforced plastic, aluminum nitride (AlN), boron nitride, alumina, polyamide (nylon), polyethylene, vinyl chloride, fluororesin, or any of these as components. Examples include materials. In addition to the sheet-like material, the electrical insulator 38 may be made of a material that hardens after being applied to the surface of the heat transfer member 45.

図8は電気接続部30の側面図である。保持部材50は、第1容器31及び第2容器32に保護材となる軟質金属58を介して当接する当接板56と、伝熱部材45に設けられる立設部材55と、開口端に押し付け力が付与するように当接板56を立設部材55に固定する固定部材57と、を有している。なお、この軟質金属58は、ブリネル硬度が300MPa以下であることが望ましい。このような保持部材50が設けられることで、第1容器31及び第2容器32を伝熱部材45の連結方向に押圧し、両者の熱接触性を向上させることができる。 FIG. 8 is a side view of the electrical connection section 30. The holding member 50 includes a contact plate 56 that contacts the first container 31 and the second container 32 via a soft metal 58 serving as a protective material, an upright member 55 provided on the heat transfer member 45, and a contact plate 56 that is pressed against the open end. It has a fixing member 57 that fixes the contact plate 56 to the upright member 55 so as to apply force. Note that this soft metal 58 desirably has a Brinell hardness of 300 MPa or less. By providing such a holding member 50, it is possible to press the first container 31 and the second container 32 in the direction in which the heat transfer member 45 is connected, thereby improving thermal contact between the two.

電気絶縁体38は、絶縁破壊に対する耐性に優れ、極低温において熱伝導率の高い材質であることが好適である。具体的には、窒化アルミニウム(AlN)のように電気絶縁性があると同時に平滑な表面を有する形状にも加工できる材料が適している。そのような特性を持つその他の候補として、窒化アルミニウム(AlN)、炭化ケイ素(SiC)、サファイア・アルミナ(Al)、水晶(SiO)や、あるいはそれらの混成物を挙げることができる。このような特性を有する電気絶縁体38が採用されることで、伝熱部材45からの冷熱の伝導性が向上し、第1容器31及び第2容器32の各々の到達温度を低くすることができる。 The electrical insulator 38 is preferably made of a material that has excellent resistance to dielectric breakdown and high thermal conductivity at extremely low temperatures. Specifically, a material such as aluminum nitride (AlN) that has electrical insulation properties and can be processed into a shape with a smooth surface is suitable. Other candidates with such properties include aluminum nitride (AlN), silicon carbide (SiC), sapphire alumina (Al 2 O 3 ), quartz (SiO 2 ), and/or hybrids thereof. . By employing the electrical insulator 38 having such characteristics, the conductivity of cold heat from the heat transfer member 45 is improved, and the temperatures reached by each of the first container 31 and the second container 32 can be lowered. can.

また電気絶縁体38の少なくとも一方の接触面には、この接触面の垂直方向に働く応力により塑性変形し隙間を埋める軟質金属39が配置される。この軟質金属39は、ブリネル硬度が300MPa以下であることが望ましい。なお図8において軟質金属39は、第1容器31及び第2容器32との接触面に設けられる例を示しているが、伝熱部材45との接触面に設けられる場合もある。 Further, a soft metal 39 is disposed on at least one contact surface of the electrical insulator 38, which is plastically deformed by stress acting in a direction perpendicular to the contact surface and fills the gap. This soft metal 39 desirably has a Brinell hardness of 300 MPa or less. Although FIG. 8 shows an example in which the soft metal 39 is provided on the contact surface with the first container 31 and the second container 32, it may also be provided on the contact surface with the heat transfer member 45.

このように介在する軟質金属39は、容器31,32、電気絶縁体38、伝熱部材45の表面の細かな凹凸に倣って変形する。これにより、伝熱部材45から電気接続部30に至る熱抵抗が低減され、第1容器31及び第2容器32の各々の到達温度を低くすることができる。 The soft metal 39 interposed in this manner deforms to follow the fine irregularities on the surfaces of the containers 31 and 32, the electrical insulator 38, and the heat transfer member 45. Thereby, the thermal resistance from the heat transfer member 45 to the electrical connection part 30 is reduced, and the temperatures reached by each of the first container 31 and the second container 32 can be lowered.

図9(A)は支持部材20の第1部位21に配置された第1引出線11並びに第2部位22に配置された第2引出線12の断面図である。このように、第1引出線11及び第2引出線12は、支持部材20に接触した状態で、ハンダ等の金属ロウ材19でロウ付けされている。 Figure 9 (A) is a cross-sectional view of the first lead wire 11 arranged at the first portion 21 of the support member 20 and the second lead wire 12 arranged at the second portion 22. In this way, the first lead wire 11 and the second lead wire 12 are brazed with a metal brazing material 19 such as solder while in contact with the support member 20.

このように、ロウ付けされることにより、第1引出線11もしくは第2引出線12と支持部材20との熱接触性及び電気接触性が向上する。これにより引出線11,12に機械擾乱や侵入した磁束の分布の変化など何らかの不安定性要因が生じた場合であっても、これら要因により発生じた熱を、速やかに放出しクエンチの発生を抑制できる。さらに引出線11,12が部分的に一時的に超電導状態から常電導状態に遷移し、クエンチの兆候が現れた場合であっても、引出線11,12を流れる永久電流を、支持部材20にバイパスさせることができる。これにより、クエンチへの進展を防止することができる。 By brazing in this manner, thermal contact and electrical contact between the first leader line 11 or the second leader line 12 and the support member 20 are improved. As a result, even if some instability factor occurs in the lead wires 11 and 12, such as mechanical disturbance or a change in the distribution of the magnetic flux that has entered, the heat generated by these factors is quickly released and the occurrence of quench is suppressed. can. Furthermore, even if the lead wires 11 and 12 partially temporarily transition from the superconducting state to the normal conductive state and signs of quenching appear, the persistent current flowing through the lead wires 11 and 12 is transferred to the support member 20. Can be bypassed. This can prevent progression to quench.

さらに図9(B)は、第1引出線11及び第2引出線12が接触する支持部材20の位置に、溝14が形成されている。この溝14により、両者の熱接触性及び電気接触性をさらに向上させることができる。またこの性質さらに向上させるために溝14は、引出線11,12の外周片側面の反転形状を有することが望ましい。 In addition, in FIG. 9(B), a groove 14 is formed in the support member 20 at the position where the first lead wire 11 and the second lead wire 12 contact each other. This groove 14 can further improve the thermal contact and electrical contact between them. To further improve this property, it is desirable for the groove 14 to have an inverted shape of one side of the outer periphery of the lead wires 11 and 12.

図10(A)は支持部材20に支持される永久電流スイッチ25(第1例)の縦断面図であり、図10(B)はその底面図である。このように永久電流スイッチ25が支持される支持部材20の他端は、無誘導巻コイル26が巻回されるボビン23の一方のフランジ部に結合している。 FIG. 10(A) is a longitudinal cross-sectional view of a persistent current switch 25 (first example) supported by the support member 20, and FIG. 10(B) is a bottom view thereof. The other end of the support member 20 on which the persistent current switch 25 is supported in this manner is coupled to one flange portion of the bobbin 23 around which the non-inductive winding coil 26 is wound.

図11(A)は支持部材20に支持される永久電流スイッチ25(第2例)の側面図であり、図11(B)その水平断面図である。このように永久電流スイッチ25が支持される支持部材20の他端は、第1部位21の先端がボビン23の一方のフランジ部に結合しし、第2部位22の先端がボビン23の他方のフランジ部に結合ししている。なおボビン23は、全体を電気絶縁体で構成したり、電気伝導体で構成したり、フランジ部を電気伝導体で構成し軸部を電気絶縁体で構成したりすることができる。 FIG. 11(A) is a side view of a persistent current switch 25 (second example) supported by the support member 20, and FIG. 11(B) is a horizontal sectional view thereof. At the other end of the support member 20 on which the persistent current switch 25 is supported, the tip of the first portion 21 is coupled to one flange portion of the bobbin 23, and the tip of the second portion 22 is coupled to the other flange portion of the bobbin 23. It is connected to the flange. Note that the bobbin 23 can be made entirely of an electrical insulator, made of an electrical conductor, or have a flange made of an electrical conductor and a shaft part made of an electrical insulator.

図12(A)は支持部材20a(20)の第1例を示す側面図である。このように支持部材20aには、長手方向に直交する断面が縮小する絞り部33が設けられる場合がある。つまり、伝熱部材45に熱接触する支持部材20の部分と、永久電流スイッチ25に熱接触する支持部材20の部分と比べて、この絞り部33は、長手方向と直交する断面積が縮小した狭隘部分となっている。なお図示において上下方向の寸法が絞られている態様を示しているが、奥行方向の寸法が絞られる態様も有りえる Figure 12 (A) is a side view showing a first example of the support member 20a (20). In this way, the support member 20a may be provided with a narrowed portion 33 in which the cross section perpendicular to the longitudinal direction is reduced. In other words, compared to the part of the support member 20 in thermal contact with the heat transfer member 45 and the part of the support member 20 in thermal contact with the persistent current switch 25, this narrowed portion 33 is a narrow portion in which the cross-sectional area perpendicular to the longitudinal direction is reduced. Note that while the figure shows a state in which the vertical dimension is narrowed, there may also be a state in which the depth dimension is narrowed.

このような絞り部33の設計寸法を調整することで、伝熱部材45に熱伝導してしまう永久電流スイッチ25のOFF設定時の発熱の一部を、律速することができる。換言すると、伝熱部材45から永久電流スイッチ25への冷熱の良好な熱伝導を妨げずに、その逆方向の熱伝導を抑制する機器設計を容易化する。 By adjusting the design dimensions of the constriction portion 33 as described above, it is possible to control a portion of the heat generated when the persistent current switch 25 is set to OFF, which is thermally conducted to the heat transfer member 45. In other words, equipment design that suppresses heat conduction in the opposite direction without hindering good heat conduction of cold heat from the heat transfer member 45 to the persistent current switch 25 is facilitated.

図12(B)は支持部材20b(20)の第2例を示す側面図である。このように支持部材20bは、長手方向に熱伝導率の異なる二種類以上の部材48,49が配列してなる。例えば、一つ目の部材48には無酸素銅を使用し、二つ目の部材49にはリン脱酸銅などの銅合金を使用する。このように支持部材20b(20)を構成する二種類以上の部材48,49の設計寸法を調整することで、図12(A)で絞り部33を導入する場合と同様の効果を得ることができる。 FIG. 12(B) is a side view showing a second example of the support member 20b (20). In this way, the support member 20b is formed by arranging two or more types of members 48 and 49 having different thermal conductivities in the longitudinal direction. For example, the first member 48 is made of oxygen-free copper, and the second member 49 is made of a copper alloy such as phosphorus-deoxidized copper. By adjusting the design dimensions of the two or more types of members 48 and 49 constituting the support member 20b (20) in this way, it is possible to obtain the same effect as when introducing the constricted portion 33 in FIG. 12(A). can.

以上述べた少なくともひとつの実施形態の超電導電磁石によれば、永久電流スイッチの第1引出線が電気的に接触する第1部位と第2引出線が電気的に接触する第2部位とを分離させる分離構造を持つことにより、熱伝導方式で冷却するに際し、クエンチ発生のリスクを低減することが可能となる。 According to the superconducting electromagnet of at least one embodiment described above, the first region in electrical contact with the first leader wire of the persistent current switch and the second region in electrical contact with the second leader wire are separated. Having a separate structure makes it possible to reduce the risk of quenching when cooling by heat conduction.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, substitutions, changes, and combinations can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention as well as within the scope of the invention described in the claims and its equivalents.

10…超電導電磁石、11…第1引出線、12…第2引出線、14…溝、15…主コイル、16…誘導磁場、17,18…端線、19…金属ロウ材、20(20a,20b)…支持部材、21…第1部位、22…第2部位、23…ボビン、25…永久電流スイッチ、26…無誘導巻コイル、27…発熱部、28…断熱真空容器、29…輻射シールド、30…電気接続部、30…永久電流スイッチ、31…第1容器、32…第2容器、33…絞り部、35…励磁電源、36…電力制御器、37…電気抵抗体、38…電気絶縁体、50…保持部材、56…当接板、57…固定部材。 DESCRIPTION OF SYMBOLS 10... Superconducting electromagnet, 11... First leader wire, 12... Second leader wire, 14... Groove, 15... Main coil, 16... Induction magnetic field, 17, 18... End line, 19... Metal brazing material, 20 (20a, 20b) Support member, 21 First part, 22 Second part, 23 Bobbin, 25 Persistent current switch, 26 Non-inductive coil, 27 Heat generating part, 28 Heat insulating vacuum container, 29 Radiation shield , 30... Electrical connection part, 30... Persistent current switch, 31... First container, 32... Second container, 33... Throttle part, 35... Excitation power source, 36... Power controller, 37... Electrical resistor, 38... Electricity Insulator, 50... Holding member, 56... Contact plate, 57... Fixing member.

Claims (8)

誘導磁場を生成する主コイルと、
前記主コイルと閉回路を形成し常電導状態/超電導状態が切り替え可能な永久電流スイッチと、
前記永久電流スイッチの無誘導巻コイルから引き出され、前記主コイルの両側の端線のそれぞれに接続する第1引出線及び第2引出線と、
前記主コイルを支持するとともに極低温冷凍機が発生した冷熱を前記主コイルに伝達する伝熱部材と、
前記伝熱部材に一端が接続し他端において前記永久電流スイッチを支持するとともに前記永久電流スイッチに伝達される前記冷熱の主経路を成す支持部材と、
前記支持部材において前記第1引出線が電気的に接触する第1部位と前記第2引出線が電気的に接触する第2部位とを長手方向に沿って分離させる分離構造と、を備え、
前記伝熱部材と前記支持部材は電気絶縁されている超電導電磁石。
a main coil that generates an induced magnetic field;
a persistent current switch that forms a closed circuit with the main coil and is capable of switching between a normal conducting state and a superconducting state;
a first leader wire and a second leader wire drawn out from the non-inductive winding coil of the persistent current switch and connected to each of the end wires on both sides of the main coil;
a heat transfer member that supports the main coil and transmits cold heat generated by the cryogenic refrigerator to the main coil;
a support member having one end connected to the heat transfer member, supporting the persistent current switch at the other end, and forming a main path for the cold heat transmitted to the persistent current switch;
a separation structure that separates a first part of the support member into which the first leader wire electrically contacts and a second part with which the second leader wire electrically contacts, along the longitudinal direction;
A superconducting electromagnet in which the heat transfer member and the support member are electrically insulated .
請求項1に記載の超電導電磁石において、
前記閉回路を形成するため前記永久電流スイッチと前記主コイルとを電気接続させる電気接続部は、
前記第1引出線と前記主コイルの一方の端線とを溶融金属に浸漬後に凝固させたものを収容する第1容器と、
前記第2引出線と前記主コイルの他方の端線とを溶融金属に浸漬後に凝固させたものを収容する第2容器と、
前記第1容器及び前記第2容器の各々と前記伝熱部材とを連結し電気絶縁性を確保しつつ熱伝導させる電気絶縁体と、を有し、
前記支持部材の前記第1部位の一端は、前記第1容器及び前記電気絶縁体を介して前記伝熱部材に接続し、
前記支持部材の前記第2部位の一端は、前記第2容器及び前記電気絶縁体を介して前記伝熱部材に接続する、超電導電磁石。
The superconducting electromagnet according to claim 1,
An electrical connection part that electrically connects the persistent current switch and the main coil to form the closed circuit,
a first container containing the first lead wire and one end wire of the main coil immersed in molten metal and then solidified;
a second container containing the second lead wire and the other end wire of the main coil immersed in molten metal and then solidified;
an electrical insulator that connects each of the first container and the second container to the heat transfer member and conducts heat while ensuring electrical insulation;
one end of the first portion of the support member is connected to the heat transfer member via the first container and the electrical insulator;
One end of the second portion of the support member is a superconducting electromagnet connected to the heat transfer member via the second container and the electrical insulator.
請求項2に記載の超電導電磁石において、
前記電気絶縁体の少なくとも一方の接触面に、前記接触面の垂直方向に働く応力により塑性変形し隙間を埋める軟質金属が配置される超電導電磁石。
The superconducting electromagnet according to claim 2,
A superconducting electromagnet, in which a soft metal is disposed on at least one contact surface of the electrical insulator and is plastically deformed by stress acting in a direction perpendicular to the contact surface to fill a gap.
請求項2又は請求項3に記載の超電導電磁石において、
前記第1容器及び前記第2容器の開口端を前記伝熱部材の連結方向に保持部材で押圧し、熱接触性を向上させる超電導電磁石。
The superconducting electromagnet according to claim 2 or 3,
A superconducting electromagnet in which the opening ends of the first container and the second container are pressed by a holding member in a direction in which the heat transfer member is connected to improve thermal contact.
請求項1から請求項4のいずれか1項に記載の超電導電磁石において、
前記第1引出線及び前記第2引出線が前記接触する前記支持部材の位置には、溝が形成されている超電導電磁石。
The superconducting electromagnet according to any one of claims 1 to 4,
A superconducting electromagnet, wherein a groove is formed in the support member at a position where the first lead wire and the second lead wire are in contact with each other.
請求項1から請求項5のいずれか1項に記載の超電導電磁石において、
前記永久電流スイッチが支持される前記支持部材の他端は、前記永久電流スイッチの前記無誘導巻コイルが巻回されるボビンのフランジ部に結合している超電導電磁石。
The superconducting electromagnet according to any one of claims 1 to 5,
a superconducting electromagnet, the other end of which supports the persistent current switch being coupled to a flange portion of a bobbin around which the non-inductive winding coil of the persistent current switch is wound;
請求項1から請求項6のいずれか1項に記載の超電導電磁石において、
前記支持部材は、長手方向に直交する断面が縮小する絞り部が設けられている超電導電磁石。
The superconducting electromagnet according to any one of claims 1 to 6,
The support member is a superconducting electromagnet having a tapered portion in which a cross section perpendicular to the longitudinal direction is reduced.
請求項1から請求項6のいずれか1項に記載の超電導電磁石において、
前記支持部材は、長手方向に熱伝導率の異なる二種類以上の部材が配列してなる超電導電磁石。
The superconducting electromagnet according to any one of claims 1 to 6,
The support member is a superconducting electromagnet in which two or more types of members having different thermal conductivities are arranged in the longitudinal direction.
JP2020151418A 2020-09-09 2020-09-09 superconducting electromagnet Active JP7458274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020151418A JP7458274B2 (en) 2020-09-09 2020-09-09 superconducting electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020151418A JP7458274B2 (en) 2020-09-09 2020-09-09 superconducting electromagnet

Publications (2)

Publication Number Publication Date
JP2022045693A JP2022045693A (en) 2022-03-22
JP7458274B2 true JP7458274B2 (en) 2024-03-29

Family

ID=80774492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020151418A Active JP7458274B2 (en) 2020-09-09 2020-09-09 superconducting electromagnet

Country Status (1)

Country Link
JP (1) JP7458274B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294053A (en) 1999-04-12 2000-10-20 Kobe Steel Ltd Stabilized compisite superconductive wire and its manufacture
JP2001102105A (en) 1999-09-30 2001-04-13 Kobe Steel Ltd Superconductive connection method of superconductive wires and superconductive connection structure
JP2007221013A (en) 2006-02-20 2007-08-30 Hitachi Ltd Persistent current switch
JP2019096648A (en) 2017-11-17 2019-06-20 株式会社東芝 Operational method of superconducting magnet device and the superconducting magnet device
JP2019165034A (en) 2018-03-19 2019-09-26 株式会社東芝 Superconducting magnet device
JP2020136637A (en) 2019-02-26 2020-08-31 株式会社東芝 High-temperature superconducting magnet device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294053A (en) 1999-04-12 2000-10-20 Kobe Steel Ltd Stabilized compisite superconductive wire and its manufacture
JP2001102105A (en) 1999-09-30 2001-04-13 Kobe Steel Ltd Superconductive connection method of superconductive wires and superconductive connection structure
JP2007221013A (en) 2006-02-20 2007-08-30 Hitachi Ltd Persistent current switch
JP2019096648A (en) 2017-11-17 2019-06-20 株式会社東芝 Operational method of superconducting magnet device and the superconducting magnet device
JP2019165034A (en) 2018-03-19 2019-09-26 株式会社東芝 Superconducting magnet device
JP2020136637A (en) 2019-02-26 2020-08-31 株式会社東芝 High-temperature superconducting magnet device

Also Published As

Publication number Publication date
JP2022045693A (en) 2022-03-22

Similar Documents

Publication Publication Date Title
US7383688B2 (en) Superconducting device having a cryogenic system and a superconducting switch
WO2010140398A1 (en) Refrigerator cooling-type superconducting magnet
US20080227647A1 (en) Current lead with high temperature superconductor for superconducting magnets in a cryostat
GB2420668A (en) Superconducting switch cooled by pipeline with constriction
US7969695B2 (en) Superconducting magnetic coil with a quench protection circuit, and MRT apparatus embodying same
JP6860517B2 (en) Superconducting magnet device
US4600802A (en) Cryogenic current lead and method
JP2015079846A (en) Superconducting magnetic device
CN111724966A (en) Superconductor current lead
JP7458274B2 (en) superconducting electromagnet
JP5255425B2 (en) Electromagnet device
JP2004179413A (en) Cooling type superconducting magnet device
JP6860513B2 (en) Superconducting magnet device
JPH10189328A (en) Superconducting magnet
JP7110035B2 (en) Superconducting magnet device
JP3358958B2 (en) Thermal control type permanent current switch
JPH08138928A (en) Persistent current switch
CN217405325U (en) Thermal control type superconducting switch for high-temperature superconducting magnet
JP7242580B2 (en) superconducting electromagnet
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JPH04361526A (en) Superconducting magnet device for crystal pullingup device
JPH10144545A (en) Current limiting device
JP4959555B2 (en) Current limiting device with superconducting switching element
KR20240018625A (en) Superconducting switch for superconducting magnets
JP3382794B2 (en) Permanent current switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7458274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150