JP7457323B2 - Phosphonium-containing polymer - Google Patents

Phosphonium-containing polymer Download PDF

Info

Publication number
JP7457323B2
JP7457323B2 JP2020063771A JP2020063771A JP7457323B2 JP 7457323 B2 JP7457323 B2 JP 7457323B2 JP 2020063771 A JP2020063771 A JP 2020063771A JP 2020063771 A JP2020063771 A JP 2020063771A JP 7457323 B2 JP7457323 B2 JP 7457323B2
Authority
JP
Japan
Prior art keywords
phosphonium
substituent
mmol
polymer
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020063771A
Other languages
Japanese (ja)
Other versions
JP2021161223A (en
Inventor
育義 冨田
寛樹 西山
圭輔 池田
佳典 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Nippon Shokubai Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd, Tokyo Institute of Technology NUC filed Critical Nippon Shokubai Co Ltd
Priority to JP2020063771A priority Critical patent/JP7457323B2/en
Publication of JP2021161223A publication Critical patent/JP2021161223A/en
Application granted granted Critical
Publication of JP7457323B2 publication Critical patent/JP7457323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Polyethers (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、ホスホニウム含有ポリマーに関する。より詳しくは、燃料電池、水電解装置における電解質材料等として好適に用いられるホスホニウム含有ポリマー、ホスホニウム含有化合物、これらの製造方法、アニオン交換膜、及び、電解質材料に関する。 The present invention relates to a phosphonium-containing polymer. More specifically, the present invention relates to a phosphonium-containing polymer, a phosphonium-containing compound, a method for producing the same, an anion exchange membrane, and an electrolyte material that are suitable for use as an electrolyte material in fuel cells and water electrolysis devices.

近年、燃料電池や水電解装置等、水素をエネルギー源として活用することが期待され、種々の研究開発がなされている。
燃料電池や水電解装置等の心臓部材である固体高分子電解質膜としてプロトン伝導膜(PEM:Proton Exchange Membrane)が利用されているが、Nafion(登録商標)に代表されるスルホン酸系の材料は強酸性であり腐食性が高いため、周辺部材の材質に高価な金属が必要(例えば、プロトン伝導膜を含んで構成される水電解装置において、給電体にTi、Pt等が、触媒にPt、Ir等が、バイポーラープレートにTi等がそれぞれ必要)となり、コスト増加の原因となっている。一方、プロトン伝導膜の代わりに水酸化物イオンを伝導するアニオン交換膜(AEM:Anion Exchange Membrane)を利用すれば、周辺部材に安価な金属部材を使用できると考えられる。
In recent years, it is expected that hydrogen will be utilized as an energy source, such as in fuel cells and water electrolyzers, and various research and development efforts have been made.
Proton exchange membranes (PEMs) are used as solid polymer electrolyte membranes, which are the core components of fuel cells, water electrolysis devices, etc., but sulfonic acid-based materials such as Nafion (registered trademark) are Because it is strongly acidic and highly corrosive, expensive metals are required for surrounding parts (for example, in a water electrolysis device that includes a proton conductive membrane, Ti, Pt, etc. are used for the power supply, and Pt, Pt, etc. are used for the catalyst). (Ir, etc. are required for the bipolar plate, and Ti, etc. are required for the bipolar plate, respectively), causing an increase in cost. On the other hand, if an anion exchange membrane (AEM) that conducts hydroxide ions is used instead of the proton conductive membrane, it is possible to use inexpensive metal members for the peripheral members.

アニオン交換膜を構成するポリマーには、アニオン伝導性の他、化学的安定性等の基本的特性が重要である。
アニオン伝導性を担うアニオン交換基としては、第4級アンモニウム基が従来から用いられている(例えば、特許文献1~5参照)。また、第4級ホスホニウム基を含むアニオン伝導性材料についての研究例がある(例えば、非特許文献1参照)。
In addition to anion conductivity, basic properties such as chemical stability are important for the polymer constituting the anion exchange membrane.
Quaternary ammonium groups have conventionally been used as anion exchange groups responsible for anion conductivity (see, for example, Patent Documents 1 to 5). Furthermore, there are examples of research on anion-conducting materials containing quaternary phosphonium groups (see, for example, Non-Patent Document 1).

特開2018-70782号公報Japanese Patent Application Publication No. 2018-70782 特開2013-107916号公報Japanese Patent Application Publication No. 2013-107916 特開2015-125888号公報JP2015-125888A 特開2010-92660号公報JP2010-92660A 国際公開2008/022775号明細書International Publication No. 2008/022775

Angew. Chem. Int. Ed. 2009, 48, 6499-6502Angew. Chem. Int. Ed. 2009, 48, 6499-6502

しかしながら、第4級アンモニウム基は、特に高温、強塩基性条件下ではホフマン脱離、求核置換反応等により分解するため、化学的安定性に乏しいものであった。また、第4級ホスホニウム基を含むアニオン伝導性材料も、耐久性をより優れたものとするための工夫の余地があった。高温、塩基性条件下でも化学的安定性(耐久性)に優れる新規な材料が望まれていた。 However, the quaternary ammonium group has poor chemical stability because it decomposes due to Hofmann elimination, nucleophilic substitution reaction, etc. especially under high temperature and strongly basic conditions. Furthermore, there is room for improvement in the durability of anion conductive materials containing quaternary phosphonium groups. There was a desire for a new material that has excellent chemical stability (durability) even under high temperature and basic conditions.

本発明は、上記現状に鑑みてなされたものであり、アニオン伝導性が充分なものであるとともに、耐久性に優れる材料を提供することを目的とする。 The present invention has been made in view of the above-mentioned current situation, and an object of the present invention is to provide a material that has sufficient anion conductivity and is excellent in durability.

本発明者らは、アニオン伝導性が充分なものであるとともに、耐久性に優れる材料について種々検討し、特定のホスホニウムカチオン構造及びそのカウンターアニオンを有するホスホニウム含有ポリマーとすると、アニオン伝導性が充分なものであるとともに、高温、塩基性条件下でも耐久性に優れることを見出し、上記課題をみごとに解決することができることに想到した。更に、本発明者らは、特定のホスホニウムカチオンを有するホスホニウム含有化合物もまた、高温、塩基性条件下でも耐久性に優れ、種々の用途に使用できる可能性があることを見出し、本発明に到達したものである。 The inventors have conducted various investigations into materials that have sufficient anion conductivity and excellent durability, and have discovered that a phosphonium-containing polymer having a specific phosphonium cation structure and its counter anion has sufficient anion conductivity and excellent durability even at high temperatures and under basic conditions, and have come to the conclusion that the above-mentioned problem can be successfully solved. Furthermore, the inventors have discovered that phosphonium-containing compounds having specific phosphonium cations also have excellent durability even at high temperatures and under basic conditions, and may be used for various purposes, and have arrived at the present invention.

すなわち本発明は、ホスホニウム含有ポリマーであって、上記ポリマーは、下記一般式(1);

Figure 0007457323000001
(式中、R~Rは、同一又は異なって、水素原子、置換基、又は、ポリマーが有する他の構造との直接結合を表し、R~Rの少なくとも1つは、ポリマーが有する他の構造との直接結合であるか、又は、当該直接結合を有する置換基である。R~Rの少なくとも1つは、オルト位の置換基であって、炭化水素基、酸素原子を介した炭化水素基、若しくは、ハロゲン原子であるか、又は、R~Rの少なくとも2つは、オルト位の置換基である。R~Rは、それぞれ、環構造に複数個結合していてもよく、複数個の置換基が結合して更に環構造を形成していてもよい。Xは、カウンターアニオンを表す。)で表される構造を有することを特徴とするホスホニウム含有ポリマーである。 That is, the present invention provides a phosphonium-containing polymer, wherein the polymer has the following general formula (1);
Figure 0007457323000001
(In the formula, R 1 to R 4 are the same or different and represent a hydrogen atom, a substituent, or a direct bond with another structure possessed by the polymer, and at least one of R 1 to R 4 is or a substituent having the direct bond.At least one of R 1 to R 4 is a substituent at the ortho position, and is a hydrocarbon group, an oxygen atom, or a substituent having the direct bond. is a hydrocarbon group or a halogen atom, or at least two of R 1 to R 4 are substituents at the ortho position. R 1 to R 4 each have a plurality of substituents in the ring structure. A phosphonium characterized by having a structure represented by the following formula (which may be bonded, or a plurality of substituents may be bonded to form a ring structure. X - represents a counter anion) Containing polymer.

本発明はまた、下記一般式(1);

Figure 0007457323000002
(式中、R~Rは、同一又は異なって、水素原子、又は、置換基を表す。R~Rの少なくとも1つは、オルト位の置換基であって、炭化水素基、酸素原子を介した炭化水素基、若しくは、ハロゲン原子であるか、又は、R~Rの少なくとも2つは、オルト位の置換基である。R~Rは、それぞれ、環構造に複数個結合していてもよく、複数個の置換基が結合して更に環構造を形成していてもよい。Xは、カウンターアニオンを表す。)で表されることを特徴とするホスホニウム含有化合物でもある。 The present invention also provides the following general formula (1);
Figure 0007457323000002
(In the formula, R 1 to R 4 are the same or different and represent a hydrogen atom or a substituent. At least one of R 1 to R 4 is a substituent at the ortho position, and a hydrocarbon group, A hydrocarbon group via an oxygen atom, a halogen atom, or at least two of R 1 to R 4 are substituents at the ortho position. R 1 to R 4 each have a ring structure A phosphonium-containing compound characterized in that a plurality of substituents may be bonded, or a plurality of substituents may be bonded to form a ring structure.X - represents a counter anion. It is also a compound.

本発明は更に、本発明のホスホニウム含有ポリマー又は本発明のホスホニウム含有化合物を製造する方法であって、上記製造方法は、ホスフィン化合物とアラインとを反応させる工程を含むことを特徴とするホスホニウム含有ポリマー又はホスホニウム含有化合物の製造方法でもある。 The present invention further provides a method for producing the phosphonium-containing polymer of the present invention or the phosphonium-containing compound of the present invention, wherein the production method includes a step of reacting a phosphine compound with an aryne. Alternatively, it is also a method for producing a phosphonium-containing compound.

本発明のホスホニウム含有ポリマーは、上述の構成よりなり、アニオン伝導性が充分なものであるとともに、耐久性に優れる。本発明のホスホニウム含有化合物は、上述の構成よりなり、耐久性に優れる。 The phosphonium-containing polymer of the present invention has the above-described structure and has sufficient anion conductivity and excellent durability. The phosphonium-containing compound of the present invention has the above-described structure and has excellent durability.

実施例のホスホニウム含有ポリマーの31P-NMR測定結果を示すNMRスペクトルである。1 is an NMR spectrum showing the results of 31 P-NMR measurement of a phosphonium-containing polymer of an example. アニオン交換膜の熱安定性を熱重量測定(TGA)によって測定したTGA曲線である。This is a TGA curve obtained by measuring the thermal stability of an anion exchange membrane by thermogravimetry (TGA).

以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
The present invention will be explained in detail below.
Note that a combination of two or more of the individual preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.

<本発明のホスホニウム含有ポリマー>
本発明のホスホニウム含有ポリマーは、上記カチオン構造(上記一般式(1)で表される構造中の、カチオン構造部分)を有する。上記カチオン構造の位置は、ポリマー中の主鎖でもよく、側鎖でもよい。
カチオン構造の位置がポリマー中の主鎖である場合、本発明のホスホニウム含有ポリマーは、上記カチオン構造を主鎖に有するホモポリマーであってもよく、上記カチオン構造と、別の構造(構造単位)とをそれぞれ主鎖に有する共重合ポリマーであってもよい。
カチオン構造の位置がポリマー中の側鎖である場合、本発明のホスホニウム含有ポリマーは、上記カチオン構造を側鎖の一部に有するものであってもよく、上記カチオン構造を側鎖の全部に有するものであってもよい。
<Phosphonium-containing polymer of the present invention>
The phosphonium-containing polymer of the present invention has the above cationic structure (the cationic structural portion in the structure represented by the above general formula (1)). The position of the cationic structure may be in the main chain or in the side chain in the polymer.
When the cationic structure is located in the main chain of the polymer, the phosphonium-containing polymer of the present invention may be a homopolymer having the above cationic structure in the main chain, or a copolymer having the above cationic structure and another structure (structural unit) in the main chain.
When the cationic structure is located in a side chain in a polymer, the phosphonium-containing polymer of the present invention may have the cationic structure in a part of the side chain, or may have the cationic structure in the entirety of the side chain.

上記カチオン構造において、R~Rは、同一又は異なって、水素原子、置換基、又は、ポリマーが有する他の構造との直接結合を表す。
置換基は、その価数(原子価を表す価数)は特に限定されないが、通常は1価又は2価である。
1価の置換基としては、特に限定されないが、例えば、1価の有機基、アミノ基、ハロゲン原子等が好ましいものとして挙げられる。1価の有機基としては、1価の炭化水素基(より好ましくは、炭素数1~18の脂肪族飽和炭化水素基〔アルキル基〕、炭素数2~18の脂肪族不飽和炭化水素基〔アルケニル基等〕、炭素数6~18の芳香族炭化水素基〔アリール基〕、又は、炭素数7~18のアラルキル基〔例えば、ベンジル基〕)、炭素数1~18の酸素原子を介した炭化水素基(例えば、炭素数1~18のアルコキシ基)、炭素数1~18のアルキルチオ基、一般式:-A-C(5-n) で表される基(Rは、同一又は異なって、水素原子、置換基、又は、ポリマーが有する他の構造との直接結合を表し、R~Rと同様のものを使用できる。Aは、S、NR、又は、Oを表し、Rは、水素原子又は1価の有機基を表す。nは、1~5の整数である。1価の有機基としては、後述する1価の有機基として好ましいものを好ましく使用できる。)等の1価の有機基が好ましく、更に好ましくは、炭化水素基、酸素原子を介した炭化水素基、若しくは、ハロゲン原子であり、該炭化水素基、酸素原子を介した炭化水素基における炭化水素基は、それぞれ、炭素数1~18の脂肪族飽和炭化水素基(アルキル基)、又は、炭素数6~18の芳香族炭化水素基(アリール基)であることが特に好ましい。
なお、アラルキル基は、ベンジル基のように、脂肪族炭化水素基とともに芳香環を有するものをいう。
2価の置換基としては、例えば、上述した1価の置換基から更に水素原子が1個脱離した構造のものや、酸素原子、硫黄原子等が挙げられる。2価の置換基は、一般式(1)で表されるベンゼン環と結合するとともに、ポリマーが有する他の構造と結合していてもよく、2価の置換基どうしが結合していてもよい。
中でも、置換基は、1価の置換基であることが好ましい。
In the above cation structure, R 1 to R 4 are the same or different and represent a hydrogen atom, a substituent, or a direct bond with another structure possessed by the polymer.
The substituent is usually monovalent or divalent, although its valence (valency indicating atomic valence) is not particularly limited.
The monovalent substituent is not particularly limited, but preferable examples thereof include a monovalent organic group, an amino group, a halogen atom, and the like. The monovalent organic group includes a monovalent hydrocarbon group (more preferably an aliphatic saturated hydrocarbon group [alkyl group] having 1 to 18 carbon atoms), an aliphatic unsaturated hydrocarbon group having 2 to 18 carbon atoms [ [alkenyl group], aromatic hydrocarbon group [aryl group] having 6 to 18 carbon atoms, or aralkyl group [e.g. benzyl group] having 7 to 18 carbon atoms, via an oxygen atom having 1 to 18 carbon atoms. A hydrocarbon group (for example, an alkoxy group having 1 to 18 carbon atoms), an alkylthio group having 1 to 18 carbon atoms, a group represented by the general formula: -AC 6 H (5-n) R 5 n (R 5 are the same or different and represent a hydrogen atom, a substituent, or a direct bond with another structure possessed by the polymer, and the same ones as R 1 to R 4 can be used.A is S, NR 6 , or , O, and R 6 represents a hydrogen atom or a monovalent organic group. n is an integer of 1 to 5. As the monovalent organic group, preferred monovalent organic groups described below are listed. Monovalent organic groups such as ) are preferable, and more preferable are hydrocarbon groups, hydrocarbon groups via oxygen atoms, or halogen atoms, and hydrocarbon groups, hydrocarbon groups via oxygen atoms, etc. The hydrocarbon group in the hydrogen group is particularly preferably an aliphatic saturated hydrocarbon group (alkyl group) having 1 to 18 carbon atoms or an aromatic hydrocarbon group (aryl group) having 6 to 18 carbon atoms, respectively. .
Note that the aralkyl group refers to a group having an aromatic ring together with an aliphatic hydrocarbon group, such as a benzyl group.
Examples of the divalent substituent include those having a structure in which one hydrogen atom is further removed from the monovalent substituent described above, an oxygen atom, a sulfur atom, and the like. The divalent substituent may be bonded to the benzene ring represented by general formula (1), and may also be bonded to other structures possessed by the polymer, or the divalent substituents may be bonded to each other. .
Among these, the substituent is preferably a monovalent substituent.

上記R~Rの少なくとも1つは、ポリマーが有する他の構造との直接結合であるか、又は、当該直接結合を有する置換基である。
本明細書中、ポリマーが有する他の構造は、他の一般式(1)で表される構造でもよく、別の構造(構造単位等)でもよい。
例えば、カチオン構造の位置が、ポリマー中の主鎖である場合、上記R~Rの中の2個が、それぞれ、ポリマーが有する他の構造との直接結合、又は、当該直接結合を有する置換基であることが好ましい。例えば、R及びRが、それぞれ、ポリマーが有する他の構造との直接結合、又は、当該直接結合を有する置換基であることが好ましい。
またカチオン構造の位置が、ポリマー中の側鎖である場合、上記R~Rの中の1個が、ポリマーが有する他の構造との直接結合であるか、又は、当該直接結合を有する置換基(例えば、主鎖構造との直接的又は間接的な結合)であることが好ましい。
At least one of the above R 1 to R 4 is a direct bond to another structure of the polymer, or a substituent having the direct bond.
In this specification, the other structure that the polymer has may be another structure represented by general formula (1) or another structure (such as a structural unit).
For example, when the position of the cation structure is the main chain in the polymer, two of the above R 1 to R 4 each have a direct bond with another structure of the polymer, or have the direct bond. Preferably, it is a substituent. For example, it is preferable that R 2 and R 4 are each a direct bond to another structure of the polymer or a substituent having the direct bond.
In addition, when the position of the cation structure is a side chain in the polymer, one of the above R 1 to R 4 is a direct bond with another structure that the polymer has, or has the direct bond. It is preferably a substituent (for example, a direct or indirect bond to the main chain structure).

上記一般式(1)で表される構造において、R~Rは、それぞれ、環構造に複数個結合していてもよく、複数個の置換基が結合して更に環構造を形成していてもよい。
例えば、隣り合う2個の2価の置換基どうしが結合して、当該置換基が結合するベンゼン環とともに、ナフタレン環、ベンゾイミダゾール環等の縮環構造を形成していてもよい。
In the structure represented by the above general formula (1), R 1 to R 4 may each be bonded to a ring structure in plural numbers, or may be bonded to a plurality of substituents to further form a ring structure. It's okay.
For example, two adjacent divalent substituents may be bonded together to form a condensed ring structure such as a naphthalene ring or benzimidazole ring together with the benzene ring to which the substituents are bonded.

上記R~Rの少なくとも1つは、オルト位の置換基であって、炭化水素基、酸素原子を介した炭化水素基、若しくは、ハロゲン原子であるか、又は、R~Rの少なくとも2つは、オルト位の置換基である。
上記酸素を介した炭化水素基としては、炭化水素基と酸素原子(エーテル結合)からなるものであればよいが、炭化水素基が、Pに結合したフェニル基に直接結合した酸素原子を介して結合しているものが好適なものとして挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が好ましく、フッ素原子、塩素原子がより好ましい。
中でも、上記R~Rの少なくとも1つは、オルト位の炭化水素基又は酸素原子を介した炭化水素基であることが好ましい。
上記炭化水素基、上記酸素を介した炭化水素基における炭化水素基は、特に限定されないが、炭素数1~18の脂肪族飽和炭化水素基(アルキル基)、炭素数2~18の脂肪族不飽和炭化水素基(アルケニル基等)、炭素数6~18の芳香族炭化水素基(アリール基)、炭素数7~18のアラルキル基が好適なものとして挙げられる。
上記炭化水素基、上記酸素を介した炭化水素基における炭化水素基は、より好ましくは、炭素数1~18の脂肪族飽和炭化水素基(アルキル基)、炭素数6~18の芳香族炭化水素基(アリール基)、又は、炭素数7~18のアラルキル基である。
中でも、上記R~Rの少なくとも1つは、炭化水素基であることが特に好ましい。
なお、上記R~Rの少なくとも2つが、オルト位の置換基である場合、当該置換基は炭化水素基、酸素原子を介した炭化水素基、ハロゲン原子には限定されず、その価数や種類が限定されない任意の置換基であるが、上述した1価の置換基、2価の置換基を好適に使用できる。
At least one of the above R 1 to R 4 is a substituent at the ortho position, and is a hydrocarbon group, a hydrocarbon group via an oxygen atom, or a halogen atom, or At least two are ortho substituents.
The above-mentioned hydrocarbon group via oxygen may be one consisting of a hydrocarbon group and an oxygen atom (ether bond). Preferred examples include those that are bonded.
The halogen atom is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and more preferably a fluorine atom or a chlorine atom.
Among these, at least one of R 1 to R 4 is preferably an ortho-position hydrocarbon group or a hydrocarbon group via an oxygen atom.
The hydrocarbon group in the hydrocarbon group and the hydrocarbon group via oxygen are not particularly limited, but are aliphatic saturated hydrocarbon groups (alkyl groups) having 1 to 18 carbon atoms, and aliphatic unsaturated groups having 2 to 18 carbon atoms. Preferred examples include saturated hydrocarbon groups (such as alkenyl groups), aromatic hydrocarbon groups (aryl groups) having 6 to 18 carbon atoms, and aralkyl groups having 7 to 18 carbon atoms.
The hydrocarbon group in the hydrocarbon group and the hydrocarbon group via oxygen is more preferably an aliphatic saturated hydrocarbon group (alkyl group) having 1 to 18 carbon atoms, or an aromatic hydrocarbon group having 6 to 18 carbon atoms. group (aryl group) or an aralkyl group having 7 to 18 carbon atoms.
Among these, it is particularly preferable that at least one of the above R 1 to R 4 is a hydrocarbon group.
In addition, when at least two of the above R 1 to R 4 are substituents at the ortho position, the substituent is not limited to a hydrocarbon group, a hydrocarbon group via an oxygen atom, or a halogen atom, and the valence thereof The monovalent substituents and divalent substituents mentioned above can be suitably used, although the type thereof is not limited.

上記一般式(1)で表される構造において、オルト位に結合できる置換基は8個まで可能である。
上記R~Rのうち、オルト位の置換基であって、炭化水素基、酸素原子を介した炭化水素基、又は、ハロゲン原子であるものが、少なくとも2つであることが好ましく、少なくとも3つであることがより好ましく、少なくとも4つであることが更に好ましく、少なくとも5つであることが一層好ましく、少なくとも6つであることがより一層好ましく、少なくとも7つであることが更に一層好ましく、8つであることが特に好ましい。
In the structure represented by the above general formula (1), up to eight substituents can be bonded to the ortho position.
Among the above R 1 to R 4 , it is preferable that at least two of the ortho-position substituents are a hydrocarbon group, a hydrocarbon group via an oxygen atom, or a halogen atom; More preferably 3, still more preferably at least 4, even more preferably at least 5, even more preferably at least 6, even more preferably at least 7. , eight are particularly preferred.

また上記R~Rのうち、オルト位の置換基であって、炭化水素基であるものが、少なくとも1つであることが好ましく、少なくとも2つであることがより好ましく、少なくとも3つであることが更に好ましく、少なくとも4つであることが特に好ましい。
オルト位の置換基が少なくとも4つあり、そのうち少なくとも3つは炭化水素基であることが好ましい。
中でも、例えば、上記R~Rのうち、オルト位の置換基であって、炭化水素基、酸素原子を介した炭化水素基、又は、ハロゲン原子であるものが、少なくとも4つであり、このうち、少なくとも3つは炭化水素基であることが特に好ましい。
Further, among the above R 1 to R 4 , the number of substituents at the ortho position that is a hydrocarbon group is preferably at least one, more preferably at least two, and at least three. More preferably, there are at least four, particularly preferably at least four.
Preferably, there are at least four substituents at the ortho position, at least three of which are hydrocarbon groups.
Among them, for example, among the above R 1 to R 4 , at least four substituents at the ortho position are a hydrocarbon group, a hydrocarbon group via an oxygen atom, or a halogen atom, It is particularly preferred that at least three of these groups are hydrocarbon groups.

また上記R~Rについて、Pに結合した4個の芳香環のうち、少なくとも2個の芳香環のオルト位に置換基があることが好ましく、少なくとも3個の芳香環のオルト位に置換基があることがより好ましく、それぞれの芳香環のオルト位に置換基があることが更に好ましい。
中でも、オルト位の置換基が少なくとも4つあり、且つ、Pに結合した4個の芳香環のうち、少なくとも2個の芳香環のオルト位に置換基があることが好ましく、少なくとも3個の芳香環のオルト位に置換基があることがより好ましく、それぞれの芳香環のオルト位に置換基があることが更に好ましい。
なお、芳香環のオルト位に置換基があるとは、当該芳香環の1つ又は2つのオルト位に置換基があることをいう。
Regarding R 1 to R 4 above, it is preferable that at least two of the four aromatic rings bonded to P have a substituent at the ortho position, and at least three aromatic rings have a substituent at the ortho position. It is more preferable that there is a group, and even more preferable that there is a substituent at the ortho position of each aromatic ring.
Among these, it is preferable that there are at least four substituents at the ortho position, and at least two of the four aromatic rings bonded to P have substituents at the ortho position, and at least three aromatic rings are present. It is more preferred that the substituent be present at the ortho position of the ring, and even more preferred that the substituent be present at the ortho position of each aromatic ring.
Note that the term "substituents are present at the ortho position of an aromatic ring" means that there are substituents at one or two ortho positions of the aromatic ring.

例えば、Rの少なくとも1個が1価のオルト位の置換基であり、R~Rそれぞれの少なくとも1個が1価のオルト位の置換基であって、炭化水素基、酸素原子を介した炭化水素基、若しくは、ハロゲン原子であることが好ましい。中でも、Rの少なくとも1個が1価のオルト位の置換基であり、R~Rそれぞれの少なくとも1個が1価の炭化水素基であることが好ましい。
1価の炭化水素基の好ましいものは、上述した通りである。
For example, at least one of R 1 is a monovalent ortho-position substituent, and at least one of each of R 2 to R 4 is a monovalent ortho-position substituent, and A hydrocarbon group or a halogen atom is preferable. Among these, it is preferable that at least one of R 1 is a monovalent ortho-position substituent, and at least one of each of R 2 to R 4 is a monovalent hydrocarbon group.
Preferred monovalent hydrocarbon groups are as described above.

また上記R~Rについて、Pに結合した芳香環(Pに結合した芳香環のいずれか)のメタ位又はパラ位に、置換基が少なくとも1つあることが好ましい。中でも、Pに結合した芳香環のメタ位又はパラ位に、炭化水素基が少なくとも1つあることがより好ましい。 Further, for R 1 to R 4 above, it is preferable that at least one substituent is present at the meta or para position of the aromatic ring bonded to P (any of the aromatic rings bonded to P). Among these, it is more preferable that at least one hydrocarbon group is present at the meta or para position of the aromatic ring bonded to P.

中でも、オルト位の置換基が少なくとも4つあり、且つ、Pに結合した芳香環(Pに結合した芳香環のいずれか)のメタ位又はパラ位に、置換基が少なくとも1つあることが好ましい。さらに、オルト位の置換基が少なくとも4つあり、且つ、Pに結合した芳香環のメタ位又はパラ位に、炭化水素基が少なくとも1つあることがより好ましい。
また上述したように、本発明のホスホニウム含有ポリマーにおいては、上記R~Rの少なくとも1つは、オルト位の置換基であって、炭化水素基、酸素原子を介した炭化水素基、若しくは、ハロゲン原子である代わりに、R~Rの少なくとも2つが、オルト位の置換基(任意の置換基)であってもよい。
上記置換基(任意の置換基)としては、上述したように、特に限定されないが、上述した1価の置換基であることが好ましい。
Among these, it is preferable that there be at least four substituents at the ortho position, and at least one substituent at the meta or para position of the aromatic ring bonded to P (any of the aromatic rings bonded to P). . Furthermore, it is more preferable that there are at least four substituents at the ortho position and at least one hydrocarbon group at the meta or para position of the aromatic ring bonded to P.
Furthermore, as described above, in the phosphonium-containing polymer of the present invention, at least one of the above R 1 to R 4 is a substituent at the ortho position, and is a hydrocarbon group, a hydrocarbon group via an oxygen atom, or , at least two of R 1 to R 4 may be substituents (arbitrary substituents) at the ortho position instead of being halogen atoms.
As mentioned above, the above-mentioned substituent (arbitrary substituent) is not particularly limited, but it is preferably the above-mentioned monovalent substituent.

上記一般式(1)で表される構造において、上記R~Rのうち、オルト位の置換基(任意の置換基)であるものが、少なくとも3つであることが好ましく、少なくとも4つであることがより好ましく、少なくとも5つであることが更に好ましく、少なくとも6つであることが一層好ましく、少なくとも7つであることがより一層好ましく、8つであることが特に好ましい。 In the structure represented by the above general formula (1), it is preferable that at least three of the above R 1 to R 4 are substituents (arbitrary substituents) at the ortho position, and at least four More preferably, at least 5, still more preferably at least 6, even more preferably at least 7, particularly preferably 8.

また上述したのと同様に、上記R~Rのうち、Pに結合した4個の芳香環のうち、少なくとも2個の芳香環のオルト位に置換基(任意の置換基)があることが好ましく、少なくとも3個の芳香環のオルト位に置換基があることが好ましく、それぞれの芳香環のオルト位に置換基があることが好ましい。 In addition, as described above, among the four aromatic rings bonded to P among R 1 to R 4 , at least two of the aromatic rings have a substituent (arbitrary substituent) at the ortho position. It is preferable that there are substituents at the ortho positions of at least three aromatic rings, and it is preferable that there are substituents at the ortho positions of each aromatic ring.

本発明のホスホニウム含有ポリマーが、上記一般式(1)で表される構造と、別の構造単位とをそれぞれ主鎖に有する共重合ポリマーである場合、別の構造単位としては特に限定されないが、芳香環を含む構造単位が好ましい。芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、トリフェニレン環、ピレン環、フルオレン環、インデン環、チオフェン環、フラン環、ピロール環、ベンゾチオフェン環、ベンゾフラン環、インドール環、ジベンゾチオフェン環、ジベンゾフラン環、カルバゾール環、チアゾール環、ベンゾチアゾール環、オキサゾール環、ベンゾオキサゾール環、イミダゾール環、ベンゾイミダゾール環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、キノリン環、イソキノリン環、キノキサリン環、ベンゾチアジアゾール環等が挙げられ、別の構造単位としてこれらの1種又は2種以上を含むものを使用できる。
また別の構造単位が、酸素原子を更に含むポリエーテル構造や硫黄原子を更に含むポリアリーレンスルフィド構造、ポリスルホン構造を有することもまた好ましい。
When the phosphonium-containing polymer of the present invention is a copolymer having the structure represented by the above general formula (1) and another structural unit in the main chain, the other structural unit is not particularly limited, but is preferably a structural unit containing an aromatic ring.As the aromatic ring, benzene ring, naphthalene ring, anthracene ring, tetracene ring, pentacene ring, triphenylene ring, pyrene ring, fluorene ring, indene ring, thiophene ring, furan ring, pyrrole ring, benzothiophene ring, benzofuran ring, indole ring, dibenzothiophene ring, dibenzofuran ring, carbazole ring, thiazole ring, benzothiazole ring, oxazole ring, benzoxazole ring, imidazole ring, benzimidazole ring, pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, quinoline ring, isoquinoline ring, quinoxaline ring, benzothiadiazole ring, etc. can be mentioned, and as the other structural unit, one or more of these can be used.
It is also preferable that the other structural unit has a polyether structure further containing an oxygen atom, a polyarylene sulfide structure further containing a sulfur atom, or a polysulfone structure.

本発明のホスホニウム含有ポリマーが、上記カチオン構造を側鎖に有する場合、本発明のホスホニウム含有ポリマーの主鎖の構造は特に限定されないが、上述した芳香環やポリエーテル構造、ポリアリーレンスルフィド構造、ポリスルホン構造、重合性のビニル基含有単量体由来の構造、これらの組合せを有するもの等が挙げられる。例えば、主鎖としては、ポリオレフィン、ポリシクロオレフィン等のビニル重合体;ポリフェニレン等のポリアリーレン;ポリフェニレンエーテル等のポリアリーレンエーテル;ポリフェニレンスルフィド等のポリアリーレンスルフィド;ポリスルホン;ポリエーテルスルホン;ポリイミド;ポリエーテルイミド;ポリアミドイミド等が挙げられる。 When the phosphonium-containing polymer of the present invention has the above cation structure in the side chain, the structure of the main chain of the phosphonium-containing polymer of the present invention is not particularly limited, but may include the above-mentioned aromatic ring, polyether structure, polyarylene sulfide structure, polysulfone structure, a structure derived from a polymerizable vinyl group-containing monomer, and a combination thereof. For example, as the main chain, vinyl polymers such as polyolefins and polycycloolefins; polyarylenes such as polyphenylene; polyarylene ethers such as polyphenylene ether; polyarylene sulfides such as polyphenylene sulfide; polysulfone; polyether sulfone; polyimide; polyether Imide: Examples include polyamideimide.

主鎖がポリオレフィンである本発明のホスホニウム含有ポリマーとしては、例えば、下記(1a)で表される構造を有するものが挙げられる。
また主鎖がポリフェニレンである本発明のホスホニウム含有ポリマーとしては、例えば、下記(1b)で表される構造を有するものが挙げられる。

Figure 0007457323000003
Examples of the phosphonium-containing polymer of the present invention whose main chain is a polyolefin include those having a structure represented by the following (1a).
Examples of the phosphonium-containing polymer of the present invention whose main chain is polyphenylene include those having a structure represented by the following (1b).
Figure 0007457323000003

上記式(1a)、式(1b)中、R~Rは、一般式(1)におけるR~Rと同様である。R、Aは、上述したR、Aと同様である。Rは、水素原子、置換基、又は、ポリマーが有する他の構造との直接結合を表し、R~Rと同様のものを使用できる。なお、R、Rは、それぞれ、環構造に複数個結合していてもよく、複数個の置換基が結合して更に環構造を形成していてもよい。m、nは、繰り返し単位数であり、mは1以上であり、例えば1~100であり、好ましくは1~50である。nは0以上であり、例えば0~100であり、好ましくは0~50である。 In the above formulas (1a) and (1b), R 1 to R 4 are the same as R 1 to R 4 in general formula (1). R 5 and A are the same as R 5 and A described above. R represents a hydrogen atom, a substituent, or a direct bond to another structure possessed by the polymer, and the same ones as R 1 to R 4 can be used. Note that a plurality of R 5 and R may each be bonded to a ring structure, or a plurality of substituents may be bonded to each other to further form a ring structure. m and n are the numbers of repeating units, and m is 1 or more, for example from 1 to 100, preferably from 1 to 50. n is 0 or more, for example from 0 to 100, preferably from 0 to 50.

本発明のホスホニウム含有ポリマーが有するカウンターアニオンXとしては、カウンターアニオンとして一般的な無機塩を用いることができ、例えばF、Cl、Br、I等のハロゲン化物イオンや、水酸化物イオン、トリフルオロメタンスルホナート等が挙げられ、これらの1種又は2種以上を使用できる。 As the counter anion X - possessed by the phosphonium-containing polymer of the present invention, general inorganic salts can be used as counter anions, such as halide ions such as F - , Cl - , Br - , I - , hydroxide ions, etc. ion, trifluoromethanesulfonate, etc., and one or more of these can be used.

本発明のホスホニウム含有ポリマーは、アニオン伝導性が充分なものでありながら、耐久性に優れるものであり、水の電気分解やアルカリ燃料電池用の固体高分子電解質膜の他、相間移動触媒、光酸発生剤等の多くの用途に好適に使用できる可能性がある。 The phosphonium-containing polymer of the present invention has sufficient anion conductivity and excellent durability, and is useful in solid polymer electrolyte membranes for water electrolysis and alkaline fuel cells, phase transfer catalysts, and photonics. There is a possibility that it can be suitably used in many applications such as an acid generator.

<本発明のホスホニウム含有化合物>
本発明のホスホニウム含有化合物は、上記一般式(1)で表される。
<Phosphonium-containing compound of the present invention>
The phosphonium-containing compound of the present invention is represented by the above general formula (1).

上記一般式(1)において、R~Rは、同一又は異なって、水素原子、又は、置換基を表す。
上記R~Rの少なくとも1つは、オルト位の置換基であって、炭化水素基、酸素原子を介した炭化水素基、若しくは、ハロゲン原子であるか、又は、R~Rの少なくとも2つは、オルト位の置換基である。これにより、本発明のホスホニウム含有化合物は、優れた化学的安定性を有する。
上記一般式(1)では、上記R~Rにおける置換基が2価の置換基である場合、2価の置換基は、2価の置換基どうしが結合している。その他は、本発明のホスホニウム含有化合物におけるR~Rが表す置換基、その好ましい形態は、上述した本発明のホスホニウム含有ポリマーにおけるR~Rが表す置換基、その好ましい形態と同様である。
In the above general formula (1), R 1 to R 4 are the same or different and represent a hydrogen atom or a substituent.
At least one of the above R 1 to R 4 is a substituent at the ortho position, and is a hydrocarbon group, a hydrocarbon group via an oxygen atom, or a halogen atom, or At least two are ortho substituents. Thereby, the phosphonium-containing compound of the present invention has excellent chemical stability.
In the above general formula (1), when the substituents in R 1 to R 4 are divalent substituents, the divalent substituents are bonded to each other. The other substituents represented by R 1 to R 4 in the phosphonium-containing compound of the present invention and their preferred forms are the same as the substituents represented by R 1 to R 4 and their preferred forms in the phosphonium-containing polymer of the present invention described above. be.

本発明のホスホニウム含有化合物が有するカウンターアニオンXとしては、カウンターアニオンとして一般的な無機塩を用いることができ、例えばF、Cl、Br、I等のハロゲン化物イオンや、水酸化物イオン、トリフルオロメタンスルホナート等が挙げられ、これらの1種又は2種以上を使用できる。 As the counter anion X - possessed by the phosphonium-containing compound of the present invention, general inorganic salts can be used as counter anions, such as halide ions such as F - , Cl - , Br - , I - , and hydroxide ions. ion, trifluoromethanesulfonate, etc., and one or more of these can be used.

本発明のホスホニウム含有化合物は、耐久性に優れ、電解質材料、相間移動触媒、光酸発生剤等の多くの用途に好適に使用できる可能性がある。 The phosphonium-containing compound of the present invention has excellent durability and may be suitably used in many applications such as electrolyte materials, phase transfer catalysts, and photoacid generators.

<本発明のホスホニウム含有ポリマー又はホスホニウム含有化合物の製造方法>
本発明のホスホニウム含有ポリマー又はホスホニウム含有化合物の製造方法は、ホスフィン化合物とアラインとを反応させる工程を含む。
本発明のホスホニウム含有ポリマー又はホスホニウム含有化合物の製造方法により、第4級ホスホニウム構造を簡便に形成することができる。
<Method for producing the phosphonium-containing polymer or phosphonium-containing compound of the present invention>
The method for producing a phosphonium-containing polymer or phosphonium-containing compound of the present invention includes a step of reacting a phosphine compound and an aryne.
By the method for producing a phosphonium-containing polymer or phosphonium-containing compound of the present invention, a quaternary phosphonium structure can be easily formed.

上記ホスフィン化合物は、下記一般式(2):

Figure 0007457323000004
(式中、Aは、S、NR、O、又は、非共有電子対を表し、Rは、水素原子又は1価の有機基を表す。R~Rは、上述した一般式(1)におけるR~Rと同様である。)で表される化合物であることが好ましい。 The above phosphine compound has the following general formula (2):
Figure 0007457323000004
(In the formula, A represents S, NR 6 , O, or a lone pair of electrons, and R 6 represents a hydrogen atom or a monovalent organic group. R 2 to R 4 are represented by the general formula ( The same as R 2 to R 4 in 1) is preferable.

上記アラインは、下記一般式(3-1)で表される化合物であるか、又は、下記一般式(3-1)で表される化合物及び下記一般式(3-2)で表される化合物であることが好ましい。

Figure 0007457323000005
(式中、R、Rは、一般式(1)におけるR、Rと同様である。) The above aryne is a compound represented by the following general formula (3-1), or a compound represented by the following general formula (3-1) and a compound represented by the following general formula (3-2). It is preferable that
Figure 0007457323000005
(In the formula, R 1 and R 5 are the same as R 1 and R 5 in general formula (1).)

上記一般式(3-1)又は(3-2)で表される化合物は、それぞれ、例えば下記一般式(4-1)又は(4-2):

Figure 0007457323000006
(式中、TMSは、トリメチルシリル基を表す。Tfは、トリフルオロメタンスルホニル基を表す。)で表される化合物を、例えばフッ化セシウム等のフッ化物と反応させて得ることができる。 The compounds represented by the above general formula (3-1) or (3-2) are, for example, the following general formula (4-1) or (4-2):
Figure 0007457323000006
(In the formula, TMS represents a trimethylsilyl group. Tf represents a trifluoromethanesulfonyl group.) It can be obtained by reacting a compound represented by, for example, a fluoride such as cesium fluoride.

上記ホスフィン化合物とアラインとを反応させる工程は、アセトニトリル等の有機溶媒中で行うことができる。反応温度は、例えば15~60℃であることが好ましい。反応時間は、例えば1~48時間であることが好ましい。圧力条件は、特に限定されず、常圧下、加圧下、減圧下のいずれであってもよい。
なお、上述した一般式(4-1)又は(4-2)で表される化合物をフッ化物と反応させて上記一般式(3-1)又は(3-2)で表される化合物を得る工程は、上記反応工程と同時に行うことができる。本発明のホスホニウム含有ポリマー又はホスホニウム含有化合物の製造方法は、安定な原料化合物(例えば、上記一般式(4-1)又は(4-2)で表される化合物)から一段階の反応で行うことが可能であり、非常に簡便に本発明のホスホニウム含有ポリマー又はホスホニウム含有化合物を得ることができるものである。
The step of reacting the phosphine compound and aryne can be performed in an organic solvent such as acetonitrile. The reaction temperature is preferably 15 to 60°C, for example. The reaction time is preferably, for example, 1 to 48 hours. The pressure conditions are not particularly limited, and may be normal pressure, increased pressure, or reduced pressure.
In addition, the compound represented by the above general formula (4-1) or (4-2) is reacted with a fluoride to obtain the compound represented by the above general formula (3-1) or (3-2). The step can be performed simultaneously with the reaction step described above. The method for producing the phosphonium-containing polymer or phosphonium-containing compound of the present invention can be carried out in a one-step reaction from a stable raw material compound (for example, a compound represented by the above general formula (4-1) or (4-2)). is possible, and the phosphonium-containing polymer or phosphonium-containing compound of the present invention can be obtained very easily.

本発明のホスホニウム含有化合物の製造方法は、例えば、下記反応式:

Figure 0007457323000007
で表される反応を経て得ることができる。
なお、上記式(2)で表される化合物と、上記式(3-1)で表される化合物と、上記式(3-2)で表される化合物から、式(1’)で表される化合物が生成する反応について、想定される反応機構を示しているが、この反応は、1工程で式(1’)で表される化合物を生成させることができるものである。例えば、上記式(3-1)で表される化合物と、上記式(3-2)で表される化合物が同一である場合、通常、上記式(3-1)で表される化合物2当量が、上記式(2)で表される化合物1当量に対して連続して反応し、式(1’)で表される化合物が1工程で一気に生成する。なお、上記式(3-1)で表される化合物と、上記式(3-2)で表される化合物が異なっている場合、この反応は、開始時から3種類すべての原料を用いて1工程で式(1’)で表される化合物を生成させるものであってもよいし、上記式(2)で表される化合物と、上記式(3-1)で表される化合物とを先ず反応させた後、上記式(3-2)で表される化合物を後添加して、上記反応機構で示される順序に沿って2工程で反応させるものであってもよい。
また上記反応式において、Aは、S、NR、又は、Oを表す。 The method for producing the phosphonium-containing compound of the present invention can be carried out, for example, by the following reaction scheme:
Figure 0007457323000007
It can be obtained via the reaction represented by the following formula:
In addition, the assumed reaction mechanism for the reaction in which the compound represented by formula (1') is produced from the compound represented by formula (2), the compound represented by formula (3-1), and the compound represented by formula (3-2) is shown, and this reaction can produce the compound represented by formula (1') in one step. For example, when the compound represented by formula (3-1) and the compound represented by formula (3-2) are the same, usually, 2 equivalents of the compound represented by formula (3-1) react with 1 equivalent of the compound represented by formula (2) in succession, and the compound represented by formula (1') is produced all at once in one step. In addition, when the compound represented by the above formula (3-1) and the compound represented by the above formula (3-2) are different, this reaction may be a one-step reaction in which all three kinds of raw materials are used from the start to produce the compound represented by formula (1'), or a two-step reaction in which the compound represented by the above formula (2) and the compound represented by the above formula (3-1) are first reacted, and then the compound represented by the above formula (3-2) is added later, in accordance with the sequence shown in the above reaction mechanism.
In the above reaction formula, A represents S, NR 6 , or O.

本発明のホスホニウム含有化合物の製造方法は、例えは、下記反応式:

Figure 0007457323000008
で表される反応を経て得ることもできる。 The method for producing the phosphonium-containing compound of the present invention includes, for example, the following reaction formula:
Figure 0007457323000008
It can also be obtained through the reaction represented by

本発明のホスホニウム含有ポリマーの製造方法は、特に限定されないが、例えば、以下の反応により得ることができる。
先ず、上記ホスフィン化合物(2)の中でも、ハロゲン原子を少なくとも2つ有する化合物と、ジヒドロキシ化合物(6)とを反応させてポリマー化する。この反応は、炭酸カリウム等の塩基の存在下、N-メチル-2-ピロリドン(NMP)等の有機溶媒中で行うことができる。反応温度は、例えば100~200℃であることが好ましい。反応時間は、例えば6~48時間であることが好ましい。圧力条件は、特に限定されず、常圧下、加圧下、減圧下のいずれであってもよい。
The method for producing the phosphonium-containing polymer of the present invention is not particularly limited, but it can be obtained, for example, by the following reaction.
First, among the phosphine compounds (2), a compound having at least two halogen atoms and a dihydroxy compound (6) are reacted to form a polymer. This reaction can be carried out in an organic solvent such as N-methyl-2-pyrrolidone (NMP) in the presence of a base such as potassium carbonate. The reaction temperature is preferably 100 to 200°C, for example. Preferably, the reaction time is, for example, 6 to 48 hours. The pressure conditions are not particularly limited, and may be normal pressure, increased pressure, or reduced pressure.

上記反応により得られたポリマーに、アラインを反応させることで、本発明のホスホニウム含有ポリマーを得ることができる。この反応は、テトラヒドロフラン(THF)、アセトニトリル等の有機溶媒中で行うことができる。反応温度は、例えば-10~40℃であることが好ましい。反応時間は、例えば10~48時間であることが好ましい。圧力条件は、特に限定されず、常圧下、加圧下、減圧下のいずれであってもよい。 The phosphonium-containing polymer of the present invention can be obtained by reacting the polymer obtained by the above reaction with aligne. This reaction can be carried out in an organic solvent such as tetrahydrofuran (THF) or acetonitrile. The reaction temperature is preferably -10 to 40°C, for example. The reaction time is preferably, for example, 10 to 48 hours. The pressure conditions are not particularly limited, and may be normal pressure, increased pressure, or reduced pressure.

本発明のホスホニウム含有ポリマーの製造方法は、例えば、下記反応式:

Figure 0007457323000009
で表される反応を経て得ることができる。
なお、上記式(7)で表される化合物と、上記式(3-1)で表される化合物と、上記式(3-2)で表される化合物から、式(8)で表される化合物が生成する反応について、想定される反応機構を示しているが、この反応は、1工程で式(8)で表される化合物を生成させることができるものである。例えば、上記式(3-1)で表される化合物と、上記式(3-2)で表される化合物が同一である場合、通常、上記式(3-1)で表される化合物2当量が、上記式(7)で表される化合物1当量に対して連続して反応し、式(8)で表される化合物が1工程で一気に生成する。なお、上記式(3-1)で表される化合物と、上記式(3-2)で表される化合物が異なっている場合、この反応は、開始時から3種類すべての原料を用いて1工程で式(8)で表される化合物を生成させるものであってもよいし、上記式(7)で表される化合物と、上記式(3-1)で表される化合物とを先ず反応させた後、上記式(3-2)で表される化合物を後添加して、上記反応機構で示される順序に沿って2工程で反応させるものであってもよい。
また上記反応式において、Y、Yは、ハロゲン原子を表す。Zは、有機基を表し、好ましくは炭化水素基であり、より好ましくは、炭素数1~18の脂肪族飽和炭化水素基(アルキル基)、脂肪族不飽和炭化水素基(アルケニル基等)、炭素数6~18の芳香族炭化水素基(アリール基)、炭素数7~18のアラルキル基である。Aは、S、NR、又は、Oを表す。 The method for producing the phosphonium-containing polymer of the present invention includes, for example, the following reaction formula:
Figure 0007457323000009
It can be obtained through the reaction shown below.
Furthermore, from the compound represented by the above formula (7), the compound represented by the above formula (3-1), and the compound represented by the above formula (3-2), the compound represented by the formula (8) The assumed reaction mechanism for the reaction that produces the compound is shown, and this reaction can produce the compound represented by formula (8) in one step. For example, when the compound represented by the above formula (3-1) and the compound represented by the above formula (3-2) are the same, usually 2 equivalents of the compound represented by the above formula (3-1) reacts continuously with one equivalent of the compound represented by the above formula (7), and the compound represented by the formula (8) is produced all at once in one step. In addition, when the compound represented by the above formula (3-1) and the compound represented by the above formula (3-2) are different, this reaction is carried out using all three types of raw materials from the beginning. The compound represented by the formula (8) may be produced in the step, or the compound represented by the above formula (7) and the compound represented by the above formula (3-1) may be first reacted. After this, the compound represented by the above formula (3-2) may be added later, and the reaction may be carried out in two steps according to the order shown in the above reaction mechanism.
Moreover, in the above reaction formula, Y 1 and Y 2 represent halogen atoms. Z represents an organic group, preferably a hydrocarbon group, more preferably an aliphatic saturated hydrocarbon group (alkyl group) having 1 to 18 carbon atoms, an aliphatic unsaturated hydrocarbon group (alkenyl group, etc.), These are an aromatic hydrocarbon group (aryl group) having 6 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms. A represents S, NR 6 or O.

本発明のホスホニウム含有ポリマーの製造方法は、例えは、下記反応式:

Figure 0007457323000010
で表される反応を経て得ることもできる。
なお、上記反応式において、Y、Y、Zは、上述した通りである。 The method for producing the phosphonium-containing polymer of the present invention includes, for example, the following reaction formula:
Figure 0007457323000010
It can also be obtained through the reaction represented by
In addition, in the above reaction formula, Y 1 , Y 2 , and Z are as described above.

<本発明の電解質材料>
本発明は、本発明のホスホニウム含有ポリマーを含むことを特徴とする電解質材料でもある。
本発明の電解質材料は、本発明のホスホニウム含有ポリマーの他、その原料であるモノマー等のその他の成分、溶媒等を含んでいてもよい。
溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール;アルキレングリコールモノアルキルエーテル;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド、γ-ブチロラクトン等が挙げられ、これらの1種又は2種以上を使用できる。
本発明の電解質材料は、水の電気分解やアルカリ燃料電池用の固体高分子電解質膜として有用である。
<Electrolyte material of the present invention>
The present invention is also an electrolyte material characterized by containing the phosphonium-containing polymer of the present invention.
The electrolyte material of the present invention may contain, in addition to the phosphonium-containing polymer of the present invention, other components such as monomers that are raw materials thereof, a solvent, and the like.
Examples of the solvent include alcohols such as methanol, ethanol, propanol, and butanol; alkylene glycol monoalkyl ethers; halogenated solvents such as dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, and dichlorobenzene; dimethylformamide, dimethylacetamide, N -Methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, γ-butyrolactone, etc., and one or more of these can be used.
The electrolyte material of the present invention is useful as a solid polymer electrolyte membrane for water electrolysis and alkaline fuel cells.

<本発明のアニオン交換膜>
本発明は、本発明のホスホニウム含有ポリマーを含むことを特徴とするアニオン交換膜でもある。
本発明のアニオン交換膜は、水の電気分解やアルカリ燃料電池用の固体高分子電解質膜として有用である。
<Anion exchange membrane of the present invention>
The present invention is also an anion exchange membrane characterized by containing the phosphonium-containing polymer of the present invention.
The anion exchange membrane of the present invention is useful as a solid polymer electrolyte membrane for water electrolysis and alkaline fuel cells.

本発明のアニオン交換膜は、平均膜厚が10~1000μmであることが好ましい。該平均膜厚は、より好ましくは、20~500μmである。
本発明のアニオン交換膜の膜厚は、マイクロメーターにより測定することができる。
The anion exchange membrane of the present invention preferably has an average thickness of 10 to 1000 μm. The average film thickness is more preferably 20 to 500 μm.
The thickness of the anion exchange membrane of the present invention can be measured with a micrometer.

本発明のアニオン交換膜を製造する方法は、膜が形成される限り特に制限されず、本発明のホスホニウム含有ポリマーを溶媒に溶解し、平坦面上に注いで有機溶媒を蒸発させる方法や、本発明の電解質材料をロールで圧延して膜状に成形する方法、平板プレス等で圧延して膜状に成形する方法や、射出成形法、押出成形法、キャスト法等の膜状に成形する方法を用いることができる。これらの成形方法は単独で用いてもよく、2種以上の方法を組み合わせて用いてもよい。
上記製造方法は、上述したように、電解質材料を膜状に成形する工程の他に、膜を乾燥させる工程を含んでいてもよい。乾燥温度は適宜設定すればよいが、60℃~160℃で行うことができる。
The method for producing the anion exchange membrane of the present invention is not particularly limited as long as the membrane is formed, and includes a method of dissolving the phosphonium-containing polymer of the present invention in a solvent and pouring it onto a flat surface to evaporate the organic solvent; A method of rolling the electrolyte material of the invention into a film shape, a method of rolling it with a flat plate press or the like and forming it into a film shape, a method of molding it into a film shape such as an injection molding method, an extrusion molding method, a casting method, etc. can be used. These molding methods may be used alone or in combination of two or more.
As described above, the manufacturing method may include, in addition to the step of forming the electrolyte material into a membrane, the step of drying the membrane. The drying temperature may be set appropriately, but it can be carried out at 60°C to 160°C.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、「%」は「モル%」を意味するものとする。 The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples. In addition, "%" shall mean "mol%."

(化合物の合成)
<ベンザイン前駆体の合成>
合成例1:ベンザイン前駆体1の合成
2-ブロモフェノール(10.4g,60mmol)と1,1,1,3,3,3-ヘキサメチルジシラザン(25.3mL,120mmol,2.0eq.)をTHF(20ml)に溶解させ、加熱還流下で3時間撹拌した。減圧下で溶媒を留去したのちH-NMRでシリル保護体が生成しているのを確認した。生成物をTHF(78mL)に溶解させ、-78℃に冷却したのちノルマルブチルリチウム(41.3mL,66mmol,ca.1.6M,1.1eq.)をゆっくり加え、-78℃下で30分間攪拌した後、トリフルオロメタンスルホン酸無水物(20.3g,72mmol,1.2eq.)をゆっくり加え、-78℃下で30分間攪拌した。飽和炭酸水素ナトリウムを加え反応をクエンチしたのち、酢酸エチルで有機層を抽出した。有機層を硫酸ナトリウムで乾燥した後ろ過し、減圧下で溶媒を留去した。残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=40:1)で精製し、ベンザイン前駆体1(14.9g,50mmol,83%)を無色透明油状物質として得た。NMRにて下記式に示す構造であることを確認した。なお、TMSは、トリメチルシリル基、Tfは、トリフルオロメタンスルホニル基を意味する。以下の合成例、実施例においても同様である。
(Synthesis of compounds)
<Synthesis of benzyne precursor>
Synthesis Example 1: Synthesis of Benzyne Precursor 1 2-bromophenol (10.4g, 60mmol) and 1,1,1,3,3,3-hexamethyldisilazane (25.3mL, 120mmol, 2.0eq.) was dissolved in THF (20 ml) and stirred under heating and reflux for 3 hours. After the solvent was distilled off under reduced pressure, the formation of a silyl protected product was confirmed by 1 H-NMR. The product was dissolved in THF (78 mL) and cooled to -78°C, then n-butyllithium (41.3 mL, 66 mmol, ca. 1.6 M, 1.1 eq.) was slowly added and the mixture was heated at -78°C for 30 minutes. After stirring, trifluoromethanesulfonic anhydride (20.3 g, 72 mmol, 1.2 eq.) was slowly added and stirred at -78°C for 30 minutes. After quenching the reaction by adding saturated sodium hydrogen carbonate, the organic layer was extracted with ethyl acetate. The organic layer was dried over sodium sulfate, filtered, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (hexane: ethyl acetate = 40:1) to obtain benzyne precursor 1 (14.9 g, 50 mmol, 83%) as a colorless transparent oil. It was confirmed by NMR that it had the structure shown in the following formula. In addition, TMS means a trimethylsilyl group, and Tf means a trifluoromethanesulfonyl group. The same applies to the following synthesis examples and examples.

スペクトルデータを以下に示す。
H-NMR(300MHz,CDCl):δ7.54(dd,J=7.6,1.6Hz,1H),7.44(ddd,J=8.0,7.6,2.0Hz,1H),7.38-7.29 (m,2H),0.304(s,9H)ppm

Figure 0007457323000011
The spectral data is shown below.
1 H-NMR (300 MHz, CDCl 3 ): δ7.54 (dd, J=7.6, 1.6 Hz, 1H), 7.44 (ddd, J=8.0, 7.6, 2.0 Hz, 1H), 7.38-7.29 (m, 2H), 0.304 (s, 9H) ppm
Figure 0007457323000011

合成例2:ベンザイン前駆体2の合成
2,6-ジメチルフェノール(6.11g,50mmol)を二硫化炭素(180ml)に溶解させ、0℃に冷却したのちN-ブロモスクシンイミド(9.97g,56mmol,1.1eq.)をゆっくり加え、室温で3時間撹拌した。減圧下で溶媒を留去したのちシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=40:1)で精製し、2-ブロモ-3,6-ジメチルフェノール(6.09g,30mmol,61%)を無色油状物質として得た。ベンザイン前駆体1合成と同様の手順で2-ブロモ-3,6-ジメチルフェノール(1.30g,6.5mmol)と1,1,1,3,3,3-ヘキサメチルジシラザン(1.15mL,7.1mmol,1.1eq.)をTHF(16ml)に溶解させ、加熱還流下で3時間撹拌した。減圧下で溶媒を留去したのちH-NMRでシリル保護体が生成しているのを確認した。生成物をTHF(20mL)に溶解させ、-78℃に冷却したのちノルマルブチルリチウム(4.40mL,7.1mmol,ca.1.6M,1.1 eq.)、トリフルオロメタンスルホン酸無水物(2.20g,7.8mmol,1.2eq.)を反応させ、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=40:1)で精製し、ベンザイン前駆体2(1.04g,3.2mmol,49%)を無色透明油状物質として得た。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。
H-NMR(300MHz,CDCl):δ=7.03(d,J=7.5Hz,1H),6.91(d,J=7.5Hz,1H),2.33(s,3H),1.97(s,3H),0.24(s,9H)ppm

Figure 0007457323000012
Synthesis Example 2: Synthesis of Benzyne Precursor 2 2,6-dimethylphenol (6.11 g, 50 mmol) was dissolved in carbon disulfide (180 ml), and after cooling to 0°C, N-bromosuccinimide (9.97 g, 56 mmol) was dissolved. , 1.1 eq.) was slowly added, and the mixture was stirred at room temperature for 3 hours. After distilling off the solvent under reduced pressure, it was purified by silica gel chromatography (hexane: ethyl acetate = 40:1) to obtain 2-bromo-3,6-dimethylphenol (6.09 g, 30 mmol, 61%) as a colorless oil. obtained as. 2-bromo-3,6-dimethylphenol (1.30 g, 6.5 mmol) and 1,1,1,3,3,3-hexamethyldisilazane (1.15 mL) were prepared in the same manner as in the synthesis of benzyne precursor 1. , 7.1 mmol, 1.1 eq.) was dissolved in THF (16 ml) and stirred under heating under reflux for 3 hours. After the solvent was distilled off under reduced pressure, the formation of a silyl protected product was confirmed by 1 H-NMR. The product was dissolved in THF (20 mL) and cooled to -78°C, and then n-butyllithium (4.40 mL, 7.1 mmol, ca. 1.6 M, 1.1 eq.) and trifluoromethanesulfonic anhydride ( 2.20 g, 7.8 mmol, 1.2 eq.) was reacted and purified by silica gel chromatography (hexane: ethyl acetate = 40:1) to obtain benzyne precursor 2 (1.04 g, 3.2 mmol, 49%). was obtained as a colorless transparent oil. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.
1 H-NMR (300 MHz, CDCl 3 ): δ = 7.03 (d, J = 7.5 Hz, 1 H), 6.91 (d, J = 7.5 Hz, 1 H), 2.33 (s, 3 H ), 1.97 (s, 3H), 0.24 (s, 9H) ppm
Figure 0007457323000012

<ホスホニウム塩類の合成>
実施例1:ホスホニウム含有化合物1の合成
クロロジフェニルホスフィン(1.10g,5.0mmol)をTHF(20ml)に溶解させ、-78℃に冷却したのち2-メチルフェニルマグネシウムブロマイド(4.40mL,5.5mmol,ca.1.25M,1.1eq.)をゆっくり加え、室温で24時間撹拌した。塩化アンモニウム水を適量加え反応を止め、酢酸エチルにより抽出した。有機層を硫酸マグネシウムで乾燥した後ろ過し、減圧下で溶媒を留去した。エタノールで再結晶後、シリカゲルクロマトグラフィー(ヘキサン)で精製し、ジフェニル-o-トリルホスフィン(0.845g,3.1mmol,61%)を白色粉末として得た。フッ化セシウム(0.277g,1.8mmol,6.0eq.)をフラスコに入れ、真空引きをしてヒートガンで約5分間加熱して含有水分を除去した。アルゴンガスで置換後、上記で合成したジフェニル-o-トリルホスフィン(0.0828g,0.30mmol)を加えアセトニトリル(3ml)に溶解させた。0℃に冷却したのちベンザイン前駆体1(0.224g,0.75mmol,2.5eq.)をゆっくり加え、室温で24時間撹拌した。塩化ナトリウム水を適量加え、酢酸エチルにより抽出した。有機層を硫酸マグネシウムで乾燥した後ろ過し、減圧下で溶媒を留去した。残渣をシリカゲルクロマトグラフィー((i)ジクロロメタン、(ii)ジクロロメタン:メタノール=20:1)で精製し、ホスホニウム含有化合物1(0.0766g,0.15mmol,51%)を淡い橙色粉末として得た。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。
H-NMR(300MHz,CDCl)δ=7.86-7.91(m,3H),7.75-7.81(m,7H),7.62-7.68(m,7H)7.47-7.49(m,1H),7.15-7.19(m,1H)ppm;31P-NMR(121MHz,CDCl)δ=22.5ppm

Figure 0007457323000013
<Synthesis of phosphonium salts>
Example 1: Synthesis of phosphonium-containing compound 1 Chlorodiphenylphosphine (1.10 g, 5.0 mmol) was dissolved in THF (20 ml), cooled to -78°C, and then 2-methylphenylmagnesium bromide (4.40 mL, 5 .5 mmol, ca. 1.25 M, 1.1 eq.) was slowly added and stirred at room temperature for 24 hours. The reaction was stopped by adding an appropriate amount of ammonium chloride water, and the mixture was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. After recrystallizing from ethanol, the product was purified by silica gel chromatography (hexane) to obtain diphenyl-o-tolylphosphine (0.845 g, 3.1 mmol, 61%) as a white powder. Cesium fluoride (0.277 g, 1.8 mmol, 6.0 eq.) was placed in a flask, and the flask was evacuated and heated with a heat gun for about 5 minutes to remove the water content. After purging with argon gas, diphenyl-o-tolylphosphine (0.0828 g, 0.30 mmol) synthesized above was added and dissolved in acetonitrile (3 ml). After cooling to 0° C., benzyne precursor 1 (0.224 g, 0.75 mmol, 2.5 eq.) was slowly added, and the mixture was stirred at room temperature for 24 hours. An appropriate amount of sodium chloride water was added, and the mixture was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography ((i) dichloromethane, (ii) dichloromethane:methanol = 20:1) to obtain phosphonium-containing compound 1 (0.0766 g, 0.15 mmol, 51%) as a pale orange powder. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.
1H -NMR (300MHz, CDCl 3 ) δ = 7.86-7.91 (m, 3H), 7.75-7.81 (m, 7H), 7.62-7.68 (m, 7H) 7.47-7.49 (m, 1H), 7.15-7.19 (m, 1H) ppm; 31 P-NMR (121 MHz, CDCl 3 ) δ = 22.5 ppm
Figure 0007457323000013

実施例2:ホスホニウム含有化合物2の合成
実施例1と同様の手順でジクロロフェニルホスフィン(0.896g,5.0mmol)、o-トリルマグネシウムブロマイド(8.40mL,11mmol,ca.1.25M,2.1eq.)をTHF(20ml)中で反応させ、エタノールで再結晶後、シリカゲルクロマトグラフィー(ヘキサン)で精製し、フェニルジ-o-トリルホスフィン(0.679g,2.3mmol,47%)を合成した。さらに、実施例1と同様の手順でフェニルジ-o-トリルホスフィン(0.0871g,0.30mmol)、フッ化セシウム(0.274g,1.8mmol,6.0eq.)、ベンザイン前駆体1(0.224g,0.75mmol,2.5eq.)、アセトニトリル(3ml)を反応させ、シリカゲルクロマトグラフィーで精製し、ホスホニウム含有化合物2(0.109g,0.21mmol,70%)を淡い橙色粉末として得た。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。
Example 2: Synthesis of phosphonium-containing compound 2 Dichlorophenylphosphine (0.896 g, 5.0 mmol), o-tolylmagnesium bromide (8.40 mL, 11 mmol, ca. 1.25 M, 2. 1 eq.) in THF (20 ml), recrystallized with ethanol, and purified with silica gel chromatography (hexane) to synthesize phenyl di-o-tolylphosphine (0.679 g, 2.3 mmol, 47%). . Furthermore, phenyldi-o-tolylphosphine (0.0871 g, 0.30 mmol), cesium fluoride (0.274 g, 1.8 mmol, 6.0 eq.), and benzyne precursor 1 (0 .224g, 0.75mmol, 2.5eq.) and acetonitrile (3ml) were reacted and purified by silica gel chromatography to obtain phosphonium-containing compound 2 (0.109g, 0.21mmol, 70%) as a pale orange powder. Ta. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.

H-NMR(300MHz,CDCl)δ=7.75-7.89(m,8H),7.51-7.68(m,8H),7.41(dd,J=6.9,14.4Hz,2H)2.00(s,6H)ppm;31P-NMR(121MHz,CDCl)δ=22.5ppm

Figure 0007457323000014
1 H-NMR (300 MHz, CDCl 3 ) δ = 7.75-7.89 (m, 8H), 7.51-7.68 (m, 8H), 7.41 (dd, J = 6.9, 14.4 Hz, 2H) 2.00 (s, 6H) ppm; 31 P-NMR (121 MHz, CDCl 3 ) δ = 22.5 ppm
Figure 0007457323000014

実施例3:ホスホニウム含有化合物3の合成
実施例1と同様の手順でトリス(o-トリル)ホスフィン(0.0915g,0.30mmol)、フッ化セシウム(0.273g,1.8mmol,6.0eq.)、ベンザイン前駆体1(0.224g,0.75mmol,2.5eq.)、アセトニトリル(3ml)を反応させ、シリカゲルクロマトグラフィーで精製し、ホスホニウム含有化合物3(0.111g,0.21mmol,70%)を淡い橙色粉末として得た。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。
Example 3: Synthesis of phosphonium-containing compound 3 Tris(o-tolyl)phosphine (0.0915 g, 0.30 mmol) and cesium fluoride (0.273 g, 1.8 mmol, 6.0 eq) were prepared in the same manner as in Example 1. ), benzyne precursor 1 (0.224 g, 0.75 mmol, 2.5 eq.), and acetonitrile (3 ml) were reacted and purified by silica gel chromatography to obtain phosphonium-containing compound 3 (0.111 g, 0.21 mmol, 70%) was obtained as a pale orange powder. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.

H-NMR(300MHz,CDCl)δ=7.79-7.81(m,6H),7.46-7.55(m,11H),1.88(s,9H)ppm;31P-NMR(121MHz,CDCl)δ=22.4ppm

Figure 0007457323000015
1 H-NMR (300 MHz, CDCl 3 ) δ = 7.79-7.81 (m, 6H), 7.46-7.55 (m, 11H), 1.88 (s, 9H) ppm; 31 P -NMR (121 MHz, CDCl 3 ) δ = 22.4 ppm
Figure 0007457323000015

実施例4:ホスホニウム含有化合物4の合成
実施例1と同様の手順でトリス(o-トリル)ホスフィン(0.0904g,0.3mmol)、フッ化セシウム(0.278g,1.8mmol,6.0eq.)、ベンザイン前駆体2(0.242g,0.75mmol,2.5eq.)、アセトニトリル(3ml)を反応させ、シリカゲルクロマトグラフィーで精製し、ホスホニウム含有化合物4(0.152g,0.27mmol,91%)を淡い橙色粉末として得た。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。
Example 4: Synthesis of phosphonium-containing compound 4 Tris(o-tolyl)phosphine (0.0904 g, 0.3 mmol) and cesium fluoride (0.278 g, 1.8 mmol, 6.0 eq) were prepared in the same manner as in Example 1. ), benzyne precursor 2 (0.242 g, 0.75 mmol, 2.5 eq.), and acetonitrile (3 ml) were reacted and purified by silica gel chromatography to obtain phosphonium-containing compound 4 (0.152 g, 0.27 mmol, 91%) was obtained as a pale orange powder. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.

H-NMR(300MHz,CDCl):δ=7.70-7.78(m,3H),7.56-7.63(m,9H),7.32-7.46(m,3H),2.37(s,3H,CH),1.95(s,3H,CH),1.92(s,3H,CH),1.90(s,3H,CH),1.85(s,3H,CH)ppm;31P-NMR(121MHz,CDCl):δ=22.5ppm

Figure 0007457323000016
1H -NMR (300MHz, CDCl3 ): δ = 7.70-7.78 (m, 3H), 7.56-7.63 (m, 9H), 7.32-7.46 (m, 3H), 2.37 (s, 3H, CH3 ), 1.95 (s, 3H, CH3 ), 1.92 (s, 3H, CH3 ), 1.90 (s, 3H, CH3 ), 1.85 (s, 3H, CH3 ) ppm; 31P -NMR (121MHz, CDCl3 ): δ = 22.5 ppm.
Figure 0007457323000016

実施例5:ホスホニウム含有化合物5の合成
ジフェニル-o-トリルホスフィン(0.552g,2.0mmol)、硫黄パウダー(64.2mg,2.0mmol,1.0eq)、トルエン(20mL)をフラスコに入れ、加熱還流下で24時間反応させた後、減圧下で溶媒を留去した。シリカゲルクロマトグラフィー(ヘキサン:ジクロロメタン=1:1)で精製し、ジフェニル-o-トリルホスフィンスルフィド(0.559g,1.8mmol,91%)を白色粉末として得た。フッ化セシウム(0.278g,1.8mmol,6.0eq.)をフラスコに入れ、真空引きをしてヒートガンで約5分間加熱して含有水分を除去した。アルゴンガスで置換後、ジフェニル-o-トリルホスフィンスルフィド(0.0930g,0.30mmol)を加えアセトニトリル(5ml)に溶解させた。0℃に冷却し、アセトニトリル(10mL)に溶解させたベンザイン前駆体1(0.269g,0.90mmol,3.0eq.)をゆっくり加え、室温に昇温し24時間撹拌した。31P-NMRで反応終了を確認したのちセライトろ過で無機塩を取り除き、減圧下で溶媒を留去した。残渣をシリカゲルクロマトグラフィー((i)ジクロロメタン、(ii)ジクロロメタン:メタノール=20:1)で精製し、ホスホニウム含有化合物5(0.180g,0.29mmol,98%)を淡い橙色粉末として得た。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。
Example 5: Synthesis of phosphonium-containing compound 5 Diphenyl-o-tolylphosphine (0.552 g, 2.0 mmol), sulfur powder (64.2 mg, 2.0 mmol, 1.0 eq), and toluene (20 mL) were placed in a flask. After reacting for 24 hours under heating and reflux, the solvent was distilled off under reduced pressure. Purification by silica gel chromatography (hexane:dichloromethane=1:1) gave diphenyl-o-tolylphosphine sulfide (0.559 g, 1.8 mmol, 91%) as a white powder. Cesium fluoride (0.278 g, 1.8 mmol, 6.0 eq.) was placed in a flask, and the flask was evacuated and heated with a heat gun for about 5 minutes to remove the water content. After purging with argon gas, diphenyl-o-tolylphosphine sulfide (0.0930 g, 0.30 mmol) was added and dissolved in acetonitrile (5 ml). The mixture was cooled to 0° C., and benzyne precursor 1 (0.269 g, 0.90 mmol, 3.0 eq.) dissolved in acetonitrile (10 mL) was slowly added, and the mixture was heated to room temperature and stirred for 24 hours. After confirming the completion of the reaction by 31 P-NMR, inorganic salts were removed by celite filtration, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography ((i) dichloromethane, (ii) dichloromethane:methanol = 20:1) to obtain phosphonium-containing compound 5 (0.180 g, 0.29 mmol, 98%) as a pale orange powder. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.

H-NMR(300MHz,CDCl):δ=7.51-7.78(m,19H),7.22-7.29(m,2H),6.85-6.87(m,2H),2.04(s,3H)ppm;31P-NMR(121MHz,CDCl):δ=22.8ppm.

Figure 0007457323000017
1H -NMR (300MHz, CDCl 3 ): δ = 7.51-7.78 (m, 19H), 7.22-7.29 (m, 2H), 6.85-6.87 (m, 2H ), 2.04 (s, 3H) ppm; 31 P-NMR (121 MHz, CDCl 3 ): δ=22.8 ppm.
Figure 0007457323000017

実施例6:ホスホニウム含有化合物6の合成
実施例5と同様の手順でフェニルジ-o-トリルホスフィン(0.435g,1.5mmol)、硫黄パウダー(48.0mg,1.5mmol,1.0eq)、トルエン(15mL)を反応させ、シリカゲルクロマトグラフィー(ヘキサン:ジクロロメタン=1:1)で精製し、フェニルジ-o-トリルホスフィンスルフィド(0.477g,1.5mmol,98%)を白色粉末として得た。さらに、実施例5と同様の手順でフェニルジ-o-トリルホスフィンスルフィド(0.0961g,0.30mmol)、フッ化セシウム(0.273g,1.8mmol,6.0eq.)、ベンザイン前駆体1(0.266g,0.90mmol,3.0eq.)、アセトニトリル(15mL)を反応させ、シリカゲルクロマトグラフィー((i)ジクロロメタン、(ii)ジクロロメタン:メタノール=20:1)で精製し、ホスホニウム含有化合物6(0.186g,0.30mmol,99%)を淡い橙色粉末として得た。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。
Example 6: Synthesis of phosphonium-containing compound 6 Phenyl di-o-tolylphosphine (0.435 g, 1.5 mmol), sulfur powder (48.0 mg, 1.5 mmol, 1.0 eq), Toluene (15 mL) was reacted and purified by silica gel chromatography (hexane: dichloromethane = 1:1) to obtain phenyl di-o-tolylphosphine sulfide (0.477 g, 1.5 mmol, 98%) as a white powder. Furthermore, phenyldi-o-tolylphosphine sulfide (0.0961 g, 0.30 mmol), cesium fluoride (0.273 g, 1.8 mmol, 6.0 eq.), and benzyne precursor 1 ( 0.266 g, 0.90 mmol, 3.0 eq.) and acetonitrile (15 mL), and purified by silica gel chromatography ((i) dichloromethane, (ii) dichloromethane:methanol = 20:1) to obtain phosphonium-containing compound 6. (0.186 g, 0.30 mmol, 99%) was obtained as a pale orange powder. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.

H-NMR(300MHz,CDCl):δ=7.67-7.75(m,13H),7.26-7.52(m,6H),7.24-7.26(m,1H),6.89(d,J=6.6Hz,2H),1.99(s,6H)ppm;31P-NMR(121MHz,CDCl):δ=22.9ppm.

Figure 0007457323000018
1H -NMR (300MHz, CDCl 3 ): δ = 7.67-7.75 (m, 13H), 7.26-7.52 (m, 6H), 7.24-7.26 (m, 1H) ), 6.89 (d, J = 6.6 Hz, 2H), 1.99 (s, 6H) ppm; 31 P-NMR (121 MHz, CDCl 3 ): δ = 22.9 ppm.
Figure 0007457323000018

実施例7:ホスホニウム含有化合物7の合成
実施例5と同様の手順でトリス(o-トリル)ホスフィン(0.761g,2.5mmol)、硫黄パウダー(85.0mg,2.6mmol,1.1eq)、トルエン(25mL)を反応させ、シリカゲルクロマトグラフィー(ヘキサン:ジクロロメタン=2:1)で精製し、トリス(o-トリル)ホスフィンスルフィド(0.696g,2.1mmol,83%)を白色粉末として得た。さらに、実施例5と同様の手順でトリス(o-トリル)ホスフィンスルフィド(0.100g,0.30mmol)、フッ化セシウム(0.276g,1.8mmol,6.0eq.)、ベンザイン前駆体1(0.266g,0.90mmol,3.0eq.)、アセトニトリル(15mL)を反応させ、シリカゲルクロマトグラフィー((i)ジクロロメタン、(ii)ジクロロメタン:メタノール=20:1)で精製し、ホスホニウム含有化合物7(0.153g,0.24mmol,80%)を淡い橙色粉末として得た。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。
Example 7: Synthesis of phosphonium-containing compound 7 Tris(o-tolyl)phosphine (0.761 g, 2.5 mmol) and sulfur powder (85.0 mg, 2.6 mmol, 1.1 eq) were prepared in the same manner as in Example 5. , toluene (25 mL) was reacted and purified by silica gel chromatography (hexane: dichloromethane = 2:1) to obtain tris(o-tolyl)phosphine sulfide (0.696 g, 2.1 mmol, 83%) as a white powder. Ta. Furthermore, tris(o-tolyl)phosphine sulfide (0.100 g, 0.30 mmol), cesium fluoride (0.276 g, 1.8 mmol, 6.0 eq.), and benzyne precursor 1 were added in the same manner as in Example 5. (0.266 g, 0.90 mmol, 3.0 eq.) and acetonitrile (15 mL) were reacted and purified by silica gel chromatography ((i) dichloromethane, (ii) dichloromethane:methanol = 20:1) to obtain a phosphonium-containing compound. 7 (0.153 g, 0.24 mmol, 80%) was obtained as a pale orange powder. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.

H-NMR(300MHz,CDCl):δ=7.46-7.79(m,17H),7.27-7.44(m,2H),6.93-6.95(d,J=3.6Hz,2H),2.01(s,3H),1.96(s,3H),1.92(s,3H)ppm;31P-NMR(121MHz,CDCl):δ=23.4ppm.

Figure 0007457323000019
1H -NMR (300MHz, CDCl3 ): δ = 7.46-7.79 (m, 17H), 7.27-7.44 (m, 2H), 6.93-6.95 (d, J = 3.6Hz, 2H), 2.01 (s, 3H), 1.96 (s, 3H), 1.92 (s, 3H) ppm; 31P -NMR (121MHz, CDCl3 ): δ = 23.4 ppm.
Figure 0007457323000019

実施例8:ホスホニウム含有化合物8の合成
実施例5と同様の手順でトリス(o-トリル)ホスフィンスルフィド(0.101g,0.30mmol)、フッ化セシウム(0.273g,1.8mmol,6.0eq.)、ベンザイン前駆体2(0.589g,1.8mmol,6.0eq.)、アセトニトリル(15mL)を反応させ、シリカゲルクロマトグラフィー((i)ジクロロメタン、(ii)ジクロロメタン:メタノール=20:1)で精製し、ホスホニウム含有化合物8(0.169g,0.24mmol,81%)を淡い橙色粉末として得た。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。
Example 8: Synthesis of phosphonium-containing compound 8 Tris(o-tolyl)phosphine sulfide (0.101 g, 0.30 mmol), cesium fluoride (0.273 g, 1.8 mmol, 6.0 g) were prepared in the same manner as in Example 5. 0 eq.), benzyne precursor 2 (0.589 g, 1.8 mmol, 6.0 eq.), and acetonitrile (15 mL) were reacted, and silica gel chromatography ((i) dichloromethane, (ii) dichloromethane:methanol = 20:1 ) to obtain phosphonium-containing compound 8 (0.169 g, 0.24 mmol, 81%) as a pale orange powder. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.

H-NMR(300MHz,CDCl)δ=7.49-7.84(m,12H),6.98-7.01(m,3H),6.68(s,2H),2.35(s,3H),2.33(s,3H),2.24(s,3H),1.97(s,3H),1.87(s,3H),1.75(s,3H),1.70(s,3H)ppm;31P-NMR(121MHz,CDCl)δ=19.3ppm.

Figure 0007457323000020
1 H-NMR (300 MHz, CDCl 3 ) δ = 7.49-7.84 (m, 12H), 6.98-7.01 (m, 3H), 6.68 (s, 2H), 2.35 (s, 3H), 2.33 (s, 3H), 2.24 (s, 3H), 1.97 (s, 3H), 1.87 (s, 3H), 1.75 (s, 3H) , 1.70 (s, 3H) ppm; 31 P-NMR (121 MHz, CDCl 3 ) δ = 19.3 ppm.
Figure 0007457323000020

比較例1:ホスホニウム含有化合物9の合成
市販のテトラフェニルホスホニウムブロマイド(ホスホニウム含有化合物9)を使用して、化学的安定性評価を行った。購入した試薬は特に精製を行わず、そのまま用いた。

Figure 0007457323000021
Comparative Example 1: Synthesis of Phosphonium-Containing Compound 9 Chemical stability was evaluated using commercially available tetraphenylphosphonium bromide (phosphonium-containing compound 9). The purchased reagents were used as they were without any particular purification.
Figure 0007457323000021

比較例2:ホスホニウム含有化合物10の合成
トリフェニルホスフィン(2.62g,10mmol)、硫黄パウダー(0.323g,10mmol,1.0eq)、トルエン(100mL)をフラスコに入れ、加熱還流下で24時間させた後、減圧下で溶媒を留去した。残渣をシリカゲルクロマトグラフィー(ヘキサン:ジクロロメタン=1:1)で精製し、トリフェニルホスフィンスルフィド(2.72g,9.2mmol,92%)を白色粉末として得た。フッ化セシウム(0.269g,1.8mmol,6.0eq.)をフラスコに入れ、真空引きをしてヒートガンで約5分間加熱して含有水分を除去した。アルゴンガスで置換後、トリフェニルホスフィンスルフィド(0.0881g,0.30mmol)を加えアセトニトリル(5ml)に溶解させた。0℃に冷却し、アセトニトリル(10mL)に溶解させたベンザイン前駆体1(0.269g,0.90mmol,3.0eq.)をゆっくり加え、室温に昇温し24時間撹拌した。31P-NMRで反応終了を確認したのちセライトろ過で無機塩を取り除き、減圧下で溶媒を留去した。残渣をシリカゲルクロマトグラフィー((i)ジクロロメタン、(ii)ジクロロメタン:メタノール=20:1)で精製し、ホスホニウム含有化合物10(0.114g,0.19mmol,64%)を白色粉末として得た。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。
Comparative Example 2: Synthesis of phosphonium-containing compound 10 Triphenylphosphine (2.62 g, 10 mmol), sulfur powder (0.323 g, 10 mmol, 1.0 eq), and toluene (100 mL) were placed in a flask and heated under reflux for 24 hours. After that, the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (hexane:dichloromethane=1:1) to obtain triphenylphosphine sulfide (2.72 g, 9.2 mmol, 92%) as a white powder. Cesium fluoride (0.269 g, 1.8 mmol, 6.0 eq.) was placed in a flask, and the flask was evacuated and heated with a heat gun for about 5 minutes to remove the water content. After purging with argon gas, triphenylphosphine sulfide (0.0881 g, 0.30 mmol) was added and dissolved in acetonitrile (5 ml). The mixture was cooled to 0° C., and benzyne precursor 1 (0.269 g, 0.90 mmol, 3.0 eq.) dissolved in acetonitrile (10 mL) was slowly added, and the mixture was heated to room temperature and stirred for 24 hours. After confirming the completion of the reaction by 31 P-NMR, inorganic salts were removed by celite filtration, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography ((i) dichloromethane, (ii) dichloromethane:methanol = 20:1) to obtain phosphonium-containing compound 10 (0.114 g, 0.19 mmol, 64%) as a white powder. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.

H-NMR(300MHz,CDCl):δ=7.81-7.84(m,3H),7.65-7.78(m,14H),7.23-7.27(m,5H),6.90(d,J=7.6Hz,2H)ppm;31P-NMR(121MHz,CDCl):δ=22.6ppm

Figure 0007457323000022
1H -NMR (300MHz, CDCl 3 ): δ = 7.81-7.84 (m, 3H), 7.65-7.78 (m, 14H), 7.23-7.27 (m, 5H ), 6.90 (d, J = 7.6 Hz, 2H) ppm; 31 P-NMR (121 MHz, CDCl 3 ): δ = 22.6 ppm
Figure 0007457323000022

実施例9:ホスホニウム含有化合物11の合成
2-ブロモトルエン(6.85g,40mmol)をTHF(60ml)に溶解させ、-78℃に冷却したのちn-BuLi(27.5mL,44mmol,1.1eq)をゆっくり滴下し、-78℃で30分攪拌した。この反応溶液を-78℃の塩化亜鉛(6.55g,48mmol,1.2eq.)、THF(60mL)の溶液にカニューレを用いてゆっくり滴下し、-78℃で2時間攪拌した。この反応溶液を-78℃の三塩化リン(4.19mL,48mmol,1.2eq.)、THF(80mL)の溶液にカニューレを用いてゆっくり滴下し、室温に昇温後、18時間攪拌した。31P-NMRで選択的に一置換体が生成していることを確認し、減圧下で溶媒を留去した。蒸留ヘキサン(50mL)を加え目的物を抽出後、減圧下で溶媒を留去し、THF(120mL)を加え、-78℃に冷却した。4-フルオロ-2-メチルフェニルマグネシウムブロミド(70.4mL,88mmol,ca.1.25M,2.2eq.)をゆっくり加え、室温に昇温し24時間撹拌した。31P-NMRで目的物が生成していることを確認し、塩化アンモニウム水を適量加え反応を止め、酢酸エチルにより抽出した。有機層を硫酸マグネシウムで乾燥した後ろ過し、減圧下で溶媒を留去した。シリカゲルクロマトグラフィー(ヘキサン)で精製し、中間体1(4.77g,14mmol,35%)を白色粉末として得た。
Example 9: Synthesis of phosphonium-containing compound 11 2-bromotoluene (6.85 g, 40 mmol) was dissolved in THF (60 ml), cooled to -78°C, and then n-BuLi (27.5 mL, 44 mmol, 1.1 eq ) was slowly added dropwise and stirred at -78°C for 30 minutes. This reaction solution was slowly added dropwise to a solution of zinc chloride (6.55 g, 48 mmol, 1.2 eq.) and THF (60 mL) at -78°C using a cannula, and the mixture was stirred at -78°C for 2 hours. This reaction solution was slowly added dropwise to a solution of phosphorus trichloride (4.19 mL, 48 mmol, 1.2 eq.) and THF (80 mL) at -78°C using a cannula, and the mixture was heated to room temperature and stirred for 18 hours. It was confirmed by 31 P-NMR that a monosubstituted product was selectively produced, and the solvent was distilled off under reduced pressure. After adding distilled hexane (50 mL) to extract the target product, the solvent was distilled off under reduced pressure, THF (120 mL) was added, and the mixture was cooled to -78°C. 4-Fluoro-2-methylphenylmagnesium bromide (70.4 mL, 88 mmol, ca. 1.25 M, 2.2 eq.) was slowly added, the temperature was raised to room temperature, and the mixture was stirred for 24 hours. It was confirmed by 31 P-NMR that the target product had been produced, and an appropriate amount of ammonium chloride water was added to stop the reaction, followed by extraction with ethyl acetate. The organic layer was dried over magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. Purification was performed by silica gel chromatography (hexane) to obtain Intermediate 1 (4.77 g, 14 mmol, 35%) as a white powder.

実施例5と同様の手順で中間体1(0.306g,0.90mmol)、硫黄パウダー(32.9mg,0.99mmol,1.1eq)、トルエン(9mL)を反応させ、シリカゲルクロマトグラフィー(ヘキサン:ジクロロメタン=2:1)で精製し、中間体2(0.259g,0.70mmol,77%)を白色粉末として得た。 Intermediate 1 (0.306 g, 0.90 mmol), sulfur powder (32.9 mg, 0.99 mmol, 1.1 eq), and toluene (9 mL) were reacted in the same manner as in Example 5, and purified by silica gel chromatography (hexane:dichloromethane=2:1) to obtain intermediate 2 (0.259 g, 0.70 mmol, 77%) as a white powder.

中間体2(0.372g,1.0mmol)、p-クレゾール(0.270g,2.5mmol,2.5eq.)、炭酸カリウム(0.415g,3.0mmol,3.0eq.)をNMP(10ml)に溶解させ、130℃で1時間攪拌した後、160℃に昇温して14時間反応させた。反応終了後溶液を室温まで冷却し、水を加えヘキサン/酢酸エチル=4:1で抽出した。その後水で三回洗浄し、有機層を硫酸マグネシウムで乾燥した後ろ過し、減圧下で溶媒を留去した。シリカゲルクロマトグラフィー(ヘキサン/ジクロロメタン=4:1)で精製し、中間体3(0.281g,0.51mmol,51%)を白色粉末として得た。
実施例5と同様の手順で中間体3(0.165g,0.30mmol)、フッ化セシウム(0.272g,1.8mmol,6.0eq.)、ベンザイン前駆体1(0.267g,0.6mmol,3.0eq.)、アセトニトリル(15mL)を反応させ、シリカゲルクロマトグラフィー((i)ジクロロメタン、(ii)ジクロロメタン:メタノール=20:1)で精製し、ホスホニウム含有化合物11(0.235g,0.28mmol,92%)を淡い橙色粉末として得た。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。
Intermediate 2 (0.372 g, 1.0 mmol), p-cresol (0.270 g, 2.5 mmol, 2.5 eq.), and potassium carbonate (0.415 g, 3.0 mmol, 3.0 eq.) were dissolved in NMP (10 ml), stirred at 130° C. for 1 hour, and then heated to 160° C. and reacted for 14 hours. After the reaction was completed, the solution was cooled to room temperature, water was added, and extracted with hexane/ethyl acetate = 4:1. Then, it was washed three times with water, and the organic layer was dried over magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. It was purified by silica gel chromatography (hexane/dichloromethane = 4:1) to obtain intermediate 3 (0.281 g, 0.51 mmol, 51%) as a white powder.
In the same manner as in Example 5, intermediate 3 (0.165 g, 0.30 mmol), cesium fluoride (0.272 g, 1.8 mmol, 6.0 eq.), benzyne precursor 1 (0.267 g, 0.6 mmol, 3.0 eq.), and acetonitrile (15 mL) were reacted, and the mixture was purified by silica gel chromatography ((i) dichloromethane, (ii) dichloromethane:methanol=20:1) to obtain phosphonium-containing compound 11 (0.235 g, 0.28 mmol, 92%) as a pale orange powder. The structure shown in the following formula was confirmed by NMR. The spectrum data is shown below.

H-NMR(300MHz,CDCl):δ=7.34-7.82(m,8H),7.18-7.28(m,7H),6.87-7.02(m,12H),2.37(s,6H),1.81-2.02(m,9H)ppm;31P-NMR(121MHz,CDCl):δ=21.8-22.0ppm.

Figure 0007457323000023
1 H-NMR (300 MHz, CDCl 3 ): δ=7.34-7.82 (m, 8H), 7.18-7.28 (m, 7H), 6.87-7.02 (m, 12H), 2.37 (s, 6H), 1.81-2.02 (m, 9H) ppm; 31 P-NMR (121 MHz, CDCl 3 ): δ=21.8-22.0 ppm.
Figure 0007457323000023

<ホスホニウム含有ポリマーの合成>
実施例10:ホスホニウム含有ポリマー1の合成
実施例9と同様の手順で中間体2(0.373g,1.0mmol)、ビスフェノールA(0.373g,1.0mmol,1.0eq.)、炭酸カリウム(0.194g,1.4mmol,1.4eq.)、NMP(1.1ml)を反応させ、中間体4(0.523g,0.93mmol,93%)を白色固体として得た。
<Synthesis of phosphonium-containing polymer>
Example 10: Synthesis of phosphonium-containing polymer 1 Intermediate 2 (0.373 g, 1.0 mmol), bisphenol A (0.373 g, 1.0 mmol, 1.0 eq.), potassium carbonate were prepared in the same manner as in Example 9. (0.194 g, 1.4 mmol, 1.4 eq.) and NMP (1.1 ml) were reacted to obtain Intermediate 4 (0.523 g, 0.93 mmol, 93%) as a white solid.

フッ化セシウム(2.92g,19mmol,24eq.)をフラスコに入れ、真空引きをしてヒートガンで約5分間加熱して含有水分を除去した。アルゴンガスで置換後、中間体4(0.449g,0.80mmol)を加えTHF(72mL)、アセトニトリル(8ml)に溶解させた。0℃に冷却し、ベンザイン前駆体1(2.88g,9.6mmol,12eq.)をゆっくり加え、室温に昇温し24時間撹拌した。31P-NMRで反応終了を確認したのちセライトろ過で無機塩を取り除き、減圧下で溶媒を留去した。残渣を少量のジクロロメタンに溶解させ、酢酸エチルにゆっくり滴下した。酢酸エチル、脱イオン水で洗浄し固体を回収後、60℃で2時間減圧乾燥させ、ホスホニウム含有ポリマー1(0.425g,0.49mmol,62%)を淡い橙色固体として得た。ゲル浸透クロマトグラフィーによって分析したところ、得られたポリマーの数平均分子量は1万2千程度、重量平均分子量は2万8千程度であった。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。 Cesium fluoride (2.92 g, 19 mmol, 24 eq.) was placed in a flask, and the flask was evacuated and heated with a heat gun for about 5 minutes to remove the water content. After purging with argon gas, Intermediate 4 (0.449 g, 0.80 mmol) was added and dissolved in THF (72 mL) and acetonitrile (8 ml). The mixture was cooled to 0° C., and benzyne precursor 1 (2.88 g, 9.6 mmol, 12 eq.) was slowly added thereto, heated to room temperature, and stirred for 24 hours. After confirming the completion of the reaction by 31 P-NMR, inorganic salts were removed by celite filtration, and the solvent was distilled off under reduced pressure. The residue was dissolved in a small amount of dichloromethane and slowly added dropwise to ethyl acetate. After washing with ethyl acetate and deionized water to collect the solid, it was dried under reduced pressure at 60° C. for 2 hours to obtain phosphonium-containing polymer 1 (0.425 g, 0.49 mmol, 62%) as a pale orange solid. When analyzed by gel permeation chromatography, the number average molecular weight of the obtained polymer was about 12,000, and the weight average molecular weight was about 28,000. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.

H-NMR(300MHz,CDCl)δ=7.32-7.84(m,16H),6.76-7.09(m,11H),1.75-2.00(m,9H),1.58-1.72(s,6H)ppm;31P-NMR(121MHz,CDCl)δ=21.6-21.8ppm 1H -NMR (300MHz, CDCl 3 ) δ = 7.32-7.84 (m, 16H), 6.76-7.09 (m, 11H), 1.75-2.00 (m, 9H) , 1.58-1.72 (s, 6H) ppm; 31 P-NMR (121 MHz, CDCl 3 ) δ = 21.6-21.8 ppm

実施例11:ホスホニウム含有ポリマー2の合成
実施例10と同様の手順で中間体2(0.111g,0.30mmol)、9,9-ビス(4-ヒドロキシフェニル)フルオレン(0.105g,0.30mmol,1.0eq.)、炭酸カリウム(0.0572g,0.42mmol,1.4eq.)、NMP(0.43ml)を反応させ、中間体5(0.171g,0.25mmol,83%)を白色固体として得た。
Example 11: Synthesis of Phosphonium-Containing Polymer 2 Intermediate 2 (0.111 g, 0.30 mmol), 9,9-bis(4-hydroxyphenyl)fluorene (0.105 g, 0.1 g, 30 mmol, 1.0 eq.), potassium carbonate (0.0572 g, 0.42 mmol, 1.4 eq.), and NMP (0.43 ml) were reacted to produce intermediate 5 (0.171 g, 0.25 mmol, 83%). was obtained as a white solid.

実施例10と同様の手順で中間体5(0.547g,0.80mmol)、ベンザイン前駆体1(2.87g,9.6mmol,12eq.)、フッ化セシウム(2.91g,19mmol,24eq.)、THF(72mL)、アセトニトリル(8ml)を反応させホスホニウム含有ポリマー2(0.439g,0.44mmol,56%)を淡い橙色固体として得た。ゲル浸透クロマトグラフィーによって分析したところ、得られたポリマーの数平均分子量は7千程度、重量平均分子量は1万5千程度であった。NMRにて下記式に示す構造であることを確認した。スペクトルデータを以下に示す。 Intermediate 5 (0.547 g, 0.80 mmol), benzyne precursor 1 (2.87 g, 9.6 mmol, 12 eq.), and cesium fluoride (2.91 g, 19 mmol, 24 eq.) were prepared in the same manner as in Example 10. ), THF (72 mL), and acetonitrile (8 ml) were reacted to obtain phosphonium-containing polymer 2 (0.439 g, 0.44 mmol, 56%) as a pale orange solid. When analyzed by gel permeation chromatography, the number average molecular weight of the obtained polymer was about 7,000, and the weight average molecular weight was about 15,000. It was confirmed by NMR that it had the structure shown in the following formula. The spectral data is shown below.

H-NMR(300MHz,CDCl)δ=7.08-7.82(m,24H),6.63-7.02(m,11H),1.65-2.05(m,9H)ppm;31P-NMR(121MHz,CDCl)δ=21.6-21.8ppm

Figure 0007457323000024
1H -NMR (300MHz, CDCl 3 ) δ = 7.08-7.82 (m, 24H), 6.63-7.02 (m, 11H), 1.65-2.05 (m, 9H) ppm; 31 P-NMR (121 MHz, CDCl 3 ) δ = 21.6-21.8 ppm
Figure 0007457323000024

(化学安定性の評価)
<ホスホニウム含有化合物の化学安定性評価(イオン交換基の安定性)>
ホスホニウム含有化合物中のイオン交換基の塩基に対する化学的安定性を、31P-NMR分光測定をもとに以下の方法によって評価した。水酸化カリウムを重メタノール/重水=5/1の混合溶媒に溶解した。水酸化カリウム溶液は0.1M、1M、6Mの3種類の濃度のものを調製した。各ホスホニウム含有化合物を上記の水酸化カリウム溶液に溶解させ、サンプル溶液を調製した。また、基準物質であるリン酸溶液をキャピラリーチューブに入れ封管し、これを外部標準とした。各ホスホニウム含有化合物溶液を入れたNMRチューブに、外部標準チューブを挿入し室温で31P-NMR測定を行った。次に、各ホスホニウム含有化合物溶液をオイルバス中80℃で加熱し、所定の時間を経過した後31P-NMR測定を行った。各サンプルの残存率を下記式により算出し、分解挙動を追跡した。
残存率={(加熱後のホスホニウム含有化合物のピーク面積)/(リン酸のピーク面積)}/{(加熱前のホスホニウム含有化合物のピーク面積)/(リン酸のピーク面積)}×100(%)
(Evaluation of chemical stability)
<Chemical stability evaluation of phosphonium-containing compounds (stability of ion exchange groups)>
The chemical stability of the ion exchange group in the phosphonium-containing compound against bases was evaluated by the following method based on 31 P-NMR spectrometry. Potassium hydroxide was dissolved in a mixed solvent of heavy methanol/heavy water = 5/1. Potassium hydroxide solutions were prepared in three concentrations: 0.1M, 1M, and 6M. Each phosphonium-containing compound was dissolved in the above potassium hydroxide solution to prepare a sample solution. In addition, a phosphoric acid solution as a reference substance was placed in a capillary tube and sealed, and this was used as an external standard. An external standard tube was inserted into the NMR tube containing each phosphonium-containing compound solution, and 31 P-NMR measurement was performed at room temperature. Next, each phosphonium-containing compound solution was heated at 80° C. in an oil bath, and after a predetermined period of time, 31 P-NMR measurement was performed. The residual rate of each sample was calculated using the following formula, and the decomposition behavior was tracked.
Residual rate = {(Peak area of phosphonium-containing compound after heating) / (peak area of phosphoric acid)} / {(peak area of phosphonium-containing compound before heating) / (peak area of phosphoric acid)} x 100 (% )

各ホスホニウム含有化合物の耐久性によって水酸化カリウム濃度を使い分け、各化合物の耐久性の序列を比較した。それぞれ0.1Mの水酸化カリウム中で評価した結果を表1に、1Mの水酸化カリウム中で評価した結果を表2に、6Mの水酸化カリウム中で評価した結果を表3に示す。 Different potassium hydroxide concentrations were used depending on the durability of each phosphonium-containing compound, and the ranking of the durability of each compound was compared. The results of evaluation in 0.1 M potassium hydroxide are shown in Table 1, the results of evaluation in 1 M potassium hydroxide in Table 2, and the results of evaluation in 6 M potassium hydroxide in Table 3.

Figure 0007457323000025
Figure 0007457323000025

Figure 0007457323000026
Figure 0007457323000026

Figure 0007457323000027
Figure 0007457323000027

表1~3に示す通り、テトラフェニルホスホニウム含有化合物において、オルト位の置換基を導入することにより、塩基性条件における耐久性が大きく向上することがわかる。また、耐久性の序列はフェニルスルフィド基の有無に大きく左右されないことがわかる。 As shown in Tables 1 to 3, it can be seen that the durability under basic conditions is greatly improved by introducing a substituent at the ortho position in the tetraphenylphosphonium-containing compound. Furthermore, it can be seen that the order of durability is not greatly influenced by the presence or absence of phenyl sulfide groups.

<ホスホニウム含有ポリマーの化学安定性評価(エーテル結合の安定性)>
ホスホニウム含有ポリマー中のエーテル結合による化学安定性の影響について、ホスホニウム含有化合物11をモデル化合物として、以下の方法により評価した。ホスホニウム含有化合物11を1M KOH中、80℃の条件で30日間放置し、放置前、15日経過後、及び30日経過後に、それぞれ31P-NMR測定を行った。NMRスペクトルを図1に示す。ホスホニウム含有化合物11に帰属されるピークの積分面積は全く変化せず、分解は起こっていないことがわかる。以上により、ホスホニウム含有ポリマーに含まれるエーテル結合の、塩基性条件での劣化はほとんどないと言え、今回設計したポリエーテルベースの電解質膜は非常に化学安定性が高いことが示唆される。
<Chemical stability evaluation of phosphonium-containing polymers (stability of ether bonds)>
The influence of ether bonds in the phosphonium-containing polymer on chemical stability was evaluated by the following method using phosphonium-containing compound 11 as a model compound. Phosphonium-containing compound 11 was left in 1M KOH at 80° C. for 30 days, and 31 P-NMR measurements were performed before, after 15 days, and after 30 days. The NMR spectrum is shown in FIG. It can be seen that the integrated area of the peak assigned to phosphonium-containing compound 11 does not change at all, indicating that no decomposition has occurred. From the above, it can be said that the ether bonds contained in the phosphonium-containing polymer hardly deteriorate under basic conditions, suggesting that the polyether-based electrolyte membrane designed this time has extremely high chemical stability.

(アニオン交換膜の作成・物性評価)
<アニオン交換膜の成膜>
膜はドロップキャスト法で作成した。2.5cm×2.5cmのガラス基板にホスホニウム含有ポリマーの20重量%DMF溶液を滴下し、オーブンで60℃,24時間常圧化で加熱後、24時間真空乾燥をした。その後、ガラス基板から膜を剥がし、1M NaOH溶液に24時間室温で浸漬させ、脱イオン水で洗浄後、各種測定を行った。
(Creation and physical property evaluation of anion exchange membrane)
<Formation of anion exchange membrane>
The membrane was created by drop casting. A 20% by weight DMF solution of the phosphonium-containing polymer was dropped onto a 2.5 cm x 2.5 cm glass substrate, heated in an oven at 60° C. under normal pressure for 24 hours, and then vacuum dried for 24 hours. Thereafter, the film was peeled off from the glass substrate, immersed in a 1M NaOH solution at room temperature for 24 hours, washed with deionized water, and then various measurements were performed.

<熱安定性評価>
アニオン交換膜の熱安定性を熱重量測定(TGA)によって測定した。40~800℃の温度範囲で測定を行い、熱分解温度(Td:5重量%熱分解温度)を求めた。TGA曲線を図2に、Tdを表4に示す。
<Thermal stability evaluation>
The thermal stability of the anion exchange membrane was measured by thermogravimetry (TGA). Measurements were performed in the temperature range of 40 to 800°C to determine the thermal decomposition temperature (Td: 5% by weight thermal decomposition temperature). The TGA curve is shown in FIG. 2, and the Td is shown in Table 4.

<含水率(Water Uptake:WU)>
脱イオン水に24時間浸漬させペーパータオルで表面の水気をとり、湿潤重量(Mw)を測定した。その後、60℃で24時間真空乾燥を行い、乾燥重量(Md)を測定した。含水率(WU)は以下の式にそれぞれ測定したMwとMdを代入することで算出した。結果を表4に示す。

WU(%)=(Mw-Md)/Md×100%
Md:乾燥重量 Mw:湿潤重量
<Water content (Water Uptake: WU)>
The sample was immersed in deionized water for 24 hours, the surface was dried with a paper towel, and the wet weight (Mw) was measured. Thereafter, vacuum drying was performed at 60° C. for 24 hours, and the dry weight (Md) was measured. The water content (WU) was calculated by substituting the measured Mw and Md into the following formula. The results are shown in Table 4.

WU (%) = (Mw - Md) / Md x 100%
Md: Dry weight Mw: Wet weight

<イオン交換容量(Ion Exchange Capacity:IEC)測定>
イオン交換容量とはアニオン交換膜の取り込める対アニオンの量を示し、通常は取り込んだヒドロキシイオンについて測定される。IECが高いほど相対的に膜抵抗は低くなり、燃料電池、水電解槽などのデバイスにおいて高い発電効率が期待される。
IECは次のように測定した。アニオン交換膜を1M水酸化ナトリウム水溶液に室温で48時間浸漬し、軽くペーパータオルで水気を取った後0.025M HCl溶液に24時間浸漬させた。指示薬としてBTB溶液を数滴加え、0.025M水酸化ナトリウム水溶液で滴定を行った。IECを、下記式を用いて算出した。
IEC[mmol/g]=(VHCl×CHCl-VNaOH×CNaOH)/M
HCl:塩酸の体積 CHCl:塩酸の濃度 VNaOH:水酸化ナトリウムの体積 CNaOH:水酸化ナトリウムの濃度 M:試料の重量
<Ion Exchange Capacity (IEC) measurement>
Ion exchange capacity refers to the amount of counter anions that can be taken up by an anion exchange membrane, and is usually measured in terms of the hydroxy ions that are taken in. The higher the IEC, the lower the membrane resistance relatively, and high power generation efficiency is expected in devices such as fuel cells and water electrolyzers.
IEC was measured as follows. The anion exchange membrane was immersed in a 1M aqueous sodium hydroxide solution at room temperature for 48 hours, gently removed with a paper towel, and then immersed in a 0.025M HCl solution for 24 hours. Several drops of BTB solution was added as an indicator, and titration was performed with a 0.025M aqueous sodium hydroxide solution. IEC was calculated using the following formula.
IEC [mmol/g] = (V HCl ×C HCl -V NaOH ×C NaOH )/M
V HCl : Volume of hydrochloric acid C HCl : Concentration of hydrochloric acid V NaOH : Volume of sodium hydroxide C NaOH : Concentration of sodium hydroxide M: Weight of sample

算出したイオン交換容量の数値を表4に示す。 Table 4 shows the calculated ion exchange capacity values.

Figure 0007457323000028
Figure 0007457323000028

上記の結果から、本発明の実施例の膜は、優れた安定性を持つと同時に充分なアニオン伝導性を達成することができる。 From the above results, the membranes of the examples of the present invention can achieve sufficient anion conductivity while having excellent stability.

Claims (5)

ホスホニウム含有ポリマーであって、
該ポリマーは、下記一般式(1);
Figure 0007457323000029
(式中、R~Rは、同一又は異なって、水素原子、置換基、又は、ポリマーが有する他の構造との直接結合を表し、該置換基は、1価の置換基又は2価の置換基であり、該1価の置換基は、1価の有機基、アミノ基、又は、ハロゲン原子であり、該2価の置換基は、1価の有機基若しくはアミノ基から更に水素原子が1個脱離した構造の基、酸素原子、又は、硫黄原子である。~Rの少なくとも1つは、ポリマーが有する他の構造との直接結合であるか、又は、当該直接結合を有する2価の置換基である。R~Rの少なくとも1つは、オルト位の置換基であって、炭化水素基、酸素原子を介した炭化水素基、若しくは、ハロゲン原子である。~Rは、それぞれ、環構造に複数個結合していてもよく、複数個の2価の置換基が結合して更に環構造を形成していてもよい。Xは、カウンターアニオンを表す。)で表される構造を有し、
一般式(1)で表される構造中の、カチオン構造を主鎖に有するホモポリマー、該カチオン構造と、別の構造(構造単位)とをそれぞれ主鎖に有する共重合ポリマー、又は、該カチオン構造を側鎖に有するポリマーであり、
共重合ポリマーにおける別の構造、カチオン構造を側鎖に有するポリマーにおける主鎖の構造は、芳香環を含む構造単位からなることを特徴とするホスホニウム含有ポリマー。
A phosphonium-containing polymer,
The polymer has the following general formula (1);
Figure 0007457323000029
(In the formula, R 1 to R 4 are the same or different and represent a hydrogen atom, a substituent, or a direct bond with another structure possessed by the polymer, and the substituent is a monovalent substituent or a divalent substituent. The monovalent substituent is a monovalent organic group, an amino group, or a halogen atom, and the divalent substituent is a monovalent organic group or an amino group further containing a hydrogen atom. is a group with a structure in which one is eliminated, an oxygen atom, or a sulfur atom. At least one of R 1 to R 4 is a direct bond with another structure possessed by the polymer, or the direct bond is At least one of R 1 to R 4 is a substituent at the ortho position, and is a hydrocarbon group , a hydrocarbon group via an oxygen atom, or a halogen atom. Each of R 1 to R 4 may be bonded to a ring structure in plural numbers, or may be bonded to a plurality of divalent substituents to further form a ring structure . represents an anion.) has a structure represented by
A homopolymer having a cation structure in the main chain, a copolymer having the cation structure and another structure (structural unit) in the main chain, or a cation in the structure represented by general formula (1) It is a polymer that has a structure in its side chain,
A phosphonium-containing polymer characterized in that another structure in the copolymer polymer, a main chain structure in a polymer having a cation structure in a side chain, consists of a structural unit containing an aromatic ring .
下記一般式(1);
Figure 0007457323000030
(式中、R~Rは、同一又は異なって、水素原子、又は、置換基を表す。該置換基は、1価の置換基又は2価の置換基であり、該1価の置換基は、1価の有機基、アミノ基、又は、ハロゲン原子であり、該2価の置換基は、1価の有機基若しくはアミノ基から更に水素原子が1個脱離した構造の基、酸素原子、又は、硫黄原子である。~Rの少なくともつは、オルト位の置換基であって、炭化水素基、酸素原子を介した炭化水素基、硫黄原子を介した炭化水素基、若しくは、ハロゲン原子である。~Rは、それぞれ、環構造に複数個結合していてもよく、複数個の2価の置換基が結合して更に環構造を形成していてもよい。Xは、カウンターアニオンを表す。)で表されることを特徴とするホスホニウム含有化合物(ただし、テトラ(o-トリル)ホスホニウムヨージドを除く)
The following general formula (1):
Figure 0007457323000030
(wherein R 1 to R 4 are the same or different and represent a hydrogen atom or a substituent. The substituent is a monovalent substituent or a divalent substituent, the monovalent substituent is a monovalent organic group, an amino group, or a halogen atom, and the divalent substituent is a group having a structure in which one hydrogen atom has been further removed from a monovalent organic group or an amino group, an oxygen atom, or a sulfur atom. At least four of R 1 to R 4 are substituents at the ortho position and are a hydrocarbon group, a hydrocarbon group via an oxygen atom, a hydrocarbon group via a sulfur atom, or a halogen atom. A plurality of R 1 to R 4 may each be bonded to a ring structure, or a plurality of divalent substituents may be bonded to further form a ring structure. X - represents a counter anion. )
請求項1に記載のホスホニウム含有ポリマー又は請求項2に記載のホスホニウム含有化合物を製造する方法であって、
該製造方法は、ホスフィン化合物とアラインとを反応させる工程を含むことを特徴とするホスホニウム含有ポリマー又はホスホニウム含有化合物の製造方法。
A method for producing the phosphonium-containing polymer according to claim 1 or the phosphonium-containing compound according to claim 2, comprising:
A method for producing a phosphonium-containing polymer or a phosphonium-containing compound, characterized in that the production method includes a step of reacting a phosphine compound with aryne.
請求項1に記載のホスホニウム含有ポリマーを含むことを特徴とするアニオン交換膜。 An anion exchange membrane comprising the phosphonium-containing polymer according to claim 1. 請求項1に記載のホスホニウム含有ポリマーを含むことを特徴とする電解質材料。 An electrolyte material comprising the phosphonium-containing polymer according to claim 1.
JP2020063771A 2020-03-31 2020-03-31 Phosphonium-containing polymer Active JP7457323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020063771A JP7457323B2 (en) 2020-03-31 2020-03-31 Phosphonium-containing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063771A JP7457323B2 (en) 2020-03-31 2020-03-31 Phosphonium-containing polymer

Publications (2)

Publication Number Publication Date
JP2021161223A JP2021161223A (en) 2021-10-11
JP7457323B2 true JP7457323B2 (en) 2024-03-28

Family

ID=78004446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063771A Active JP7457323B2 (en) 2020-03-31 2020-03-31 Phosphonium-containing polymer

Country Status (1)

Country Link
JP (1) JP7457323B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957323B (en) * 2022-06-16 2024-02-27 华侨大学 Synthesis method of aryl phosphine compound
CN115974919B (en) * 2022-11-14 2024-04-16 石河子大学 2- (Triphenylphosphine) benzenesulfonate derivative and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974919A (en) 2022-11-14 2023-04-18 石河子大学 2- (triphenyl phosphonium) benzene sulfonate derivative and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974919A (en) 2022-11-14 2023-04-18 石河子大学 2- (triphenyl phosphonium) benzene sulfonate derivative and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
David Marcoux and Andre B. Charette,Nickel-Catalyzed Synthesis of Phosphonium Salts from Aryl Halides and Triphenylphosphine,Adv. Synth. Catal.,350,2008年12月09日,2967-2974,DOI:10.1002/adsc.200800542

Also Published As

Publication number Publication date
JP2021161223A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
US5403675A (en) Sulfonated polymers for solid polymer electrolytes
JP3698067B2 (en) Monomer having electron-withdrawing group and electron-donating group, copolymer using the same, and proton conducting membrane
JP7457323B2 (en) Phosphonium-containing polymer
JP7010500B2 (en) Stability Poly (imidazolium) hydroxyd
US10934290B2 (en) Donor-acceptor nanohoop compounds and methods of making and using the same
CN103910757A (en) Bis(4-halogenated phenyl) (3&#39;-phosphonic phenyl)oxophosphines as well as salts and preparation methods thereof
CN104211944A (en) Multi-fluorine polyarylether, preparation method and application thereof
KR102098726B1 (en) Ionic liquid
WO2016014524A1 (en) Phosphonium cations and polymers incorporating them
JP2023131148A (en) Sulfonium-containing polymer
WO2018061677A1 (en) Substituted bis(trifluorovinyl)benzene compound
JP4422256B2 (en) Phosphazene derivative having sulfonyl group and process for producing the same
JP5682920B2 (en) Proton conducting polymer and method for producing the same
JP6399555B2 (en) A method for producing polyaniline having a self-doping function and an antistatic agent comprising polyaniline produced by the method.
CN104004016B (en) The preparation method of 3-itrile group-2,4-dihalophenyl phosphonic acids and salt thereof
JPH0753681A (en) Carbazole compound and its oxidative polymerization product
CN103755735B (en) Curable fluorine-containing polyarylether
JP6996719B2 (en) Binder for fuel cells
CN102659839A (en) Double (4-halogen phenyl group) (3&#39;-dialkyl oxygen phosphine phenone group) oxygen phosphine and preparation method thereof
CN103270042B (en) Carry the aromatics of at least one phosphonic acid ester or phosphinate group, its preparation method and purposes
JP4875250B2 (en) Polyetherketone and process for producing the same
CN104151354A (en) 3,3,-diphosphonic acid-4, 4,-dihalodiphenylsulfone and its salts and their preparation method
JP5229519B2 (en) π-conjugated polymer and method for producing the same
JP2005213228A (en) New dialdehyde compound and arylamine polymer
JP2004018449A (en) Aromatic compound containing sulfonic acid group and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240307

R150 Certificate of patent or registration of utility model

Ref document number: 7457323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150