JP7455105B2 - Non-aqueous electrolyte for lithium ion batteries and its use - Google Patents

Non-aqueous electrolyte for lithium ion batteries and its use Download PDF

Info

Publication number
JP7455105B2
JP7455105B2 JP2021192066A JP2021192066A JP7455105B2 JP 7455105 B2 JP7455105 B2 JP 7455105B2 JP 2021192066 A JP2021192066 A JP 2021192066A JP 2021192066 A JP2021192066 A JP 2021192066A JP 7455105 B2 JP7455105 B2 JP 7455105B2
Authority
JP
Japan
Prior art keywords
lithium
lithium ion
ion battery
carbonate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021192066A
Other languages
Japanese (ja)
Other versions
JP2023043812A (en
Inventor
梅笑 程
海鵬 申
営軍 郭
新麗 李
Original Assignee
湖州崑崙億恩科電池材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖州崑崙億恩科電池材料有限公司 filed Critical 湖州崑崙億恩科電池材料有限公司
Publication of JP2023043812A publication Critical patent/JP2023043812A/en
Application granted granted Critical
Publication of JP7455105B2 publication Critical patent/JP7455105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は電池の分野に属し、具体的には、リチウムイオン電池の非水電解液及びその使用に関する。 The present invention belongs to the field of batteries, and specifically relates to non-aqueous electrolytes for lithium ion batteries and their use.

リチウムイオン電池の生活、生産、エネルギー貯蔵、軍事産業分野での広範な使用に伴い、電池の安全性能は、そのさらなる開発を促進する重要な要素の1つであり、多くのリチウムイオン電池、特にソフトパック電池は、高温保存又は高温充放電の過程で短絡しやすく、これにより火災を引き起こす。リチウムイオン電池が高温保存及び充放電過程で火災を引き起しやすい原因の1つは、リチウムデンドライトがセパレータを突き破って電池内部の短絡を引き起こし、一定空間内に瞬時に大量の熱を蓄積することにより、セパレータに点火するからである。もう1つの原因は、高温環境で電池の内部副反応が増加し、電解液が分解されてガスを発生し、電池シェルの破裂を引き起こし、金属リチウムと酸素又は水蒸気との反応につながり、これも火災を引き起こし可能性がある。また、固体電解質膜(Solid Electrolyte Interphase,SEI)は高温環境で分解しやすいため、過剰なリチウムイオンがSEI膜の形成過程に関与することで、負極から放出されるリチウムイオンが減少し、さらに容量の低下につながる。 With the widespread use of lithium-ion batteries in life, production, energy storage and military industrial fields, the safety performance of batteries is one of the important factors promoting its further development, and many lithium-ion batteries, especially Soft-pack batteries are prone to short circuits during high-temperature storage or high-temperature charging/discharging processes, which can cause fires. One of the reasons why lithium-ion batteries tend to cause fires during high-temperature storage and during the charging and discharging process is that lithium dendrites break through the separator, causing a short circuit inside the battery and instantly accumulating a large amount of heat in a certain space. This is because the separator is ignited. Another reason is that the internal side reactions of the battery increase in the high temperature environment, the electrolyte decomposes and generates gas, causing the battery shell to burst, leading to the reaction of metallic lithium with oxygen or water vapor, which is also May cause fire. In addition, since solid electrolyte interface (SEI) easily decomposes in high-temperature environments, excess lithium ions are involved in the SEI film formation process, which reduces the amount of lithium ions released from the negative electrode and further reduces capacity. leading to a decrease in

リチウムイオン電池の電気化学的性能を向上させるために、多くの研究者は、電解液にさまざまな種類の添加剤、例えば、炭酸ビニレン(Vinylene Carbonate,VC)及びフルオロエチレンカーボネート(4-Fluoro-1,3-dioxolan-2-one,FEC)を添加することにより、電池の性能を向上させる。しかしながら、添加剤の添加は新たな問題を引き起こし、例えば、FECを添加すると、高温の充放電過程で電池がガスを発生しやすく、電池の膨張を引き起こすため、添加剤と電池の電気化学的性能との関係のバランスをとる必要がある。 To improve the electrochemical performance of lithium-ion batteries, many researchers have added various types of additives to the electrolyte, such as Vinylene Carbonate (VC) and 4-Fluoro-1 , 3-dioxolan-2-one, FEC) improves the performance of the battery. However, the addition of additives causes new problems, for example, the addition of FEC makes the battery more likely to generate gas during the high-temperature charging and discharging process, causing battery expansion, which affects the electrochemical performance of the additive and the battery. It is necessary to balance the relationship with

CN108598461Aは、環状リン酸シロキサン添加剤を含む電解液を開示しており、環状リン酸シロキサン添加剤は、充電過程で高ニッケル正極材料の表面に安定した固体電解質膜を形成し、界面ガスの発生を抑制することにより、正極材料の構造の安定性をさらに向上させることができる。しかしながら、上記の内容は固体電解質膜のインピーダンスをさらに低減できるが、リチウムイオン電池の高温サイクル性能及び容量保持率をさらに向上させる必要がある。 CN108598461A discloses an electrolyte containing a cyclic siloxane phosphate additive, which forms a stable solid electrolyte film on the surface of high nickel cathode material during the charging process and prevents the generation of interfacial gas. By suppressing this, the stability of the structure of the positive electrode material can be further improved. However, although the above content can further reduce the impedance of the solid electrolyte membrane, it is necessary to further improve the high temperature cycle performance and capacity retention rate of the lithium ion battery.

CN106030889Aは、二次電池の非水電解液を開示しており、特定の構造を有する環状カーボネート添加剤を添加することにより、初期の不可逆容量を低減させ、二次電池の最初のサイクル効率を向上させるだけでなく、電池の高温サイクル特性を改善させるが、レート性能に関していない。CN103493280Aは、二次電池の使用温度範囲を広げることができるが、サイクル性能及びレート性能に関していない環状スルホネートを含む非水性電解液を開示する。 CN106030889A discloses a nonaqueous electrolyte for secondary batteries, which reduces the initial irreversible capacity and improves the first cycle efficiency of secondary batteries by adding a cyclic carbonate additive with a specific structure. It not only improves the high temperature cycling characteristics of the battery, but not the rate performance. CN103493280A discloses a non-aqueous electrolyte containing a cyclic sulfonate that can extend the operating temperature range of a secondary battery, but not in terms of cycle performance and rate performance.

したがって、この分野では、リチウムイオン電池に対して良好なサイクル性能、高温での保存性能及びサイクル性能を有する非水電解液と、総合性能に優れた該非水電解液を含むリチウムイオン電池の開発が望まれている。 Therefore, in this field, there is a need to develop a non-aqueous electrolyte that has good cycle performance, high-temperature storage performance, and cycle performance for lithium-ion batteries, and a lithium-ion battery containing the non-aqueous electrolyte that has excellent overall performance. desired.

従来の技術の不足について、本発明の目的は、リチウムイオン電池の非水電解液及びその使用を提供することにある。本発明は、電解液にアルケニルシロキサン化合物を添加して他の添加剤と組み合わせて使用することにより、正極と負極の電極材料の表面のいずれにも安定したSEI膜を形成することができるとともに、SEI膜が良好なイオン導通性能を有し、リチウムイオン電池のインピーダンス及び容量減衰の速度を低減し、高温保存環境で良好な容量保持率及び回復率と、小さい電池の体積膨張を保持することができる。 In view of the lack of prior art, an object of the present invention is to provide a non-aqueous electrolyte for lithium ion batteries and its use. The present invention makes it possible to form a stable SEI film on both the surfaces of the positive and negative electrode materials by adding an alkenylsiloxane compound to the electrolyte and using it in combination with other additives. The SEI membrane has good ion conduction performance, can reduce the impedance and capacity decay rate of lithium ion batteries, and can maintain good capacity retention and recovery rate in high temperature storage environment and small volume expansion of batteries. can.

この発明目的を達成するために、本発明は以下の技術案を採用する。
第1の態様では、本発明はリチウムイオン電池の非水電解液を提供しており、前記リチウムイオン電池の非水電解液はリチウム塩、非水溶媒及び添加剤を含み、前記添加剤は式(1)で示される環状構造を有するアルケニルシロキサン化合物、インピーダンス低減添加剤及び成膜添加剤を含む。
In order to achieve the purpose of the invention, the present invention adopts the following technical solution.
In a first aspect, the present invention provides a nonaqueous electrolyte for a lithium ion battery, the nonaqueous electrolyte for a lithium ion battery comprising a lithium salt, a nonaqueous solvent, and an additive, the additive having the formula Contains an alkenylsiloxane compound having a cyclic structure shown in (1), an impedance reducing additive, and a film forming additive.

Figure 0007455105000001
Figure 0007455105000001

ただし、Rは水素、ハロゲン、シアノ基、置換又は未置換のC1~C5のアルキル基、置換又は未置換のC6~C30のアリール基、アミド基、リン酸エステル基、スルホニル基、シロキシ基又はホウ酸エステル基から選ばれ、nは2~10の整数である。 However, R is hydrogen, halogen, cyano group, substituted or unsubstituted C1 to C5 alkyl group, substituted or unsubstituted C6 to C30 aryl group, amide group, phosphate ester group, sulfonyl group, siloxy group, or boron. selected from acid ester groups, and n is an integer from 2 to 10.

本発明では、式(1)で示される環状構造を有するアルケニルシロキサン化合物を用いて成膜添加剤と配合して使用し、電気化学反応過程の初期でアルケニル基の二重結合が切断され、正極と負極材料の表面に緻密なSEI膜を形成でき、SEI膜の緻密性及び安定性を高めることにより、高温条件で破壊されにくくなり、一方で消費される活性リチウムイオンを削減し、リチウムイオン電池の容量を確保し、他方で、インピーダンス低減添加剤と配合して使用することにより、SEI膜のイオン導通性能とイオン輸送速度を向上させ、電池のインピーダンスを低減させ、電池の内部分極とリチウムデンドライトの形成を減少させ、これにより、電解液の消費による電池の内部インピーダンスの増加とガス発生の問題を改善するだけでなく、電池の体積膨張を抑制することができる。また、-Si-O-結合は正極から溶出された金属イオンを錯化することができ、電解液の触媒反応に対する金属イオンの影響をさらに低減し、また、Si原子はフッ素イオンを非常に吸収しやすく、フッ素含有リチウム塩の加水分解を抑制することもできる。 In the present invention, an alkenylsiloxane compound having a cyclic structure represented by formula (1) is used in combination with a film-forming additive, and the double bond of the alkenyl group is broken at the early stage of the electrochemical reaction process, resulting in a positive electrode. A dense SEI film can be formed on the surface of the negative electrode material, and by increasing the density and stability of the SEI film, it becomes less likely to be destroyed under high temperature conditions, and at the same time reduces the amount of active lithium ions consumed, which improves lithium ion batteries. On the other hand, when used in combination with impedance reducing additives, it can improve the ion conduction performance and ion transport speed of the SEI membrane, reduce the impedance of the battery, and reduce the internal polarization and lithium dendrite of the battery. This not only improves the problem of internal impedance increase and gas generation due to electrolyte consumption, but also suppresses the volumetric expansion of the battery. In addition, the -Si-O- bond can complex the metal ions eluted from the positive electrode, further reducing the influence of the metal ions on the catalytic reaction of the electrolyte, and the Si atoms can highly absorb fluorine ions. The hydrolysis of fluorine-containing lithium salts can also be suppressed.

本発明において、前記Rは水素、ハロゲン、シアノ基、置換又は未置換のC1~C5のアルキル基、置換又は未置換のC6~C30のアリール基から選ばれ、例えば、水素、ハロゲン、シアノ基、メチル基、プロピル基、置換のブチル基又はフェニル基であってもよいが、挙げられた種類に限定されず、置換基の範囲内の挙げられていない他の種類も同様に適用される。 In the present invention, R is selected from hydrogen, halogen, cyano group, substituted or unsubstituted C1-C5 alkyl group, substituted or unsubstituted C6-C30 aryl group, for example, hydrogen, halogen, cyano group, It may be a methyl group, a propyl group, a substituted butyl group or a phenyl group, but it is not limited to the types listed, and other types not listed within the range of substituents are also applicable.

好ましくは、Rはシアノ基、メチル基、エチル基、プロピル基、フェニル基又は Preferably, R is a cyano group, a methyl group, an ethyl group, a propyl group, a phenyl group, or

Figure 0007455105000002
Figure 0007455105000002

であり、ただし、波線は基の結合部位を表し、例えば、Rはシアノ基、メチル基、エチル基、プロピル基、フェニル基又は However, the wavy line represents the bonding site of the group, for example, R is a cyano group, a methyl group, an ethyl group, a propyl group, a phenyl group, or

Figure 0007455105000003
Figure 0007455105000003

であってもよい。 It may be.

好ましくは、前記式(1)で示される環状構造を有するアルケニルシロキサン化合物は下記の化合物のいずれか1種である。 Preferably, the alkenylsiloxane compound having a cyclic structure represented by formula (1) is any one of the following compounds.

Figure 0007455105000004
Figure 0007455105000004

Figure 0007455105000005
Figure 0007455105000005

Figure 0007455105000006
Figure 0007455105000006

Figure 0007455105000007
Figure 0007455105000007

Figure 0007455105000008
Figure 0007455105000008

Figure 0007455105000009
Figure 0007455105000009

好ましくは、前記式(1)で示される環状構造を有するアルケニルシロキサン化合物は上記の化合物のいずれか1種であり、例えば、T01、T02、T03、T04、T05又はT06のいずれか1種であってもよい。 Preferably, the alkenylsiloxane compound having a cyclic structure represented by the formula (1) is any one of the above compounds, for example, any one of T01, T02, T03, T04, T05, or T06. You can.

好ましくは、前記リチウムイオン電池の非水電解液における式(1)で示される環状構造を有するアルケニルシロキサン化合物の含有量の質量パーセントは0.01~5.00%であり、例えば、0.01%、0.05%、0.10%、0.50%、1.00%、2.00%、4.00%又は5.00%であってもよいが、挙げられた数値に限定されず、数値の範囲内の挙げられていない他の数値も同様に適用される。 Preferably, the content of the alkenylsiloxane compound having a cyclic structure represented by formula (1) in the nonaqueous electrolyte of the lithium ion battery has a mass percentage of 0.01 to 5.00%, for example, 0.01%. %, 0.05%, 0.10%, 0.50%, 1.00%, 2.00%, 4.00% or 5.00%, but are limited to the numbers listed. The same applies to other numerical values not listed within the numerical range.

好ましくは、前記リチウムイオン電池の非水電解液はインピーダンス低減添加剤をさらに含み、前記インピーダンス低減添加剤はジフルオロリン酸リチウム、硫酸エチレン又はジフルオロ(オキサラト)ホウ酸リチウムのいずれか1種又は少なくとも2種の組み合わせを含み、例えば、ジフルオロリン酸リチウム、硫酸エチレン、ジフルオロ(オキサラト)ホウ酸リチウム又は硫酸エチレンとジフルオロ(オキサラト)ホウ酸リチウムの組み合わせであってもよい。 Preferably, the nonaqueous electrolyte of the lithium ion battery further includes an impedance reducing additive, and the impedance reducing additive is any one or at least two of lithium difluorophosphate, ethylene sulfate, and lithium difluoro(oxalato)borate. For example, lithium difluorophosphate, ethylene sulfate, lithium difluoro(oxalato)borate, or a combination of ethylene sulfate and lithium difluoro(oxalato)borate.

本発明における環状構造のアルケニルシロキサン化合物の添加剤をジフルオロリン酸リチウム、炭酸ビニレン、ジフルオロ(オキサラト)ホウ酸リチウムの1種又は複数種と配合して使用すると、SEI膜の緻密性及び安定性を高め、高温サイクルの安定性を向上させるだけでなく、電池のインピーダンスを低減し、ガスの発生及び電池の体積膨張の問題を抑制する。 When the additive of the alkenylsiloxane compound having a cyclic structure in the present invention is used in combination with one or more of lithium difluorophosphate, vinylene carbonate, and lithium difluoro(oxalato)borate, the denseness and stability of the SEI film can be improved. It not only increases and improves the stability of high temperature cycles, but also reduces the impedance of the battery and suppresses the problem of gas generation and volumetric expansion of the battery.

好ましくは、前記リチウムイオン電池の非水電解液におけるインピーダンス低減添加剤の含有量の質量パーセントは0.01~10.00%であり、例えば、0.01%,0.05%,1.00%,3.00%,6.00%,8.00%又は10.00%であってもよいが、挙げられた数値に限定されず、数値の範囲内の挙げられていない他の数値も同様に適用される。 Preferably, the content of the impedance reducing additive in the nonaqueous electrolyte of the lithium ion battery has a mass percentage of 0.01 to 10.00%, for example, 0.01%, 0.05%, 1.00%. %, 3.00%, 6.00%, 8.00% or 10.00%, but is not limited to the listed numbers, and may also include other numbers not listed within the numerical range. The same applies.

好ましくは、前記リチウムイオン電池の非水電解液に成膜添加剤をさらに含み、前記成膜添加剤は硫酸プロピレン、1,3-プロパンスルトン、炭酸ビニレン、炭酸ビニルエチレン、フルオロエチレンカーボネート、プロペンスルトン、1,4-ブタンスルトン、亜硫酸エチレン、ジフルオロビスオキサラトリン酸リチウムテトラフルオロホウ酸リチウム、ビス(オキサラト)ホウ酸リチウム、スクシノニトリル、アジポニトリル、無水コハク酸、ホウ酸トリス(トリメチルシリル)、リン酸トリス(トリメチルシリル)、メチレンメタンジスルホネート、エチレングリコールビス(プロピオニトリル)エーテル、1,3,6-ヘキサントリカルボニトリル、リン酸トリプロパルギル(Tripropargyl Phosphate)、フルオロベンゼン又は1,1,2,3-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテルのいずれか1種又は少なくとも2種の組み合わせを含み、例えば、硫酸プロピレン、1,3-プロパンスルトン、炭酸ビニレン及び炭酸ビニルエチレンの組み合わせ又はフルオロエチレンカーボネート、プロペンスルトン及びメチレンメタンジスルホネートの組み合わせであってもよい。 Preferably, the nonaqueous electrolyte of the lithium ion battery further includes a film-forming additive, and the film-forming additive includes propylene sulfate, 1,3-propane sultone, vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, propene sultone. , 1,4-butanesultone, ethylene sulfite, lithium difluorobisoxalatophosphate, lithium tetrafluoroborate, lithium bis(oxalato)borate, succinonitrile, adiponitrile, succinic anhydride, tris(trimethylsilyl) borate, trisphosphate (trimethylsilyl), methylenemethane disulfonate, ethylene glycol bis(propionitrile) ether, 1,3,6-hexanetricarbonitrile, Tripropargyl Phosphate, fluorobenzene or 1,1,2,3- Containing any one type or a combination of at least two types of tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, for example, a combination of propylene sulfate, 1,3-propane sultone, vinylene carbonate, and vinylethylene carbonate. Or it may be a combination of fluoroethylene carbonate, propene sultone and methylenemethane disulfonate.

好ましくは、前記リチウムイオン電池の非水電解液における成膜添加剤の含有量の質量パーセントは0.01~20.00%であり、例えば、0.01%、1.00%、5.00%、10.00%、15.00%又は20.00%であってもよいが、挙げられた数値に限定されず、数値の範囲内の挙げられていない他の数値も同様に適用される。 Preferably, the mass percent content of the film-forming additive in the nonaqueous electrolyte of the lithium ion battery is 0.01 to 20.00%, for example, 0.01%, 1.00%, 5.00%. %, 10.00%, 15.00% or 20.00%, but is not limited to the listed values, other unlisted values within the numerical range apply as well. .

好ましくは、前記リチウム塩はヘキサフルオロリン酸リチウム、過塩素酸リチウム、トリフルオロメタンスルホン酸リチウム、ビスフルオロスルホニルイミドリチウム又はビストリフルオロメタンスルホニルイミドリチウムのいずれか1種又は少なくとも2種の組み合わせを含み、例えば、ヘキサフルオロリン酸リチウム、過塩素酸リチウム、トリフルオロメタンスルホン酸リチウム及びビスフルオロスルホニルイミドリチウムの組み合わせ又はビストリフルオロメタンスルホニルイミドリチウム、ヘキサフルオロリン酸リチウム及び過塩素酸リチウムの組み合わせであってもよいが、挙げられた種類に限定されず、リチウム塩の範囲内の挙げられていない他の種類も同様に適用される。 Preferably, the lithium salt includes any one or a combination of at least two of lithium hexafluorophosphate, lithium perchlorate, lithium trifluoromethanesulfonate, lithium bisfluorosulfonylimide, or lithium bistrifluoromethanesulfonylimide, For example, a combination of lithium hexafluorophosphate, lithium perchlorate, lithium trifluoromethanesulfonate and lithium bisfluorosulfonylimide, or a combination of lithium bistrifluoromethanesulfonylimide, lithium hexafluorophosphate and lithium perchlorate. However, it is not limited to the listed types; other non-mentioned types within the scope of lithium salts apply as well.

好ましくは、前記リチウムイオン電池の非水電解液におけるリチウム塩の含有量の質量パーセントは2.0~25.0%であり、例えば、2.0%,5.0%,8.0%,10.0%,15.0%,20.0%又は25.0%であってもよいが、挙げられた数値に限定されず、数値の範囲内の挙げられていない他の数値も同様に適用される。 Preferably, the mass percentage of the lithium salt content in the nonaqueous electrolyte of the lithium ion battery is 2.0 to 25.0%, for example, 2.0%, 5.0%, 8.0%, It may be 10.0%, 15.0%, 20.0% or 25.0%, but it is not limited to the listed values, and other values within the numerical range that are not listed may be used as well. Applicable.

好ましくは、前記非水溶媒はエチレングリコールジエチルエーテル、プロピオン酸メチル、酢酸メチル、プロピオン酸プロピル、酪酸メチル、酪酸エチル、酢酸プロピル、酪酸ブチル、アセトニトリル、メチルプロピルカーボネート、プロピオン酸エチル、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、テトラヒドロフラン、プロピレンカーボネート、酢酸エチル、ジエチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート又はエチレンカーボネートのいずれか1種又は少なくとも2種の組み合わせであり、例えば、エチレングリコールジエチルエーテル、プロピオン酸メチル、酢酸メチル及びプロピオン酸プロピルの組み合わせ又は酪酸メチル、酪酸エチル及び酢酸プロピルの組み合わせであってもよいが、挙げられた種類に限定されず、非水溶媒の範囲内の挙げられていない他の種類も同様に適用される。 Preferably, the nonaqueous solvent is ethylene glycol diethyl ether, methyl propionate, methyl acetate, propyl propionate, methyl butyrate, ethyl butyrate, propyl acetate, butyl butyrate, acetonitrile, methylpropyl carbonate, ethyl propionate, γ-butyrolactone, Any one or a combination of at least two of sulfolane, dimethyl sulfoxide, tetrahydrofuran, propylene carbonate, ethyl acetate, diethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, or ethylene carbonate, such as ethylene glycol diethyl ether, methyl propionate, It may be a combination of methyl acetate and propyl propionate or a combination of methyl butyrate, ethyl butyrate and propyl acetate, but is not limited to the types listed, but also other types not listed within the scope of non-aqueous solvents. The same applies.

好ましくは、前記リチウムイオン電池の非水電解液における非水溶媒の含有量の質量パーセントは40.00~97.97%であり、例えば、40.00%,45.00%,50.00%,55.00%,60.00%,70.00%,80.00%,95.00%又は97.97%であってもよいが、挙げられた数値に限定されず、数値の範囲内の挙げられていない他の数値も同様に適用される。 Preferably, the mass percent content of the nonaqueous solvent in the nonaqueous electrolyte of the lithium ion battery is 40.00 to 97.97%, for example, 40.00%, 45.00%, 50.00%. , 55.00%, 60.00%, 70.00%, 80.00%, 95.00% or 97.97%, but is not limited to the numerical values listed and within the range of numerical values. Other values not listed also apply.

第2の態様では、本発明は、第1の態様に係るリチウムイオン電池の非水電解液を含むリチウムイオン電池を提供する。 In a second aspect, the invention provides a lithium ion battery comprising the non-aqueous electrolyte of the lithium ion battery according to the first aspect.

好ましくは、前記リチウムイオン電池は電池ケース及び電池セルをさらに含み、前記電池セル及び前記リチウムイオン電池の非水電解液は電池ケース内に密封される。 Preferably, the lithium ion battery further includes a battery case and a battery cell, and the battery cell and the nonaqueous electrolyte of the lithium ion battery are sealed within the battery case.

好ましくは、前記電池セルは正極と、負極と、前記正極と負極との間に設けられたセパレータ又は固体電解質層とを含む。 Preferably, the battery cell includes a positive electrode, a negative electrode, and a separator or solid electrolyte layer provided between the positive electrode and the negative electrode.

好ましくは、前記正極の材料はリチウムを吸蔵及び放出可能な活物質であり、前記負極の材料はリチウムを放出するか、又はリチウムと合金を形成可能な金属、合金、或いはリチウムを挿入/脱離可能な金属酸化物である。 Preferably, the material of the positive electrode is an active material capable of intercalating and deintercalating lithium, and the material of the negative electrode is a metal, an alloy, or an active material capable of intercalating and deintercalating lithium. possible metal oxides.

好ましくは、前記リチウムを吸蔵及び放出可能な活物質はLiNiCoMn(1-x-y-z)、LiCox’(1-x’)、LiNix’’L’y’Mn(2-x’’-y’)又はLiz’MPOの少なくとも1種であり、ただし、LはAl、Sr、Mg、Ti、Ca、Zr、Zn、Si又はFeの少なくとも1種であり、0≦x≦1、0≦y≦1、0≦z≦1、0<x+y+z≦1、0<x’≦1、0.3<x’’≦0.6、0.01≦y’≦0.2、L’はCo、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si又はFeの少なくとも1種であり、0.5≦z’≦1、MはFe、Mn又はCoの少なくとも1種であり、例えば、前記リチウムを吸蔵及び放出可能な活物質はLiCoO、LiNi0.8Co0.1Mn0.1、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2、LiNi0.4Al0.1Mn1.5、LiNi0.4Mg0.1Mn1.5、Li0.5MnPO又はLiFePOであってもよいが、挙げられた種類に限定されず、リチウムを吸蔵及び放出可能な活物質の範囲内の挙げられていない他の種類も同様に適用される。 Preferably, the active material capable of intercalating and deintercalating lithium is LiNix Co y Mn z L (1-x-y-z) O 2 , LiCo x' L (1-x') O 2 , LiNi x'' At least one of L'y' Mn (2-x''-y') O 4 or Li z' MPO 4 , provided that L is Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or At least one type of Fe, 0≦x≦1, 0≦y≦1, 0≦z≦1, 0<x+y+z≦1, 0<x'≦1, 0.3<x''≦0.6 , 0.01≦y'≦0.2, L' is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, or Fe, and 0.5≦z'≦1, M is at least one of Fe, Mn, and Co; for example, the active material capable of intercalating and deintercalating lithium is LiCoO 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.4 Al 0.1 Mn 1.5 O 4 , LiNi 0.4 Mg 0.1 Mn 1 .5 O 4 , Li 0.5 MnPO 4 or LiFePO 4 but not limited to the listed types, other types not listed within the range of active materials capable of intercalating and deintercalating lithium. The same applies.

好ましくは、前記負極の材料は結晶性炭素、リチウム金属、LiMnO、LiAl、LiSb、LiCd、LiZn、LiBi、LiSi、Li4.4Pb、Li4.4Sn、LiC、LiFeN、Li2.6CoN0.4、Li2.6CuN0.4又はLiTi12の少なくとも1種であり、例えば、結晶性炭素、リチウム金属、結晶性炭素とLiMnOの組み合わせ又はLi4.4PbとLi4.4Snの組み合わせであってもよいが、挙げられた種類に限定されず、負極の材料の範囲内の挙げられていない他の種類も同様に適用される。 Preferably, the material of the negative electrode is crystalline carbon, lithium metal, LiMnO 2 , LiAl, Li 3 Sb, Li 3 Cd, LiZn, Li 3 Bi, Li 4 Si, Li 4.4 Pb, Li 4.4 Sn, At least one of LiC 6 , Li 3 FeN 2 , Li 2.6 CoN 0.4 , Li 2.6 CuN 0.4 or Li 4 Ti 5 O 12 , for example, crystalline carbon, lithium metal, crystalline It may be a combination of carbon and LiMnO 2 or a combination of Li 4.4 Pb and Li 4.4 Sn, but is not limited to the listed types and may also be other types not listed within the range of negative electrode materials. The same applies.

従来の技術に比べて、本発明は以下の有益な効果を有する。
(1)本発明は環状構造のアルケニルシロキサン化合物を用いて正極と負極材料の表面に緻密なSEI膜を形成できるとともに、添加される他の添加剤も界面成膜過程に関与し、SEI膜の緻密性及び安定性を高めることにより、高温条件で破壊されにくくなり、一方で消費される活性リチウムイオンを削減し、リチウムイオン電池の容量を確保する。
(2)本発明に係る非水電解液はアルケニルシロキサン化合物の添加剤を含み、ジフルオロリン酸リチウム、炭酸ビニレン、ジフルオロ(オキサラト)ホウ酸リチウムの1種又は複数種と配合して使用することにより、SEI膜のイオン導通性能とイオン輸送速度を向上させ、電池のインピーダンスを低減させ、電池の内部分極とリチウムデンドライトの形成を減少させ、これにより、電解液の消費による電池の内部インピーダンスの増加とガス発生の問題を改善するだけでなく、電池の体積膨張を抑制することができる。
(3)本発明で添加される環状構造のアルケニルシロキサン化合物の-Si-O-結合は正極から溶出された金属イオンを錯化することができ、電解液の触媒反応に対する金属イオンの影響を低減し、また、Si原子はフッ素イオンを非常に吸収しやすく、フッ素含有リチウム塩の加水分解を抑制することもできる。
Compared with the conventional technology, the present invention has the following beneficial effects.
(1) The present invention uses an alkenylsiloxane compound with a cyclic structure to form a dense SEI film on the surfaces of the positive and negative electrode materials, and other additives also participate in the interfacial film formation process. By increasing the density and stability, it becomes less likely to be destroyed under high-temperature conditions, while reducing the amount of active lithium ions consumed and securing the capacity of lithium-ion batteries.
(2) The nonaqueous electrolyte according to the present invention contains an additive of an alkenylsiloxane compound, and is used in combination with one or more of lithium difluorophosphate, vinylene carbonate, and lithium difluoro(oxalato)borate. , improve the ion conduction performance and ion transport speed of the SEI membrane, reduce the impedance of the battery, and reduce the internal polarization of the battery and the formation of lithium dendrites, thereby reducing the increase in the internal impedance of the battery due to the consumption of electrolyte. Not only can the problem of gas generation be improved, but also the volumetric expansion of the battery can be suppressed.
(3) The -Si-O- bond of the cyclic alkenylsiloxane compound added in the present invention can complex the metal ions eluted from the positive electrode, reducing the influence of metal ions on the catalytic reaction of the electrolyte. In addition, Si atoms very easily absorb fluorine ions, and can also suppress hydrolysis of fluorine-containing lithium salts.

実施例1及び比較例1~4に係るリチウムイオン電池の60℃の高温で30日間保存後の容量保持率及び回復率である。This is the capacity retention rate and recovery rate of the lithium ion batteries according to Example 1 and Comparative Examples 1 to 4 after being stored at a high temperature of 60° C. for 30 days. 実施例1及び比較例1~4に係るリチウムイオン電池の60℃の高温で30日間保存後の体積増加率である。This is the volume increase rate of the lithium ion batteries according to Example 1 and Comparative Examples 1 to 4 after storage at a high temperature of 60° C. for 30 days. 実施例1及び比較例1~4に係るリチウムイオン電池の45℃の高温で200サイクル後の容量保持率である。This is the capacity retention rate of the lithium ion batteries according to Example 1 and Comparative Examples 1 to 4 after 200 cycles at a high temperature of 45°C.

以下、図面及び具体的な実施形態によって本発明の技術案をさらに説明する。当業者は、下記実施例が本発明を理解するためのものに過ぎず、本発明に対する具体的な制限と見なされるべきではないことを理解すべきである。 Hereinafter, the technical solution of the present invention will be further explained with reference to drawings and specific embodiments. Those skilled in the art should understand that the following examples are only for understanding the invention and should not be considered as a specific limitation to the invention.

実施例1
本実施例はリチウムイオン電池の非水電解液を提供しており、前記リチウムイオン非水電解液は、非水電解液の総質量を100%として、含有量の質量パーセントで13.5%のヘキサフルオロリン酸リチウム、21.0%のエチレンカーボネート、7.0%のジエチルカーボネート及び42.0%のメチルビニルカーボネート(Methyl vinyl carbonate)の非水溶媒、2.50%のT01アルケニルシロキサン化合物(上海TCI化成工業発展有限公司から購入したもの)、10.00%の炭酸ビニレン(江蘇華盛材料科技集団有限公司から購入したもの)及び5.00%の硫酸エチレン(石家荘聖泰化工有限公司から購入したもの)の添加剤を含んだ。
Example 1
This example provides a nonaqueous electrolyte for a lithium ion battery, and the lithium ion nonaqueous electrolyte has a content of 13.5% by mass, assuming the total mass of the nonaqueous electrolyte as 100%. Lithium hexafluorophosphate, 21.0% ethylene carbonate, 7.0% diethyl carbonate and 42.0% Methyl vinyl carbonate non-aqueous solvent, 2.50% T01 alkenyl siloxane compound ( (purchased from Shanghai TCI Chemical Industry Development Co., Ltd.), 10.00% vinylene carbonate (purchased from Jiangsu Huasheng Material Technology Group Co., Ltd.) and 5.00% ethylene sulfate (Shijiazhuang Shengtai Chemical Co., Ltd.) Contains additives (purchased from a company).

前記リチウムイオン電池の非水電解液の調製方法は次のとおりである。
グローブボックス内で電解液を調製し、グローブボックス内の窒素含有量は99.999%であり、グローブボックス内の実際の酸素含有量<2ppm、水分含有量<0.1ppmである。非水電解液の総質量を100%として、含有量の質量パーセントが21.0%のエチレンカーボネート、7.0%のジエチルカーボネート及び42.0%のメチルビニルカーボネートの電池グレード有機溶媒を均一に混合した後に、十分に乾燥させた含有量の質量パーセントが13.5%のヘキサフルオロリン酸リチウムを上記非水溶媒に加え、含有量の質量パーセントが2.50%のT01アルケニルシロキサン化合物を加え、さらに含有量の質量パーセントが10.00%の炭酸ビニレン及び5.00%の硫酸エチレンを加え、リチウムイオン電池の非水電解液を調製した。
The method for preparing the non-aqueous electrolyte for the lithium ion battery is as follows.
The electrolyte solution is prepared in the glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is <2 ppm, and the water content is <0.1 ppm. The total mass of the non-aqueous electrolyte is taken as 100%, and the battery-grade organic solvent with a mass percentage of 21.0% ethylene carbonate, 7.0% diethyl carbonate, and 42.0% methyl vinyl carbonate is uniformly added. After mixing, a sufficiently dried lithium hexafluorophosphate having a mass percent content of 13.5% is added to the above nonaqueous solvent, and a T01 alkenylsiloxane compound having a mass percent content of 2.50% is added. Furthermore, vinylene carbonate having a mass percentage of 10.00% and ethylene sulfate having a content of 5.00% were added to prepare a non-aqueous electrolyte for a lithium ion battery.

リチウムイオン電池の調製方法は次のとおりである。
正極の調製:LiNi0.8Co0.1Mn0.1粉末、粘着剤のポリフッ化ビニリデン(PVDF)、導電剤のアセチレンブラックを97.5:1.5:1.5の重量比で混合し、N-メチルピロリドン(NMP)を加え、混合系は流動性が均一な正極スラリーになるまで、真空撹拌機の作用で撹拌し、正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布したアルミニウム箔を5階段の異なる温度勾配のオーブンでベーキングしてから、120℃のオーブンで8時間乾燥させ、その後圧延、スリットして所望の正極片を得た。
The method for preparing a lithium ion battery is as follows.
Preparation of positive electrode: LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, polyvinylidene fluoride (PVDF) as an adhesive, and acetylene black as a conductive agent in a weight ratio of 97.5:1.5:1.5. N-methylpyrrolidone (NMP) was added, and the mixed system was stirred using a vacuum stirrer until it became a positive electrode slurry with uniform fluidity, and the positive electrode slurry was evenly applied to a 15 μm thick aluminum foil. Then, the coated positive electrode slurry was uniformly coated on an aluminum foil with a thickness of 15 μm, and the coated aluminum foil was baked in an oven with 5 different temperature gradients, and then dried in an oven at 120 ° C. for 8 hours. A desired positive electrode piece was obtained by rolling and slitting.

負極の調製:質量比が95.7wt%のグラファイトの負極材料、質量比が1wt%の導電性カーボンブラック(SP)の導電剤、質量比が1.3wt%のカルボキシメチルセルロースナトリウム(CMC)の分散剤及び質量比が2wt%のスチレンブタジエンゴム(SBR)の粘着剤について湿式法プロセスで負極スラリーを調製し、負極スラリーを厚さ15μmの銅箔に均一に塗布し、上記塗布した銅箔を5階段の異なる温度勾配のオーブンでベーキングしてから、85℃のオーブンで5時間乾燥させ、その後圧延、スリットして所望のグラファイト負極片を得た。 Preparation of negative electrode: negative electrode material of graphite with mass ratio of 95.7 wt%, conductive agent of conductive carbon black (SP) with mass ratio of 1 wt%, dispersion of sodium carboxymethyl cellulose (CMC) with mass ratio of 1.3 wt% A negative electrode slurry was prepared using a wet process using a styrene-butadiene rubber (SBR) adhesive with a mass ratio of 2 wt%, and the negative electrode slurry was uniformly applied to a 15 μm thick copper foil. After baking in an oven with different temperature gradients, it was dried in an oven at 85° C. for 5 hours, and then rolled and slit to obtain a desired graphite negative electrode piece.

セパレータの調製:7~9mm厚さのポリプロピレンをセパレータとした。 Preparation of separator: Polypropylene with a thickness of 7 to 9 mm was used as a separator.

リチウムイオン電池の調製:上記準備した正極片、セパレータ、負極片を巻き取って液体が注入されていない裸の電池セルを得て、裸の電池セルを外包装のアルミニウム箔に入れ、上記調製した電解液を乾燥した裸の電池セルに注入し、真空包装、静置、化成、シェーピング、選別などの工程を経て、所望のリチウムイオン電池を得て、放電電圧区間を3.0~4.2Vに設定した。 Preparation of lithium ion battery: Roll up the positive electrode piece, separator, and negative electrode piece prepared above to obtain a bare battery cell in which no liquid has been injected, and place the bare battery cell in the outer packaging aluminum foil, and perform the above prepared procedure. The electrolytic solution is injected into a dry bare battery cell, and through processes such as vacuum packaging, standing, chemical formation, shaping, and sorting, the desired lithium ion battery is obtained, and the discharge voltage range is 3.0 to 4.2V. It was set to

実施例2
本実施例はリチウムイオン電池の非水電解液を提供しており、非水電解液の総質量を100%として、前記リチウムイオン非水電解液は、含有量の質量パーセントが2.0%のヘキサフルオロリン酸リチウム、12.0%のエチレンカーボネート、4.0%のジエチルカーボネート及び24.0%のメチルビニルカーボネートの非水溶媒、0.01%のT03アルケニルシロキサン化合物(上海TCI化成工業発展有限公司から購入したもの)、0.01%の炭酸ビニレン(江蘇華盛材料科技集団有限公司から購入したもの)及び0.01%のジフルオロリン酸リチウム(江蘇国泰超威新材料有限公司から購入したもの)の添加剤を含んだ。
Example 2
This example provides a nonaqueous electrolyte for a lithium ion battery, and the lithium ion nonaqueous electrolyte has a content of 2.0% by mass, assuming the total mass of the nonaqueous electrolyte as 100%. Lithium hexafluorophosphate, 12.0% ethylene carbonate, 4.0% diethyl carbonate and 24.0% methyl vinyl carbonate non-aqueous solvent, 0.01% T03 alkenyl siloxane compound (Shanghai TCI Chemical Industrial Development Co., Ltd.), 0.01% vinylene carbonate (purchased from Jiangsu Huasheng Materials Technology Group Co., Ltd.), and 0.01% lithium difluorophosphate (purchased from Jiangsu Guotai Chaowei New Materials Co., Ltd.). Contains additives.

前記リチウムイオン電池の非水電解液の調製方法は次のとおりである。
グローブボックス内で電解液を調製し、グローブボックス内の窒素含有量は99.999%であり、グローブボックス内の実際の酸素含有量<2ppm、水分含有量<0.1ppmである。非水電解液の総質量を100%として、含有量の質量パーセントが12.0%のエチレンカーボネート、4.0%のジエチルカーボネート及び24.0%のメチルビニルカーボネートの電池グレード有機溶媒を均一に混合した後に、十分に乾燥させた含有量の質量パーセントが2.0%のヘキサフルオロリン酸リチウムを上記非水溶媒に加え、含有量の質量パーセントが0.01%のT03アルケニルシロキサン化合物を加え、さらに含有量の質量パーセントが0.01%の炭酸ビニレン及び0.01%のジフルオロリン酸リチウムを加え、リチウムイオン電池の非水電解液を調製した。
The method for preparing the non-aqueous electrolyte for the lithium ion battery is as follows.
The electrolyte solution is prepared in the glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is <2 ppm, and the water content is <0.1 ppm. The total mass of the non-aqueous electrolyte is taken as 100%, and the battery-grade organic solvents with a mass percentage of 12.0% ethylene carbonate, 4.0% diethyl carbonate, and 24.0% methyl vinyl carbonate are uniformly added. After mixing, sufficiently dried lithium hexafluorophosphate having a content of 2.0% by mass is added to the above non-aqueous solvent, and a T03 alkenylsiloxane compound having a content of 0.01% by mass is added. Furthermore, vinylene carbonate having a mass percent content of 0.01% and lithium difluorophosphate were added to prepare a non-aqueous electrolyte for a lithium ion battery.

リチウムイオン電池の調製方法は次のとおりである。
正極の調製:LiNi0.8Co0.1Mn0.1粉末、粘着剤のポリフッ化ビニリデン(PVDF)、導電剤のアセチレンブラックを97.5:1.5:1.5の重量比で混合し、N-メチルピロリドン(NMP)を加え、混合系は流動性が均一な正極スラリーになるまで、真空撹拌機の作用で撹拌し、正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布したアルミニウム箔を5階段の異なる温度勾配のオーブンでベーキングしてから、120℃のオーブンで8時間乾燥させ、その後圧延、スリットして所望の正極片を得た。
The method for preparing a lithium ion battery is as follows.
Preparation of positive electrode: LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, polyvinylidene fluoride (PVDF) as an adhesive, and acetylene black as a conductive agent in a weight ratio of 97.5:1.5:1.5. N-methylpyrrolidone (NMP) was added, and the mixed system was stirred using a vacuum stirrer until it became a positive electrode slurry with uniform fluidity, and the positive electrode slurry was evenly applied to a 15 μm thick aluminum foil. Then, the coated positive electrode slurry was uniformly coated on an aluminum foil with a thickness of 15 μm, and the coated aluminum foil was baked in an oven with 5 different temperature gradients, and then dried in an oven at 120 ° C. for 8 hours. A desired positive electrode piece was obtained by rolling and slitting.

負極の調製:質量比が95.7wt%のグラファイトの負極材料、質量比が1wt%の導電性カーボンブラック(SP)の導電剤、質量比が1.3wt%のカルボキシメチルセルロースナトリウム(CMC)の分散剤及び質量比が2wt%のスチレンブタジエンゴム(SBR)の粘着剤について湿式法プロセスで負極スラリーを調製し、負極スラリーを厚さ15μmの銅箔に均一に塗布し、上記塗布した銅箔を5階段の異なる温度勾配のオーブンでベーキングしてから、85℃のオーブンで5時間乾燥させ、その後圧延、スリットして所望のグラファイト負極片を得た。 Preparation of negative electrode: negative electrode material of graphite with mass ratio of 95.7 wt%, conductive agent of conductive carbon black (SP) with mass ratio of 1 wt%, dispersion of sodium carboxymethyl cellulose (CMC) with mass ratio of 1.3 wt% A negative electrode slurry was prepared using a wet process using a styrene-butadiene rubber (SBR) adhesive with a mass ratio of 2 wt%, and the negative electrode slurry was uniformly applied to a 15 μm thick copper foil. After baking in an oven with different temperature gradients, it was dried in an oven at 85° C. for 5 hours, and then rolled and slit to obtain a desired graphite negative electrode piece.

セパレータの調製:7~9mm厚さのポリプロピレンをセパレータとした。 Preparation of separator: Polypropylene with a thickness of 7 to 9 mm was used as a separator.

リチウムイオン電池の調製:上記準備した正極片、セパレータ、負極片を巻き取って液体が注入されていない裸の電池セルを得て、裸の電池セルを外包装のアルミニウム箔に入れ、上記調製した電解液を乾燥した裸の電池セルに注入し、真空包装、静置、化成、シェーピング、選別などの工程を経て、所望のリチウムイオン電池を得て、放電電圧区間を3.0~4.2Vに設定した。 Preparation of lithium ion battery: Roll up the positive electrode piece, separator, and negative electrode piece prepared above to obtain a bare battery cell in which no liquid has been injected, and place the bare battery cell in the outer packaging aluminum foil, and perform the above prepared procedure. The electrolytic solution is injected into a dry bare battery cell, and through processes such as vacuum packaging, standing, chemical formation, shaping, and sorting, the desired lithium ion battery is obtained, and the discharge voltage range is 3.0 to 4.2V. It was set to

実施例3
本実施例はリチウムイオン電池の非水電解液を提供しており、非水電解液の総質量を100%として、前記リチウムイオン非水電解液は、含有量の質量パーセントが25.0%のヘキサフルオロリン酸リチウム、28.5%のエチレンカーボネート、9.5%のジエチルカーボネート及び57.0%のメチルビニルカーボネートの非水溶媒、5.00%のT05アルケニルシロキサン化合物(上海TCI化成工業発展有限公司から購入したもの)、20.00%の炭酸ビニレン(江蘇華盛材料科技集団有限公司から購入したもの)及び10.00%のジフルオロ(オキサラト)ホウ酸リチウム(江蘇華盛材料科技集団有限公司から購入したもの)の添加剤を含んだ。
Example 3
This example provides a nonaqueous electrolyte for a lithium ion battery, and the lithium ion nonaqueous electrolyte has a content mass percentage of 25.0%, with the total mass of the nonaqueous electrolyte being 100%. Lithium hexafluorophosphate, 28.5% ethylene carbonate, 9.5% diethyl carbonate and 57.0% methyl vinyl carbonate non-aqueous solvent, 5.00% T05 alkenyl siloxane compound (Shanghai TCI Chemical Industrial Development Co., Ltd.), 20.00% vinylene carbonate (purchased from Jiangsu Huasheng Materials Technology Group Co., Ltd.) and 10.00% lithium difluoro(oxalato)borate (Jiangsu Huasheng Materials Technology Group Co., Ltd.) Contains additives (purchased from a company).

前記リチウムイオン電池の非水電解液の調製方法は次のとおりである。
グローブボックス内で電解液を調製し、グローブボックス内の窒素含有量は99.999%であり、グローブボックス内の実際の酸素含有量<2ppm、水分含有量<0.1ppmである。非水電解液の総質量を100%として、含有量の質量パーセントが28.5%のエチレンカーボネート、9.5%のジエチルカーボネート及び57.0%のメチルビニルカーボネートの電池グレード有機溶媒を均一に混合した後に、十分に乾燥させた含有量の質量パーセントが25.0%のヘキサフルオロリン酸リチウムを上記非水溶媒に加え、含有量の質量パーセントが5.00%のT05アルケニルシロキサン化合物を加え、含有量の質量パーセントが20.00%の炭酸ビニレン及び10.00%のジフルオロ(オキサラト)ホウ酸リチウムを加え、リチウムイオン電池の非水電解液を調製した。
The method for preparing the non-aqueous electrolyte for the lithium ion battery is as follows.
The electrolyte solution is prepared in the glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is <2 ppm, and the water content is <0.1 ppm. The total mass of the non-aqueous electrolyte is taken as 100%, and the battery-grade organic solvents have a mass percentage of 28.5% ethylene carbonate, 9.5% diethyl carbonate, and 57.0% methyl vinyl carbonate. After mixing, a sufficiently dried lithium hexafluorophosphate having a mass percent content of 25.0% is added to the above nonaqueous solvent, and a T05 alkenylsiloxane compound having a mass percent content of 5.00% is added. , 20.00% by weight of vinylene carbonate and 10.00% of lithium difluoro(oxalato)borate were added to prepare a non-aqueous electrolyte for a lithium ion battery.

リチウムイオン電池の調製方法は次のとおりである。
正極の調製:LiNi0.8Co0.1Mn0.1粉末、粘着剤のポリフッ化ビニリデン(PVDF)、導電剤のアセチレンブラックを97.5:1.5:1.5の重量比で混合し、N-メチルピロリドン(NMP)を加え、混合系は流動性が均一な正極スラリーになるまで、真空撹拌機の作用で撹拌し、正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布したアルミニウム箔を5階段の異なる温度勾配のオーブンでベーキングしてから、120℃のオーブンで8時間乾燥させ、その後圧延、スリットして所望の正極片を得た。
The method for preparing a lithium ion battery is as follows.
Preparation of positive electrode: LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, polyvinylidene fluoride (PVDF) as an adhesive, and acetylene black as a conductive agent in a weight ratio of 97.5:1.5:1.5. N-methylpyrrolidone (NMP) was added, and the mixed system was stirred using a vacuum stirrer until it became a positive electrode slurry with uniform fluidity, and the positive electrode slurry was evenly applied to a 15 μm thick aluminum foil. Then, the coated positive electrode slurry was uniformly coated on an aluminum foil with a thickness of 15 μm, and the coated aluminum foil was baked in an oven with 5 different temperature gradients, and then dried in an oven at 120 ° C. for 8 hours. A desired positive electrode piece was obtained by rolling and slitting.

負極の調製:質量比が95.7wt%のグラファイトの負極材料、質量比が1wt%の導電性カーボンブラック(SP)の導電剤、質量比が1.3wt%のカルボキシメチルセルロースナトリウム(CMC)の分散剤及び質量比が2wt%のスチレンブタジエンゴム(SBR)の粘着剤について湿式法プロセスで負極スラリーを調製し、負極スラリーを厚さ15μmの銅箔に均一に塗布し、上記塗布した銅箔を5階段の異なる温度勾配のオーブンでベーキングしてから、85℃のオーブンで5時間乾燥させ、その後圧延、スリットして所望のグラファイト負極片を得た。 Preparation of negative electrode: negative electrode material of graphite with mass ratio of 95.7 wt%, conductive agent of conductive carbon black (SP) with mass ratio of 1 wt%, dispersion of sodium carboxymethyl cellulose (CMC) with mass ratio of 1.3 wt% A negative electrode slurry was prepared using a wet process using a styrene-butadiene rubber (SBR) adhesive with a mass ratio of 2 wt%, and the negative electrode slurry was uniformly applied to a 15 μm thick copper foil. After baking in an oven with different temperature gradients, it was dried in an oven at 85° C. for 5 hours, and then rolled and slit to obtain a desired graphite negative electrode piece.

セパレータの調製:7~9mm厚さのポリプロピレンをセパレータとした。 Preparation of separator: Polypropylene with a thickness of 7 to 9 mm was used as a separator.

リチウムイオン電池の調製:上記準備した正極片、セパレータ、負極片を巻き取って液体が注入されていない裸の電池セルを得て、裸の電池セルを外包装のアルミニウム箔に入れ、上記調製した電解液を乾燥した裸の電池セルに注入し、真空包装、静置、化成、シェーピング、選別などの工程を経て、所望のリチウムイオン電池を得て、放電電圧区間を3.0~4.2Vに設定した。 Preparation of lithium ion battery: Roll up the positive electrode piece, separator, and negative electrode piece prepared above to obtain a bare battery cell in which no liquid has been injected, and place the bare battery cell in the outer packaging aluminum foil, and perform the above prepared procedure. The electrolytic solution is injected into a dry bare battery cell, and through processes such as vacuum packaging, standing, chemical formation, shaping, and sorting, the desired lithium ion battery is obtained, and the discharge voltage range is 3.0 to 4.2V. It was set to

実施例4
本実施例はリチウムイオン電池の非水電解液を提供しており、非水電解液の総質量を100%として、前記リチウムイオン非水電解液は、含有量の質量パーセントが12.5%のヘキサフルオロリン酸リチウム、21.0%のエチレンカーボネート、7.0%のジエチルカーボネート及び42.0%のメチルビニルカーボネートの非水溶媒、0.01%のT02アルケニルシロキサン化合物(上海Macklin生化科技有限公司から購入したもの)、1.00%の炭酸ビニレン(江蘇華盛材料科技集団有限公司から購入したもの)及び1.00%のジフルオロリン酸リチウム(江蘇国泰超威新材料有限公司から購入したもの)の添加剤を含んだ。
Example 4
This example provides a nonaqueous electrolyte for a lithium ion battery, and the lithium ion nonaqueous electrolyte has a content of 12.5% by mass, assuming the total mass of the nonaqueous electrolyte as 100%. Lithium hexafluorophosphate, 21.0% ethylene carbonate, 7.0% diethyl carbonate and 42.0% methyl vinyl carbonate non-aqueous solvent, 0.01% T02 alkenyl siloxane compound (Shanghai Macklin Biochemical Technology Co., Ltd. 1.00% vinylene carbonate (purchased from Jiangsu Huasheng Materials Technology Group Co., Ltd.) and 1.00% lithium difluorophosphate (purchased from Jiangsu Guotai Chaowei New Materials Co., Ltd.). Contains additives.

前記リチウムイオン電池の非水電解液の調製方法は次のとおりである。
グローブボックス内で電解液を調製し、グローブボックス内の窒素含有量は99.999%であり、グローブボックス内の実際の酸素含有量<2ppm、水分含有量<0.1ppmである。非水電解液の総質量を100%として、含有量の質量パーセントが21.0%のエチレンカーボネート、7.0%のジエチルカーボネート及び42.0%のメチルビニルカーボネートの電池グレード有機溶媒を均一に混合した後に、十分に乾燥させた含有量の質量パーセントが12.5%のヘキサフルオロリン酸リチウムを上記非水溶媒に加え、含有量の質量パーセントが0.01%のT02アルケニルシロキサン化合物を加え、さらに含有量の質量パーセントが1.00%の炭酸ビニレン及び1.00%のジフルオロリン酸リチウムを加え、リチウムイオン電池の非水電解液を調製した。
The method for preparing the non-aqueous electrolyte for the lithium ion battery is as follows.
The electrolyte solution is prepared in the glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is <2 ppm, and the water content is <0.1 ppm. The total mass of the non-aqueous electrolyte is taken as 100%, and the battery-grade organic solvent with a mass percentage of 21.0% ethylene carbonate, 7.0% diethyl carbonate, and 42.0% methyl vinyl carbonate is uniformly added. After mixing, sufficiently dried lithium hexafluorophosphate having a content of 12.5% by mass is added to the above non-aqueous solvent, and a T02 alkenylsiloxane compound having a content of 0.01% by mass is added. Then, vinylene carbonate having a mass percentage of 1.00% and lithium difluorophosphate having a content of 1.00% were added to prepare a non-aqueous electrolyte for a lithium ion battery.

リチウムイオン電池の調製方法は次のとおりである。
正極の調製:LiNi0.8Co0.1Mn0.1粉末、粘着剤のポリフッ化ビニリデン(PVDF)、導電剤のアセチレンブラックを97.5:1.5:1.5の重量比で混合し、N-メチルピロリドン(NMP)を加え、混合系は流動性が均一な正極スラリーになるまで、真空撹拌機の作用で撹拌し、正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布したアルミニウム箔を5階段の異なる温度勾配のオーブンでベーキングしてから、120℃のオーブンで8時間乾燥させ、その後圧延、スリットして所望の正極片を得た。
The method for preparing a lithium ion battery is as follows.
Preparation of positive electrode: LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, polyvinylidene fluoride (PVDF) as an adhesive, and acetylene black as a conductive agent in a weight ratio of 97.5:1.5:1.5. N-methylpyrrolidone (NMP) was added, and the mixed system was stirred using a vacuum stirrer until it became a positive electrode slurry with uniform fluidity, and the positive electrode slurry was evenly applied to a 15 μm thick aluminum foil. Then, the coated positive electrode slurry was uniformly coated on an aluminum foil with a thickness of 15 μm, and the coated aluminum foil was baked in an oven with 5 different temperature gradients, and then dried in an oven at 120 ° C. for 8 hours. A desired positive electrode piece was obtained by rolling and slitting.

負極の調製:質量比が95.7wt%のグラファイトの負極材料、質量比が1wt%の導電性カーボンブラック(SP)の導電剤、質量比が1.3wt%のカルボキシメチルセルロースナトリウム(CMC)の分散剤及び質量比が2wt%のスチレンブタジエンゴム(SBR)の粘着剤について湿式法プロセスで負極スラリーを調製し、負極スラリーを厚さ15μmの銅箔に均一に塗布し、上記塗布した銅箔を5階段の異なる温度勾配のオーブンでベーキングしてから、85℃のオーブンで5時間乾燥させ、その後圧延、スリットして所望のグラファイト負極片を得た。 Preparation of negative electrode: negative electrode material of graphite with mass ratio of 95.7 wt%, conductive agent of conductive carbon black (SP) with mass ratio of 1 wt%, dispersion of sodium carboxymethyl cellulose (CMC) with mass ratio of 1.3 wt% A negative electrode slurry was prepared using a wet process using a styrene-butadiene rubber (SBR) adhesive with a mass ratio of 2 wt%, and the negative electrode slurry was uniformly applied to a 15 μm thick copper foil. After baking in an oven with different temperature gradients, it was dried in an oven at 85° C. for 5 hours, and then rolled and slit to obtain a desired graphite negative electrode piece.

セパレータの調製:7~9mm厚さのポリプロピレンをセパレータとした。 Preparation of separator: Polypropylene with a thickness of 7 to 9 mm was used as a separator.

リチウムイオン電池の調製:上記準備した正極片、セパレータ、負極片を巻き取って液体が注入されていない裸の電池セルを得て、裸の電池セルを外包装のアルミニウム箔に入れ、上記調製した電解液を乾燥した裸の電池セルに注入し、真空包装、静置、化成、シェーピング、選別などの工程を経て、所望のリチウムイオン電池を得て、放電電圧区間を3.0~4.2Vに設定した。 Preparation of lithium ion battery: Roll up the positive electrode piece, separator, and negative electrode piece prepared above to obtain a bare battery cell in which no liquid has been injected, and place the bare battery cell in the outer packaging aluminum foil, and perform the above prepared procedure. The electrolytic solution is injected into a dry bare battery cell, and through processes such as vacuum packaging, standing, chemical formation, shaping, and sorting, the desired lithium ion battery is obtained, and the discharge voltage range is 3.0 to 4.2V. It was set to

実施例5
本実施例はリチウムイオン電池の非水電解液を提供しており、非水電解液の総質量を100%として、前記リチウムイオン非水電解液は、含有量の質量パーセントが12.5%のヘキサフルオロリン酸リチウム、21.0%のエチレンカーボネート、7.0%のジエチルカーボネート及び42.0%のメチルビニルカーボネートの非水溶媒、3.00%のT05アルケニルシロキサン化合物(上海TCI化成工業発展有限公司から購入したもの)、1.00%の炭酸ビニレン(江蘇華盛材料科技集団有限公司から購入したもの)及び0.01%のジフルオロ(オキサラト)ホウ酸リチウム(江蘇華盛材料科技集団有限公司から購入したもの)の添加剤を含んだ。
Example 5
This example provides a nonaqueous electrolyte for a lithium ion battery, and the lithium ion nonaqueous electrolyte has a content of 12.5% by mass, assuming the total mass of the nonaqueous electrolyte as 100%. Lithium hexafluorophosphate, 21.0% ethylene carbonate, 7.0% diethyl carbonate and 42.0% methyl vinyl carbonate non-aqueous solvent, 3.00% T05 alkenyl siloxane compound (Shanghai TCI Chemical Industrial Development Co., Ltd.), 1.00% vinylene carbonate (purchased from Jiangsu Huasheng Materials Technology Group Co., Ltd.) and 0.01% lithium difluoro(oxalato)borate (Jiangsu Huasheng Materials Technology Group Co., Ltd.) Contains additives (purchased from a company).

前記リチウムイオン電池の非水電解液の調製方法は次のとおりである。
グローブボックス内で電解液を調製し、グローブボックス内の窒素含有量は99.999%であり、グローブボックス内の実際の酸素含有量<2ppm、水分含有量<0.1ppmである。非水電解液の総質量を100%として、含有量の質量パーセントが21.0%のエチレンカーボネート、7.0%のジエチルカーボネート及び42.0%のメチルビニルカーボネートの電池グレード有機溶媒を均一に混合した後に、十分に乾燥させた含有量の質量パーセントが12.5%のヘキサフルオロリン酸リチウムを上記非水溶媒に加え、含有量の質量パーセントが3.00%のT05アルケニルシロキサン化合物を加え、さらに含有量の質量パーセントが1.00%の炭酸ビニレン及び0.01%のジフルオロ(オキサラト)ホウ酸リチウムを加え、リチウムイオン電池の非水電解液を調製した。
The method for preparing the non-aqueous electrolyte for the lithium ion battery is as follows.
The electrolyte solution is prepared in the glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is <2 ppm, and the water content is <0.1 ppm. The total mass of the non-aqueous electrolyte is taken as 100%, and the battery-grade organic solvent with a mass percentage of 21.0% ethylene carbonate, 7.0% diethyl carbonate, and 42.0% methyl vinyl carbonate is uniformly added. After mixing, sufficiently dried lithium hexafluorophosphate having a mass percent content of 12.5% is added to the above nonaqueous solvent, and a T05 alkenylsiloxane compound having a mass percent content of 3.00% is added. Furthermore, vinylene carbonate having a mass percent content of 1.00% and lithium difluoro(oxalato)borate of 0.01% were added to prepare a non-aqueous electrolyte for a lithium ion battery.

リチウムイオン電池の調製方法は次のとおりである。
正極の調製:LiNi0.8Co0.1Mn0.1粉末、粘着剤のポリフッ化ビニリデン(PVDF)、導電剤のアセチレンブラックを97.5:1.5:1.5の重量比で混合し、N-メチルピロリドン(NMP)を加え、混合系は流動性が均一な正極スラリーになるまで、真空撹拌機の作用で撹拌し、正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布したアルミニウム箔を5階段の異なる温度勾配のオーブンでベーキングしてから、120℃のオーブンで8時間乾燥させ、その後圧延、スリットして所望の正極片を得た。
The method for preparing a lithium ion battery is as follows.
Preparation of positive electrode: LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, polyvinylidene fluoride (PVDF) as an adhesive, and acetylene black as a conductive agent in a weight ratio of 97.5:1.5:1.5. N-methylpyrrolidone (NMP) was added, and the mixed system was stirred using a vacuum stirrer until it became a positive electrode slurry with uniform fluidity, and the positive electrode slurry was evenly applied to a 15 μm thick aluminum foil. Then, the coated positive electrode slurry was uniformly coated on an aluminum foil with a thickness of 15 μm, and the coated aluminum foil was baked in an oven with 5 different temperature gradients, and then dried in an oven at 120 ° C. for 8 hours. A desired positive electrode piece was obtained by rolling and slitting.

負極の調製:質量比が95.7wt%のグラファイトの負極材料、質量比が1wt%の導電性カーボンブラック(SP)の導電剤、質量比が1.3wt%のカルボキシメチルセルロースナトリウム(CMC)の分散剤及び質量比が2wt%のスチレンブタジエンゴム(SBR)の粘着剤について湿式法プロセスで負極スラリーを調製し、負極スラリーを厚さ15μmの銅箔に均一に塗布し、上記塗布した銅箔を5階段の異なる温度勾配のオーブンでベーキングしてから、85℃のオーブンで5時間乾燥させ、その後圧延、スリットして所望のグラファイト負極片を得た。 Preparation of negative electrode: negative electrode material of graphite with mass ratio of 95.7 wt%, conductive agent of conductive carbon black (SP) with mass ratio of 1 wt%, dispersion of sodium carboxymethyl cellulose (CMC) with mass ratio of 1.3 wt% A negative electrode slurry was prepared using a wet process using a styrene-butadiene rubber (SBR) adhesive with a mass ratio of 2 wt%, and the negative electrode slurry was uniformly applied to a 15 μm thick copper foil. After baking in an oven with different temperature gradients, it was dried in an oven at 85° C. for 5 hours, and then rolled and slit to obtain a desired graphite negative electrode piece.

セパレータの調製:7~9mm厚さのポリプロピレンをセパレータとした。 Preparation of separator: Polypropylene with a thickness of 7 to 9 mm was used as a separator.

リチウムイオン電池の調製:上記準備した正極片、セパレータ、負極片を巻き取って液体が注入されていない裸の電池セルを得て、裸の電池セルを外包装のアルミニウム箔に入れ、上記調製した電解液を乾燥した裸の電池セルに注入し、真空包装、静置、化成、シェーピング、選別などの工程を経て、所望のリチウムイオン電池を得て、放電電圧区間を3.0~4.2Vに設定した。 Preparation of lithium ion battery: Roll up the positive electrode piece, separator, and negative electrode piece prepared above to obtain a bare battery cell in which no liquid has been injected, and place the bare battery cell in the outer packaging aluminum foil, and perform the above prepared procedure. The electrolytic solution is injected into a dry bare battery cell, and through processes such as vacuum packaging, standing, chemical formation, shaping, and sorting, the desired lithium ion battery is obtained, and the discharge voltage range is 3.0 to 4.2V. It was set to

実施例6
本実施例はリチウムイオン電池の非水電解液を提供しており、非水電解液の総質量を100%として、前記リチウムイオン非水電解液は、含有量の質量パーセントが12.5%のヘキサフルオロリン酸リチウム、21.0%のエチレンカーボネート、7.0%のジエチルカーボネート及び42.0%のメチルビニルカーボネートの非水溶媒、1.00%のT03アルケニルシロキサン化合物(上海TCI化成工業発展有限公司から購入したもの)、1.00%の炭酸ビニレン(江蘇華盛材料科技集団有限公司から購入したもの)及び1.00%のジフルオロリン酸リチウム(江蘇国泰超威新材料有限公司から購入したもの)の添加剤を含んだ。
Example 6
This example provides a nonaqueous electrolyte for a lithium ion battery, and the lithium ion nonaqueous electrolyte has a content of 12.5% by mass, assuming the total mass of the nonaqueous electrolyte as 100%. Lithium hexafluorophosphate, 21.0% ethylene carbonate, 7.0% diethyl carbonate and 42.0% methyl vinyl carbonate non-aqueous solvent, 1.00% T03 alkenyl siloxane compound (Shanghai TCI Chemical Industrial Development Co., Ltd.), 1.00% vinylene carbonate (purchased from Jiangsu Huasheng Materials Technology Group Co., Ltd.), and 1.00% lithium difluorophosphate (purchased from Jiangsu Guotai Chaowei New Materials Co., Ltd.). Contains additives.

前記リチウムイオン電池の非水電解液の調製方法は次のとおりである。
グローブボックス内で電解液を調製し、グローブボックス内の窒素含有量は99.999%であり、グローブボックス内の実際の酸素含有量<2ppm、水分含有量<0.1ppmである。非水電解液の総質量を100%として、含有量の質量パーセントが21.0%のエチレンカーボネート、7.0%のジエチルカーボネート及び42.0%のメチルビニルカーボネートの電池グレード有機溶媒を均一に混合した後に、十分に乾燥させた含有量の質量パーセントが12.5%のヘキサフルオロリン酸リチウムを上記非水溶媒に加え、含有量の質量パーセントが1.00%のT03アルケニルシロキサン化合物を加え、さらに含有量の質量パーセントが1.00%の炭酸ビニレン及び1.00%のジフルオロリン酸リチウムを加え、リチウムイオン電池の非水電解液を調製した。
The method for preparing the non-aqueous electrolyte for the lithium ion battery is as follows.
The electrolyte solution is prepared in the glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is <2 ppm, and the water content is <0.1 ppm. The total mass of the non-aqueous electrolyte is taken as 100%, and the battery-grade organic solvent with a mass percentage of 21.0% ethylene carbonate, 7.0% diethyl carbonate, and 42.0% methyl vinyl carbonate is uniformly added. After mixing, sufficiently dried lithium hexafluorophosphate having a mass percent content of 12.5% is added to the above nonaqueous solvent, and a T03 alkenylsiloxane compound having a mass percent content of 1.00% is added. Then, vinylene carbonate having a mass percentage of 1.00% and lithium difluorophosphate having a content of 1.00% were added to prepare a non-aqueous electrolyte for a lithium ion battery.

リチウムイオン電池の調製方法は次のとおりである。
正極の調製:LiNi0.8Co0.1Mn0.1粉末、粘着剤のポリフッ化ビニリデン(PVDF)、導電剤のアセチレンブラックを97.5:1.5:1.5の重量比で混合し、N-メチルピロリドン(NMP)を加え、混合系は流動性が均一な正極スラリーになるまで、真空撹拌機の作用で撹拌し、正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布したアルミニウム箔を5階段の異なる温度勾配のオーブンでベーキングしてから、120℃のオーブンで8時間乾燥させ、その後圧延、スリットして所望の正極片を得た。
The method for preparing a lithium ion battery is as follows.
Preparation of positive electrode: LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, polyvinylidene fluoride (PVDF) as an adhesive, and acetylene black as a conductive agent in a weight ratio of 97.5:1.5:1.5. N-methylpyrrolidone (NMP) was added, and the mixed system was stirred using a vacuum stirrer until it became a positive electrode slurry with uniform fluidity, and the positive electrode slurry was evenly applied to a 15 μm thick aluminum foil. Then, the coated positive electrode slurry was uniformly coated on an aluminum foil with a thickness of 15 μm, and the coated aluminum foil was baked in an oven with 5 different temperature gradients, and then dried in an oven at 120 ° C. for 8 hours. A desired positive electrode piece was obtained by rolling and slitting.

負極の調製:質量比が95.7wt%のグラファイトの負極材料、質量比が1wt%の導電性カーボンブラック(SP)の導電剤、質量比が1.3wt%のカルボキシメチルセルロースナトリウム(CMC)の分散剤及び質量比が2wt%のスチレンブタジエンゴム(SBR)の粘着剤について湿式法プロセスで負極スラリーを調製し、負極スラリーを厚さ15μmの銅箔に均一に塗布し、上記塗布した銅箔を5階段の異なる温度勾配のオーブンでベーキングしてから、85℃のオーブンで5時間乾燥させ、その後圧延、スリットして所望のグラファイト負極片を得た。 Preparation of negative electrode: negative electrode material of graphite with mass ratio of 95.7 wt%, conductive agent of conductive carbon black (SP) with mass ratio of 1 wt%, dispersion of sodium carboxymethyl cellulose (CMC) with mass ratio of 1.3 wt% A negative electrode slurry was prepared using a wet process using a styrene-butadiene rubber (SBR) adhesive with a mass ratio of 2 wt%, and the negative electrode slurry was uniformly applied to a 15 μm thick copper foil. After baking in an oven with different temperature gradients, it was dried in an oven at 85° C. for 5 hours, and then rolled and slit to obtain a desired graphite negative electrode piece.

セパレータの調製:7~9mm厚さのポリプロピレンをセパレータとした。 Preparation of separator: Polypropylene with a thickness of 7 to 9 mm was used as a separator.

リチウムイオン電池の調製:上記準備した正極片、セパレータ、負極片を巻き取って液体が注入されていない裸の電池セルを得て、裸の電池セルを外包装のアルミニウム箔に入れ、上記調製した電解液を乾燥した裸の電池セルに注入し、真空包装、静置、化成、シェーピング、選別などの工程を経て、所望のリチウムイオン電池を得て、放電電圧区間を3.0~4.2Vに設定した。 Preparation of lithium ion battery: Roll up the positive electrode piece, separator, and negative electrode piece prepared above to obtain a bare battery cell in which no liquid has been injected, and place the bare battery cell in the outer packaging aluminum foil, and perform the above prepared procedure. The electrolytic solution is injected into a dry bare battery cell, and through processes such as vacuum packaging, standing, chemical formation, shaping, and sorting, the desired lithium ion battery is obtained, and the discharge voltage range is 3.0 to 4.2V. It was set to

実施例7
本実施例はリチウムイオン電池の非水電解液を提供しており、非水電解液の総質量を100%として、前記リチウムイオン非水電解液は、含有量の質量パーセントが12.5%のヘキサフルオロリン酸リチウム、21.0%のエチレンカーボネート、7.0%のジエチルカーボネート及び42.0%のメチルビニルカーボネートの非水溶媒、4.00%のT01アルケニルシロキサン化合物(上海TCI化成工業発展有限公司から購入したもの)、2.00%のフルオロエチレンカーボネート(陝西中藍化工科技新材料有限公司から購入したもの)及び1.00%のジフルオロリン酸リチウム(江蘇国泰超威新材料有限公司から購入したもの)の添加剤を含んだ。
Example 7
This example provides a nonaqueous electrolyte for a lithium ion battery, and the lithium ion nonaqueous electrolyte has a content of 12.5% by mass, assuming the total mass of the nonaqueous electrolyte as 100%. Lithium hexafluorophosphate, 21.0% ethylene carbonate, 7.0% diethyl carbonate and 42.0% methyl vinyl carbonate non-aqueous solvent, 4.00% T01 alkenyl siloxane compound (Shanghai TCI Chemical Industrial Development Co., Ltd.), 2.00% fluoroethylene carbonate (purchased from Shaanxi Zhonglan Chemical Technology New Materials Co., Ltd.) and 1.00% lithium difluorophosphate (Jiangsu Guotai Chaowei New Materials Co., Ltd.). Contains additives (purchased from ).

前記リチウムイオン電池の非水電解液の調製方法は次のとおりである。
グローブボックス内で電解液を調製し、グローブボックス内の窒素含有量は99.999%であり、グローブボックス内の実際の酸素含有量<2ppm、水分含有量<0.1ppmである。非水電解液の総質量を100%として、含有量の質量パーセントが21.0%のエチレンカーボネート、7.0%のジエチルカーボネート及び42.0%のメチルビニルカーボネートの電池グレード有機溶媒を均一に混合した後に、十分に乾燥させた含有量の質量パーセントが12.5%のヘキサフルオロリン酸リチウムを上記非水溶媒に加え、含有量の質量パーセントが4.00%のT01アルケニルシロキサン化合物を加え、さらに含有量の質量パーセントが2.00%のフルオロエチレンカーボネート及び1.00%のジフルオロリン酸リチウムを加え、リチウムイオン電池の非水電解液を調製した。
The method for preparing the non-aqueous electrolyte for the lithium ion battery is as follows.
The electrolyte solution is prepared in the glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is <2 ppm, and the water content is <0.1 ppm. The total mass of the non-aqueous electrolyte is taken as 100%, and the battery-grade organic solvent with a mass percentage of 21.0% ethylene carbonate, 7.0% diethyl carbonate, and 42.0% methyl vinyl carbonate is uniformly added. After mixing, sufficiently dried lithium hexafluorophosphate having a mass percent content of 12.5% is added to the above nonaqueous solvent, and a T01 alkenylsiloxane compound having a mass percent content of 4.00% is added. Further, fluoroethylene carbonate having a mass percent content of 2.00% and lithium difluorophosphate of 1.00% were added to prepare a non-aqueous electrolyte for a lithium ion battery.

リチウムイオン電池の調製方法は次のとおりである。
正極の調製:LiNi0.8Co0.1Mn0.1粉末、粘着剤のポリフッ化ビニリデン(PVDF)、導電剤のアセチレンブラックを97.5:1.5:1.5の重量比で混合し、N-メチルピロリドン(NMP)を加え、混合系は流動性が均一な正極スラリーになるまで、真空撹拌機の作用で撹拌し、正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布正極スラリーを厚さ15μmのアルミニウム箔に均一に塗布し、上記塗布したアルミニウム箔を5階段の異なる温度勾配のオーブンでベーキングしてから、120℃のオーブンで8時間乾燥させ、その後圧延、スリットして所望の正極片を得た。
The method for preparing a lithium ion battery is as follows.
Preparation of positive electrode: LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, polyvinylidene fluoride (PVDF) as an adhesive, and acetylene black as a conductive agent in a weight ratio of 97.5:1.5:1.5. N-methylpyrrolidone (NMP) was added, and the mixed system was stirred using a vacuum stirrer until it became a positive electrode slurry with uniform fluidity, and the positive electrode slurry was evenly applied to a 15 μm thick aluminum foil. Then, the coated positive electrode slurry was uniformly coated on an aluminum foil with a thickness of 15 μm, and the coated aluminum foil was baked in an oven with 5 different temperature gradients, and then dried in an oven at 120 ° C. for 8 hours. A desired positive electrode piece was obtained by rolling and slitting.

負極の調製:質量比が95.7wt%のグラファイトの負極材料、質量比が1wt%の導電性カーボンブラック(SP)の導電剤、質量比が1.3wt%のカルボキシメチルセルロースナトリウム(CMC)の分散剤及び質量比が2wt%のスチレンブタジエンゴム(SBR)の粘着剤について湿式法プロセスで負極スラリーを調製し、負極スラリーを厚さ15μmの銅箔に均一に塗布し、上記塗布した銅箔を5階段の異なる温度勾配のオーブンでベーキングしてから、85℃のオーブンで5時間乾燥させ、その後圧延、スリットして所望のグラファイト負極片を得た。 Preparation of negative electrode: negative electrode material of graphite with mass ratio of 95.7 wt%, conductive agent of conductive carbon black (SP) with mass ratio of 1 wt%, dispersion of sodium carboxymethyl cellulose (CMC) with mass ratio of 1.3 wt% A negative electrode slurry was prepared using a wet process using a styrene-butadiene rubber (SBR) adhesive with a mass ratio of 2 wt%, and the negative electrode slurry was uniformly applied to a 15 μm thick copper foil. After baking in an oven with different temperature gradients, it was dried in an oven at 85° C. for 5 hours, and then rolled and slit to obtain a desired graphite negative electrode piece.

セパレータの調製:7~9mm厚さのポリプロピレンをセパレータとした。 Preparation of separator: Polypropylene with a thickness of 7 to 9 mm was used as a separator.

リチウムイオン電池の調製:上記準備した正極片、セパレータ、負極片を巻き取って液体が注入されていない裸の電池セルを得て、裸の電池セルを外包装のアルミニウム箔に入れ、上記調製した電解液を乾燥した裸の電池セルに注入し、真空包装、静置、化成、シェーピング、選別などの工程により、所望のリチウムイオン電池を得て、放電電圧区間を3.0~4.2Vに設定した。 Preparation of lithium ion battery: Roll up the positive electrode piece, separator, and negative electrode piece prepared above to obtain a bare battery cell in which no liquid has been injected, and place the bare battery cell in the outer packaging aluminum foil, and perform the above prepared procedure. The electrolytic solution is injected into a dry bare battery cell, and the desired lithium ion battery is obtained through processes such as vacuum packaging, standing, chemical formation, shaping, and sorting, and the discharge voltage range is set to 3.0 to 4.2V. Set.

実施例8
本実施例と実施例1の区別は、リチウムイオン電池の非水電解液の調製過程で硫酸エチレン及び炭酸ビニレンを添加しないことにあり、その他はいずれも実施例1と同様である。
Example 8
The difference between this example and Example 1 is that ethylene sulfate and vinylene carbonate were not added in the process of preparing the non-aqueous electrolyte for the lithium ion battery, and all other aspects were the same as in Example 1.

実施例9
本比較例と実施例1の区別は、リチウムイオン電池の非水電解液の調製過程で非水電解液の総質量を100%として、アルケニルシロキサン化合物の含有量の質量パーセントが10.00%であることにあり、その他はいずれも実施例1と同様である。
Example 9
The difference between this comparative example and Example 1 is that in the process of preparing a nonaqueous electrolyte for a lithium ion battery, the total mass of the nonaqueous electrolyte is 100%, and the content of the alkenylsiloxane compound is 10.00% by mass. There are certain things, and everything else is the same as in Example 1.

比較例1
本比較例と実施例1の区別は、リチウムイオン電池の非水電解液の調製過程でアルケニルシロキサン化合物を添加しないことにあり、その他はいずれも実施例1と同様である。
Comparative example 1
The difference between this comparative example and Example 1 is that no alkenylsiloxane compound was added in the process of preparing the non-aqueous electrolyte for the lithium ion battery, and all other aspects were the same as in Example 1.

比較例2
本比較例と実施例1の区別は、リチウムイオン電池の非水電解液の調製過程でアルケニルシロキサン化合物を下記の構造を有するシロキサン化合物A(上海Meryer化学技術有限公司から購入したもの)に変更することにあり、その他はいずれも実施例1と同様である。
Comparative example 2
The difference between this comparative example and Example 1 is that the alkenyl siloxane compound is changed to siloxane compound A (purchased from Shanghai Meryer Chemical Technology Co., Ltd.) having the following structure in the process of preparing the non-aqueous electrolyte for the lithium ion battery. In particular, everything else is the same as in the first embodiment.

Figure 0007455105000010
Figure 0007455105000010

比較例3
本比較例と実施例1の区別は、リチウムイオン電池の非水電解液の調製過程でアルケニルシロキサン化合物及び硫酸エチレンを添加せず、1,3-プロパンスルトン及び炭酸ビニレンを添加することにある。非水電解液の総質量を100%として、1,3-プロパンスルトンの含有量の質量パーセントが7.50%で、炭酸ビニレンの含有量の質量パーセントが10.00%であり、その他はいずれも実施例1と同様である。
Comparative example 3
The difference between this comparative example and Example 1 is that 1,3-propane sultone and vinylene carbonate were added instead of adding an alkenylsiloxane compound and ethylene sulfate in the process of preparing a non-aqueous electrolyte for a lithium ion battery. The total mass of the non-aqueous electrolyte is 100%, the mass percentage of the content of 1,3-propane sultone is 7.50%, the mass percentage of the content of vinylene carbonate is 10.00%, and the other This is also the same as in Example 1.

比較例4
本比較例と実施例1の区別は、リチウムイオン電池の非水電解液の調製過程でアルケニルシロキサン化合物、硫酸エチレン及び炭酸ビニレンを添加せず、1,3-プロパンスルトンを添加することにある。非水電解液の総質量を100%として、1,3-プロパンスルトンの含有量の質量パーセントが17.50%であり、その他はいずれも実施例1と同様である。
Comparative example 4
The difference between this comparative example and Example 1 is that 1,3-propane sultone was added instead of adding an alkenylsiloxane compound, ethylene sulfate, and vinylene carbonate in the process of preparing a nonaqueous electrolyte for a lithium ion battery. The mass percentage of the content of 1,3-propane sultone was 17.50%, with the total mass of the non-aqueous electrolyte being 100%, and all other aspects were the same as in Example 1.

比較例5
本比較例と実施例1の区別は、リチウムイオン電池の非水電解液の調製過程でアルケニルシロキサン化合物、硫酸エチレン及び1,3-プロパンスルトンを添加せず、炭酸ビニレンを添加することにある。非水電解液の総質量を100%として、炭酸ビニレンの含有量の質量パーセントが17.50%であり、その他はいずれも実施例1と同様である。
Comparative example 5
The difference between this comparative example and Example 1 is that vinylene carbonate was added instead of alkenylsiloxane compounds, ethylene sulfate, and 1,3-propane sultone in the process of preparing a nonaqueous electrolyte for a lithium ion battery. The mass percentage of the vinylene carbonate content was 17.50%, with the total mass of the non-aqueous electrolyte being 100%, and all other aspects were the same as in Example 1.

比較例6
本比較例と実施例1の区別は、リチウムイオン電池の非水電解液の調製過程でアルケニルシロキサン化合物、硫酸エチレン、1,3-プロパンスルトン及び炭酸ビニレンを添加せず、非水溶媒が含有量の質量パーセントが25.95%のエチレンカーボネート、8.65%のジエチルカーボネート及び51.9%のメチルビニルカーボネートの非水溶媒を含むことにあり、その他はいずれも実施例1と同様である。
Comparative example 6
The difference between this comparative example and Example 1 is that alkenyl siloxane compounds, ethylene sulfate, 1,3-propane sultone, and vinylene carbonate were not added during the preparation process of the nonaqueous electrolyte for lithium ion batteries, and the nonaqueous solvent contained Contains a non-aqueous solvent of 25.95% ethylene carbonate, 8.65% diethyl carbonate, and 51.9% methyl vinyl carbonate, and all others are the same as in Example 1.

Figure 0007455105000011
Figure 0007455105000012
Figure 0007455105000011
Figure 0007455105000012

テスト条件
実施例1~9及び比較例1~6で調製されたリチウムイオン電池に対して、それぞれ高温サイクル、高温保存性能及びイオン電導率性能テストを行い、テスト方法は次のとおりである。
Test Conditions The lithium ion batteries prepared in Examples 1 to 9 and Comparative Examples 1 to 6 were subjected to high temperature cycle, high temperature storage performance, and ionic conductivity performance tests, respectively, and the test methods were as follows.

(1)高温サイクルテスト:電池を45℃の環境に置き、化成した電池は、正極材料がLiNi0.8Co0.1Mn0.1を用いて、負極材料が人工グラファイトを用いて、1Cの定電流・定電圧で4.2Vまで充電し、カットオフ電流は0.02Cであり、その後1Cの定電流で3.0Vまで放電した。このように充電/放電サイクルを行った後、200サイクル後の容量保持率を計算し、これに従ってそのサイクル性能を評価した。
45℃で200サイクル後の容量保持率の計算式は次のとおりである。
200サイクル目の容量保持率(%)=(200サイクル目の放電容量/1サイクル目の放電容量)*100%
(1) High temperature cycle test: The battery was placed in a 45°C environment and the chemically formed battery was tested using LiNi 0.8 Co 0.1 Mn 0.1 O 2 as the positive electrode material and artificial graphite as the negative electrode material. , the battery was charged to 4.2V at a constant current and voltage of 1C, the cutoff current was 0.02C, and then discharged to 3.0V at a constant current of 1C. After performing charge/discharge cycles in this manner, the capacity retention rate after 200 cycles was calculated, and the cycle performance was evaluated accordingly.
The formula for calculating the capacity retention rate after 200 cycles at 45°C is as follows.
Capacity retention rate at 200th cycle (%) = (discharge capacity at 200th cycle/discharge capacity at 1st cycle) *100%

(2)高温保存テスト:化成した電池を25℃で1Cの定電流・定電圧で4.2Vまで充電し、正極材料はLiNi0.8Co0.1Mn0.1を用いて、負極材料は人工グラファイトを用いて、カットオフ電流は0.02Cであり、さらに1Cの定電流で3.0Vまで放電し、電池の初期放電容量を測定してから、1Cの定電流・定電圧で4.2Vまで充電し、カットオフ電流は0.01Cであり、電池の初期厚さを測定し、その後電池を60℃で30日間保存した後に、60℃で保存した後の電池の厚さを測定してから、1Cの定電流で3.0Vまで放電し、電池の保持容量を測定してから、1Cの定電流・定電圧で3.0Vまで充電し、カットオフ電流は0.02Cであり、その後1Cの定電流で3.0Vまで放電し、回復容量を測定した。
容量保持率、容量回復率、体積膨脹率の計算式は次のとおりである。
電池の容量保持率(%)=保持容量/初期容量*100%
電池の容量回復率(%)=回復容量/初期容量*100%
電池の体積膨脹率(%)=(30日後の体積-初期体積)/初期体積*100%
(2) High temperature storage test: The chemically formed battery was charged to 4.2V at 1C constant current and voltage at 25°C, using LiNi 0.8 Co 0.1 Mn 0.1 O 2 as the positive electrode material. The negative electrode material is artificial graphite, the cut-off current is 0.02C, and the battery is further discharged at a constant current of 1C to 3.0V, the initial discharge capacity of the battery is measured, and then the cut-off current is 0.02C. The initial thickness of the battery was measured by charging it to 4.2V with a cut-off current of 0.01C, and then storing the battery at 60℃ for 30 days. After measuring, discharge to 3.0V with a constant current of 1C, measure the holding capacity of the battery, then charge to 3.0V with a constant current and constant voltage of 1C, and the cut-off current is 0.02C. After that, the battery was discharged to 3.0V at a constant current of 1C, and the recovery capacity was measured.
The formulas for calculating the capacity retention rate, capacity recovery rate, and volumetric expansion rate are as follows.
Battery capacity retention rate (%) = retention capacity / initial capacity * 100%
Battery capacity recovery rate (%) = recovery capacity / initial capacity * 100%
Battery volume expansion rate (%) = (Volume after 30 days - Initial volume) / Initial volume * 100%

テストの結果は表2に示すとおりである。 The test results are shown in Table 2.

Figure 0007455105000013
Figure 0007455105000013

表1及び表2のデータから分かるように、本発明はアルケニルシロキサンを含む非水電解液を用いて、上記実施例で調製されたリチウムイオン電池に対して高温サイクル及び高温保存性能のテストを行い、図1は実施例1及び比較例1~4に係るリチウムイオン電池の60℃の高温で30日間保存後の容量保持率及び回復率であり、比較例1~4と比べて、実施例1に係るリチウムイオン電池は高い容量保持率及び容量回復率を有することを示し、さらに本発明の電解液を用いて調製されたリチウムイオン電池はサイクル保持率が高く、保存容量保持率及び回復率が高いという利点を有することを表し、図2は実施例1及び比較例1~4に係るリチウムイオン電池の60℃の高温で30日間保存後の体積増加率であり、実施例1におけるリチウムイオン電池の厚さの増加は比較例1~4のリチウムイオン電池よりもはるかに小さいことを表し、さらに本発明に係る電解液を用いることで電池の体積膨脹を緩解できることを示している。さらに、アルケニルシロキサン含有化合物をジフルオロリン酸リチウム、炭酸ビニレン、ジフルオロ(オキサラト)ホウ酸リチウムと配合して使用することは、アルケニルシロキサン化合物の添加剤を単独で使用するよりも、より優れた電池性能を示し、且つ高温保存後の電池の体積膨脹率は比較例よりもはるかに小さいため、本発明の電解液をリチウムイオン電池に適用すると、良好な高温長期サイクル安定性、高温保存安定性及び良好の安全性能を有する。 As can be seen from the data in Tables 1 and 2, the present invention conducted high-temperature cycle and high-temperature storage performance tests on the lithium ion battery prepared in the above example using a non-aqueous electrolyte containing alkenylsiloxane. , FIG. 1 shows the capacity retention rate and recovery rate of the lithium ion batteries according to Example 1 and Comparative Examples 1 to 4 after storage at a high temperature of 60°C for 30 days. It has been shown that the lithium ion battery according to the present invention has a high capacity retention rate and a high capacity recovery rate, and furthermore, the lithium ion battery prepared using the electrolyte of the present invention has a high cycle retention rate and a high storage capacity retention rate and a high capacity recovery rate. Figure 2 shows the volume increase rate of the lithium ion batteries of Example 1 and Comparative Examples 1 to 4 after storage at a high temperature of 60°C for 30 days. The increase in thickness is much smaller than that of the lithium ion batteries of Comparative Examples 1 to 4, further indicating that the use of the electrolyte according to the present invention can slow the volumetric expansion of the battery. Additionally, using alkenylsiloxane-containing compounds in combination with lithium difluorophosphate, vinylene carbonate, and lithium difluoro(oxalato)borate provides better battery performance than using alkenylsiloxane compound additives alone. , and the volume expansion rate of the battery after high-temperature storage is much smaller than that of the comparative example. Therefore, when the electrolyte of the present invention is applied to a lithium-ion battery, it has good high-temperature long-term cycle stability, high-temperature storage stability, and good It has safety performance.

図3は実施例1及び比較例1~4に係るリチウムイオン電池の45℃の高温で200サイクル後の容量保持率であり、実施例1におけるリチウムイオン電池の200サイクル後の容量保持率が最も高いことを説明した。比較例2では、環状シロキサン化合物を含むがアルケニル基の二重結合を含まない添加剤でも45℃で200サイクル後の容量保持率は80%以下であり、60℃で高温保存後の容量保持率及び回復率はいずれも90%よりも低く、厚さ増加率は実施例よりもはるかに高いことを示し、シロキサン化合物の添加剤が存在しない他の比較例の効果はこの比較例2よりも低く、電解液にアルケニルシロキサン化合物の添加剤が存在しないと、リチウム電池のインピーダンスが大きく、リチウムイオン導通性が劣り、且つ高温により、正極の遷移金属イオンが溶出し、触媒溶媒の持続分解を誘発することにより、リチウムイオンを過剰に消費し、高温条件での電池の容量保持率及び回収率の低下を引き起こした。且つ、溶媒の持続分解により、一方ではガスが発生し、他方ではSEI膜が持続的に修復され、SEI膜が厚くなり続けることで、極片が厚くなり、両方とも電池の体積増加につながった。 Figure 3 shows the capacity retention rates of the lithium ion batteries of Example 1 and Comparative Examples 1 to 4 after 200 cycles at a high temperature of 45°C. I explained that it was expensive. In Comparative Example 2, even with an additive that contains a cyclic siloxane compound but does not contain double bonds of alkenyl groups, the capacity retention rate after 200 cycles at 45°C is 80% or less, and the capacity retention rate after high-temperature storage at 60°C is 80% or less. The recovery rate and recovery rate are both lower than 90%, indicating that the thickness increase rate is much higher than that of the example, and the effect of the other comparative example without the siloxane compound additive is lower than this comparative example 2. If there is no alkenylsiloxane compound additive in the electrolyte, the impedance of the lithium battery will be large and the lithium ion conductivity will be poor, and transition metal ions in the positive electrode will be eluted due to high temperatures, inducing sustained decomposition of the catalyst solvent. As a result, lithium ions were consumed excessively, causing a decrease in the capacity retention rate and recovery rate of the battery under high-temperature conditions. Moreover, due to the continuous decomposition of the solvent, on the one hand, gas was generated, and on the other hand, the SEI film was continuously repaired, and the SEI film continued to thicken, making the pole pieces thicker, both of which led to an increase in the volume of the battery. .

本発明は、上記実施例によって本発明のリチウムイオン電池の非水電解液及びその使用を説明したが、本発明は上記実施例に限定されるものではなく、すなわち、本発明は上記実施例でしか実施できないものではないことを、出願人はここに声明する。当業者であれば、本発明に対するすべての改良、本発明の製品の各原料に対する同等置換や補助成分の添加、具体的な形態の選択等は、すべて本発明の保護範囲と開示範囲に属することが分かるはずである。 Although the present invention has explained the non-aqueous electrolyte of the lithium ion battery of the present invention and its use through the above-mentioned Examples, the present invention is not limited to the above-mentioned Examples. The applicant hereby declares that this is not something that can only be implemented. Those skilled in the art will understand that all improvements to the present invention, equivalent substitutions and additions of auxiliary ingredients to each raw material of the product of the present invention, selection of specific forms, etc., all fall within the protection scope and disclosure scope of the present invention. You should understand.

Claims (7)

リチウム塩、非水溶媒及び添加剤を含み、前記添加剤は式(1)で示される環状構造を有するアルケニルシロキサン化合物、インピーダンス低減添加剤及び成膜添加剤を含む、ことを特徴とするリチウムイオン電池の非水電解液であって、
前記インピーダンス低減添加剤はジフルオロリン酸リチウム、硫酸エチレン又はジフルオロ(オキサラト)ホウ酸リチウムのいずれか1種又は少なくとも2種の組み合わせを含み、
前記リチウムイオン電池の非水電解液におけるインピーダンス低減添加剤の含有量の質量パーセントは0.01~10.00%である、ことを特徴とするリチウムイオン電池の非水電解液。
Figure 0007455105000014
(但し、前記式(1)で示される環状構造を有するアルケニルシロキサン化合物は下記の化合物のいずれか1種である。)
Figure 0007455105000015
Figure 0007455105000016
Figure 0007455105000017
Figure 0007455105000018
Figure 0007455105000019
A lithium ion comprising a lithium salt, a non-aqueous solvent, and an additive, the additive comprising an alkenylsiloxane compound having a cyclic structure represented by formula (1), an impedance reducing additive, and a film-forming additive. A non-aqueous electrolyte for a battery ,
The impedance reducing additive includes any one or a combination of at least two of lithium difluorophosphate, ethylene sulfate, or lithium difluoro(oxalato)borate;
A nonaqueous electrolyte for a lithium ion battery, wherein the content of the impedance reducing additive in the nonaqueous electrolyte for the lithium ion battery has a mass percentage of 0.01 to 10.00%.
Figure 0007455105000014
(However, the alkenylsiloxane compound having a cyclic structure represented by the above formula (1) is any one of the following compounds.)
Figure 0007455105000015
Figure 0007455105000016
Figure 0007455105000017
Figure 0007455105000018
Figure 0007455105000019
前記リチウムイオン電池の非水電解液における式(1)で示される環状構造を有するアルケニルシロキサン化合物の含有量の質量パーセントは0.01~5.00%である、ことを特徴とする請求項1に記載のリチウムイオン電池の非水電解液。 Claim 1, wherein the content of the alkenylsiloxane compound having a cyclic structure represented by formula (1) in the non-aqueous electrolyte of the lithium ion battery has a mass percentage of 0.01 to 5.00%. A non-aqueous electrolyte for a lithium ion battery as described in . 前記リチウムイオン電池の非水電解液は成膜添加剤をさらに含み、前記成膜添加剤は硫酸プロピレン、1,3-プロパンスルトン、炭酸ビニレン、炭酸ビニルエチレン、フルオロエチレンカーボネート、プロペンスルトン、1,4-ブタンスルトン、亜硫酸エチレン、ジフルオロビスオキサラトリン酸リチウムテトラフルオロホウ酸リチウム、ビス(オキサラト)ホウ酸リチウム、スクシノニトリル、アジポニトリル、無水コハク酸、ホウ酸トリス(トリメチルシリル)、リン酸トリス(トリメチルシリル)、メチレンメタンジスルホネート、エチレングリコールビス(プロピオニトリル)エーテル、1,3,6-ヘキサントリカルボニトリル、リン酸トリプロパルギル、フルオロベンゼン又は1,1,2,3-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテルのいずれか1種又は少なくとも2種の組み合わせを含み、
前記リチウムイオン電池の非水電解液における成膜添加剤の含有量の質量パーセントは0.01~20.00%である、ことを特徴とする請求項1又は2に記載のリチウムイオン電池の非水電解液。
The nonaqueous electrolyte of the lithium ion battery further includes a film-forming additive, and the film-forming additive includes propylene sulfate, 1,3-propane sultone, vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, propene sultone, 1, 4-Butanesultone, ethylene sulfite, lithium difluorobisoxalatophosphate, lithium tetrafluoroborate, lithium bis(oxalato)borate, succinonitrile, adiponitrile, succinic anhydride, tris(trimethylsilyl) borate, tris(trimethylsilyl) phosphate , methylenemethane disulfonate, ethylene glycol bis(propionitrile) ether, 1,3,6-hexanetricarbonitrile, tripropargyl phosphate, fluorobenzene or 1,1,2,3-tetrafluoroethyl-2,2 , 3,3-tetrafluoropropyl ether or a combination of at least two thereof,
The nonaqueous electrolyte of the lithium ion battery according to claim 1 or 2 , wherein the content of the film-forming additive in the nonaqueous electrolyte of the lithium ion battery is 0.01 to 20.00% by mass. Water electrolyte.
前記リチウム塩はヘキサフルオロリン酸リチウム、過塩素酸リチウム、トリフルオロメタンスルホン酸リチウム、ビスフルオロスルホニルイミドリチウム又はビストリフルオロメタンスルホニルイミドリチウムのいずれか1種又は少なくとも2種の組み合わせを含み、
前記リチウムイオン電池の非水電解液におけるリチウム塩の含有量の質量パーセントは2.0~25.0%である、ことを特徴とする請求項1~のいずれか一項に記載のリチウムイオン電池の非水電解液。
The lithium salt includes any one or a combination of at least two of lithium hexafluorophosphate, lithium perchlorate, lithium trifluoromethanesulfonate, lithium bisfluorosulfonylimide, or lithium bistrifluoromethanesulfonylimide,
The lithium ion according to any one of claims 1 to 3 , wherein the content of lithium salt in the nonaqueous electrolyte of the lithium ion battery has a mass percentage of 2.0 to 25.0%. Non-aqueous electrolyte for batteries.
前記非水溶媒はエチレングリコールジエチルエーテル、プロピオン酸メチル、酢酸メチル、プロピオン酸プロピル、酪酸メチル、酪酸エチル、酢酸プロピル、酪酸ブチル、アセトニトリル、メチルプロピルカーボネート、プロピオン酸エチル、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、テトラヒドロフラン、プロピレンカーボネート、酢酸エチル、ジエチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート又はエチレンカーボネートのいずれか1種又は少なくとも2種の組み合わせであり、前記リチウムイオン電池の非水電解液における非水溶媒の含有量の質量パーセントは40.00~97.97%である、ことを特徴とする請求項1~のいずれか一項に記載のリチウムイオン電池の非水電解液。 The nonaqueous solvents include ethylene glycol diethyl ether, methyl propionate, methyl acetate, propyl propionate, methyl butyrate, ethyl butyrate, propyl acetate, butyl butyrate, acetonitrile, methylpropyl carbonate, ethyl propionate, γ-butyrolactone, sulfolane, and dimethyl. Any one or a combination of two of sulfoxide, tetrahydrofuran, propylene carbonate, ethyl acetate, diethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, or ethylene carbonate, and is a non-aqueous solvent in the non-aqueous electrolyte of the lithium ion battery. The nonaqueous electrolyte for a lithium ion battery according to any one of claims 1 to 4 , wherein the content in mass percent is 40.00 to 97.97%. 請求項1~のいずれか一項に記載のリチウムイオン電池の非水電解液を含む、ことを特徴とするリチウムイオン電池。 A lithium ion battery comprising the nonaqueous electrolyte of the lithium ion battery according to any one of claims 1 to 5 . 前記リチウムイオン電池は電池ケース及び電池セルをさらに含み、前記電池セル及び前記リチウムイオン電池の非水電解液は電池ケース内に密封され、
前記電池セルは正極と、負極と、前記正極と前記負極との間に設けられたセパレータ又は固体電解質層とを含み、
前記正極の材料はリチウムを吸蔵及び放出可能な活物質であり、前記負極の材料はリチウムを放出するか、又はリチウムと合金を形成可能な金属、合金、或いはリチウムを挿入/脱離可能な金属酸化物であり、
前記リチウムを吸蔵及び放出可能な活物質はLiNiCoMn(1-x-y-z)、LiCox’(1-x’)、LiNix’’L’y’Mn(2-x’’-y’)又はLiz’MPOの少なくとも1種であり、ただし、LはAl、Sr、Mg、Ti、Ca、Zr、Zn、Si又はFeの少なくとも1種であり、0≦x≦1、0≦y≦1、0≦z≦1、0<x+y+z≦1、0<x’ ≦1、0.3<x’’ ≦0.6、0.01≦y’ ≦0.2、L’はCo、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si又はFeの少なくとも1種であり、0.5≦z’ ≦1、MはFe、Mn又はCoの少なくとも1種であり、
前記負極の材料は結晶性炭素、リチウム金属、LiMnO、LiAl、LiSb、LiCd、LiZn、LiBi、LiSi、Li4.4Pb、Li4.4Sn、LiC、LiFeN、Li2.6CoN0.4、Li2.6CuN0.4又はLiTi12の少なくとも1種である、ことを特徴とする請求項に記載のリチウムイオン電池。
The lithium ion battery further includes a battery case and a battery cell, and the battery cell and the nonaqueous electrolyte of the lithium ion battery are sealed within the battery case,
The battery cell includes a positive electrode, a negative electrode, and a separator or solid electrolyte layer provided between the positive electrode and the negative electrode,
The material of the positive electrode is an active material capable of intercalating and deintercalating lithium, and the material of the negative electrode is a metal or alloy capable of deintercalating lithium or forming an alloy with lithium, or a metal capable of intercalating/deintercalating lithium. is an oxide,
The active materials capable of intercalating and deintercalating lithium include LiNix Co y Mn z L (1-x-y-z) O 2 , LiCo x' L (1-x') O 2 , LiNi x'' L' y ' Mn (2-x''-y') O 4 or Li z ' MPO 4 , provided that L is at least one of Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe. 1 type, 0≦x≦1, 0≦y≦1, 0≦z≦1, 0<x+y+z≦1, 0<x'≦1, 0.3<x''≦0.6, 0. 01≦y'≦0.2, L' is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, or Fe, 0.5≦z'≦1, M is Fe , Mn or Co,
The negative electrode materials include crystalline carbon, lithium metal, LiMnO 2 , LiAl, Li 3 Sb, Li 3 Cd, LiZn, Li 3 Bi, Li 4 Si, Li 4.4 Pb, Li 4.4 Sn, LiC 6 , The lithium ion battery according to claim 6 , characterized in that it is at least one of Li 3 FeN 2 , Li 2.6 CoN 0.4 , Li 2.6 CuN 0.4 or Li 4 Ti 5 O 12 .
JP2021192066A 2021-09-16 2021-11-26 Non-aqueous electrolyte for lithium ion batteries and its use Active JP7455105B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111085331.6A CN113839093A (en) 2021-09-16 2021-09-16 Non-aqueous electrolyte of lithium ion battery and application thereof
CN202111085331.6 2021-09-16

Publications (2)

Publication Number Publication Date
JP2023043812A JP2023043812A (en) 2023-03-29
JP7455105B2 true JP7455105B2 (en) 2024-03-25

Family

ID=78959405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021192066A Active JP7455105B2 (en) 2021-09-16 2021-11-26 Non-aqueous electrolyte for lithium ion batteries and its use

Country Status (3)

Country Link
JP (1) JP7455105B2 (en)
CN (1) CN113839093A (en)
WO (1) WO2023040082A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464886A (en) * 2022-02-16 2022-05-10 香河昆仑新能源材料股份有限公司 Lithium ion battery non-aqueous electrolyte and lithium ion battery
CN114512721B (en) * 2022-02-18 2024-01-19 香河昆仑新能源材料股份有限公司 Non-aqueous electrolyte of lithium ion battery and lithium ion battery
CN114520370B (en) * 2022-02-18 2024-05-14 香河昆仑新能源材料股份有限公司 Lithium ion battery electrolyte and lithium ion battery
CN114784374A (en) * 2022-04-01 2022-07-22 惠州锂威新能源科技有限公司 Additive for lithium ion battery electrolyte, electrolyte and lithium ion battery
CN114709480B (en) * 2022-04-02 2023-09-26 远景动力技术(河北)有限公司 Nonaqueous electrolyte and lithium ion battery thereof
CN117501501A (en) * 2022-05-09 2024-02-02 宁德时代新能源科技股份有限公司 Secondary battery containing cyclic siloxane and electric device
CN116888794A (en) * 2022-05-23 2023-10-13 宁德时代新能源科技股份有限公司 Secondary battery, and battery module, battery pack and power consumption device including the same
CN115863768B (en) * 2023-02-22 2023-04-25 安徽盟维新能源科技有限公司 Electrolyte and lithium metal battery containing same
CN116864811B (en) * 2023-08-30 2023-11-28 香河昆仑新能源材料股份有限公司 Battery electrolyte with excellent high-temperature performance and lithium ion battery
CN117154214A (en) * 2023-10-30 2023-12-01 宁德时代新能源科技股份有限公司 Electrolyte, secondary battery and electricity utilization device
CN117219867A (en) * 2023-11-09 2023-12-12 宁德时代新能源科技股份有限公司 Electrolyte, sodium secondary battery and electricity utilization device
CN117254112B (en) * 2023-11-14 2024-03-05 蓝固(湖州)新能源科技有限公司 Secondary battery
CN117613384A (en) * 2023-11-28 2024-02-27 珠海钠壹新能源科技有限公司 Sodium ion battery electrolyte and preparation method thereof
CN117712487B (en) * 2024-02-02 2024-04-16 深圳海辰储能科技有限公司 Electrolyte, battery and power utilization system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071458A (en) 2002-08-08 2004-03-04 Mitsubishi Chemicals Corp Non-aqueous electrolytic liquid secondary battery
JP2018092957A (en) 2005-10-28 2018-06-14 三菱ケミカル株式会社 Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2018120711A (en) 2017-01-24 2018-08-02 株式会社Gsユアサ Nonaqueous electrolyte, power storage element, and method of manufacturing power storage element
CN110808412A (en) 2018-08-06 2020-02-18 宁德时代新能源科技股份有限公司 Electrolyte and lithium ion battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032504B2 (en) * 2012-07-17 2016-11-30 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
CN107508000A (en) * 2017-08-31 2017-12-22 广州鹏辉能源科技股份有限公司 Lithium-ion battery electrolytes and lithium ion battery
CN110808411B (en) * 2018-08-06 2022-07-12 宁德时代新能源科技股份有限公司 Electrolyte and lithium ion battery
CN109659614A (en) * 2018-12-19 2019-04-19 珠海光宇电池有限公司 A kind of lithium-ion battery electrolytes and the lithium ion battery with high energy density using the electrolyte
US11165099B2 (en) * 2018-12-21 2021-11-02 Enevate Corporation Silicon-based energy storage devices with cyclic organosilicon containing electrolyte additives
CN109802180B (en) * 2019-01-25 2021-08-03 宁德新能源科技有限公司 Electrolyte solution and electrochemical device
CN110148784A (en) * 2019-05-29 2019-08-20 珠海冠宇电池有限公司 A kind of electrolyte and the lithium ion battery using the electrolyte
CN110767939B (en) * 2019-10-18 2021-06-11 宁德时代新能源科技股份有限公司 Electrolyte for lithium ion battery, battery module, battery pack and device
CN110707361B (en) * 2019-10-29 2021-10-26 珠海冠宇电池股份有限公司 Electrolyte for high-voltage soft-package lithium ion battery suitable for high-rate charge and discharge
CN111640985A (en) * 2020-05-18 2020-09-08 珠海冠宇电池股份有限公司 Non-aqueous electrolyte and high-voltage lithium ion battery containing same
CN111883831A (en) * 2020-07-24 2020-11-03 香河昆仑化学制品有限公司 Lithium ion battery electrolyte, battery cathode and electrochemical energy storage device
CN113346140A (en) * 2021-06-01 2021-09-03 昆山宝创新能源科技有限公司 Electrolyte and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071458A (en) 2002-08-08 2004-03-04 Mitsubishi Chemicals Corp Non-aqueous electrolytic liquid secondary battery
JP2018092957A (en) 2005-10-28 2018-06-14 三菱ケミカル株式会社 Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2021048135A (en) 2005-10-28 2021-03-25 三菱ケミカル株式会社 Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary battery using the same
JP2018120711A (en) 2017-01-24 2018-08-02 株式会社Gsユアサ Nonaqueous electrolyte, power storage element, and method of manufacturing power storage element
CN110808412A (en) 2018-08-06 2020-02-18 宁德时代新能源科技股份有限公司 Electrolyte and lithium ion battery

Also Published As

Publication number Publication date
JP2023043812A (en) 2023-03-29
WO2023040082A1 (en) 2023-03-23
CN113839093A (en) 2021-12-24

Similar Documents

Publication Publication Date Title
JP7455105B2 (en) Non-aqueous electrolyte for lithium ion batteries and its use
WO2012037805A1 (en) Nonaqueous electrolyte for improving high-temperature electrochemistry performance of lithium ion battery and use thereof
CN111048830B (en) Nonaqueous electrolyte solution and lithium ion secondary battery
CN110752406B (en) Electrolyte and application thereof
CN112467211A (en) Electrolyte additive, electrolyte and silicon-carbon negative electrode lithium ion battery
CN103515650A (en) Non-aqueous electrolyte for lithium ion battery, and application thereof
CN111029655A (en) Lithium ion battery electrolyte and lithium ion battery containing same
CN111710910B (en) Electrolyte containing bis-tetrafluorophosphoryl imide salt and lithium ion battery
CN110911748B (en) Lithium secondary battery electrolyte and lithium secondary battery
CN113809313A (en) Application of phosphorus-sulfur monomer, positive plate, electrolyte and secondary battery
CN114512721B (en) Non-aqueous electrolyte of lithium ion battery and lithium ion battery
WO2023092885A1 (en) Isocyanate electrolyte additive based on imidazole structural group and application thereof
CN114552007A (en) Non-aqueous electrolyte of lithium ion battery and lithium ion battery
CN112290089A (en) Lithium ion battery non-aqueous electrolyte solution and lithium ion battery
CN112072179A (en) Electrolyte, lithium ion battery and vehicle
CN116093430B (en) High-voltage nonaqueous electrolyte and lithium ion secondary battery
CN114520371B (en) Nonaqueous electrolyte and lithium ion battery comprising same
CN111029652A (en) Lithium ion battery electrolyte and lithium ion battery containing same
CN113948775B (en) Electrolyte and battery comprising same
CN110970663A (en) Non-aqueous electrolyte and lithium ion battery
CN110635166A (en) Electrolyte, battery containing electrolyte and electric vehicle
CN114520370A (en) Lithium ion battery electrolyte and lithium ion battery
CN113140798A (en) Electrolyte and application thereof
CN111883833A (en) Lithium ion battery non-aqueous electrolyte and lithium ion battery comprising same
CN113851720B (en) Non-aqueous electrolyte of lithium ion battery and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240312

R150 Certificate of patent or registration of utility model

Ref document number: 7455105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150