JP7454488B2 - Temperature control unit and temperature control unit manufacturing method - Google Patents

Temperature control unit and temperature control unit manufacturing method Download PDF

Info

Publication number
JP7454488B2
JP7454488B2 JP2020193815A JP2020193815A JP7454488B2 JP 7454488 B2 JP7454488 B2 JP 7454488B2 JP 2020193815 A JP2020193815 A JP 2020193815A JP 2020193815 A JP2020193815 A JP 2020193815A JP 7454488 B2 JP7454488 B2 JP 7454488B2
Authority
JP
Japan
Prior art keywords
control unit
temperature control
base member
cover member
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020193815A
Other languages
Japanese (ja)
Other versions
JP2022082323A (en
Inventor
高広 冨永
和樹 木村
海 森元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2020193815A priority Critical patent/JP7454488B2/en
Publication of JP2022082323A publication Critical patent/JP2022082323A/en
Application granted granted Critical
Publication of JP7454488B2 publication Critical patent/JP7454488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Secondary Cells (AREA)

Description

本発明は、温度制御ユニット及び温度制御ユニットの製造方法に関する。 The present invention relates to a temperature control unit and a method of manufacturing the temperature control unit.

コンピュータに搭載するCPU、電気自動車に搭載する二次電池のような作動時に発熱する物体(発熱体)を冷却するための手段として、水等の液状の冷媒を用いる冷却装置が種々提案されている。たとえば、金属等の放熱性に優れる材料からなる筐体の内部に冷媒を流通させるための流路を備える冷却装置が知られている。 Various cooling devices that use liquid refrigerants such as water have been proposed as means for cooling objects (heating elements) that generate heat during operation, such as CPUs installed in computers and secondary batteries installed in electric vehicles. . For example, a cooling device is known that includes a casing made of a material with excellent heat dissipation, such as metal, and a flow path for circulating a refrigerant inside the case.

上記のような構成の冷却装置は、内部を流通する冷媒の内圧に耐え、かつ冷媒の漏れが生じないように、装置を構成する金属部材がろう付けにより接合されているのが一般的である。また、特許文献1では、部位ごとに溶接とスポット溶接とを使い分けて製造される冷却装置が提案されている。 In a cooling device configured as described above, the metal members that make up the device are generally joined by brazing to withstand the internal pressure of the refrigerant flowing inside and to prevent refrigerant leakage. . Moreover, Patent Document 1 proposes a cooling device that is manufactured by selectively using welding and spot welding for each part.

特開2015-210032号公報Japanese Patent Application Publication No. 2015-210032

従来の冷却装置は、装置を構成する部材同士をロウ付けにより接合した後、更に、ジョイントなどの部品をロウ付けにより筐体に接合する方法が採用される。このように、二段階のロウ付けとなるため、工程が複雑になることに加え、ロウ付けプロセスで受ける熱の影響により強度が低下するおそれがある。
さらに、装置の薄型化が進むにつれて強度の維持が困難になりつつある。
Conventional cooling devices employ a method in which the members constituting the device are joined together by brazing, and then parts such as joints are joined to the casing by brazing. As described above, since brazing is performed in two stages, the process becomes complicated, and there is a risk that the strength may be reduced due to the influence of heat received in the brazing process.
Furthermore, as devices become thinner, it is becoming more difficult to maintain their strength.

本発明は上記事情に鑑み、薄型化と強度の維持とを両立しうる温度制御ユニット及びその製造方法を提供することを課題とする。 In view of the above circumstances, it is an object of the present invention to provide a temperature control unit that can achieve both reduction in thickness and maintenance of strength, and a method for manufacturing the same.

上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>金属を含むベース部材と、金属を含むカバー部材と、前記ベース部材及び前記カバー部材の間に設けられる流路と、前記ベース部材及び前記カバー部材の間に配置される樹脂部と、を備える温度制御ユニットであり、前記ベース部材は前記温度制御ユニットの側部に相当する位置に、前記温度制御ユニットの外部と前記流路とを連通する連通口を有し、前記連通口の前記温度制御ユニットの厚み方向における寸法は下記式(1)を満たす、温度制御ユニット。
式(1) 温度制御ユニットの側部表面における寸法A>厚み方向において前記樹脂部と重なる部分の寸法B
<2>前記連通口の寸法Aが10mm以下である、<1>に記載の温度制御ユニット。
<3>前記温度制御ユニットの厚み方向の寸法が20mm以下である、<1>又は<2>に記載の温度制御ユニット。
<4>前記樹脂部が前記温度制御ユニットの側部の少なくとも一部を形成する、<1>~<3>のいずれか1項に記載の温度制御ユニット。
<5>前記ベース部材及びカバー部材の前記樹脂部と接している部分の表面は粗化処理されている、<1>~<4>のいずれか1項に記載の温度制御ユニット。
<6>前記ベース部材及び前記カバー部材を金型に配置する工程と、前記ベース部材及び前記カバー部材の間に溶融した樹脂を供給する工程と、を含む、<1>~<5>のいずれか1項に記載の温度制御ユニット。
Means for solving the above problems include the following embodiments.
<1> A base member containing metal, a cover member containing metal, a flow path provided between the base member and the cover member, and a resin portion disposed between the base member and the cover member; The base member has a communication port that communicates the outside of the temperature control unit and the flow path at a position corresponding to a side portion of the temperature control unit, and the base member has a communication port that communicates the outside of the temperature control unit with the flow path, and A temperature control unit whose dimensions in the thickness direction satisfy the following formula (1).
Formula (1) Dimension A on the side surface of the temperature control unit>Dimension B of the part that overlaps with the resin part in the thickness direction
<2> The temperature control unit according to <1>, wherein the communication port has a dimension A of 10 mm or less.
<3> The temperature control unit according to <1> or <2>, wherein the temperature control unit has a thickness dimension of 20 mm or less.
<4> The temperature control unit according to any one of <1> to <3>, wherein the resin part forms at least a part of a side part of the temperature control unit.
<5> The temperature control unit according to any one of <1> to <4>, wherein surfaces of portions of the base member and cover member that are in contact with the resin portion are roughened.
<6> Any of <1> to <5>, including the steps of arranging the base member and the cover member in a mold, and supplying molten resin between the base member and the cover member. The temperature control unit according to item 1.

本発明によれば、薄型化と強度の維持とを両立しうる温度制御ユニット及びその製造方法が提供される。 According to the present invention, there is provided a temperature control unit that can achieve both thinness and maintenance of strength, and a method for manufacturing the same.

温度制御ユニットの内部構造の一例を概略的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an example of the internal structure of the temperature control unit. 温度制御ユニットの内部構造の一例を概略的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an example of the internal structure of the temperature control unit. 温度制御ユニットの内部構造の一例を概略的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an example of the internal structure of the temperature control unit. 温度制御ユニットの内部構造の一例を概略的に示す平面図である。FIG. 3 is a plan view schematically showing an example of the internal structure of the temperature control unit.

本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
本開示において、材料中の各成分の量は、材料中の各成分に該当する物質が複数存在する場合は、特に断らない限り、材料中に存在する複数の物質の合計量を意味する。
本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
In the present disclosure, a numerical range indicated using "~" indicates a range that includes the numerical values written before and after "~" as the minimum value and maximum value, respectively.
In the numerical ranges described step by step in the present disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step, and , may be replaced with the values shown in the examples.
In the present disclosure, if there are multiple substances corresponding to each component in the material, the amount of each component in the material means the total amount of the multiple substances present in the material, unless otherwise specified.
In the present disclosure, when embodiments are described with reference to drawings, the configuration of the embodiments is not limited to the configuration shown in the drawings. Furthermore, the sizes of the members in each figure are conceptual, and the relative size relationships between the members are not limited thereto.

<温度制御ユニット>
本開示の温度制御ユニットは、金属を含むベース部材と、金属を含むカバー部材と、前記ベース部材及び前記カバー部材の間に設けられる流路と、前記ベース部材及び前記カバー部材の間に配置される樹脂部と、を備える温度制御ユニットであり、
前記ベース部材は前記温度制御ユニットの側部に相当する位置に、前記温度制御ユニットの外部と前記流路とを連通する連通口を有し、
前記連通口の前記温度制御ユニットの厚み方向における寸法は下記式(1)を満たす、温度制御ユニットである。
式(1)・・・温度制御ユニットの側部表面における寸法A>厚み方向において前記樹脂部と重なる部分の寸法B
<Temperature control unit>
The temperature control unit of the present disclosure includes a base member including a metal, a cover member including a metal, a flow path provided between the base member and the cover member, and a flow path disposed between the base member and the cover member. A temperature control unit comprising: a resin part;
The base member has a communication port that communicates the outside of the temperature control unit and the flow path at a position corresponding to a side part of the temperature control unit,
The temperature control unit is such that a dimension of the communication port in the thickness direction of the temperature control unit satisfies the following formula (1).
Formula (1)...Dimension A on the side surface of the temperature control unit>Dimension B of the part that overlaps with the resin part in the thickness direction

本開示において「温度制御ユニット」とは、内部に設けられる流路に流体を流通させることで、対象物の温度を制御する装置を意味する。温度制御には対象物の冷却、加温、保温、保冷等が含まれる。 In the present disclosure, the term "temperature control unit" refers to a device that controls the temperature of an object by circulating fluid through a flow path provided therein. Temperature control includes cooling, heating, keeping warm, keeping cool, etc. of objects.

本開示の温度制御ユニットは、ベース部材の温度制御ユニットの側部に相当する位置に連通口が設けられる。これにより、たとえば、連通口をカバー部材に設ける場合に比べて温度制御ユニットの厚み方向の寸法を低減でき、薄型化の点で有利である。また、温度制御ユニットの主面の一方又は両方に発熱体を配置することができ、省スペース化及び冷却効率向上の点で有利である。
さらに、本開示の温度制御ユニットは、ベース部材とカバー部材との間に樹脂部が配置されている。すなわち、ベース部材とカバー部材とを結合する手段として樹脂を用いている。このため、ベース部材とカバー部材とをろう付け又は溶接により結合する場合に比べ、結合部位の形状をより自由に設計することができる。
In the temperature control unit of the present disclosure, the communication port is provided at a position of the base member corresponding to the side of the temperature control unit. As a result, the size of the temperature control unit in the thickness direction can be reduced compared to, for example, a case where the communication port is provided in the cover member, which is advantageous in terms of making the temperature control unit thinner. Furthermore, the heating element can be disposed on one or both of the main surfaces of the temperature control unit, which is advantageous in terms of space saving and improved cooling efficiency.
Furthermore, in the temperature control unit of the present disclosure, the resin part is disposed between the base member and the cover member. That is, resin is used as a means for joining the base member and the cover member. Therefore, the shape of the joint region can be designed more freely than when the base member and the cover member are joined by brazing or welding.

本開示の温度制御ユニットは、連通口の温度制御ユニットの厚み方向における寸法が式(1)を満たす。これにより、樹脂部のベース部材及びカバー部材に対する充分な接合強度を確保しながら、温度制御ユニットの薄型化を達成することができる。 In the temperature control unit of the present disclosure, the dimension of the communication port in the thickness direction of the temperature control unit satisfies formula (1). Thereby, the temperature control unit can be made thinner while ensuring sufficient bonding strength of the resin portion to the base member and the cover member.

連通口の温度制御ユニットの厚み方向における寸法が式(1)を満たす場合について、図1に基づいて詳細に説明する。図1に示す構造では、ベース部材1とカバー部材2との間に樹脂部3が配置されている。また、ベース部材1は温度制御ユニットの側部の一部を構成し、かつ、温度制御ユニットの側部に相当する位置に連通口5を有している。 A case where the dimension of the communication port in the thickness direction of the temperature control unit satisfies formula (1) will be described in detail with reference to FIG. 1. In the structure shown in FIG. 1, a resin part 3 is disposed between a base member 1 and a cover member 2. The base member 1 also constitutes a part of the side of the temperature control unit, and has a communication port 5 at a position corresponding to the side of the temperature control unit.

図1に示す構造では、樹脂部3は、ベース部材1及びカバー部材2に対する接触面積を確保するために、その一部がカバー部材2の下方(ベース部材側)に入り込んでいる。さらに、連通口5の温度制御ユニットの側部表面における寸法Aは、連通口5が樹脂部3と厚み方向において重なる部分(すなわち、樹脂部3の下方に相当する部分)の寸法Bよりも大きい。 In the structure shown in FIG. 1, a portion of the resin portion 3 enters below the cover member 2 (on the base member side) in order to ensure a contact area with the base member 1 and the cover member 2. Furthermore, the dimension A of the communication port 5 on the side surface of the temperature control unit is larger than the dimension B of the portion where the communication port 5 overlaps the resin portion 3 in the thickness direction (that is, the portion corresponding to the lower part of the resin portion 3). .

図1に示す構造では、連通口5の厚み方向における寸法が式(1)を満たすように設計することで、樹脂部3のベース部材1及びカバー部材2に対する接触面積の確保と、温度制御ユニットの薄型化とを両立させている。 In the structure shown in FIG. 1, by designing the communication port 5 so that the dimension in the thickness direction satisfies the formula (1), the contact area of the resin part 3 with the base member 1 and the cover member 2 can be secured, and the temperature control unit This achieves both a thinner design and a thinner design.

式(1)において、連通口の厚み方向における寸法Aは特に制限されず、温度制御ユニットの厚み等に応じて選択できる。たとえば、連通口の厚み方向における寸法Aは10mm以下であってもよく、9mm以下であってもよく、8mm以下であってもよい。また、4mm以上であってもよく、5mm以上であってもよく、6mm以上であってもよい。連通口の厚み方向における寸法Aは、連通口の厚み方向における最大径を意味する。 In formula (1), the dimension A of the communication port in the thickness direction is not particularly limited, and can be selected depending on the thickness of the temperature control unit, etc. For example, the dimension A of the communication port in the thickness direction may be 10 mm or less, 9 mm or less, or 8 mm or less. Moreover, it may be 4 mm or more, 5 mm or more, or 6 mm or more. The dimension A of the communication port in the thickness direction means the maximum diameter of the communication port in the thickness direction.

式(1)において、連通口の厚み方向における寸法Bは特に制限されず、温度制御ユニットの厚み等に応じて選択できる。たとえば、連通口の厚み方向における寸法Bは2mm~8mmの範囲内であってもよい。連通口の厚み方向における寸法Bは、連通口の厚み方向における最大径を意味する。 In formula (1), the dimension B of the communication port in the thickness direction is not particularly limited, and can be selected depending on the thickness of the temperature control unit, etc. For example, the dimension B of the communication port in the thickness direction may be in the range of 2 mm to 8 mm. The dimension B of the communication port in the thickness direction means the maximum diameter of the communication port in the thickness direction.

式(1)において、連通口の厚み方向における寸法Aと寸法Bとの比(寸法A/寸法B)は、たとえば、1.25~5.00の範囲内であってもよい。寸法Bの値が一定でない場合は、寸法Aと寸法Bの最小値との比が上記範囲内であってもよい。 In formula (1), the ratio between dimension A and dimension B in the thickness direction of the communication port (dimension A/dimension B) may be within the range of 1.25 to 5.00, for example. If the value of dimension B is not constant, the ratio between dimension A and the minimum value of dimension B may be within the above range.

連通口の断面形状は特に制限されず、円形、楕円形、半円形、多角形等から選択できる。
連通口は、温度制御ユニットの外部から流路に流体を供給する供給口と、温度制御ユニットの外部に流体を排出する排出口との組み合わせであってもよい。
The cross-sectional shape of the communication port is not particularly limited, and can be selected from circular, elliptical, semicircular, polygonal, etc.
The communication port may be a combination of a supply port that supplies fluid to the channel from outside the temperature control unit and a discharge port that discharges the fluid to the outside of the temperature control unit.

温度制御ユニットの密閉性、寸法安定性等の観点からは、樹脂部とベース部材及びカバー部材とは接合した状態であることが好ましい。
本開示において「接合」とは、樹脂部が接着剤、ねじ等の手段を用いずにベース部材及びカバー部材の表面に固着している状態を意味する。これにより、たとえば、別工程で作製した樹脂部を接着剤、ねじ等を用いてベース部材及びカバー部材に取り付ける場合に比べ、樹脂部がベース部材及びカバー部材に強固に固着され、優れた密閉性が達成される。
From the viewpoint of sealability, dimensional stability, etc. of the temperature control unit, it is preferable that the resin part, the base member, and the cover member are in a bonded state.
In the present disclosure, "bonding" means a state in which the resin part is fixed to the surfaces of the base member and the cover member without using adhesives, screws, or other means. This allows the resin part to be firmly fixed to the base member and cover member, resulting in superior sealing performance, compared to, for example, attaching the resin part manufactured in a separate process to the base member and cover member using adhesive, screws, etc. is achieved.

樹脂部とベース部材及びカバー部材とを強固に接合させるためには、ベース部材及びカバー部材の樹脂部と接している部分の表面が粗化処理されていることが好ましい。
ベース部材及びカバー部材の表面に粗化処理が施されていると、表面に形成される凹凸構造に樹脂部の表面の組織が入り込むことでアンカー効果が発現し、強固な接合が得られる。
In order to firmly bond the resin part to the base member and cover member, it is preferable that the surfaces of the base member and cover member in contact with the resin part be roughened.
When the surfaces of the base member and cover member are roughened, the texture of the surface of the resin portion enters into the uneven structure formed on the surface, thereby creating an anchor effect and providing a strong bond.

ベース部材及びカバー部材の表面に粗化処理により形成される凹凸構造の状態は、樹脂部との接合強度が充分に得られるのであれば特に制限されない。
凹凸構造における凹部の平均孔径は、たとえば5nm~250μmであってよく、好ましくは10nm~150μmであり、より好ましくは15nm~100μmである。
また、凹凸構造における凹部の平均孔深さは、たとえば5nm~250μmであってよく、好ましくは10nm~150μmであり、より好ましくは15nm~100μmである。
凹凸構造における凹部の平均孔径又は平均孔深さのいずれか又は両方が上記数値範囲内であると、より強固な接合が得られる傾向にある。
The state of the uneven structure formed by the roughening treatment on the surfaces of the base member and cover member is not particularly limited as long as sufficient bonding strength with the resin portion can be obtained.
The average pore diameter of the recesses in the uneven structure may be, for example, 5 nm to 250 μm, preferably 10 nm to 150 μm, and more preferably 15 nm to 100 μm.
Further, the average pore depth of the recesses in the uneven structure may be, for example, 5 nm to 250 μm, preferably 10 nm to 150 μm, and more preferably 15 nm to 100 μm.
When either or both of the average pore diameter and the average pore depth of the recesses in the uneven structure is within the above numerical range, a stronger bond tends to be obtained.

凹凸構造における凹部の平均孔径及び平均孔深さは、電子顕微鏡又はレーザー顕微鏡を用いることによって求めることができる。具体的には、ベース部材及びカバー部材の表面及び表面の断面を撮影する。得られた写真から、任意の凹部を50個選択し、それらの凹部の孔径及び孔深さから、凹部の平均孔径及び平均孔深さをそれぞれ算術平均値として算出することができる。 The average pore diameter and average pore depth of the recesses in the uneven structure can be determined using an electron microscope or a laser microscope. Specifically, the surfaces and cross sections of the surfaces of the base member and cover member are photographed. From the obtained photographs, 50 arbitrary recesses are selected, and the average pore diameter and average pore depth of the recesses can be calculated as arithmetic mean values from the pore diameters and hole depths of the recesses.

ベース部材及びカバー部材の表面に粗化処理を施す方法は特に制限されず、様々な公知の方法を使用できる。たとえば、特許第4020957号に開示されているようなレーザーを用いる方法;NaOH等の無機塩基、又はHCl、HNO等の無機酸の水溶液に浸漬する方法;特許第4541153号に開示されているような、陽極酸化により処理する方法;国際公開第2015-8847号に開示されているような、酸系エッチング剤(好ましくは、無機酸、第二鉄イオン又は第二銅イオン)及び必要に応じてマンガンイオン、塩化アルミニウム六水和物、塩化ナトリウム等を含む酸系エッチング剤水溶液によってエッチングする置換晶析法;国際公開第2009/31632号に開示されているような、水和ヒドラジン、アンモニア、及び水溶性アミン化合物から選ばれる1種以上の水溶液に浸漬する方法(以下、NMT法と呼ぶ場合がある);特開2008-162115号公報に開示されているような温水処理法;ブラスト処理等が挙げられる。粗化処理の方法は、ベース部材及びカバー部材の表面の材質、所望の凹凸構造の状態等に応じて使い分けることが可能である。 The method of roughening the surfaces of the base member and cover member is not particularly limited, and various known methods can be used. For example, a method using a laser as disclosed in Patent No. 4020957; a method of immersing in an aqueous solution of an inorganic base such as NaOH or an inorganic acid such as HCl, HNO3 ; A method of treatment by anodic oxidation; as disclosed in International Publication No. 2015-8847, an acid-based etching agent (preferably an inorganic acid, ferric ion or cupric ion) and optionally Displacement crystallization method in which etching is performed with an aqueous acid-based etching agent solution containing manganese ions, aluminum chloride hexahydrate, sodium chloride, etc.; A method of immersion in one or more aqueous solutions selected from water-soluble amine compounds (hereinafter sometimes referred to as the NMT method); a hot water treatment method as disclosed in JP-A No. 2008-162115; a blasting treatment, etc. Can be mentioned. The roughening treatment method can be selectively used depending on the materials of the surfaces of the base member and the cover member, the desired state of the uneven structure, and the like.

ベース部材及びカバー部材の表面は、粗化処理に加え、官能基を付加する処理を施してもよい。ベース部材及びカバー部材の表面に官能基を付与することで、ベース部材及びカバー部材と樹脂部との化学的な結合が増え、接合強度がより向上する傾向にある。 In addition to roughening treatment, the surfaces of the base member and cover member may be subjected to treatment for adding functional groups. By adding functional groups to the surfaces of the base member and cover member, chemical bonding between the base member and cover member and the resin portion increases, and bonding strength tends to be further improved.

ベース部材及びカバー部材の表面に官能基を付加する処理は、粗化処理と同時に、又は粗化処理の後に行うことが好ましい。
ベース部材及びカバー部材の表面に官能基を付加する方法は特に制限されず、様々な公知の方法を使用できる。たとえば、官能基を持つ化学物質を水又はメチルアルコール、イソプロピルアルコール、エチルアルコール、アセトン、トルエン、エチルセルソルブ、ジメチルホルムアルデヒド、テトラヒドロフラン、メチルエチルケトン、ベンゼン、酢酸エチルエーテル等の有機溶剤に溶解した溶液にベース部材及びカバー部材を浸漬する方法;官能基を持つ化学物質又はこれを含む溶液をベース部材及びカバー部材の表面にコーティング又はスプレーする方法;官能基を持つ化学物質を含むフィルムをベース部材及びカバー部材の表面に貼り付ける方法等が挙げられる。
官能基を付加する処理を粗化処理と同時に行う方法としては、たとえば、官能基を持つ化学物質を含む液体を用いてウェットエッチング処理、化成処理、陽極酸化処理等を行う方法が挙げられる。
The process of adding functional groups to the surfaces of the base member and the cover member is preferably performed simultaneously with the roughening process or after the roughening process.
The method for adding functional groups to the surfaces of the base member and cover member is not particularly limited, and various known methods can be used. For example, based on a solution of a chemical substance with a functional group dissolved in water or an organic solvent such as methyl alcohol, isopropyl alcohol, ethyl alcohol, acetone, toluene, ethyl cellosolve, dimethyl formaldehyde, tetrahydrofuran, methyl ethyl ketone, benzene, acetate ethyl ether, etc. A method of dipping the member and the cover member; A method of coating or spraying a chemical substance having a functional group or a solution containing the same on the surface of the base member and the cover member; A method of soaking the base member and the cover member with a film containing the chemical substance having a functional group. Examples include a method of pasting it on the surface of.
Examples of methods for performing the process of adding a functional group at the same time as the roughening process include a method of performing a wet etching process, a chemical conversion process, an anodic oxidation process, etc. using a liquid containing a chemical substance having a functional group.

樹脂部に含まれる樹脂は特に制限されず、温度制御ユニットの用途等に応じて選択できる。たとえば、ポリオレフィン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン系樹脂、AS樹脂、ABS樹脂、ポリエステル系樹脂、ポリ(メタ)アクリル系樹脂、ポリビニルアルコール、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリアセタール系樹脂、フッ素系樹脂、ポリサルフォン系樹脂、ポリフェニレンスルフィド樹脂、ポリケトン系樹脂等の熱可塑性樹脂(エラストマーを含む)、及びフェノール樹脂、メラミン樹脂、ユリア樹脂、ポリウレタン系樹脂、エポキシ樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂が挙げられる。これらの樹脂は単独で使用してもよく、2種以上を組み合わせて使用してもよい。
成形性の観点からは、樹脂部に含まれる樹脂としては熱可塑性樹脂が好ましい。
The resin contained in the resin part is not particularly limited, and can be selected depending on the purpose of the temperature control unit. For example, polyolefin resin, polyvinyl chloride, polyvinylidene chloride, polystyrene resin, AS resin, ABS resin, polyester resin, poly(meth)acrylic resin, polyvinyl alcohol, polycarbonate resin, polyamide resin, polyimide resin. , thermoplastic resins (including elastomers) such as polyether resins, polyacetal resins, fluorine resins, polysulfone resins, polyphenylene sulfide resins, polyketone resins, and phenolic resins, melamine resins, urea resins, polyurethane resins, Examples include thermosetting resins such as epoxy resins and unsaturated polyester resins. These resins may be used alone or in combination of two or more.
From the viewpoint of moldability, thermoplastic resin is preferable as the resin contained in the resin part.

樹脂部に含まれる樹脂は、種々の配合剤を含んでもよい。配合剤としては、充填材、熱安定剤、酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤等が挙げられる。 The resin contained in the resin portion may contain various additives. Examples of compounding agents include fillers, heat stabilizers, antioxidants, pigments, weathering agents, flame retardants, plasticizers, dispersants, lubricants, mold release agents, antistatic agents, and the like.

樹脂部がベース部材及びカバー部材の表面の表面に接合された状態は、たとえば、溶融した状態の樹脂をベース部材及びカバー部材の表面の表面に付与して形成することができる。ベース部材及びカバー部材の表面に付与する際の樹脂が溶融した状態であると、ベース部材及びカバー部材の表面の表面に対する密着度が向上する(たとえば、ベース部材及びカバー部材の表面の凹凸構造に樹脂が入り込んでアンカー効果が発現する)。このため、樹脂部をベース部材及びカバー部材の表面により強固に接合させることができる。 The state in which the resin portion is joined to the surfaces of the base member and the cover member can be formed, for example, by applying molten resin to the surfaces of the base member and the cover member. If the resin applied to the surfaces of the base member and cover member is in a molten state, the degree of adhesion of the surfaces of the base member and cover member to the surface will improve (for example, the uneven structure of the surface of the base member and cover member) The resin enters and creates an anchor effect). Therefore, the resin portion can be more firmly joined to the surfaces of the base member and the cover member.

溶融した状態の樹脂をベース部材及びカバー部材の表面に付与する方法は特に制限されず、射出成形等の公知の手法により行うことができる。
たとえば、金型にベース部材及びカバー部材を配置し、ベース部材及びカバー部材のいずれか一方に設けられた貫通穴(ゲート)から溶融した樹脂を注入して樹脂部を形成してもよい。
The method for applying the molten resin to the surfaces of the base member and the cover member is not particularly limited, and may be performed by a known method such as injection molding.
For example, the resin portion may be formed by placing a base member and a cover member in a mold, and injecting molten resin through a through hole (gate) provided in either the base member or the cover member.

ベース部材及びカバー部材に含まれる金属の種類は特に制限されず、温度制御ユニットの用途等に応じて選択できる。たとえば、鉄、銅、ニッケル、金、銀、プラチナ、コバルト、亜鉛、鉛、スズ、チタン、クロム、アルミニウム、マグネシウム、マンガン及び前記金属を含む合金(ステンレス、真鍮、リン青銅等)からなる群から選択される少なくとも一種であってもよい。
熱伝導性の観点からは、金属としてはアルミニウム、アルミニウム合金、銅、銅合金が好ましく、銅及び銅合金がより好ましい。
軽量化及び強度確保の観点からは、金属としてはアルミニウム及びアルミニウム合金がより好ましい。
ベース部材及びカバー部材に含まれる金属は、同じであっても異なっていてもよい。
The type of metal included in the base member and cover member is not particularly limited, and can be selected depending on the intended use of the temperature control unit. For example, from the group consisting of iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium, manganese, and alloys containing the above metals (stainless steel, brass, phosphor bronze, etc.) At least one selected type may be used.
From the viewpoint of thermal conductivity, the metal is preferably aluminum, aluminum alloy, copper, or copper alloy, and more preferably copper or copper alloy.
From the viewpoint of reducing weight and ensuring strength, aluminum and aluminum alloys are more preferable as the metal.
The metals contained in the base member and the cover member may be the same or different.

本開示においてベース部材及びカバー部材の間に設けられる流路とは、ベース部材及びカバー部材の間に設けられ、流体を流通させるための空間を意味する。
流路を流通させる流体の種類は特に制限されず、温度制御ユニットの用途等に応じて選択できる。たとえば、水、有機溶媒、油等が挙げられる。
In the present disclosure, the flow path provided between the base member and the cover member means a space provided between the base member and the cover member to allow fluid to circulate.
The type of fluid flowing through the flow path is not particularly limited, and can be selected depending on the purpose of the temperature control unit. Examples include water, organic solvents, oil, and the like.

ベース部材は、流路の周囲を形成する壁部を有してもよい。ベース部材が流路の周囲を形成する壁部を有する場合、たとえば、ベース部材の壁部が形成された側にカバー部材を配置することで、ベース部材とカバー部材との間に流路を容易に形成することができる。 The base member may have a wall defining a periphery of the flow path. When the base member has a wall portion that forms the periphery of the flow path, for example, by arranging the cover member on the side where the wall portion of the base member is formed, the flow path can be easily created between the base member and the cover member. can be formed into

本開示の温度制御ユニットは、ベース部材及びカバー部材の間であって、流路が設けられていない空間を満たす樹脂部を有していてもよい。
温度制御ユニットがベース部材とカバー部材との間の流路が設けられていない空間を満たす樹脂部を有していると、流路の内容物が流路外に漏れ出るのが効果的に抑制される。さらに、温度制御ユニットの膨れ、変形等が効果的に抑制される。
The temperature control unit of the present disclosure may include a resin portion that fills a space between the base member and the cover member in which no flow path is provided.
If the temperature control unit has a resin part that fills the space between the base member and the cover member where no flow path is provided, leakage of the contents of the flow path to the outside of the flow path is effectively suppressed. be done. Furthermore, swelling, deformation, etc. of the temperature control unit are effectively suppressed.

ベース部材とカバー部材との間の流路が設けられていない空間を満たす樹脂部は、叙述した樹脂部と同じ部材であっても、異なる部材であってもよい。 The resin part that fills the space between the base member and the cover member where no flow path is provided may be the same member as the resin part described above, or may be a different member.

図2は、ベース部材とカバー部材との間の流路が設けられていない空間を満たす樹脂部を有する温度制御ユニットの内部構造の一例を概略的に示す断面図である。
図2に示す構造では、温度制御ユニットを構成するベース部材1とカバー部材2とが対向するように配置されている。ベース部材1は、流路と樹脂部とを隔てる壁部4に相当する突出部を有する。このため、ベース部材1とカバー部材2との間に壁部で囲まれた空間としての流路が形成される。さらに、ベース部材1とカバー部材2との間であって流路に相当しない空間が樹脂部3で満たされている。
FIG. 2 is a cross-sectional view schematically showing an example of the internal structure of a temperature control unit having a resin portion that fills a space between a base member and a cover member where no flow path is provided.
In the structure shown in FIG. 2, a base member 1 and a cover member 2, which constitute a temperature control unit, are arranged to face each other. The base member 1 has a protrusion corresponding to the wall 4 separating the flow path and the resin section. Therefore, a flow path is formed between the base member 1 and the cover member 2 as a space surrounded by a wall. Further, a space between the base member 1 and the cover member 2 that does not correspond to a flow path is filled with a resin portion 3.

樹脂部3は、流路に相当しない空間を満たすとともに、温度制御ユニットの側部の少なくとも一部を形成するものであってもよい。たとえば、図2に示すように、ベース部材1及びカバー部材2の端面を樹脂部3で覆った状態となるように側部を形成してもよい。
樹脂部が温度制御ユニットの側部の少なくとも一部を形成することで、温度制御ユニットの密閉性及び耐衝撃性をより向上させることができる。
The resin portion 3 may fill a space that does not correspond to the flow path and may also form at least a part of the side portion of the temperature control unit. For example, as shown in FIG. 2, the side portions may be formed so that the end surfaces of the base member 1 and the cover member 2 are covered with the resin portion 3.
By forming at least a part of the side part of the temperature control unit with the resin part, the airtightness and impact resistance of the temperature control unit can be further improved.

温度制御ユニットの内部の密閉性を充分に確保する観点からは、ベース部材及び前記カバー部材の間であって流路が設けられていない空間に占める樹脂部が満たしている部分の割合は大きいほど好ましい。たとえば、ベース部材及び前記カバー部材の間であって流路が設けられていない空間の90体積%以上を樹脂部が満たすことが好ましく、95体積%以上を樹脂部が満たすことがより好ましく、100体積%を樹脂部が満たすことがさらに好ましい。 From the perspective of ensuring sufficient airtightness inside the temperature control unit, the larger the proportion of the space between the base member and the cover member in which no flow path is filled is filled with the resin part. preferable. For example, it is preferable that the resin part fills 90% by volume or more of the space between the base member and the cover member in which no flow path is provided, more preferably the resin part fills 95% by volume or more, It is further preferable that the resin portion fills the volume %.

温度制御ユニットの内部の密閉性を充分に確保する観点からは、ベース部材又はカバー部材の端面からの距離が1.5mm以上である領域が樹脂部と接合していることが好ましく、ベース部材又はカバー部材の端面からの距離が2.0mm以上である領域が樹脂部と接合していることがより好ましい。
ベース部材又はカバー部材の端面としては、温度制御ユニットの側部におけるベース部材又はカバー部材の端面、ベース部材又はカバー部材に設けられた貫通孔(たとえば、樹脂を供給するためのゲート)の内周面等が挙げられる。
From the viewpoint of ensuring sufficient airtightness inside the temperature control unit, it is preferable that a region having a distance of 1.5 mm or more from the end face of the base member or cover member is bonded to the resin part. More preferably, a region of the cover member whose distance from the end surface is 2.0 mm or more is joined to the resin portion.
The end face of the base member or cover member includes the end face of the base member or cover member on the side of the temperature control unit, and the inner periphery of a through hole (for example, a gate for supplying resin) provided in the base member or cover member. Examples include surfaces.

図3に示すように、温度制御ユニットの側部におけるベース部材1又はカバー部材2の端面からの距離Xが1.5mm以上、好ましくは2.0mm以上である領域が樹脂部3と接合していることが好ましい。また、カバー部材2に設けられた貫通孔の内周面からの距離Yが1.5mm以上、好ましくは2.0mm以上である領域が樹脂部3と接合していることが好ましい。 As shown in FIG. 3, a region on the side of the temperature control unit where the distance X from the end face of the base member 1 or cover member 2 is 1.5 mm or more, preferably 2.0 mm or more is joined to the resin part 3. Preferably. Further, it is preferable that a region where the distance Y from the inner circumferential surface of the through hole provided in the cover member 2 is 1.5 mm or more, preferably 2.0 mm or more is joined to the resin part 3.

温度制御ユニットに含まれる樹脂部は、一つであっても複数に分かれていてもよい。樹脂部が複数に分かれている場合としては、たとえば、流路の形状が環状であって、流路の外部に配置される樹脂部と流路の内部に配置される流路とに分かれている場合、複数の流路の間にそれぞれ樹脂部が配置される場合などが挙げられる。 The temperature control unit may include one resin section or may be divided into a plurality of resin sections. In the case where the resin part is divided into multiple parts, for example, the flow path has an annular shape and is divided into a resin part placed outside the flow path and a flow path placed inside the flow path. In this case, a resin section may be arranged between each of a plurality of channels.

温度制御ユニット及び温度制御ユニットを構成する各部材の寸法は特に制限されず、温度制御ユニットの用途等に応じて選択できる。 The dimensions of the temperature control unit and each member constituting the temperature control unit are not particularly limited, and can be selected depending on the intended use of the temperature control unit.

温度制御ユニットの主面の面積は、たとえば、50cm~5,000cmの範囲内であってもよい。
温度制御ユニットの厚み(厚みが一定でない場合は厚みの最小値)は、たとえば、5mm~50mmの範囲内であってもよい。薄型化に対応する観点からは、温度制御ユニットの厚みは20mm以下であってもよい。
The area of the main surface of the temperature control unit may be, for example, in the range of 50 cm 2 to 5,000 cm 2 .
The thickness of the temperature control unit (or the minimum thickness if the thickness is not constant) may be within the range of 5 mm to 50 mm, for example. From the viewpoint of reducing the thickness of the temperature control unit, the thickness of the temperature control unit may be 20 mm or less.

ベース部材及びカバー部材の厚み(厚みが一定でない場合は厚みの最小値)は、樹脂部を射出成型する際の圧力に耐えられる(変形しない)程度の強度を確保できる観点から、たとえば、0.5mm~10mmであってよく、好ましくは1mm~5mmである。
ベース部材が壁部を有する場合、樹脂部を射出成形する際の圧力に耐えられる程度の強度を確保できる観点から、壁部の厚み(厚みが一定でない場合は厚みの最小値)は、たとえば、1mm~10mmであってよく、好ましくは2mm~5mmである。
ベース部材が壁部を有する場合、樹脂部を射出成形する際の圧力に耐えられる程度の強度を確保できる観点から、壁部の高さ(高さが一定でない場合は高さの最小値)は、たとえば、1mm~10mmであってよく、好ましくは1~8mmであり、より好ましくは1~5mmである。
The thickness of the base member and the cover member (or the minimum value if the thickness is not constant) is set to, for example, 0.000. It may be 5 mm to 10 mm, preferably 1 mm to 5 mm.
When the base member has a wall part, the thickness of the wall part (or the minimum value if the thickness is not constant) is determined, for example, from the viewpoint of ensuring sufficient strength to withstand the pressure when injection molding the resin part. It may be 1 mm to 10 mm, preferably 2 mm to 5 mm.
If the base member has a wall, the height of the wall (or the minimum height if the height is not constant) is determined from the viewpoint of ensuring sufficient strength to withstand the pressure when injection molding the resin part. , for example, from 1 mm to 10 mm, preferably from 1 to 8 mm, more preferably from 1 to 5 mm.

温度制御ユニットにおける流路の形状は特に制限されず、U字型、O字型、I字型、L字型等から選択できる。必要に応じ、流路の内部にヒートシンク等の部品が配置されもよい。 The shape of the flow path in the temperature control unit is not particularly limited, and can be selected from U-shape, O-shape, I-shape, L-shape, etc. If necessary, components such as a heat sink may be placed inside the flow path.

図4は、温度制御ユニットの内部構造の一例を概略的に示す平面図(カバー部材を除いた状態)である。
図4に示す構造では、ベース部材1に形成された壁部4で囲まれた部分が流路に相当する。流路の外側の領域は、樹脂部3で満たされている。流路の内部には、ヒートシンク6が配置されている。流路は、温度制御ユニットの側部に設けられた2つの連通口5によって温度制御ユニットの外部と連通している。
FIG. 4 is a plan view (with the cover member removed) schematically showing an example of the internal structure of the temperature control unit.
In the structure shown in FIG. 4, the portion surrounded by the wall portion 4 formed on the base member 1 corresponds to the flow path. The area outside the flow path is filled with a resin part 3. A heat sink 6 is arranged inside the flow path. The flow path communicates with the outside of the temperature control unit through two communication ports 5 provided on the sides of the temperature control unit.

温度制御ユニットは、必要に応じ、温度制御ユニットの内部に配置される流路と外部の配管とを接続するジョイント部、温度制御ユニットの外部に設けられる補強用のリブ等の部品を有していてもよい。 The temperature control unit has parts, as necessary, such as a joint part that connects the flow path placed inside the temperature control unit and external piping, and reinforcing ribs installed outside the temperature control unit. You can.

温度制御ユニットが部品を有する場合、これらの部品が樹脂を含み、ベース部材及びカバー部材の表面に接合された状態であってもよい。部品に含まれる樹脂は特に制限されず、樹脂部に含まれる樹脂として例示したものから選択できる。 When the temperature control unit has parts, these parts may contain resin and be bonded to the surfaces of the base member and the cover member. The resin contained in the component is not particularly limited, and can be selected from those exemplified as resins contained in the resin part.

<温度制御ユニットの用途>
本開示の温度制御ユニットの用途は、特に制限されない。たとえば、コンピュータに搭載されるCPU、電気自動車に搭載される二次電池等の発熱体の冷却のために好適に用いられる。その他、空調設備、給湯設備、発電設備等の、温度管理が必要とされるあらゆる用途に好適に用いられる。
<Applications of temperature control unit>
Applications of the temperature control unit of the present disclosure are not particularly limited. For example, it is suitably used for cooling heating elements such as CPUs installed in computers and secondary batteries installed in electric vehicles. In addition, it is suitably used in all applications where temperature control is required, such as air conditioning equipment, hot water supply equipment, and power generation equipment.

<温度制御ユニットの製造方法>
本開示の温度制御ユニットの製造方法は、ベース部材及びカバー部材を金型に配置する工程と、前記ベース部材及び前記カバー部材の間に溶融した樹脂を供給する工程と、を含む、温度制御ユニットの製造方法である。
<Manufacturing method of temperature control unit>
A method for manufacturing a temperature control unit according to the present disclosure includes a step of arranging a base member and a cover member in a mold, and a step of supplying molten resin between the base member and the cover member. This is a manufacturing method.

上記方法では、ベース部材及びカバー部材の間に供給される溶融した樹脂が固化して樹脂部を形成する。
上記方法によれば、たとえば、別工程で作製した樹脂部をベース部材及びカバー部材の間に配置して温度制御ユニットを製造する方法に比べ、ベース部材及びカバー部材に対する樹脂部の密着性に優れ、高い密閉性が確保される。また、樹脂部の形状が複雑である場合にも精度よく樹脂部を形成することができる。
In the above method, the molten resin supplied between the base member and the cover member solidifies to form the resin portion.
According to the above method, the adhesion of the resin part to the base member and cover member is superior to that of, for example, a method of manufacturing a temperature control unit by arranging a resin part produced in a separate process between the base member and the cover member. , ensuring high sealing performance. Moreover, even when the shape of the resin part is complicated, the resin part can be formed with high precision.

上記方法において、ベース部材及びカバー部材の間への溶融した樹脂の供給は、たとえば、ベース部材及びカバー部材のいずれかに設けられた貫通穴(ゲート)を用いて行うことができる。 In the above method, the molten resin can be supplied between the base member and the cover member using, for example, a through hole (gate) provided in either the base member or the cover member.

上記方法で使用するベース部材及びカバー部材の詳細及び好ましい態様は、上述した温度制御ユニットに含まれるベース部材及びカバー部材の詳細及び好ましい態様と同様である。 The details and preferred embodiments of the base member and cover member used in the above method are the same as the details and preferred embodiments of the base member and cover member included in the temperature control unit described above.

上記方法で使用する樹脂の詳細及び好ましい態様は、上述した温度制御ユニットに含まれる樹脂部に含まれる樹脂の詳細及び好ましい態様と同様である。 The details and preferred embodiments of the resin used in the above method are the same as the details and preferred embodiments of the resin contained in the resin part included in the temperature control unit described above.

必要に応じ、上記方法は、ジョイント部、リブ等の部品を設ける工程を備えてもよい。 If necessary, the method may include the step of providing parts such as joints, ribs, etc.

上記方法で製造される温度制御ユニットの詳細及び好ましい態様は、上述した温度制御ユニットの詳細及び好ましい態様と同様である。すなわち、上記方法は上述した温度制御ユニットを製造するためのものであってもよい。 The details and preferred embodiments of the temperature control unit manufactured by the above method are the same as the details and preferred embodiments of the temperature control unit described above. That is, the above-mentioned method may be for manufacturing the above-mentioned temperature control unit.

Claims (6)

金属を含むベース部材と、
金属を含むカバー部材と、
前記ベース部材及び前記カバー部材の間に設けられる流路と、
前記ベース部材及び前記カバー部材の間に配置される樹脂部と、を備える温度制御ユニットであり、
前記ベース部材は前記温度制御ユニットの側部に相当する位置に、前記温度制御ユニットの外部と前記流路とを連通する連通口を有し、
前記連通口の前記温度制御ユニットの厚み方向における寸法は下記式(1)を満たす、温度制御ユニット。
式(1) 温度制御ユニットの側部表面における寸法A>厚み方向において前記樹脂部と重なる部分の寸法B
a base member containing metal;
a cover member containing metal;
a flow path provided between the base member and the cover member;
A temperature control unit comprising: a resin part disposed between the base member and the cover member;
The base member has a communication port that communicates the outside of the temperature control unit and the flow path at a position corresponding to a side part of the temperature control unit,
A temperature control unit in which a dimension of the communication port in the thickness direction of the temperature control unit satisfies the following formula (1).
Formula (1) Dimension A on the side surface of the temperature control unit>Dimension B of the part that overlaps with the resin part in the thickness direction
前記連通口の寸法Aが10mm以下である、請求項1に記載の温度制御ユニット。 The temperature control unit according to claim 1, wherein a dimension A of the communication port is 10 mm or less. 前記温度制御ユニットの厚み方向の寸法が20mm以下である、請求項1又は請求項2に記載の温度制御ユニット。 The temperature control unit according to claim 1 or 2, wherein the temperature control unit has a thickness dimension of 20 mm or less. 前記樹脂部が前記温度制御ユニットの側部の少なくとも一部を形成する、請求項1~請求項3のいずれか1項に記載の温度制御ユニット。 The temperature control unit according to any one of claims 1 to 3, wherein the resin part forms at least a part of a side part of the temperature control unit. 前記ベース部材及びカバー部材の前記樹脂部と接している部分の表面は粗化処理されている、請求項1~請求項4のいずれか1項に記載の温度制御ユニット。 5. The temperature control unit according to claim 1, wherein surfaces of portions of the base member and the cover member that are in contact with the resin portion are roughened. 前記ベース部材及び前記カバー部材を金型に配置する工程と、
前記ベース部材及び前記カバー部材の間に溶融した樹脂を供給する工程と、を含む、請求項1~請求項5のいずれか1項に記載の温度制御ユニット。
arranging the base member and the cover member in a mold;
The temperature control unit according to any one of claims 1 to 5, comprising the step of supplying molten resin between the base member and the cover member.
JP2020193815A 2020-11-20 2020-11-20 Temperature control unit and temperature control unit manufacturing method Active JP7454488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020193815A JP7454488B2 (en) 2020-11-20 2020-11-20 Temperature control unit and temperature control unit manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020193815A JP7454488B2 (en) 2020-11-20 2020-11-20 Temperature control unit and temperature control unit manufacturing method

Publications (2)

Publication Number Publication Date
JP2022082323A JP2022082323A (en) 2022-06-01
JP7454488B2 true JP7454488B2 (en) 2024-03-22

Family

ID=81801701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020193815A Active JP7454488B2 (en) 2020-11-20 2020-11-20 Temperature control unit and temperature control unit manufacturing method

Country Status (1)

Country Link
JP (1) JP7454488B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180047A1 (en) 2012-05-28 2013-12-05 四国計測工業株式会社 High-efficiency heat exchanger and high-efficiency heat exchange method
JP2016009776A (en) 2014-06-25 2016-01-18 長瀬産業株式会社 Cooler and method of manufacturing cooler
JP2017022374A (en) 2015-07-08 2017-01-26 株式会社フジクラ Cold plate and manufacturing method thereof
US20200088476A1 (en) 2018-09-13 2020-03-19 Lear Corporation Fluid vessel assembly with adhesive connection
JP2020088109A (en) 2018-11-21 2020-06-04 三井化学株式会社 Cooler and structure
JP2020145245A (en) 2019-03-05 2020-09-10 三菱電機株式会社 Heat sink and semiconductor module with the same
WO2020196878A1 (en) 2019-03-28 2020-10-01 三井化学株式会社 Cooling unit, cooling device, battery structure, and electric vehicle
WO2020241314A1 (en) 2019-05-28 2020-12-03 三井化学株式会社 Cooling device and method for manufacturing cooling device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180047A1 (en) 2012-05-28 2013-12-05 四国計測工業株式会社 High-efficiency heat exchanger and high-efficiency heat exchange method
JP2016009776A (en) 2014-06-25 2016-01-18 長瀬産業株式会社 Cooler and method of manufacturing cooler
JP2017022374A (en) 2015-07-08 2017-01-26 株式会社フジクラ Cold plate and manufacturing method thereof
US20200088476A1 (en) 2018-09-13 2020-03-19 Lear Corporation Fluid vessel assembly with adhesive connection
JP2020088109A (en) 2018-11-21 2020-06-04 三井化学株式会社 Cooler and structure
JP2020145245A (en) 2019-03-05 2020-09-10 三菱電機株式会社 Heat sink and semiconductor module with the same
WO2020196878A1 (en) 2019-03-28 2020-10-01 三井化学株式会社 Cooling unit, cooling device, battery structure, and electric vehicle
WO2020241314A1 (en) 2019-05-28 2020-12-03 三井化学株式会社 Cooling device and method for manufacturing cooling device

Also Published As

Publication number Publication date
JP2022082323A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP7249408B2 (en) Cooling device and cooling device manufacturing method
EP2947412A1 (en) Heat exchanger and method for manufacturing same
US11060191B2 (en) Method for producing hollow structure, plated composite, and hollow structure
US20080013277A1 (en) Method Of Manufacturing A Hollow Circuit Substrate
JP2011102691A (en) Vapor chamber and method for manufacturing the same
JP2009250510A (en) Heat exchanger and its manufacturing method
JP7274325B2 (en) Heat exchanger
JP7454488B2 (en) Temperature control unit and temperature control unit manufacturing method
JP7514585B2 (en) Heat exchanger
JP2010155342A (en) Air guide
JP2006250383A (en) Heat exchanger
JP7542416B2 (en) Temperature control unit and method for manufacturing the same
JP7568748B2 (en) Temperature control unit and method for manufacturing the same
JP2020194695A (en) Heat exchanger
JP2006145096A (en) Heat exchanger and its manufacturing method
WO2021256328A1 (en) Metal-resin complex, cooling device, method for manufacturing metal-resin complex, and safety valve structure
TWI855080B (en) Cooling unit and method of producing cooling unit
CN114009158A (en) Heating element storage case and structure
JP2011102677A (en) Heat accumulator
JP7563953B2 (en) Tube joint structure, heat exchanger, and method for manufacturing heat exchanger
CN105764299A (en) Heat dissipation structure and manufacturing method thereof
WO2023145290A1 (en) Temperature control device and method for manufacturing temperature control device
JP2011163678A (en) Laminated heat exchanger
JP2023108534A (en) Temperature control device
CN110814505A (en) Manufacturing method of shell with high pressure resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230706

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240311

R150 Certificate of patent or registration of utility model

Ref document number: 7454488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150