JP7454436B2 - storage battery board - Google Patents

storage battery board Download PDF

Info

Publication number
JP7454436B2
JP7454436B2 JP2020073554A JP2020073554A JP7454436B2 JP 7454436 B2 JP7454436 B2 JP 7454436B2 JP 2020073554 A JP2020073554 A JP 2020073554A JP 2020073554 A JP2020073554 A JP 2020073554A JP 7454436 B2 JP7454436 B2 JP 7454436B2
Authority
JP
Japan
Prior art keywords
power
storage battery
bus
charging
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020073554A
Other languages
Japanese (ja)
Other versions
JP2021170888A (en
Inventor
孝資 平井
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2020073554A priority Critical patent/JP7454436B2/en
Publication of JP2021170888A publication Critical patent/JP2021170888A/en
Application granted granted Critical
Publication of JP7454436B2 publication Critical patent/JP7454436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電動車両を充電するための充電器へ供給する電力に蓄電池の放電電力を加えるための蓄電池盤にする。 The present invention provides a storage battery board for adding discharge power of a storage battery to power supplied to a charger for charging an electric vehicle.

電動車両に搭載されたバッテリーの充電時間を短縮するために、商用電力に蓄電池の電力を重畳させて急速充電を可能とする車両充電システムが提案されている。
例えば特許文献1の車両充電システムは、変圧器を備えた受電設備と電動車両を充電する充電器との間に蓄電池を内蔵した蓄電部(蓄電池盤)を配置して、蓄電池の蓄電電力を商用電力に重畳させることで、大電流での車両充電、或いは複数の電動車両の同時充電を可能とした。
In order to shorten the charging time of a battery mounted on an electric vehicle, a vehicle charging system has been proposed that superimposes the power of a storage battery on commercial power to enable rapid charging.
For example, in the vehicle charging system of Patent Document 1, a power storage unit (storage battery board) containing a storage battery is placed between a power receiving equipment equipped with a transformer and a charger that charges an electric vehicle, and the stored power of the storage battery is used for commercial purposes. By superimposing it on electric power, it is possible to charge a vehicle with a large current or charge multiple electric vehicles at the same time.

特開2019-205278号公報JP2019-205278A

上述した従来の車両充電システムは、電力会社との契約電力を変更することなく、また過負荷な状態を作り出すこと無く充電電流を増やすことが可能であった。
しかしながら、蓄電部の蓄電池を充電している間は、車両充電に利用できる商用電力は小さかった。また、AC/DC変換器とDC/AC変換器の2種類の電力変換器が必要であり、車両充電に供給できる電力を増やすには蓄電池の容量を大きくすることになるが、その場合電力変換器も大型化する必要があり、コストアップが避けられなかった。
In the conventional vehicle charging system described above, it was possible to increase the charging current without changing the power contract with the electric power company and without creating an overload condition.
However, while the storage battery in the power storage unit was being charged, the amount of commercial power that could be used to charge the vehicle was small. In addition, two types of power converters are required: an AC/DC converter and a DC/AC converter, and in order to increase the power that can be supplied for vehicle charging, the capacity of the storage battery must be increased, but in that case, the power conversion The vessel also had to be larger, which inevitably increased costs.

そこで、本発明はこのような問題点に鑑み、充電器に電力を供給するための蓄電池が充電中であっても、電動車両の充電電力が低下するのを防ぐことができ、また、契約電力を変更すること無く充電器の増設が可能な蓄電池盤を提供することを目的としている。 Therefore, in view of these problems, the present invention can prevent the charging power of an electric vehicle from decreasing even when the storage battery for supplying power to the charger is being charged, and also prevents the charging power of the electric vehicle from decreasing. The purpose of the present invention is to provide a storage battery board that allows the addition of chargers without changing the storage battery board.

上記課題を解決する為に、請求項1の発明は、商用電力により充電される蓄電池と、蓄電池の蓄電電力を交流変換して電動車両を充電するための充電器に出力する出力部とを有する蓄電池盤であって、
並列に配置されて、交流/直流変換を双方向で実施する複数の電力変換部と、
商用電力を電力変換部に伝送する電源バスと、
電力変換部から出力部に交流電力を伝送する出力バスと、
電力変換部から蓄電池に充電電力を伝送する充電バスと、
蓄電池の放電電力を電力変換部に伝送する放電バスと、
個々の電力変換部は交流側入出力部、直流側入出力部を有して、交流側入出力部の接続先を電源バス、出力バスの間で切り替える第1接点部の群と、
直流側入出力部の接続先を、充電バス、放電バスの間で切り替える第2接点部の群と、
個々の蓄電池の接続先を、充電バス、放電バスの間で切り替える第3接点部の群と、
個々の蓄電池の蓄電状態を管理する蓄電池管理部と、
第1~3接点部を制御する電路切替制御部と、
充電器と通信する外部通信部と、
各蓄電池の充放電を制御する蓄電池盤制御部とを有し、
蓄電池盤制御部は、蓄電池管理部の情報及び充電器からの要求電力情報を基に、個々の電力変換部及び電路切替制御部を制御して蓄電池の充放電を制御することを特徴とする。
この構成によれば、電力変換部と蓄電池を複数備えることで、蓄電池の充電と放電とを同時に実施させることができる。よって、蓄電池の充電と蓄電池の放電による車両充電を並行して行うことができ、蓄電池が充電中であっても車両充電の電力低下を防ぐことができる。そして、商用電力の受電設備を大容量に変更したり、契約電力を変更することなく充電器の増設或いは放電電力の増量が可能となる。
また、電力変換部は双方向で電力変換を実施するため、AC/DC変換器とDC/AC変換器をそれぞれ設ける必要が無いし、個々の電力変換部に電力変換を分担させることで、個々の電力変換部は大型化しなくて済む。
In order to solve the above problem, the invention of claim 1 includes a storage battery that is charged with commercial power, and an output unit that converts the stored power of the storage battery into AC and outputs it to a charger for charging an electric vehicle. A storage battery board,
a plurality of power conversion units that are arranged in parallel and perform AC/DC conversion in both directions;
a power bus that transmits commercial power to the power conversion unit;
an output bus that transmits AC power from the power conversion section to the output section;
a charging bus that transmits charging power from the power conversion unit to the storage battery;
a discharge bus that transmits the discharge power of the storage battery to the power conversion unit;
Each power conversion section has an AC side input/output section and a DC side input/output section, and a group of first contact sections that switches the connection destination of the AC side input/output section between a power supply bus and an output bus;
a group of second contact parts for switching the connection destination of the DC side input/output part between a charging bus and a discharging bus;
a group of third contact portions that switch connection destinations of individual storage batteries between a charging bus and a discharging bus;
A storage battery management department that manages the power storage status of each storage battery,
an electric circuit switching control section that controls the first to third contact sections;
an external communication section that communicates with the charger;
It has a storage battery panel control unit that controls charging and discharging of each storage battery,
The storage battery panel control section is characterized in that it controls the charging and discharging of the storage battery by controlling each power conversion section and electric circuit switching control section based on information from the storage battery management section and requested power information from the charger.
According to this configuration, by providing a plurality of power conversion units and storage batteries, charging and discharging of the storage batteries can be performed simultaneously. Therefore, charging of the storage battery and charging of the vehicle by discharging the storage battery can be performed in parallel, and even if the storage battery is being charged, a decrease in power for vehicle charging can be prevented. Then, it becomes possible to install more chargers or increase the amount of discharged power without changing the commercial power receiving equipment to a larger capacity or changing the contracted power.
In addition, since the power conversion unit performs power conversion in both directions, there is no need to provide an AC/DC converter and a DC/AC converter, and by having each power conversion unit share power conversion, it is possible to There is no need to increase the size of the power conversion unit.

請求項2の発明は、商用電力及び太陽光発電電力により充電される蓄電池と、蓄電池の蓄電電力を交流変換して電動車両を充電するための充電器に出力する出力部とを有する蓄電池盤であって、
並列に配置されて、交流/直流変換を双方向で実施する複数の電力変換部と、
商用電力を電力変換部に伝送する電源バスと、
電力変換部から出力部に交流電力を伝送する出力バスと、
電力変換部から蓄電池に充電電力を伝送する充電バスと、
蓄電池の放電電力を電力変換部に伝送する放電バスと、
個々の電力変換部は交流側入出力部、直流側入出力部を有して、交流側入出力部の接続先を電源バス、出力バスの間で切り替える第1接点部の群と、
直流側入出力部の接続先を、充電バス、放電バスの間で切り替える第2接点部の群と、
個々の蓄電池の接続先を、充電バス、放電バスの間で切り替える第3接点部の群と、
太陽光発電電力の供給先を、充電バス、放電バスとの間で切り替える第4接点部と、
個々の蓄電池の蓄電状態を管理する蓄電池管理部と、
第1~4接点部を制御する電路切替制御部と、
充電器と通信する外部通信部と、
各蓄電池の充放電を制御する蓄電池盤制御部とを有し、
蓄電池盤制御部は、蓄電池管理部の情報及び充電器からの要求電力情報を基に、個々の電力変換部及び電路切替制御部を制御して蓄電池の充放電を制御することを特徴とする。
この構成によれば、電力変換部と蓄電池を複数備えることで、蓄電池の充電と放電とを同時に実施させることができる。よって、蓄電池の充電と蓄電池の放電による車両充電を並行して行うことができ、蓄電池が充電中であっても車両充電の電力低下を防ぐことができる。そして、商用電力の受電設備を大容量に変更したり、契約電力を変更することなく充電器の増設或いは放電電力の増量が可能となる。
また、電力変換部は双方向で電力変換を実施するため、AC/DC変換器とDC/AC変換器をそれぞれ設ける必要が無いし、個々の電力変換部に電力変換を分担させることで、個々の電力変換部は大型化しなくて済む。
そして、太陽光発電電力を充電バスに接続すれば蓄電池を充電できるし、放電バスに接続すれば出力部から出力させることができ、太陽光発電電力を効率良く利用できる。
The invention of claim 2 is a storage battery board having a storage battery that is charged with commercial power and solar power generation power, and an output section that converts the stored power of the storage battery into AC and outputs it to a charger for charging an electric vehicle. There it is,
a plurality of power conversion units that are arranged in parallel and perform AC/DC conversion in both directions;
a power bus that transmits commercial power to the power conversion unit;
an output bus that transmits AC power from the power conversion section to the output section;
a charging bus that transmits charging power from the power conversion unit to the storage battery;
a discharge bus that transmits the discharge power of the storage battery to the power conversion unit;
Each power conversion section has an AC side input/output section and a DC side input/output section, and a group of first contact sections that switches the connection destination of the AC side input/output section between a power supply bus and an output bus;
a group of second contact parts for switching the connection destination of the DC side input/output part between a charging bus and a discharging bus;
a group of third contact portions that switch connection destinations of individual storage batteries between a charging bus and a discharging bus;
a fourth contact part that switches the supply destination of solar power generation power between the charging bus and the discharging bus;
A storage battery management department that manages the power storage status of each storage battery,
an electric circuit switching control section that controls the first to fourth contact sections;
an external communication section that communicates with the charger;
It has a storage battery panel control unit that controls charging and discharging of each storage battery,
The storage battery panel control section is characterized in that it controls the charging and discharging of the storage battery by controlling each power conversion section and electric circuit switching control section based on information from the storage battery management section and requested power information from the charger.
According to this configuration, by providing a plurality of power conversion units and storage batteries, charging and discharging of the storage batteries can be performed simultaneously. Therefore, charging of the storage battery and charging of the vehicle by discharging the storage battery can be performed in parallel, and even if the storage battery is being charged, a decrease in power for vehicle charging can be prevented. Then, it becomes possible to install more chargers or increase the amount of discharged power without changing the commercial power receiving equipment to a larger capacity or changing the contracted power.
In addition, since the power conversion unit performs power conversion in both directions, there is no need to provide an AC/DC converter and a DC/AC converter, and by having each power conversion unit share power conversion, it is possible to There is no need to increase the size of the power conversion unit.
If solar power is connected to the charging bus, the storage battery can be charged, and if it is connected to the discharge bus, it can be output from the output section, allowing efficient use of the solar power.

本発明によれば、電力変換部と蓄電池を複数備えることで、蓄電池の充電と放電とを同時に実施させることができる。よって、蓄電池の充電と蓄電池の放電による車両充電を並行して行うことができ、蓄電池が充電中であっても車両充電の電力低下を防ぐことができる。そして、商用電力の受電設備を大容量に変更したり、契約電力を変更することなく充電器の増設或いは放電電力の増量が可能となる。
また、電力変換部は双方向で電力変換を実施するため、AC/DC変換器とDC/AC変換器をそれぞれ設ける必要が無いし、個々の電力変換部に電力変換を分担させることで、個々の電力変換部は大型化しなくて済む。
According to the present invention, by providing a plurality of power conversion units and storage batteries, charging and discharging of the storage batteries can be performed simultaneously. Therefore, charging of the storage battery and charging of the vehicle by discharging the storage battery can be performed in parallel, and even if the storage battery is being charged, a decrease in power for vehicle charging can be prevented. Then, it becomes possible to install more chargers or increase the amount of discharged power without changing the commercial power receiving equipment to a larger capacity or changing the contracted power.
In addition, since the power conversion unit performs power conversion in both directions, there is no need to provide an AC/DC converter and a DC/AC converter, and by having each power conversion unit share power conversion, it is possible to There is no need to increase the size of the power conversion unit.

本発明に係る蓄電池盤の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a storage battery board according to the present invention. 蓄電池盤を備えた車両充電システムの模式図である。FIG. 1 is a schematic diagram of a vehicle charging system including a storage battery board. 図1の蓄電池盤の制御の流れを示すフローチャートである。2 is a flowchart showing the flow of control of the storage battery panel of FIG. 1. FIG. 車両充電電流の流れを示す説明図である。FIG. 3 is an explanatory diagram showing the flow of vehicle charging current. 図4の動作状態での各部の状態を示し、(a)は各AC/DC変換部の機能及び接続状態を示す表図、(b)は各蓄電池の状態と接続バスを示す表図である。The state of each part in the operating state of FIG. 4 is shown, (a) is a table showing the function and connection state of each AC/DC converter, and (b) is a table showing the state of each storage battery and the connection bus. . 車両充電電流の流れを示す説明図である。FIG. 3 is an explanatory diagram showing the flow of vehicle charging current. 図6の動作状態での各部の状態を示し、(a)は各AC/DC変換部の機能及び接続状態を示す表図、(b)は各蓄電池の状態と接続バスを示す表図である。The state of each part in the operating state of FIG. 6 is shown, (a) is a table showing the function and connection state of each AC/DC converter, and (b) is a table showing the state of each storage battery and the connection bus. . 車両充電電流の流れを示す説明図である。FIG. 3 is an explanatory diagram showing the flow of vehicle charging current. 図8の動作状態での各部の状態を示し、(a)は各AC/DC変換部の機能及び接続状態を示す表図、(b)は各蓄電池の状態と接続バスを示す表図である。The state of each part in the operating state of FIG. 8 is shown, (a) is a table showing the function and connection state of each AC/DC converter, and (b) is a table showing the state of each storage battery and the connection bus. . 蓄電池盤の他の形態を示す構成図である。It is a block diagram which shows another form of a storage battery board. 図10の蓄電池盤の制御の流れを示すフローチャートである。11 is a flowchart showing the flow of control of the storage battery panel of FIG. 10. 蓄電池盤の他の形態を示す構成図である。It is a block diagram which shows another form of a storage battery board.

以下、本発明を具体化した実施の形態を、図面を参照して詳細に説明する。図1は本発明に係る蓄電池盤の一例を示す構成図であり、図2は蓄電池盤を備えた車両充電システムの模式図である。
蓄電池盤1は、図1に示すように、複数のAC/DC変換部(電力変換部)2、複数の蓄電池3を備え、商用電力10が入力され、電動車両12を充電するための充電器11に接続される出力部4を備えている。
Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing an example of a storage battery board according to the present invention, and FIG. 2 is a schematic diagram of a vehicle charging system equipped with a storage battery board.
As shown in FIG. 1, the storage battery board 1 includes a plurality of AC/DC converters (power converters) 2 and a plurality of storage batteries 3, receives commercial power 10, and serves as a charger for charging an electric vehicle 12. 11 is provided.

AC/DC変換部2は、交流電力を入出力する交流側入出力部21と、直流電力を入出力する直流側入出力部22を有し、双方向で電力変換を実施するよう構成されている。即ち、交流を直流に変換にする機能に加えて、逆方向に電力を流して直流電力を交流電力に変換する機能を有している。
また、この蓄電池盤1では、具体的に4つのAC/DC変換部(第1AC/DC2a、第2AC/DC2b、第3AC/DC2c、第4AC/DC2d)2と、3つの蓄電池(第1蓄電池3a、第2蓄電池3b、第3蓄電池3c)3を具備し、それぞれ並列に配置されている。
The AC/DC conversion unit 2 has an AC side input/output unit 21 that inputs and outputs AC power, and a DC side input/output unit 22 that inputs and outputs DC power, and is configured to perform power conversion in both directions. There is. That is, in addition to the function of converting alternating current to direct current, it has the function of converting direct current power to alternating current power by flowing power in the opposite direction.
In addition, this storage battery board 1 specifically includes four AC/DC converters (first AC/DC 2a, second AC/DC 2b, third AC/DC 2c, fourth AC/DC 2d) 2 and three storage batteries (first storage battery 3a). , a second storage battery 3b, and a third storage battery 3c) 3, which are arranged in parallel.

また、商用電力10とAC/DC変換部2との間には商用電力10を伝送する電源バスB1が配設され、出力部4とAC/DC変換部2との間には出力部4から出力する電力を伝送する出力バスB2が配設されている。一方、蓄電池3とAC/DC変換部2との間には蓄電池3への充電電力を伝送するための充電バスB3及び蓄電池3の放電電力を伝送するための放電バスB4が並行して配設されている。
AC/DC変換部2の交流側入出力部21には、電源バスB1と出力バスB2との間で接続先を切り替える第1接点部F1(F1a、F1b、F1c、F1d)の群が配置されている。そして直流側入出力部22には、充電バスB3と放電バスB4との間で接続先を切り替える第2接点部F2(F2a、F2b、F2c、F2d)の群が配置されている。
Further, a power supply bus B1 for transmitting the commercial power 10 is provided between the commercial power 10 and the AC/DC converter 2, and a power supply bus B1 for transmitting the commercial power 10 is provided between the output section 4 and the AC/DC converter 2. An output bus B2 is provided to transmit power to be output. On the other hand, a charging bus B3 for transmitting charging power to the storage battery 3 and a discharging bus B4 for transmitting discharge power of the storage battery 3 are arranged in parallel between the storage battery 3 and the AC/DC converter 2. has been done.
A group of first contact portions F1 (F1a, F1b, F1c, F1d) are arranged in the AC side input/output portion 21 of the AC/DC conversion portion 2 to switch the connection destination between the power supply bus B1 and the output bus B2. ing. A group of second contact portions F2 (F2a, F2b, F2c, F2d) for switching connections between the charging bus B3 and the discharging bus B4 is arranged in the DC side input/output section 22.

更に蓄電池3には、充電バスB3と放電バスB4との間で接続先を切り替える第3接点部F3(F3a、F3b、F3c)の群が配置されている。尚、各接点部F1~F3はそれぞれ、一方のバスを接続、或いは双方とも遮断するよう制御される。 Further, in the storage battery 3, a group of third contact portions F3 (F3a, F3b, F3c) that switch connection destinations between the charging bus B3 and the discharging bus B4 are arranged. Note that each of the contact portions F1 to F3 is controlled to connect one bus or to disconnect both buses.

そして蓄電池盤1は、個々の蓄電池3の蓄電状況を把握して管理する蓄電池管理部5、第1~3接点部F1~F3を制御する電路切替制御部6、出力部4を介して充電器11と通信する外部通信部7、蓄電池盤1を制御する蓄電池盤制御部8を備えている。 The storage battery panel 1 is connected to a storage battery management section 5 that grasps and manages the power storage status of each storage battery 3, an electric circuit switching control section 6 that controls the first to third contact sections F1 to F3, and a charger via the output section 4. 11 , and a storage battery panel control section 8 that controls the storage battery panel 1 .

蓄電池盤制御部8は、蓄電池管理部5の情報及び充電器11からの要求電力情報を基に、AC/DC変換部2、電路切替制御部6を制御して蓄電池3の充放電を制御する。
そして図2に示すように、蓄電池盤1は別途設置されている受電設備10aから出力される商用電力10の供給を受けて、複数の充電器11に接続された電動車両12に充電電力を供給する。
The storage battery panel control unit 8 controls the AC/DC conversion unit 2 and the electric circuit switching control unit 6 to control charging and discharging of the storage battery 3 based on information from the storage battery management unit 5 and requested power information from the charger 11. .
As shown in FIG. 2, the storage battery panel 1 receives the commercial power 10 output from the separately installed power receiving equipment 10a, and supplies charging power to the electric vehicles 12 connected to the plurality of chargers 11. do.

上記の如く構成された蓄電池盤1の動作は以下のようである。制御の流れを示す図3のフローチャートを参照して説明する。尚、出力部4には1台の充電器11が接続されている場合を説明する。
まず、接続された充電器11と通信して(S1)、出力部4から出力する電力の情報を入手する。この情報は出力部4を介して入手されるが、充電器11と外部通信部7との間で無線通信して情報を入手しても良い。
充電器11から出力要求がなければ(S2でNo)、商用電力10は蓄電池3の充電に振り分けられ、蓄電池3の充電を実施(S3)する(詳述せず)。
The operation of the storage battery board 1 configured as described above is as follows. This will be explained with reference to the flowchart of FIG. 3 showing the flow of control. Note that a case will be described in which one charger 11 is connected to the output section 4.
First, it communicates with the connected charger 11 (S1) to obtain information on the power output from the output unit 4. Although this information is obtained via the output section 4, the information may also be obtained through wireless communication between the charger 11 and the external communication section 7.
If there is no output request from the charger 11 (No in S2), the commercial power 10 is distributed to charge the storage battery 3, and the storage battery 3 is charged (S3) (details will not be described).

充電器11から出力要求があったら(S2でYes)、蓄電池3の残容量を確認(S4)し、全ての蓄電池3の残容量が例えば満充電の60%等の規定値に満たなければ(S5でNo)、全ての蓄電池3を充電バスB3及び放電バスB4から切り離して待機状態とし、商用電力10を基にした電力を出力部4から出力させ、商用電力10による車両充電を実施する(S6)。 When there is an output request from the charger 11 (Yes in S2), the remaining capacity of the storage batteries 3 is checked (S4), and if the remaining capacity of all the storage batteries 3 is less than a specified value, such as 60% of full charge ( No in S5), all the storage batteries 3 are disconnected from the charging bus B3 and the discharging bus B4 and placed in a standby state, power based on the commercial power 10 is output from the output unit 4, and the vehicle is charged with the commercial power 10 ( S6).

図4,5はこの制御での蓄電池盤1の状態を示し、図4は蓄電池盤1の内部の電力の流れを示し、図5(a)は各AC/DC変換部2の機能及び接続状態を示す表図、図5(b)は各蓄電池3の状態と接続バスを示す表図である。
図4,5に示すように、この場合4つのAC/DC変換部2のうち、第1AC/DC2a及び第2AC/DC2bが交流から直流に変換する動作を実施し、電源バスB1を介して入力された商用電力10の交流電力AC1を直流変換し、変換された直流電力DC1を充電バスB3に出力する。
そして、第3AC/DC2c及び第4AC/DC2dが直流から交流に変換する動作を実施し、充電バスB3に出力された直流電力DC1を充電器11の入力に適した交流電力AC2に変換して出力バスB2に出力する。
この結果、商用電力10により例えば50kWが供給され、その電力が出力部4から出力されて充電器11に供給される。尚、蓄電池3は、何れも電路(バス)から切り離されて待機状態となる。
4 and 5 show the state of the storage battery panel 1 under this control, FIG. 4 shows the flow of power inside the storage battery board 1, and FIG. 5(a) shows the function and connection state of each AC/DC converter 2. FIG. 5(b) is a table showing the state of each storage battery 3 and the connection bus.
As shown in FIGS. 4 and 5, in this case, among the four AC/DC converters 2, the first AC/DC 2a and the second AC/DC 2b perform the operation of converting from AC to DC, and input via the power supply bus B1. The converted AC power AC1 of the commercial power 10 is converted into DC power, and the converted DC power DC1 is output to the charging bus B3.
Then, the third AC/DC 2c and the fourth AC/DC 2d perform an operation of converting direct current to alternating current, converting the direct current power DC1 outputted to the charging bus B3 into alternating current power AC2 suitable for input to the charger 11 and outputting it. Output to bus B2.
As a result, for example, 50 kW is supplied by the commercial power 10, and this power is output from the output section 4 and supplied to the charger 11. Note that the storage batteries 3 are all disconnected from the electric circuit (bus) and placed in a standby state.

一方、蓄電池3の残容量を確認(S4)した際に、少なくとも1つの蓄電池の残容量が規定値以上であったら(S5でYes)、充電器11が要求する電力を蓄電池3から出力する。但し、要求される電力の大きさにより制御が異なり、ここでは充電器11からの要求が50kW以下か50kWを超えるかで異なる制御を実施する。
要求電力が50kW以下であったら(S7でYes)、規定値以上の蓄電量を有する1つの蓄電池3を選択して放電させて、車両充電に使用する。他の蓄電池3は、例えば1つを商用電力10による充電を継続させ、残りの1つは放電も充電も行われないよう電路(バス)から切り離して待機状態とする。
On the other hand, when the remaining capacity of the storage battery 3 is checked (S4), if the remaining capacity of at least one storage battery is equal to or greater than the specified value (Yes in S5), the power requested by the charger 11 is output from the storage battery 3. However, the control differs depending on the amount of power required, and here, different control is performed depending on whether the request from the charger 11 is less than 50 kW or more than 50 kW.
If the required power is 50 kW or less (Yes in S7), one storage battery 3 having a stored power amount equal to or greater than a specified value is selected and discharged, and used for vehicle charging. For example, one of the other storage batteries 3 continues to be charged by the commercial power 10, and the remaining one is placed in a standby state by being disconnected from the electric circuit (bus) so that neither discharge nor charging is performed.

この時の具体的な制御は以下のようである。個々のAC/DC変換部2の機能を選択して交流を直流に変換するかその逆か設定する(S9)。次に、第2接点部F2、第3接点部F3を操作してAC/DC変換部2が接続される電路を設定する(S10)。そして、第3接点部F3を操作して蓄電池3の接続する電路を設定する(S11)。
設定が完了したら、AC/DC変換部2を起動して電力伝送を開始し(S12)、出力部4から充電器11に電力を出力させる(S13)。
こうして、蓄電電力による例えば50kWの車両充電が実施される。
The specific control at this time is as follows. The function of each AC/DC converter 2 is selected to set whether to convert alternating current to direct current or vice versa (S9). Next, the second contact portion F2 and the third contact portion F3 are operated to set an electric path to which the AC/DC converter 2 is connected (S10). Then, the third contact portion F3 is operated to set the electrical path to which the storage battery 3 is connected (S11).
When the settings are completed, the AC/DC converter 2 is activated to start power transmission (S12), and the output unit 4 outputs power to the charger 11 (S13).
In this way, the vehicle is charged at, for example, 50 kW using the stored electric power.

図6,7は、この制御での蓄電池盤1の状態を示し、図6は蓄電池盤1の内部の電力の流れを示し、図7(a)は各AC/DC変換部2の機能及び接続状態を示す表図、図7(b)は各蓄電池3の状態と接続バスを示す表図である。尚、3つの蓄電池3の中で第2蓄電池3bの蓄電量が最も多い場合を示している。
図6,7に示すように、第1AC/DC2a及び第2AC/DC2bが商用電力10の交流電力AC3を蓄電池3を充電するための直流電力DC3に変換して充電バスB3に出力し、第3AC/DC2c及び第4AC/DC2dが第2蓄電池3bの放電電力DC4を充電器11に出力する交流電力AC4に変換している。
6 and 7 show the state of the storage battery board 1 under this control, FIG. 6 shows the flow of power inside the storage battery board 1, and FIG. 7(a) shows the functions and connections of each AC/DC converter 2. FIG. 7(b) is a table showing the state of each storage battery 3 and the connection bus. It should be noted that the case where the second storage battery 3b has the largest amount of electricity stored among the three storage batteries 3 is shown.
As shown in FIGS. 6 and 7, the first AC/DC 2a and the second AC/DC 2b convert the AC power AC3 of the commercial power 10 into DC power DC3 for charging the storage battery 3 and output it to the charging bus B3, and the third AC/DC /DC2c and the fourth AC/DC2d convert the discharge power DC4 of the second storage battery 3b into alternating current power AC4 output to the charger 11.

そして、ここでは第1蓄電池3aが充電、第2蓄電池3bが放電、第3蓄電池3cが待機に設定され、充電バスB3により伝送された直流電力DC3により第1蓄電池3aが充電される。また、第2蓄電池3bの放電電力DC4が放電バスB4を介して第3AC/DC2c及び第4AC/DC2dに伝送され、AC変換された交流電力AC4が出力バスB2を介して充電器11に出力される。
こうして、商用電力10により第1蓄電池3aを例えば50kWで充電する一方で、他の第2蓄電池3bを放電させて例えば50kWの車両充電が実施される。
Here, the first storage battery 3a is set to be charged, the second storage battery 3b is discharged, and the third storage battery 3c is set to standby, and the first storage battery 3a is charged by the direct current power DC3 transmitted by the charging bus B3. Furthermore, the discharge power DC4 of the second storage battery 3b is transmitted to the third AC/DC 2c and the fourth AC/DC 2d via the discharge bus B4, and the AC-converted alternating current power AC4 is output to the charger 11 via the output bus B2. Ru.
In this way, while charging the first storage battery 3a with the commercial power 10 at, for example, 50 kW, the other second storage battery 3b is discharged to charge the vehicle at, for example, 50 kW.

一方、充電器11からの要求電力が50kWより大きな電力であったら(S7でNo)、蓄電池3の充電は実施せず、最も蓄電量の多い1つの蓄電池3を選択して放電させ、出力部4から出力させる(S8)。
図8,9は、この制御での蓄電池盤1の状態を示し、図8は蓄電池盤1の内部の電力の流れを示し、図9(a)は各AC/DC変換部2の機能及び接続状態を示す表図、図9(b)は各蓄電池3の状態と接続バスを示す表図である。尚、3つの蓄電池3の中で第1蓄電池3aの蓄電量が最も多いとしている。
図8,9に示すように、全てのAC/DC変換部2は第1蓄電池3aが出力する直流電力DC5を交流変換し、充電器11へ供給する交流電力AC5を出力バスB2へ出力する。このように、4つのAC/DC変換部2で変換する電力を分担することで、AC/DC変換部2の能力を超える電力であっても無理なく変換できる。
そして、ここでは第1蓄電池3aが放電、第2蓄電池3b及び第3蓄電池3cが待機に設定され、第1蓄電池3aが出力する直流電力DC5が放電バスB4を介して全てのAC/DC変換部2に供給される。
こうして、1つの蓄電池3の放電により、例えば100kWの車両充電が実施される。
On the other hand, if the requested power from the charger 11 is greater than 50 kW (No in S7), the storage battery 3 is not charged, but one storage battery 3 with the largest amount of stored power is selected and discharged, and the output section 4 (S8).
8 and 9 show the state of the storage battery panel 1 under this control, FIG. 8 shows the flow of power inside the storage battery panel 1, and FIG. 9(a) shows the functions and connections of each AC/DC converter 2. A table showing the state, FIG. 9(b) is a table showing the state of each storage battery 3 and the connection bus. Note that among the three storage batteries 3, the first storage battery 3a has the largest amount of electricity stored.
As shown in FIGS. 8 and 9, all the AC/DC converters 2 convert the DC power DC5 output from the first storage battery 3a into AC, and output the AC power AC5 to be supplied to the charger 11 to the output bus B2. In this way, by sharing the power to be converted by the four AC/DC converters 2, even if the power exceeds the capacity of the AC/DC converter 2, it can be converted without difficulty.
Here, the first storage battery 3a is set to discharge, the second storage battery 3b and the third storage battery 3c are set to standby, and the DC power DC5 output from the first storage battery 3a is sent to all AC/DC converters via the discharge bus B4. 2.
In this way, by discharging one storage battery 3, vehicle charging of, for example, 100 kW is performed.

このように、AC/DC変換部2と蓄電池3を複数備えることで、蓄電池3の充電と放電とを同時に実施させることができる。よって、蓄電池3の充電と蓄電池3の放電による車両充電を並行して行うことができ、蓄電池3が充電中であっても車両充電の電力低下を防ぐことができる。そして、商用電力10の受電設備を大容量に変更したり、契約電力を変更することなく充電器11の増設或いは出力電力の増量が可能となる。
また、AC/DC変換部2は双方向で電力変換を実施するため、AC/DC変換器とDC/AC変換器をそれぞれ設ける必要が無いし、複数のAC/DC変換部2に電力変換を分担させることで、個々のAC/DC変換部2は大型化しなくて済む。
In this way, by providing a plurality of AC/DC converters 2 and storage batteries 3, charging and discharging of the storage batteries 3 can be performed simultaneously. Therefore, charging of the storage battery 3 and charging of the vehicle by discharging the storage battery 3 can be performed in parallel, and even if the storage battery 3 is being charged, a decrease in power for vehicle charging can be prevented. Then, it becomes possible to install more chargers 11 or increase the output power without changing the power receiving equipment for the commercial power 10 to a larger capacity or changing the contracted power.
In addition, since the AC/DC converter 2 performs power conversion in both directions, there is no need to provide an AC/DC converter and a DC/AC converter, and power conversion is performed in multiple AC/DC converters 2. By sharing the functions, it is not necessary to increase the size of each AC/DC converter 2.

図10は、蓄電池盤1の他の形態を示す構成図であり、商用電力10に加えて太陽光発電電力13が供給される構成を示している。太陽光発電電力13は図示しない太陽光発電設備により生成されて供給される。
太陽光発電電力13は、DC/DC変換部9、接続電路を切り替える第4接点部F4を介して充電バスB3、放電バスB4の何れかに接続される。尚、蓄電池盤1の他の構成は上記図1の構成と同様であるため同一の符号を付与して説明を省略する。
FIG. 10 is a configuration diagram showing another form of the storage battery board 1, and shows a configuration in which solar power generation power 13 is supplied in addition to commercial power 10. The solar power generation power 13 is generated and supplied by a solar power generation facility (not shown).
The photovoltaic power 13 is connected to either the charging bus B3 or the discharging bus B4 via the DC/DC converter 9 and the fourth contact F4 that switches the connection circuit. Note that the other configurations of the storage battery board 1 are the same as those shown in FIG.

この蓄電池盤1の動作は以下のようである。図11は、図10の蓄電池盤1の制御の流れを示すフローチャートであり、図11を参照して説明する。但し、S11までは、上記形態の動作の流れは共通であるため説明を省略し、それ以降の動作を説明する。ここでは、第3蓄電池3cが車両充電に使用され、第1蓄電池3a及び第2蓄電池3bが充電制御されるとしている。 The operation of this storage battery board 1 is as follows. FIG. 11 is a flowchart showing the flow of control of the storage battery board 1 of FIG. 10, and will be described with reference to FIG. 11. However, since the flow of operations in the above embodiments is the same up to S11, the explanation will be omitted, and the operations thereafter will be explained. Here, it is assumed that the third storage battery 3c is used for vehicle charging, and the charging of the first storage battery 3a and the second storage battery 3b is controlled.

蓄電池3を接続する電路を設定(S11)したら、太陽光発電電力13の出力先の電路を設定する(S14)。ここでは、蓄電池3の充電に使用されるため、太陽光発電電力は第4接点部F4を介して充電バスB3に供給される。
設定が完了したら、AC/DC変換部2を起動して電力伝送を開始し(S13)、出力部4から充電器11に電力を出力させる(S16)。
After setting the electric line to which the storage battery 3 is connected (S11), the electric line to which the solar power generation power 13 is output is set (S14). Here, since the solar power is used to charge the storage battery 3, the solar power is supplied to the charging bus B3 via the fourth contact point F4.
When the settings are completed, the AC/DC converter 2 is activated to start power transmission (S13), and the output unit 4 outputs power to the charger 11 (S16).

具体的に、太陽光発電電力13の直流電力DC7が充電バスB3に供給される。また、第1AC/DC2a及び第2AC/DC2bは、商用電力10の交流電力AC6を直流変換して充電バスB3に直流電力DC6を出力する。第1蓄電池3a及び第2蓄電池3bは充電バスB3に接続されており、太陽光発電電力13の直流電力DC7と商用電力10の直流電力DC6により充電される。 Specifically, the DC power DC7 of the solar power generation power 13 is supplied to the charging bus B3. Further, the first AC/DC 2a and the second AC/DC 2b convert the AC power AC6 of the commercial power 10 into DC and output the DC power DC6 to the charging bus B3. The first storage battery 3a and the second storage battery 3b are connected to a charging bus B3, and are charged by the DC power DC7 of the solar power generation power 13 and the DC power DC6 of the commercial power 10.

一方、第3蓄電池3cは放電バスB4に電力を出力し、この直流電力DC8が第3AC/DC2c及び第4AC/DC2dにより交流変換されて、交流電力AC7が出力バスB2に出力される。
こうして第3蓄電池3cの放電電力が交流電力AC7に変換されて充電器11に出力され、蓄電電力による例えば50kWの車両充電が実施される。また、太陽光発電電力13により例えば50kW、商用電力10により例えば50kWの計100kWで2つの蓄電池3が充電される。
On the other hand, the third storage battery 3c outputs power to the discharge bus B4, and this DC power DC8 is converted into AC by the third AC/DC 2c and the fourth AC/DC 2d, and the AC power AC7 is output to the output bus B2.
In this way, the discharged power of the third storage battery 3c is converted into alternating current power AC7 and output to the charger 11, and the vehicle is charged at, for example, 50 kW using the stored power. Further, the two storage batteries 3 are charged with a total of 100 kW, for example, 50 kW by the solar power generation power 13 and 50 kW by the commercial power 10.

このように、AC/DC変換部2と蓄電池3を複数備えることで、蓄電池3の充電と放電とを同時に実施させることができる。よって、蓄電池3の充電と蓄電池3の放電による車両充電を並行して行うことができ、蓄電池3が充電中であっても車両充電の電力低下を防ぐことができる。そして、商用電力10の受電設備を大容量に変更したり、契約電力を変更することなく充電器11の増設或いは出力電力の増量が可能となる。
また、AC/DC変換部2は双方向で電力変換を実施するため、AC/DC変換器とDC/AC変換器をそれぞれ設ける必要が無いし、複数のAC/DC変換部2に電力変換を分担させることで、個々のAC/DC変換部2は大型化しなくて済む。
そして、太陽光発電電力13を充電バスB3に接続すれば蓄電池3を充電でき、太陽光発電電力13を効率良く利用できる。
In this way, by providing a plurality of AC/DC converters 2 and storage batteries 3, charging and discharging of the storage batteries 3 can be performed simultaneously. Therefore, charging of the storage battery 3 and charging of the vehicle by discharging the storage battery 3 can be performed in parallel, and even if the storage battery 3 is being charged, a decrease in power for vehicle charging can be prevented. Then, it becomes possible to install more chargers 11 or increase the output power without changing the power receiving equipment for the commercial power 10 to a larger capacity or changing the contracted power.
In addition, since the AC/DC converter 2 performs power conversion in both directions, there is no need to provide an AC/DC converter and a DC/AC converter, and power conversion is performed in multiple AC/DC converters 2. By sharing the functions, each AC/DC converter 2 does not need to be enlarged.
Then, by connecting the solar power generation power 13 to the charging bus B3, the storage battery 3 can be charged, and the solar power generation power 13 can be used efficiently.

尚、図11では、太陽光発電電力13により蓄電池3を充電する場合を説明したが、太陽光発電電力13により車両充電させても良い。太陽光発電電力13の供給先を放電バスB4に切り替えれば、AC/DC変換部2が直流の太陽光発電電力を充電器11に適した交流電力に変換し、出力部4から出力させることができる。
このように、太陽光発電電力13を放電バスB4に接続すれば出力部4から出力させることができ、太陽光発電電力13を効率良く利用できる。
Although FIG. 11 describes the case where the storage battery 3 is charged with the solar power generation power 13, the vehicle may be charged with the solar power generation power 13. By switching the supply destination of the solar power generation power 13 to the discharge bus B4, the AC/DC converter 2 can convert the DC solar power generation power into AC power suitable for the charger 11 and output it from the output unit 4. can.
In this way, if the solar power generation power 13 is connected to the discharge bus B4, it can be output from the output section 4, and the solar power generation power 13 can be used efficiently.

図12は蓄電池盤1の他の形態を示し、電源が商用電力10のみの図1の形態の変更例を示している。図1とは、AC/DC変換部2、蓄電池3の設置数が異なり、それぞれ2つ設けられた構成を示している。尚、図1と共通する構成要素には同一の符号付与している。
図12では、第1AC/DC2aが商用電力10の交流電力AC8を第1蓄電池3aを充電する直流電力DC10へ変換し、第2AC/DC2bが第2蓄電池3bが放電する直流電力DC11を充電器11に出力する交流電力AC9に変換している。
このように、AC/DC変換部2及び蓄電池3を少なくとも2つ設ければ蓄電池3の充電と放電を並行して実施でき、蓄電池3が充電中であっても車両充電の電力低下を防ぐことができ、例えば50kWで充電しながら出力部4から50kWの出力を実施することができる。
FIG. 12 shows another form of the storage battery board 1, which is a modification of the form of FIG. 1 in which the power source is only the commercial power 10. The configuration shown in FIG. 1 differs in the number of installed AC/DC converters 2 and storage batteries 3, with two installed each. Components common to those in FIG. 1 are given the same reference numerals.
In FIG. 12, the first AC/DC 2a converts the AC power AC8 of the commercial power 10 into the DC power DC10 that charges the first storage battery 3a, and the second AC/DC 2b converts the DC power DC11 discharged by the second storage battery 3b to the charger 11. It is converted into alternating current power AC9 which is output to.
In this way, if at least two AC/DC converters 2 and storage batteries 3 are provided, charging and discharging of the storage batteries 3 can be performed in parallel, and even if the storage batteries 3 are being charged, a drop in power for vehicle charging can be prevented. For example, while charging at 50 kW, the output unit 4 can output 50 kW.

尚、上記実施形態は、1台の充電器11に対してその要求された電力を供給する構成を説明したが、接続された充電器11が複数あり同時に電力を供給する場合も同様に制御でき、蓄電池3の充放電を良好に実施できる。 Note that although the above embodiment describes a configuration in which the requested power is supplied to one charger 11, the same control can be performed even when a plurality of connected chargers 11 supply power at the same time. , the storage battery 3 can be charged and discharged satisfactorily.

1・・蓄電池盤、2・・AC/DC変換部(電力変換部)、3・・蓄電池、4・・出力部、5・・蓄電池管理部、6・・電路切替制御部、7・・外部通信部、8・・蓄電池盤制御部、9・・DC/DC変換部、10・・商用電力、11・・充電器、12・・電動車両、13・・太陽光発電電力、21・・交流側入出力部、22・・直流側入出力部、B1・・電源バス、B2・・出力バス、B3・・充電バス、B4・・放電バス、F1・・第1接点部、F2・・第2接点部、F3・・第3接点部、F4・・第4接点部。 1. Storage battery panel, 2. AC/DC conversion section (power conversion section), 3. Storage battery, 4. Output section, 5. Storage battery management section, 6. Electrical circuit switching control section, 7. External Communication department, 8...Storage panel control unit, 9...DC/DC conversion unit, 10...Commercial power, 11...Charger, 12...Electric vehicle, 13...Solar power generation power, 21...AC Side input/output section, 22...DC side input/output section, B1...power supply bus, B2...output bus, B3...charging bus, B4...discharging bus, F1...first contact section, F2...first 2 contact part, F3...3rd contact part, F4...4th contact part.

Claims (2)

商用電力により充電される蓄電池と、前記蓄電池の蓄電電力を交流変換して電動車両を充電するための充電器に出力する出力部とを有する蓄電池盤であって、
並列に配置されて、交流/直流変換を双方向で実施する複数の電力変換部と、
前記商用電力を前記電力変換部に伝送する電源バスと、
前記電力変換部から前記出力部に交流電力を伝送する出力バスと、
前記電力変換部から前記蓄電池に充電電力を伝送する充電バスと、
前記蓄電池の放電電力を前記電力変換部に伝送する放電バスと、
個々の前記電力変換部は交流側入出力部、直流側入出力部を有して、前記交流側入出力部の接続先を前記電源バス、前記出力バスの間で切り替える第1接点部の群と、
前記直流側入出力部の接続先を、前記充電バス、前記放電バスの間で切り替える第2接点部の群と、
個々の前記蓄電池の接続先を、前記充電バス、前記放電バスの間で切り替える第3接点部の群と、
個々の前記蓄電池の蓄電状態を管理する蓄電池管理部と、
前記第1~3接点部を制御する電路切替制御部と、
前記充電器と通信する外部通信部と、
各蓄電池の充放電を制御する蓄電池盤制御部とを有し、
前記蓄電池盤制御部は、前記蓄電池管理部の情報及び前記充電器からの要求電力情報を基に、個々の前記電力変換部及び前記電路切替制御部を制御して前記蓄電池の充放電を制御することを特徴とする蓄電池盤。
A storage battery board having a storage battery that is charged with commercial power, and an output unit that converts the stored power of the storage battery into AC and outputs it to a charger for charging an electric vehicle,
a plurality of power conversion units that are arranged in parallel and perform AC/DC conversion in both directions;
a power supply bus that transmits the commercial power to the power conversion unit;
an output bus that transmits AC power from the power conversion unit to the output unit;
a charging bus that transmits charging power from the power conversion unit to the storage battery;
a discharge bus that transmits discharge power of the storage battery to the power conversion unit;
Each of the power conversion units has an AC side input/output unit and a DC side input/output unit, and a group of first contact units that switches the connection destination of the AC side input/output unit between the power supply bus and the output bus. and,
a group of second contact portions that switch the connection destination of the DC side input/output portion between the charging bus and the discharging bus;
a group of third contact portions that switch the connection destination of each of the storage batteries between the charging bus and the discharging bus;
a storage battery management unit that manages the storage state of each of the storage batteries;
an electric circuit switching control section that controls the first to third contact sections;
an external communication unit that communicates with the charger;
It has a storage battery panel control unit that controls charging and discharging of each storage battery,
The storage battery board control unit controls each of the power conversion units and the electric circuit switching control unit to control charging and discharging of the storage battery based on information from the storage battery management unit and requested power information from the charger. A storage battery board characterized by:
商用電力及び太陽光発電電力により充電される蓄電池と、前記蓄電池の蓄電電力を交流変換して電動車両を充電するための充電器に出力する出力部とを有する蓄電池盤であって、
並列に配置されて、交流/直流変換を双方向で実施する複数の電力変換部と、
前記商用電力を前記電力変換部に伝送する電源バスと、
前記電力変換部から前記出力部に交流電力を伝送する出力バスと、
前記電力変換部から前記蓄電池に充電電力を伝送する充電バスと、
前記蓄電池の放電電力を前記電力変換部に伝送する放電バスと、
個々の前記電力変換部は交流側入出力部、直流側入出力部を有して、前記交流側入出力部の接続先を前記電源バス、前記出力バスの間で切り替える第1接点部の群と、
前記直流側入出力部の接続先を、前記充電バス、前記放電バスの間で切り替える第2接点部の群と、
個々の前記蓄電池の接続先を、前記充電バス、前記放電バスの間で切り替える第3接点部の群と、
前記太陽光発電電力の供給先を、前記充電バス、前記放電バスとの間で切り替える第4接点部と、
個々の前記蓄電池の蓄電状態を管理する蓄電池管理部と、
前記第1~4接点部を制御する電路切替制御部と、
前記充電器と通信する外部通信部と、
各蓄電池の充放電を制御する蓄電池盤制御部とを有し、
前記蓄電池盤制御部は、前記蓄電池管理部の情報及び前記充電器からの要求電力情報を基に、個々の前記電力変換部及び前記電路切替制御部を制御して前記蓄電池の充放電を制御することを特徴とする蓄電池盤。
A storage battery board that includes a storage battery that is charged with commercial power and solar power, and an output unit that converts the stored power of the storage battery into AC and outputs it to a charger for charging an electric vehicle,
a plurality of power conversion units that are arranged in parallel and perform AC/DC conversion in both directions;
a power supply bus that transmits the commercial power to the power conversion unit;
an output bus that transmits AC power from the power conversion unit to the output unit;
a charging bus that transmits charging power from the power conversion unit to the storage battery;
a discharge bus that transmits discharge power of the storage battery to the power conversion unit;
Each of the power conversion units has an AC side input/output unit and a DC side input/output unit, and a group of first contact units that switches the connection destination of the AC side input/output unit between the power supply bus and the output bus. and,
a group of second contact portions that switch the connection destination of the DC side input/output portion between the charging bus and the discharging bus;
a group of third contact portions that switch the connection destination of each of the storage batteries between the charging bus and the discharging bus;
a fourth contact portion that switches the supply destination of the solar power generation power between the charging bus and the discharging bus;
a storage battery management unit that manages the storage state of each of the storage batteries;
an electric circuit switching control section that controls the first to fourth contact sections;
an external communication unit that communicates with the charger;
It has a storage battery panel control unit that controls charging and discharging of each storage battery,
The storage battery board control unit controls each of the power conversion units and the electric circuit switching control unit to control charging and discharging of the storage battery based on information from the storage battery management unit and requested power information from the charger. A storage battery board characterized by:
JP2020073554A 2020-04-16 2020-04-16 storage battery board Active JP7454436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020073554A JP7454436B2 (en) 2020-04-16 2020-04-16 storage battery board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020073554A JP7454436B2 (en) 2020-04-16 2020-04-16 storage battery board

Publications (2)

Publication Number Publication Date
JP2021170888A JP2021170888A (en) 2021-10-28
JP7454436B2 true JP7454436B2 (en) 2024-03-22

Family

ID=78119600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020073554A Active JP7454436B2 (en) 2020-04-16 2020-04-16 storage battery board

Country Status (1)

Country Link
JP (1) JP7454436B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188613A (en) 2010-03-08 2011-09-22 Konica Minolta Business Technologies Inc Power system
JP2014054022A (en) 2012-09-05 2014-03-20 Captex Co Ltd Charge/discharge system
JP2016171683A (en) 2015-03-13 2016-09-23 シャープ株式会社 Power system and control method of power system
JP2019205328A (en) 2018-05-25 2019-11-28 株式会社三英社製作所 Information processing unit capable of controlling more than two accumulator batteries independently, method and program using information processing unit, and power storage system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188613A (en) 2010-03-08 2011-09-22 Konica Minolta Business Technologies Inc Power system
JP2014054022A (en) 2012-09-05 2014-03-20 Captex Co Ltd Charge/discharge system
JP2016171683A (en) 2015-03-13 2016-09-23 シャープ株式会社 Power system and control method of power system
JP2019205328A (en) 2018-05-25 2019-11-28 株式会社三英社製作所 Information processing unit capable of controlling more than two accumulator batteries independently, method and program using information processing unit, and power storage system

Also Published As

Publication number Publication date
JP2021170888A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
RU2730914C1 (en) Charging station with dynamic distribution of charging current
JP6008040B2 (en) Uninterruptible power system
KR101984484B1 (en) Dc power server for a dc microgrid
US7053502B2 (en) Power supply with uninterruptible function
JP5547958B2 (en) Power supply device and power supply system using the same
CN104272573A (en) A modular three-phase online UPS
JP7121902B2 (en) Power interchange system
CN105322787A (en) Three port dc-dc converter
CN111032423A (en) Variable power charging
JP2023545236A (en) power grid
JP7165953B2 (en) power conversion system
JP5895165B2 (en) Power converter
CN111463787B (en) Flexible networking system for power grids with different voltage levels in enterprise
CN114759657A (en) Method for controlling uninterruptible power supply
JP7454436B2 (en) storage battery board
JP7242238B2 (en) Power converter and distributed power supply system
WO2013031934A1 (en) Interconnected power system
CN115362610B (en) SST system with multiple LVDC outputs
JP6722295B2 (en) Power conversion system, power supply system, and power conversion device
JP3885230B2 (en) Power converter
JP2020088985A (en) Power conditioner device
JPH04299025A (en) Dc power unit
TW201314030A (en) A new regenerate power supply system and power supply method
CN218678461U (en) Energy storage power supply system and electric equipment
US20240051431A1 (en) Converter and power conversion system for vehicle auxiliary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240311

R150 Certificate of patent or registration of utility model

Ref document number: 7454436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150