JP7453057B2 - Rubber material property prediction system and rubber material property prediction method - Google Patents

Rubber material property prediction system and rubber material property prediction method Download PDF

Info

Publication number
JP7453057B2
JP7453057B2 JP2020087528A JP2020087528A JP7453057B2 JP 7453057 B2 JP7453057 B2 JP 7453057B2 JP 2020087528 A JP2020087528 A JP 2020087528A JP 2020087528 A JP2020087528 A JP 2020087528A JP 7453057 B2 JP7453057 B2 JP 7453057B2
Authority
JP
Japan
Prior art keywords
scattering
rubber material
property prediction
physical property
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020087528A
Other languages
Japanese (ja)
Other versions
JP2021181934A (en
Inventor
智 鷺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2020087528A priority Critical patent/JP7453057B2/en
Publication of JP2021181934A publication Critical patent/JP2021181934A/en
Application granted granted Critical
Publication of JP7453057B2 publication Critical patent/JP7453057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、ゴム材料の物性を予測するシステム、およびゴム材料物性予測方法に関する。 The present invention relates to a system for predicting the physical properties of a rubber material, and a method for predicting the physical properties of a rubber material.

例えば車両に装着されるタイヤ等に用いられるゴム材料は、主要原料であるポリマーに補強剤、各種薬剤が添加された複合材料である。ゴム材料は、用途に応じて様々な化学構造および物性を備えたものが開発されている。 For example, rubber materials used in tires and the like mounted on vehicles are composite materials in which reinforcing agents and various chemicals are added to polymers, which are the main raw materials. Rubber materials have been developed with various chemical structures and physical properties depending on the application.

特許文献1には従来のゴム材料の特性推定方法が開示されている。この特性推定方法は、ゴム材料を顕微鏡により撮像した画像を取得するステップと、取得した画像から、画像の特徴を示す指標を算出するステップと、算出した指標に基づいて、連続的な曲線で表されるゴム材料の特性を推定するステップと、を備える。この特性推定方法は、ゴム材料の特性として応力-ひずみ曲線を推定するものである。 Patent Document 1 discloses a conventional method for estimating characteristics of rubber materials. This characteristic estimation method consists of the steps of acquiring an image of a rubber material taken with a microscope, calculating an index indicating the characteristics of the image from the acquired image, and expressing it as a continuous curve based on the calculated index. estimating properties of the rubber material. This property estimation method estimates a stress-strain curve as a property of a rubber material.

特許第6609387号公報Patent No. 6609387

特許文献1に記載されたゴム材料の特性推定方法では、ゴム材料を顕微鏡によって撮影した画像に基づいて特性を推定しているが、顕微鏡画像ではゴム材料中の局所的な画像を得ることしかできないため、予測精度や再現性が低くなるという問題点があった。 In the rubber material property estimation method described in Patent Document 1, properties are estimated based on images taken of the rubber material using a microscope, but the microscope images can only obtain local images within the rubber material. Therefore, there was a problem that prediction accuracy and reproducibility were low.

本発明は、斯かる事情に鑑みてなされたものであり、その目的とするところは、ゴム材料の物性を精度良く予測することができるゴム材料物性予測システムおよびゴム材料物性予測方法を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide a rubber material physical property prediction system and a rubber material physical property prediction method that can accurately predict the physical properties of a rubber material. It is in.

本発明のある態様はゴム材料物性予測システムである。ゴム材料物性予測システムは、ゴム材料にX線を照射するX線小角散乱測定によって撮影された散乱像を取得する散乱像取得部と、前記散乱像取得部によって取得された前記散乱像が入力層に入力され、出力層から前記ゴム材料の物性を出力する学習型の物性予測演算モデルを有し、前記入力層から前記出力層へ向けての途中演算において畳み込み演算を実行して前記散乱像の特徴量を抽出する物性予測処理部と、を備えることを特徴とする。 An embodiment of the present invention is a rubber material physical property prediction system. The rubber material property prediction system includes a scattering image acquisition unit that acquires a scattering image taken by small-angle X-ray scattering measurement in which a rubber material is irradiated with X-rays, and an input layer in which the scattering image acquired by the scattering image acquisition unit is has a learning type physical property prediction calculation model that outputs the physical properties of the rubber material from the output layer, and performs a convolution calculation in the middle of the calculation from the input layer to the output layer to calculate the scattering image. The present invention is characterized by comprising a physical property prediction processing unit that extracts feature quantities.

また本発明の別の態様はゴム材料物性予測方法である。ゴム材料物性予測方法は、ゴム材料にX線を照射するX線小角散乱測定によって撮影された散乱像を取得する散乱像取得ステップと、前記散乱像取得ステップによって取得された前記散乱像が入力層に入力され、出力層から前記ゴム材料の物性を出力する学習型の物性予測演算モデルを有し、前記入力層から前記出力層へ向けての途中演算において畳み込み演算を実行して前記散乱像の特徴量を抽出する物性予測処理ステップと、を備えることを特徴とする。 Another aspect of the present invention is a method for predicting physical properties of rubber materials. The method for predicting the physical properties of a rubber material includes a scattering image acquisition step of acquiring a scattering image taken by small-angle X-ray scattering measurement in which the rubber material is irradiated with X-rays, and a scattering image acquired by the scattering image acquisition step is applied to an input layer. has a learning type physical property prediction calculation model that outputs the physical properties of the rubber material from the output layer, and performs a convolution calculation in the middle of the calculation from the input layer to the output layer to calculate the scattering image. The present invention is characterized by comprising a physical property prediction processing step of extracting feature quantities.

本発明によれば、ゴム材料の物性を精度良く予測することができる。 According to the present invention, the physical properties of a rubber material can be predicted with high accuracy.

実施形態1に係るゴム材料物性予測システムの機能構成を示すブロック図である。1 is a block diagram showing the functional configuration of a rubber material physical property prediction system according to Embodiment 1. FIG. 小角散乱測定装置によるX線小角散乱測定について説明するための模式図である。FIG. 2 is a schematic diagram for explaining small-angle X-ray scattering measurement using a small-angle scattering measurement device. X線小角散乱測定によって撮影された散乱像の一例を示す図である。It is a figure which shows an example of the scattering image image|photographed by X-ray small-angle scattering measurement. 物性予測演算モデルの構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a physical property prediction calculation model. 物性予測演算モデルの学習処理の手順を示すフローチャートである。3 is a flowchart showing the procedure of learning processing of a physical property prediction calculation model. ゴム材料の散乱像から予測した応力を示すグラフである。It is a graph showing stress predicted from a scattering image of a rubber material. ゴム材料の散乱像から予測した伸長量を示すグラフである。It is a graph showing the amount of elongation predicted from the scattering image of the rubber material. 実施形態2に係るゴム材料物性予測システムの機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of a rubber material physical property prediction system according to a second embodiment. 画像生成処理部により生成した画像の例を示す図である。FIG. 3 is a diagram showing an example of an image generated by an image generation processing section.

以下、本発明を好適な実施の形態をもとに図1から図9を参照しながら説明する。各図面に示される同一または同等の構成要素、部材には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be explained based on a preferred embodiment with reference to FIGS. 1 to 9. Identical or equivalent components and members shown in each drawing are designated by the same reference numerals, and redundant explanations will be omitted as appropriate. Further, the dimensions of members in each drawing are shown enlarged or reduced as appropriate to facilitate understanding. Further, in each drawing, some members that are not important for explaining the embodiments are omitted.

(実施形態1)
図1は、実施形態1に係るゴム材料物性予測システム100の機能構成を示すブロック図である。ゴム材料物性予測システム100は、測定部10、データ結合部20および物性予測処理部30を備え、例えばタイヤ等に用いられるゴム材料の物性を予測する。ゴム材料物性予測システム100におけるデータ結合部20および物性予測処理部30は、例えばPC(パーソナルコンピュータ)等の情報処理装置である。ゴム材料物性予測システム100における各部は、ハードウェア的には、コンピュータのCPUをはじめとする電子素子や機械部品などで実現でき、ソフトウェア的にはコンピュータプログラムなどによって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろな形態で実現できることは、当業者には理解されるところである。
(Embodiment 1)
FIG. 1 is a block diagram showing the functional configuration of a rubber material physical property prediction system 100 according to the first embodiment. The rubber material physical property prediction system 100 includes a measurement unit 10, a data combination unit 20, and a physical property prediction processing unit 30, and predicts the physical properties of a rubber material used for, for example, tires. The data combining unit 20 and the physical property prediction processing unit 30 in the rubber material physical property prediction system 100 are, for example, information processing devices such as a PC (personal computer). Each part of the rubber material physical property prediction system 100 can be realized in terms of hardware by electronic elements such as a computer CPU, mechanical parts, etc., and can be realized by computer programs in terms of software, but here, they will be explained. It depicts the functional blocks realized by the cooperation of the . Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by combining hardware and software.

測定部10は、小角散乱測定装置11および引張試験機12を有する。小角散乱測定装置11は、物性を予測する対象であるゴム材料に対してX線を照射するX線小角散乱(SAXS:Small Angle X-ray Scattering)測定を実施し、散乱像を撮影する装置である。図2は小角散乱測定装置11によるX線小角散乱測定について説明するための模式図であり、図3はX線小角散乱測定によって撮影された散乱像の一例を示す図である。小角散乱測定装置11は、ゴム材料のサンプルSに対してX線を照射し、サンプルSから所定のカメラ長の距離に配置された検出器11aによって散乱像を二次元画像として検出する。サンプルSと検出器11aとの間には、散乱光が透過しないビームストッパー11bが設けられている。 The measurement unit 10 includes a small-angle scattering measurement device 11 and a tensile tester 12. The small-angle scattering measurement device 11 is a device that performs small-angle X-ray scattering (SAXS) measurement in which X-rays are irradiated onto a rubber material whose physical properties are to be predicted, and takes a scattering image. be. FIG. 2 is a schematic diagram for explaining small-angle X-ray scattering measurement by the small-angle scattering measurement device 11, and FIG. 3 is a diagram showing an example of a scattering image taken by small-angle X-ray scattering measurement. The small-angle scattering measurement device 11 irradiates a sample S of a rubber material with X-rays, and a detector 11a placed at a distance of a predetermined camera length from the sample S detects a scattered image as a two-dimensional image. A beam stopper 11b through which scattered light does not pass is provided between the sample S and the detector 11a.

検出器11aで撮像された散乱像は、ゴム材料の化学構造に応じて散乱光の輝度の高低が生じて所定の模様が現れ、ビームストッパー11bによって中央に輝度0の部分が形成される。測定部10では、引張試験機12によってサンプルSを任意の方向へ引張って変形させ、変形量に応じた複数の散乱像を小角散乱測定装置11によって撮影することができる。小角散乱測定装置11で撮影された散乱像はデータ結合部20の散乱像取得部21へ出力される。 In the scattering image taken by the detector 11a, a predetermined pattern appears as the brightness of the scattered light varies depending on the chemical structure of the rubber material, and a portion with zero brightness is formed in the center by the beam stopper 11b. In the measurement unit 10, the sample S can be pulled and deformed in any direction by the tensile tester 12, and a plurality of scattering images corresponding to the amount of deformation can be photographed by the small-angle scattering measurement device 11. The scattering image taken by the small-angle scattering measurement device 11 is output to the scattering image acquisition section 21 of the data combining section 20.

引張試験機12は、サンプルSを変形させ、サンプルSの変形量に対応して、応力および歪みの各データを計測し、データ結合部20の変形データ取得部22へ出力する。データ結合部20は、散乱像取得部21により取得した散乱像、並びに変形データ取得部22により取得した変形量、応力および歪みの各データを対応付け、物性予測処理部30へ出力する。 The tensile tester 12 deforms the sample S, measures stress and strain data corresponding to the amount of deformation of the sample S, and outputs the data to the deformation data acquisition section 22 of the data combination section 20 . The data combination unit 20 associates the scattering image acquired by the scattering image acquisition unit 21 with the deformation amount, stress, and strain data acquired by the deformation data acquisition unit 22, and outputs the correlated data to the physical property prediction processing unit 30.

物性予測処理部30は、物性予測演算モデル31および更新処理部32を備え、既知のゴム材料の化学構造および物性に基づいて物性予測演算モデル31を学習させ、作成される新たなゴム材料の物性を予測する。物性予測演算モデル31は、ニューラルネットワーク等の学習型モデルを用いる。 The physical property prediction processing unit 30 includes a physical property prediction calculation model 31 and an update processing unit 32, and learns the physical property prediction calculation model 31 based on the chemical structure and physical properties of known rubber materials, and calculates the physical properties of a new rubber material to be created. Predict. The physical property prediction calculation model 31 uses a learning model such as a neural network.

図4は、物性予測演算モデル31の構成を示す模式図である。物性予測演算モデル31は、CNN(Convolutional Neural Network)型であり、その原型であるいわゆるLeNetで使用された畳み込み演算およびプーリング演算を備える学習型モデルである。物性予測演算モデル31は、入力層40、特徴抽出部41、全結合部42および出力層43を備える。入力層40には、散乱像取得部21で取得した散乱像が入力される。特徴抽出部41は、畳み込み演算41aおよびプーリング演算41bを用いて特徴量を抽出し、全結合部42へ伝達する。 FIG. 4 is a schematic diagram showing the configuration of the physical property prediction calculation model 31. The physical property prediction calculation model 31 is of the CNN (Convolutional Neural Network) type, and is a learning model that includes convolution calculations and pooling calculations used in its prototype, so-called LeNet. The physical property prediction calculation model 31 includes an input layer 40, a feature extraction section 41, a full connection section 42, and an output layer 43. A scattering image acquired by the scattering image acquisition unit 21 is input to the input layer 40 . The feature extraction unit 41 extracts feature quantities using a convolution operation 41 a and a pooling operation 41 b and transmits them to the full combination unit 42 .

特徴抽出部41では、入力された散乱像に対して複数のフィルタを用いて1回目の畳み込み演算を実行する。特徴抽出部41は、入力された散乱像に対してフィルタを移動させながら、畳み込み演算を実行する。尚、入力データの端に「0(ゼロ)」のデータを付加するゼロパティングを行って、畳み込み演算を実行するようにしてもよい。 The feature extraction unit 41 performs a first convolution operation on the input scattering image using a plurality of filters. The feature extraction unit 41 executes a convolution operation while moving a filter on the input scattered image. Note that the convolution operation may be performed by performing zero padding, which adds "0 (zero)" data to the end of the input data.

1回目の畳み込み演算後のデータに対して、1回目の最大値プーリング演算を実行する。特徴抽出部41は、さらに2回目の畳み込み演算を実行して特徴量データを得て、全結合部42へ出力する。 A first maximum value pooling operation is performed on the data after the first convolution operation. The feature extraction unit 41 further performs a second convolution operation to obtain feature amount data and outputs it to the total combination unit 42.

全結合部42は、重みづけを用いた線形演算等を実行する全結合のパスによって出力層43へ結び付ける。全結合部42では、線形演算に加えて、活性化関数などを用いて非線形演算を実行するようにしてもよい。出力層43の各ノードには、例えば応力および歪み等のゴム材料の物性が出力される。 The fully connecting unit 42 connects to the output layer 43 through a fully connected path that performs linear calculations using weighting. In addition to linear calculations, the total coupling unit 42 may perform nonlinear calculations using an activation function or the like. Physical properties of the rubber material, such as stress and strain, are output to each node of the output layer 43.

物性予測演算モデル31は、ゴム材料に対して計測した散乱像と当該ゴム材料の物性に基づいて学習させることができる。更新処理部32は、散乱像に基づいて物性予測演算モデル31により算出した物性と、教師データとして与えられる物性とを比較し、例えば逆拡散演算により、各ノード間の重みづけを修正して物性予測演算モデル31の学習を繰り返す。学習の際に物性予測演算モデル31に入力される散乱像は、1つのゴム材料の引張りによる変形量を変えて計測した散乱像であってもよいし、複数のゴム材料に対して計測した散乱像であってもよい。 The physical property prediction calculation model 31 can be trained based on the scattering image measured for the rubber material and the physical properties of the rubber material. The update processing unit 32 compares the physical properties calculated by the physical property prediction calculation model 31 based on the scattering image with the physical properties given as teacher data, and corrects the weighting between each node by, for example, a reverse diffusion calculation to update the physical properties. Learning of the predictive calculation model 31 is repeated. The scattering images input to the physical property prediction calculation model 31 during learning may be scattering images measured by changing the amount of deformation due to tension of one rubber material, or scattering images measured for multiple rubber materials. It may be a statue.

また物性予測演算モデル31の学習では、適宜、物性予測演算モデル31に入力されるデータをトレーニング用データ(例えば90%のデータ)と、検証用データ(残りの10%のデータ)とに分けて、交差検証を実行する。物性予測処理部30は、交差検証により平均的に良い結果を予測する物性予測演算モデル31を選択することになる。 In addition, in learning the physical property prediction calculation model 31, the data input to the physical property prediction calculation model 31 is divided into training data (for example, 90% data) and verification data (the remaining 10% data). , perform cross validation. The physical property prediction processing unit 30 selects a physical property prediction calculation model 31 that predicts good results on average through cross-validation.

物性予測処理部30は、散乱像取得部21から入力される散乱像に対して、学習済みの物性予測演算モデル31を用いて演算を実行し、ゴム材料の物性を新たに予測することができる。 The physical property prediction processing unit 30 performs calculations on the scattering image input from the scattering image acquisition unit 21 using the learned physical property prediction calculation model 31, and can newly predict the physical properties of the rubber material. .

次にゴム材料物性予測システム100の動作について説明する。図5は、物性予測演算モデル31の学習処理の手順を示すフローチャートである。データ結合部20の散乱像取得部21は小角散乱測定装置11からゴム材料の散乱像を取得し、変形データ取得部22は応力および歪み等の物性を取得する(S1)。物性予測処理部30は、データ結合部20において取得した散乱像を物性予測演算モデル31の入力層40へ入力し、物性予測演算モデル31によりゴム材料の物性を予測する(S2)。ステップS2では、上述のように、適宜、交差検証等の手法を用いる。 Next, the operation of the rubber material property prediction system 100 will be explained. FIG. 5 is a flowchart showing the procedure of the learning process of the physical property prediction calculation model 31. The scattering image acquisition unit 21 of the data combining unit 20 acquires a scattering image of the rubber material from the small-angle scattering measurement device 11, and the deformation data acquisition unit 22 acquires physical properties such as stress and strain (S1). The physical property prediction processing unit 30 inputs the scattering image acquired by the data combination unit 20 to the input layer 40 of the physical property prediction calculation model 31, and predicts the physical properties of the rubber material using the physical property prediction calculation model 31 (S2). In step S2, as described above, a method such as cross-validation is used as appropriate.

物性予測処理部30は、既知の物性値に対して所定範囲内を予め定めて目標値(目標範囲)とし、交差検証によって平均的に良い結果を出力する物性予測演算モデル31によって予測した物性が、目標値を満たすか否かを判定する(S3)。 The physical property prediction processing unit 30 sets a predetermined range of known physical property values as a target value (target range), and calculates the physical properties predicted by a physical property prediction calculation model 31 that outputs good results on average through cross-validation. , it is determined whether the target value is satisfied (S3).

ステップS3によって、物性予測演算モデル31によって予測した物性が、目標値を満たす場合(S3:YES)、処理を終了する。一方、物性予測演算モデル31によって予測した物性が、目標値を満たさない場合(S3:NO)、ステップS1に戻って処理を繰り返す。 In step S3, if the physical properties predicted by the physical property prediction calculation model 31 satisfy the target value (S3: YES), the process ends. On the other hand, if the physical properties predicted by the physical property prediction calculation model 31 do not satisfy the target value (S3: NO), the process returns to step S1 and repeats the process.

ゴム材料物性予測システム100は、学習によって物性予測演算モデル31を構築し、ゴム材料の新たな散乱像に基づいてゴム材料の物性を予測することができる。図6は、ゴム材料の散乱像から予測した応力を示すグラフである。図6に示すグラフでは、横軸に実際に発生している応力を、縦軸に予測した応力をとり、実際に発生している応力と予測した応力とが一致している場合を破線で示している。図6に示すように、ゴム材料物性予測システム100によって予測したゴム材料の応力は、破線の付近に分布し、破線に添って良好な相関関係を示している。 The rubber material physical property prediction system 100 constructs a physical property prediction calculation model 31 through learning, and can predict the physical properties of the rubber material based on a new scattering image of the rubber material. FIG. 6 is a graph showing the stress predicted from the scattering image of the rubber material. In the graph shown in Figure 6, the horizontal axis represents the actually occurring stress, and the vertical axis represents the predicted stress, and the broken line indicates when the actually occurring stress matches the predicted stress. ing. As shown in FIG. 6, the stress of the rubber material predicted by the rubber material physical property prediction system 100 is distributed around the broken line, and shows a good correlation along the broken line.

また図7は、ゴム材料の散乱像から予測した伸長量を示すグラフである。図7に示すグラフでは、横軸に実際に発生している伸長量を、縦軸に予測した伸長量をとり、実際に発生している伸長量と予測した伸長量とが一致している場合を破線で示している。 Further, FIG. 7 is a graph showing the amount of elongation predicted from the scattering image of the rubber material. In the graph shown in Figure 7, the horizontal axis represents the amount of expansion that actually occurs, and the vertical axis represents the predicted amount of expansion.If the actual amount of expansion matches the predicted amount of expansion, then is shown with a broken line.

図7に示すように、ゴム材料物性予測システム100によって予測したゴム材料の伸長量は、破線の付近に分布し、破線に添って良好な相関関係を示している。図6および図7に示されるように、ゴム材料物性予測システム100は、小角散乱測定によって計測した散乱像を用いることで、精度良くゴム材料の物性を予測することができる。 As shown in FIG. 7, the amount of elongation of the rubber material predicted by the rubber material physical property prediction system 100 is distributed around the broken line, and shows a good correlation along the broken line. As shown in FIGS. 6 and 7, the rubber material physical property prediction system 100 can accurately predict the physical properties of a rubber material by using scattering images measured by small-angle scattering measurement.

またゴム材料物性予測システム100は、ゴム材料を引張って変形させて散乱像を取得することができ、変形量に応じた複数の散乱像と物性(応力や歪み、伸長量等)とを用いて物性予測演算モデル31を学習させることができる。 Furthermore, the rubber material physical property prediction system 100 can acquire scattering images by pulling and deforming the rubber material, and uses a plurality of scattering images and physical properties (stress, strain, amount of elongation, etc.) according to the amount of deformation. The physical property prediction calculation model 31 can be trained.

さらにゴム材料物性予測システム100は、ゴム材料を引張って変形させて散乱像を取得し、変形量に応じた複数の散乱像を入力として用い、ゴム材料の物性(応力や歪み、伸長量等)を予測し、例えば応力-歪み曲線などを予測することもできる。 Furthermore, the rubber material physical property prediction system 100 acquires scattering images by pulling and deforming the rubber material, and uses as input a plurality of scattering images corresponding to the amount of deformation, and calculates the physical properties of the rubber material (stress, strain, amount of elongation, etc.). It is also possible to predict, for example, stress-strain curves.

(実施形態2)
図8は実施形態2に係るゴム材料物性予測システム100の機能構成を示すブロック図である。ゴム材料物性予測システム100は、画像生成処理部50を有するほか、実施形態1と同等の構成を有する。実施形態2では、ゴム材料を繰り返し複数往復の変形をさせる。ゴム材料の変形量に関して一つ若しくは複数の変形量区間に分割し、各区間において、各区間の応力の中央値より応力が大きい場合の散乱像と小さい場合の散乱像に分ける。ゴム材料物性予測システム100は、区間内の中央値より応力が大きい場合の散乱像および小さい場合の散乱像を物性予測演算モデル31に入力してゴム材料の物性を予測する。
(Embodiment 2)
FIG. 8 is a block diagram showing the functional configuration of a rubber material physical property prediction system 100 according to the second embodiment. The rubber material physical property prediction system 100 includes the image generation processing section 50 and has the same configuration as the first embodiment. In the second embodiment, the rubber material is repeatedly deformed in multiple reciprocations. The amount of deformation of the rubber material is divided into one or more deformation amount sections, and each section is divided into a scattering image when the stress is larger than the median stress of each section and a scattering image when it is smaller. The rubber material physical property prediction system 100 predicts the physical properties of the rubber material by inputting scattering images when the stress is larger than the median value in the interval and scattering images when the stress is smaller than the median value in the interval into the physical property prediction calculation model 31.

画像生成処理部50は、物性予測演算モデル31での演算に基づきCNNの判断根拠を散乱像にハイライトで可視化した画像を生成する。CNNの判断根拠を算出する方法は公知の深層学習ライブラリを用いて実現できる。例えば、SAS Institute社が提供するDLPyや、オープンソースであるKerasにあるGrad-CAM(Gradient-weighted Class Activation Mapping)手法などがある。図9は、画像生成処理部50により生成した画像の例を示す図である。図9に示す画像は、DLPyのヒートマップ解析手法を用いて可視化したものである。図9ではゴム材料の変形量について区間A~Cの3区間において区間内の応力の中央値より応力が小さい場合と、応力が大きい場合とで物性予測演算モデル31により予測演算し、画像生成処理部50により画像を生成している。画像生成処理部50は、上述のようにゴム材料を繰り返し複数往復の変形をさせる過程において取得される散乱像を選択し、物性予測演算モデル31により予測演算して画像を生成している。 The image generation processing unit 50 generates an image in which the CNN judgment basis is visualized as a highlight in a scattering image based on the calculation by the physical property prediction calculation model 31. A method for calculating the basis for CNN judgment can be realized using a known deep learning library. Examples include DLPy provided by SAS Institute and the Grad-CAM (Gradient-weighted Class Activation Mapping) method in Keras, which is an open source. FIG. 9 is a diagram showing an example of an image generated by the image generation processing section 50. The image shown in FIG. 9 is visualized using DLPy's heat map analysis method. In FIG. 9, the amount of deformation of the rubber material is predicted and calculated using the physical property prediction calculation model 31 in three sections A to C, when the stress is smaller than the median stress in the section, and when the stress is large. The image is generated by the unit 50. The image generation processing unit 50 selects a scattering image obtained during the process of repeatedly deforming the rubber material in multiple reciprocations as described above, and performs predictive calculation using the physical property prediction calculation model 31 to generate an image.

図9に示すように、各区間で応力が小さい場合と大きい場合で画像に表われる濃淡が変化しており、ヒートマップ解析等の解析に供することができる。画像生成処理部50によって生成された画像から、例えば画像中のどの箇所に着目すれば、応力を高く(または低く)することができるかがわかる。また散乱像はゴム材料中のフィラー分散構造を示しているため、画像生成処理部50によって生成された画像から、散乱像のどの箇所がフィラー分散に寄与して応力が高く(または低く)することができるかがわかる。 As shown in FIG. 9, the shading that appears in the image changes depending on whether the stress is small or large in each section, which can be used for analysis such as heat map analysis. From the image generated by the image generation processing unit 50, it can be determined, for example, which location in the image should be focused on to increase (or decrease) the stress. Furthermore, since the scattering image shows the filler dispersion structure in the rubber material, it can be determined from the image generated by the image generation processing unit 50 which part of the scattering image contributes to filler dispersion and causes high (or low) stress. You can see what you can do.

また、画像生成処理部50によって生成された画像に対応する箇所の散乱像から散乱曲線を作成しギニエ解析(凝集体サイズやフラクタル構造解析など)することで、応力に影響するフィラー分散構造中の要因分析などを行うこともできる。 In addition, by creating a scattering curve from the scattering image of the location corresponding to the image generated by the image generation processing unit 50 and performing Guinier analysis (agglomerate size, fractal structure analysis, etc.), It is also possible to perform factor analysis.

次に実施形態に係るゴム材料物性予測システム100およびゴム材料物性予測方法の特徴について説明する。
実施形態に係るゴム材料物性予測システム100は、散乱像取得部21および物性予測処理部30を備える。散乱像取得部21は、ゴム材料にX線を照射するX線小角散乱測定によって撮影された散乱像を取得する。物性予測処理部30は、散乱像取得部21によって取得された散乱像が入力層40に入力され、出力層43からゴム材料の物性を出力する学習型の物性予測演算モデル31を有し、入力層40から出力層43へ向けての途中演算において畳み込み演算を実行して散乱像の特徴量を抽出する。これにより、ゴム材料物性予測システム100は、ゴム材料の散乱像に基づいてゴム材料の物性を精度良く予測することができる。
Next, the characteristics of the rubber material physical property prediction system 100 and the rubber material physical property prediction method according to the embodiment will be described.
The rubber material physical property prediction system 100 according to the embodiment includes a scattering image acquisition section 21 and a physical property prediction processing section 30. The scattering image acquisition unit 21 acquires a scattering image photographed by small-angle X-ray scattering measurement in which a rubber material is irradiated with X-rays. The physical property prediction processing unit 30 has a learning type physical property prediction calculation model 31 that inputs the scattering image acquired by the scattering image acquisition unit 21 to the input layer 40 and outputs the physical properties of the rubber material from the output layer 43. A convolution operation is performed in the intermediate operation from the layer 40 to the output layer 43 to extract the feature amount of the scattering image. Thereby, the rubber material physical property prediction system 100 can accurately predict the physical properties of the rubber material based on the scattering image of the rubber material.

また散乱像取得部21は、ゴム材料を変形させて撮影した複数の散乱像を取得する。物性予測演算モデル31は、散乱像取得部21によって取得された複数の散乱像に基づいて学習されている。これにより、ゴム材料物性予測システム100は、ゴム材料を変形させて散乱像を取得し物性予測演算モデル31を学習させることができる。 Further, the scattering image acquisition unit 21 acquires a plurality of scattering images taken by deforming the rubber material. The physical property prediction calculation model 31 is trained based on a plurality of scattering images acquired by the scattering image acquisition unit 21. Thereby, the rubber material physical property prediction system 100 can deform the rubber material, acquire a scattering image, and train the physical property prediction calculation model 31.

また散乱像取得部21は、ゴム材料の変形量に関する区間内の応力の中央値より応力が小さい場合と大きい場合とで撮影された複数の散乱像を取得する。画像生成処理部50は、散乱像取得部21によって取得された複数の散乱像による物性予測演算モデル31での演算に基づき前記散乱像上に判断根拠を可視化した画像を生成する。これにより、ゴム材料物性予測システム100は、生成した画像を、ゴム材料の応力等の物性に寄与する要因の分析に供することができる。 Further, the scattering image acquisition unit 21 acquires a plurality of scattering images taken when the stress is smaller than the median value of the stress in the section regarding the amount of deformation of the rubber material and when the stress is larger. The image generation processing unit 50 generates an image in which the basis of judgment is visualized on the scattering images based on calculations in the physical property prediction calculation model 31 using the plurality of scattering images acquired by the scattering image acquisition unit 21. Thereby, the rubber material physical property prediction system 100 can use the generated image to analyze factors contributing to physical properties such as stress of the rubber material.

ゴム材料物性予測方法は、散乱像取得ステップおよび物性予測処理ステップを備える。散乱像取得ステップは、ゴム材料にX線を照射するX線小角散乱測定によって撮影された散乱像を取得する。物性予測処理ステップは、散乱像取得ステップによって取得された散乱像が入力層40に入力され、出力層43からゴム材料の物性を出力する学習型の物性予測演算モデル31を有し、入力層40から出力層43へ向けての途中演算において畳み込み演算を実行して散乱像の特徴量を抽出する。このゴム材料物性予測方法によれば、ゴム材料の散乱像に基づいてゴム材料の物性を精度良く予測することができる。 The rubber material physical property prediction method includes a scattering image acquisition step and a physical property prediction processing step. The scattering image acquisition step acquires a scattering image photographed by small-angle X-ray scattering measurement in which the rubber material is irradiated with X-rays. The physical property prediction processing step includes a learning type physical property prediction calculation model 31 that inputs the scattering image acquired in the scattering image acquisition step to the input layer 40 and outputs the physical properties of the rubber material from the output layer 43. A convolution operation is performed in the intermediate operation toward the output layer 43 to extract the feature amount of the scattering image. According to this rubber material physical property prediction method, the physical properties of a rubber material can be accurately predicted based on a scattering image of the rubber material.

以上、本発明の実施の形態をもとに説明した。これらの実施の形態は例示であり、いろいろな変形および変更が本発明の特許請求範囲内で可能なこと、またそうした変形例および変更も本発明の特許請求の範囲にあることは当業者に理解されるところである。従って、本明細書での記述および図面は限定的ではなく例証的に扱われるべきものである。 The above description has been based on the embodiments of the present invention. Those skilled in the art will understand that these embodiments are illustrative and that various modifications and changes are possible and within the scope of the claims of the present invention. It is about to be done. Accordingly, the description and drawings herein are to be regarded in an illustrative rather than a restrictive sense.

21 散乱像取得部、 30 物性予測処理部、 31 物性予測演算モデル、
40 入力層、 43 出力層、 50 画像生成処理部、
100 ゴム材料物性予測システム。
21 scattering image acquisition unit, 30 physical property prediction processing unit, 31 physical property prediction calculation model,
40 input layer, 43 output layer, 50 image generation processing unit,
100 Rubber material property prediction system.

Claims (3)

ゴム材料にX線を照射するX線小角散乱測定によって撮影された散乱像を取得する散乱像取得部と、
前記散乱像取得部によって取得された前記散乱像が入力層に入力され、出力層から前記ゴム材料の物性を出力する学習型の物性予測演算モデルを有し、前記入力層から前記出力層へ向けての途中演算において畳み込み演算を実行して前記散乱像の特徴量を抽出する物性予測処理部と、を備え
前記散乱像取得部は、前記ゴム材料の変形量に関する区間内の応力の中央値より応力が小さい場合と大きい場合とで撮影された複数の前記散乱像を取得し、
前記散乱像取得部によって取得された複数の前記散乱像による前記物性予測演算モデルでの演算に基づき前記散乱像上に判断根拠を可視化した画像を生成する画像生成処理部を更に備えることを特徴とするゴム材料物性予測システム。
a scattering image acquisition unit that acquires a scattering image taken by small-angle X-ray scattering measurement in which a rubber material is irradiated with X-rays;
The scattering image acquired by the scattering image acquisition unit is input to an input layer, and the learning type physical property prediction calculation model outputs the physical properties of the rubber material from the output layer, and the learning type physical property prediction calculation model is directed from the input layer to the output layer. a physical property prediction processing unit that executes a convolution operation in intermediate calculations to extract feature quantities of the scattering image ;
The scattering image acquisition unit acquires the plurality of scattering images taken when the stress is smaller and larger than the median value of the stress in the section regarding the amount of deformation of the rubber material,
The method further includes an image generation processing unit that generates an image in which judgment grounds are visualized on the scattering images based on calculations in the physical property prediction calculation model using the plurality of scattering images acquired by the scattering image acquisition unit. Rubber material property prediction system.
前記散乱像取得部は、前記ゴム材料を変形させて撮影した複数の前記散乱像を取得し、
前記物性予測演算モデルは、前記散乱像取得部によって取得された複数の前記散乱像に基づいて学習されていることを特徴とする請求項1に記載のゴム材料物性予測システム。
The scattering image acquisition unit acquires the plurality of scattering images taken by deforming the rubber material,
The rubber material physical property prediction system according to claim 1, wherein the physical property prediction calculation model is trained based on the plurality of scattering images acquired by the scattering image acquisition unit.
ゴム材料にX線を照射するX線小角散乱測定によって撮影された散乱像を取得する散乱像取得ステップと、
前記散乱像取得ステップによって取得された前記散乱像が入力層に入力され、出力層から前記ゴム材料の物性を出力する学習型の物性予測演算モデルを有し、前記入力層から前記出力層へ向けての途中演算において畳み込み演算を実行して前記散乱像の特徴量を抽出する物性予測処理ステップと、を備え
前記散乱像取得ステップは、前記ゴム材料の変形量に関する区間内の応力の中央値より応力が小さい場合と大きい場合とで撮影された複数の前記散乱像を取得し、
前記散乱像取得ステップによって取得された複数の前記散乱像による前記物性予測演算モデルでの演算に基づき前記散乱像上に判断根拠を可視化した画像を生成する画像生成処理ステップを更に備えることを特徴とするゴム材料物性予測方法。
a scattering image acquisition step of acquiring a scattering image taken by small-angle X-ray scattering measurement in which the rubber material is irradiated with X-rays;
The scattering image acquired in the scattering image acquisition step is input to an input layer, and a learning type physical property prediction calculation model that outputs physical properties of the rubber material from an output layer is provided, and the method is directed from the input layer to the output layer. a physical property prediction processing step of executing a convolution operation in intermediate calculations to extract feature quantities of the scattering image ;
The scattering image acquisition step acquires a plurality of the scattering images taken when the stress is smaller and when the stress is larger than the median value of the stress in the section regarding the amount of deformation of the rubber material,
The method further comprises an image generation processing step of generating an image in which judgment grounds are visualized on the scattering images based on calculations in the physical property prediction calculation model using the plurality of scattering images acquired in the scattering image acquisition step. A method for predicting the physical properties of rubber materials.
JP2020087528A 2020-05-19 2020-05-19 Rubber material property prediction system and rubber material property prediction method Active JP7453057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020087528A JP7453057B2 (en) 2020-05-19 2020-05-19 Rubber material property prediction system and rubber material property prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020087528A JP7453057B2 (en) 2020-05-19 2020-05-19 Rubber material property prediction system and rubber material property prediction method

Publications (2)

Publication Number Publication Date
JP2021181934A JP2021181934A (en) 2021-11-25
JP7453057B2 true JP7453057B2 (en) 2024-03-19

Family

ID=78606455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020087528A Active JP7453057B2 (en) 2020-05-19 2020-05-19 Rubber material property prediction system and rubber material property prediction method

Country Status (1)

Country Link
JP (1) JP7453057B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115372200A (en) * 2022-07-12 2022-11-22 蓝冰河(常州)精密测量技术有限责任公司 Online surface density measuring method and device based on X-ray

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7218519B2 (en) * 2018-09-04 2023-02-07 横浜ゴム株式会社 Physical property data prediction method and physical property data prediction device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
萩田 克美ほか,"ディープラーニングを用いたゴム中フィラー凝集構造の画像判別の特性評価",日本ゴム協会誌,2018年,第91巻, 第1号,PP.3-8

Also Published As

Publication number Publication date
JP2021181934A (en) 2021-11-25

Similar Documents

Publication Publication Date Title
Sony et al. Vibration-based multiclass damage detection and localization using long short-term memory networks
WO2018203470A1 (en) Learning apparatus, learning method, and learning program
Li et al. Relative contributions of aleatory and epistemic uncertainty sources in time series prediction
Dang et al. Structural damage detection framework based on graph convolutional network directly using vibration data
US11126764B2 (en) Physics-based model particle-filtering framework for predicting RUL using resistance measurements
Barroqueiro et al. Design of mechanical heterogeneous specimens using topology optimization
CN116664931A (en) Knee osteoarthritis grading method based on quantum-to-classical migration learning
JP7453057B2 (en) Rubber material property prediction system and rubber material property prediction method
Das et al. Application of deep convolutional neural networks for automated and rapid identification and computation of crack statistics of thin cracks in strain hardening cementitious composites (SHCCs)
Zhang et al. Identification of concrete surface damage based on probabilistic deep learning of images
CN113850753A (en) Medical image information calculation method and device, edge calculation equipment and storage medium
Anton et al. Physics-informed neural networks for material model calibration from full-field displacement data
Thoby et al. Robustness of specimen design criteria for identification of anisotropic mechanical behaviour from heterogeneous mechanical fields
CN112633416A (en) Brain CT image classification method fusing multi-scale superpixels
Yin et al. Model selection for dynamic reduction-based structural health monitoring following the Bayesian evidence approach
Most et al. Probabilistic analysis of concrete cracking using neural networks and random fields
Oh et al. Artificial intelligence-based damage localization method for building structures using correlation of measured structural responses
EP2787457B1 (en) Contact simulation method for rubber material
CN107437112B (en) A kind of mixing RVM model prediction methods based on the multiple dimensioned kernel function of improvement
Shu et al. DF-CDM: Conditional diffusion model with data fusion for structural dynamic response reconstruction
Jung et al. Inverse identification of creep of concrete from in situ load–displacement monitoring
WO2023189006A1 (en) Material property value prediction method, trained model generation method, program, and device
Ilg et al. Constitutive model parameter identification via full-field calibration
Asaadi et al. Flow stress identification of tubular materials using the progressive inverse identification method
CN111241725B (en) Structure response reconstruction method for generating countermeasure network based on conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240307

R150 Certificate of patent or registration of utility model

Ref document number: 7453057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150