JP7452826B1 - Method for producing aluminum having a surface treatment film, aluminum having a surface treatment film, and container at least partially composed of aluminum having a surface treatment film - Google Patents

Method for producing aluminum having a surface treatment film, aluminum having a surface treatment film, and container at least partially composed of aluminum having a surface treatment film Download PDF

Info

Publication number
JP7452826B1
JP7452826B1 JP2023181986A JP2023181986A JP7452826B1 JP 7452826 B1 JP7452826 B1 JP 7452826B1 JP 2023181986 A JP2023181986 A JP 2023181986A JP 2023181986 A JP2023181986 A JP 2023181986A JP 7452826 B1 JP7452826 B1 JP 7452826B1
Authority
JP
Japan
Prior art keywords
iodine
sealing
aluminum
treatment
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023181986A
Other languages
Japanese (ja)
Inventor
諭 関▲崎▼
俊太 青木
Original Assignee
春日井アルマイト工業有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 春日井アルマイト工業有限会社 filed Critical 春日井アルマイト工業有限会社
Priority to JP2023181986A priority Critical patent/JP7452826B1/en
Priority to JP2024022452A priority patent/JP7489077B1/en
Application granted granted Critical
Publication of JP7452826B1 publication Critical patent/JP7452826B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】酸化皮膜を表面に形成し、かつ酸化皮膜の微細孔又は微細凹凸にヨウ素又はヨウ素化合物を含浸させたアルミニウムに物体を接触させても、物体にヨウ素特有の色や臭いが付着し難くなるようにすることである。【解決手段】表面処理皮膜を有するアルミニウムの製造方法は、微細な孔を有する酸化皮膜をアルミニウムの表面に形成する陽極酸化処理と、ヨウ素の電気泳動電着によって微細な孔にヨウ素を含浸させるヨウ素含浸処理と、酸化皮膜の封孔処理とを行うものである。陽極酸化処理では、温度が5~15℃であり、かつ硫酸の濃度が15~25wt%である硫酸の電解液中において10~50μmの厚さを有する酸化皮膜を形成する。ヨウ素含浸処理では、ヨウ素の含有率が1.0~5.0wt%となるようにしたヨウ素又はヨウ素化合物の溶液に30~110Vの電解電圧を1~5分印加する。【選択図】 図1[Problem] Even if an object is brought into contact with aluminum that has an oxide film formed on its surface and the fine pores or fine irregularities of the oxide film are impregnated with iodine or an iodine compound, the characteristic color and odor of iodine will not easily adhere to the object. The goal is to make it happen. [Solution] A method for manufacturing aluminum having a surface treatment film includes an anodizing treatment in which an oxide film having fine pores is formed on the surface of aluminum, and iodine in which the fine pores are impregnated with iodine by electrophoretic electrodeposition of iodine. It performs impregnation treatment and oxide film sealing treatment. In the anodizing treatment, an oxide film having a thickness of 10 to 50 μm is formed in a sulfuric acid electrolyte at a temperature of 5 to 15° C. and a sulfuric acid concentration of 15 to 25 wt%. In the iodine impregnation treatment, an electrolytic voltage of 30 to 110 V is applied for 1 to 5 minutes to a solution of iodine or an iodine compound whose iodine content is 1.0 to 5.0 wt%. [Selection diagram] Figure 1

Description

本発明の実施形態は、表面処理皮膜を有するアルミニウムの製造方法、表面処理皮膜を有するアルミニウム及び表面処理皮膜を有するアルミニウムで少なくとも一部を構成した容器に関する。 Embodiments of the present invention relate to a method for producing aluminum having a surface treatment film, aluminum having a surface treatment film, and a container at least partially made of aluminum having a surface treatment film.

硫酸電解液やシュウ酸電解液等の電解液を用いてアルミニウムの表面に酸化皮膜を形成する処理はアルマイトとして知られている。また、酸化皮膜としてアルミニウムの表面に形成された酸化アルミニウム(Al)自体もしばしばアルマイトと呼ばれる。陽極酸化(アルマイト)処理の主な目的としては、耐食性向上、着色、潤滑性や耐摩耗性の付与及び電気的絶縁等が挙げられる。 A process of forming an oxide film on the surface of aluminum using an electrolyte such as a sulfuric acid electrolyte or an oxalic acid electrolyte is known as alumite. Furthermore, aluminum oxide (Al 2 O 3 ) itself, which is formed as an oxide film on the surface of aluminum, is often called alumite. The main purposes of anodizing (alumite) treatment include improving corrosion resistance, coloring, imparting lubricity and wear resistance, and electrical insulation.

アルミニウムに陽極酸化処理を行うと、表面に微細な孔又は凹凸が生じる。このため、通常、陽極酸化処理後には、微細な孔又は凹凸を塞ぐための封孔処理が行われる。封孔処理としては、高圧容器内において加圧蒸気を用いて封孔する加圧蒸気封孔、沸騰水中において封孔する沸騰水封孔及び酢酸ニッケルの水溶液中において封孔する酢酸ニッケル添加封孔が代表的である。 When aluminum is anodized, fine holes or irregularities are created on the surface. For this reason, after the anodic oxidation treatment, a sealing treatment is usually performed to close fine holes or irregularities. Sealing treatments include pressurized steam sealing in a high-pressure container using pressurized steam, boiling water sealing in boiling water, and nickel acetate addition sealing in an aqueous solution of nickel acetate. is typical.

また、アルミニウムを含む金属の酸化皮膜に形成される微細な孔又は凹凸にヨウ素又はヨウ素化合物を含浸させることによって殺菌性及び抗菌性を付与する技術が知られている(例えば特許文献1参照)。実用的な具体例として、アルミニウムの陽極酸化処理を行った後、入手が容易なヨウ素化合物であるポリビニルピロリドン・アイオダイド(PVPI:polyvinylpyrrolidone iodide)を電気泳動電着によって酸化皮膜の微細孔に含浸させることによって殺菌性及び抗菌性を有する材料を製作することができる。尚、PVPIは、ポビドンヨード(povidone iodine)とも呼ばれる。 Furthermore, a technique is known in which microscopic pores or irregularities formed in the oxide film of a metal containing aluminum are impregnated with iodine or an iodine compound to impart bactericidal and antibacterial properties (see, for example, Patent Document 1). As a practical example, after anodizing aluminum, the micropores of the oxide film are impregnated with polyvinylpyrrolidone iodide (PVPI), an easily available iodine compound, by electrophoretic electrodeposition. Materials with bactericidal and antibacterial properties can be produced by this method. Note that PVPI is also called povidone iodine.

特許文献1記載の手法は、PVPIの含浸後において封孔処理を行わない技術、すなわちPVPIが外部に露出している皮膜構造を形成する技術である。これは、PVPIの含浸後において封孔処理を行うと、封孔処理の直後には殺菌性及び抗菌性を発揮するPVPIが酸化皮膜の微細孔又は微細凹凸内に閉じ込められてしまう一方、従来の封孔剤を用いた封孔処理を行うとヨウ素が封孔剤に溶け出して変色してしまうためである。 The method described in Patent Document 1 is a technique in which no sealing treatment is performed after impregnation with PVPI, that is, a technique in which a film structure in which PVPI is exposed to the outside is formed. This is because if sealing treatment is performed after impregnation with PVPI, PVPI, which exhibits bactericidal and antibacterial properties, will be trapped in the micropores or fine irregularities of the oxide film immediately after the sealing treatment, whereas conventional This is because if a sealing treatment using a sealant is performed, iodine will dissolve into the sealant and cause discoloration.

そこで、PVPIの含浸後においてPVPIが部分的に露出するように封孔処理を行う技術が提案されている(例えば特許文献2参照)。特許文献2記載の手法は、酸化皮膜の微細孔又は微細凹凸に染色剤と混合したPVPIを浸漬染色することにより、或いは、PVPIを電気泳動電着により含浸させた後、少なくとも低温封孔処理を行い、必要に応じて高温封孔処理も行うものである。 Therefore, a technique has been proposed in which, after impregnation with PVPI, a sealing treatment is performed so that PVPI is partially exposed (see, for example, Patent Document 2). The method described in Patent Document 2 involves at least performing a low-temperature sealing treatment after impregnating PVPI mixed with a dye into the micropores or micro-irregularities of the oxide film by immersion dyeing or by impregnating PVPI by electrophoretic electrodeposition. and, if necessary, high-temperature sealing treatment.

低温封孔処理は、酸化皮膜が形成された基材を、フッ化ニッケルや酢酸ニッケルを主成分とする低温の封孔液に浸漬することによってPVPIが少なくとも気化して拡散し得る程度に微細孔又は微細凹凸を部分的に閉じる封孔処理であり、高温封孔処理は、PVPIの気化及び放散がない状態まで微細孔又は微細凹凸を完全に閉じる封孔処理であるとされている。そして、少なくとも低温封孔処理を含む封孔処理によってPVPIの気化を抑制し、耐候性を発揮できるとされている。 Low-temperature sealing treatment involves immersing a base material on which an oxide film has been formed in a low-temperature sealing liquid containing nickel fluoride or nickel acetate as a main component, thereby creating fine pores to the extent that PVPI can at least vaporize and diffuse. Alternatively, it is a sealing treatment that partially closes fine irregularities, and high-temperature sealing treatment is said to be a sealing treatment that completely closes fine pores or fine irregularities to a state where there is no vaporization or dissipation of PVPI. It is said that vaporization of PVPI can be suppressed by sealing treatment including at least low-temperature sealing treatment and weather resistance can be exhibited.

加えて、特許文献2には、封孔剤にPVPIを混合することによって、微細孔又は微細凹凸内のみならず皮膜状の封孔部分からもPVPIを拡散させることが記載されている。このため、高温封孔処理を行った場合であっても、皮膜状の封孔部分からPVPIが拡散し、皮膜状の封孔部分が摩耗した後は、微細孔又は微細凹凸内のPVPIが拡散することによって殺菌性及び抗菌性が継続的に発揮されるとされている。 In addition, Patent Document 2 describes that by mixing PVPI with a sealing agent, PVPI can be diffused not only within the micropores or microscopic irregularities but also from the film-like pore sealing portion. Therefore, even if high-temperature sealing treatment is performed, PVPI will diffuse from the film-like sealing part, and after the film-like sealing part is worn out, PVPI in the micropores or fine irregularities will diffuse. It is said that by doing so, bactericidal and antibacterial properties are continuously exhibited.

他に、酸化皮膜の微細孔又は微細凹凸への電気泳動電着によるヨウ素化合物の含浸に先立って、有機染料による着色又は電解着色を行う方法や(例えば特許文献3参照)、ヨウ素化合物としてトリメチルスルフォキソニウム・アイオダイド(TMSOI:Trimethylsulfoxonium iodide)又はトリメチルスルフォニウム・アイオダイド(TMSI:Trimethylsulfonium iodide)を用いる方法も知られている(例えば特許文献4乃至6参照)。 In addition, there is a method in which coloring with an organic dye or electrolytic coloring is performed prior to impregnation of an iodine compound by electrophoretic electrodeposition into the fine pores or fine irregularities of the oxide film (for example, see Patent Document 3), and a method in which trimethyl sulfur is used as an iodine compound. Methods using trimethylsulfoxonium iodide (TMSOI) or trimethylsulfonium iodide (TMSI) are also known (see, for example, Patent Documents 4 to 6).

尚、特許文献3に記載されている手法では、ヨウ素化合物の含浸後に封孔処理が行われないと解される一方、特許文献4乃至6に記載されている手法では、封孔剤を用いた封孔処理、封孔剤を用いずに80℃以上の熱水で封孔する封孔処理、85℃以上のヨウ素化合物水溶液中に酸化皮膜を浸漬することによってヨウ素化合物の含浸とともに封孔も行う処理が可能とされている。 It should be noted that in the method described in Patent Document 3, it is understood that no sealing treatment is performed after impregnation with an iodine compound, while in the methods described in Patent Documents 4 to 6, a sealing agent is used. Sealing treatment, sealing with hot water at 80°C or higher without using a sealing agent, or immersing the oxide film in an aqueous solution of iodine compound at 85°C or higher to seal the pores while impregnating them with an iodine compound. processing is possible.

特開2000-054194号公報Japanese Patent Application Publication No. 2000-054194 特開2005-350741号公報Japanese Patent Application Publication No. 2005-350741 特開2001-169996号公報Japanese Patent Application Publication No. 2001-169996 特開2012-197481号公報Japanese Patent Application Publication No. 2012-197481 特開2012-197482号公報Japanese Patent Application Publication No. 2012-197482 特開2014-047380号公報JP2014-047380A

上述したように酸化皮膜を表面に形成し、かつ酸化皮膜の微細孔又は微細凹凸にヨウ素又はヨウ素化合物を含浸させたアルミニウムを物体に接触させると、ヨウ素の赤褐色の色が物体に付着する場合がある。すなわち、ヨウ素特有の赤褐色の色が色落ちする場合がある。加えて、ヨウ素の臭いが生じるのみならず、物体にヨウ素の臭いが移る場合がある。その結果、酸化皮膜を表面に形成し、かつ酸化皮膜の微細孔又は微細凹凸にヨウ素又はヨウ素化合物を含浸させたアルミニウムを用いて容器や器等を構成することが困難になるという問題がある。 When aluminum, which has an oxide film formed on its surface and impregnated with iodine or an iodine compound in the fine pores or irregularities of the oxide film as described above, comes into contact with an object, the reddish-brown color of iodine may adhere to the object. be. That is, the reddish-brown color characteristic of iodine may fade. In addition, not only does the odor of iodine occur, but the odor of iodine may be transferred to objects. As a result, there is a problem in that it becomes difficult to construct containers, utensils, etc. using aluminum on which an oxide film is formed and the fine pores or fine irregularities of the oxide film are impregnated with iodine or an iodine compound.

これに対して、フッ化ニッケルや酢酸ニッケルを主成分とする低温の封孔液で封孔処理すれば、ヨウ素の色が物体に付着したり、ヨウ素の臭いが物体に移ったりすることを低減できるとの提案もなされているものの、ニッケルやニッケル酸化物は、人体に有害であるとの報告や少なくとも人体に有害である疑いがあるという問題がある。このため、医療用器具に代表されるように、ニッケルを使用しないニーズがある場合には、封孔液を用いた封孔処理を行うことができない。 On the other hand, sealing with a low-temperature sealing liquid containing nickel fluoride or nickel acetate as the main ingredients reduces the possibility of the iodine color adhering to the object or the iodine odor being transferred to the object. Although some proposals have been made that nickel and nickel oxides can be used, there is a problem in that nickel and nickel oxides are reported to be harmful to the human body, or at least suspected to be harmful to the human body. For this reason, when there is a need not to use nickel, as typified by medical instruments, it is not possible to perform a sealing process using a sealing liquid.

他方、ヨウ素化合物であるTMSOI及びTMSIは、PVPIと比較して非常に高価である。このため、ヨウ素化合物としては、入手が容易なPVPIを用いることが望まれる。 On the other hand, the iodine compounds TMSOI and TMSI are very expensive compared to PVPI. Therefore, it is desirable to use easily available PVPI as the iodine compound.

そこで、本発明は、ヨウ素化合物の種類に関わらず、酸化皮膜を表面に形成し、かつ酸化皮膜の微細孔又は微細凹凸にヨウ素又はヨウ素化合物を含浸させたアルミニウムに物体を接触させても、物体にヨウ素又はヨウ素化合物特有の色や臭いが付着し難くなるようにすることを目的とする。 Therefore, regardless of the type of iodine compound, even if an object is brought into contact with aluminum on which an oxide film is formed on the surface and the fine pores or fine irregularities of the oxide film are impregnated with iodine or an iodine compound, the object The purpose is to make it difficult for colors and odors peculiar to iodine or iodine compounds to adhere to the surface of the product.

また、本発明の他の目的は、ヨウ素化合物の種類に関わらず、酸化皮膜を表面に形成し、かつ酸化皮膜の微細孔又は微細凹凸にヨウ素又はヨウ素化合物を含浸させたアルミニウムに物体を接触させても、物体にヨウ素又はヨウ素化合物特有の色や臭いが付着し難くなるようにすることを、ニッケルを使用せずに実現することである。 Another object of the present invention is to bring an object into contact with aluminum, which has an oxide film formed on its surface and impregnated with iodine or an iodine compound into the fine pores or fine irregularities of the oxide film, regardless of the type of iodine compound. The object of the present invention is to make it difficult for the colors and odors characteristic of iodine or iodine compounds to adhere to objects without using nickel.

本発明の実施形態に係る表面処理皮膜を有するアルミニウムの製造方法は、微細な孔又は凹部を有する酸化皮膜をアルミニウムの表面に形成する陽極酸化処理と、前記酸化皮膜の前記微細な孔又は凹部にヨウ素又はヨウ素化合物を含浸させるヨウ素含浸処理と、前記ヨウ素含浸処理後における前記酸化皮膜の封孔処理とを行うものであり、前記封孔処理として60℃以上80℃未満の温水を用いた温水封孔を行うものである。 A method for manufacturing aluminum having a surface treatment film according to an embodiment of the present invention includes an anodizing treatment to form an oxide film having fine holes or recesses on the surface of aluminum, and a method for forming an oxide film having fine holes or recesses on the surface of aluminum; The method includes an iodine impregnation treatment in which iodine or an iodine compound is impregnated, and a sealing treatment of the oxide film after the iodine impregnation treatment, and the sealing treatment includes hot water sealing using hot water of 60°C or more and less than 80°C. It is used to make holes.

また、本発明の実施形態に係る表面処理皮膜を有するアルミニウムは、前記表面処理皮膜として、微細な孔又は凹部を有する酸化皮膜と、前記微細な孔又は凹部に含浸されているヨウ素又はヨウ素化合物とを有し、前記酸化皮膜のアドミッタンス測定試験による封孔度が40μS以上60μS以下となっているものである。 Further, the aluminum having a surface treatment film according to an embodiment of the present invention includes an oxide film having fine holes or recesses as the surface treatment film, and iodine or an iodine compound impregnated in the fine holes or recesses. The oxide film has a sealing degree of 40 μS or more and 60 μS or less as determined by an admittance measurement test.

また、本発明の実施形態に係る表面処理皮膜を有するアルミニウムは、前記表面処理皮膜として、微細な孔又は凹部を有する酸化皮膜と、前記微細な孔又は凹部に含浸されているヨウ素又はヨウ素化合物と、前記微細な孔又は凹部において析出しているバイヤライトとを有するものである。 Further, the aluminum having a surface treatment film according to an embodiment of the present invention includes an oxide film having fine holes or recesses as the surface treatment film, and iodine or an iodine compound impregnated in the fine holes or recesses. , and bayerite precipitated in the fine holes or recesses.

また、本発明の実施形態に係る容器は、上述した表面処理皮膜を有するアルミニウムで少なくとも一部を構成したものである。 Further, the container according to the embodiment of the present invention is configured at least in part of aluminum having the above-mentioned surface treatment film.

本発明の第1の実施形態に係る表面処理皮膜を有するアルミニウムの製造方法の手順を示すフローチャート。1 is a flowchart showing the steps of a method for manufacturing aluminum having a surface treatment film according to a first embodiment of the present invention. 図1に示す製造方法で製造される表面処理皮膜を有するアルミニウムの詳細構造を示す模式図。FIG. 2 is a schematic diagram showing the detailed structure of aluminum having a surface treatment film manufactured by the manufacturing method shown in FIG. 1. FIG. 図1に示す陽極酸化処理における電解液の温度と、表面処理皮膜の状態との関係を示す表。FIG. 2 is a table showing the relationship between the temperature of the electrolytic solution and the state of the surface treatment film in the anodizing treatment shown in FIG. 1. FIG. 図1に示すヨウ素含浸処理における通電時間、封孔方法及び表面処理皮膜の状態の関係を示す表。FIG. 2 is a table showing the relationship among the current application time, the sealing method, and the state of the surface treatment film in the iodine impregnation treatment shown in FIG. 1. FIG. 本発明の第2の実施形態に係る表面処理皮膜を有するアルミニウムの製造方法の手順を示すフローチャート。3 is a flowchart showing the steps of a method for manufacturing aluminum having a surface treatment film according to a second embodiment of the present invention. 図5に示す温水封孔後における表面処理皮膜の状態を他の封孔処理後における表面処理皮膜の状態と比較した表。6 is a table comparing the state of the surface treatment film after hot water sealing shown in FIG. 5 with the state of the surface treatment film after other sealing treatments. 図5に示す温水封孔の処理時間と、表面処理皮膜の状態との関係を示す表。6 is a table showing the relationship between the hot water sealing treatment time shown in FIG. 5 and the state of the surface treatment film. 本発明の第3の実施形態に係る表面処理皮膜を有するアルミニウムの製造方法の手順を示すフローチャート。3 is a flowchart showing the steps of a method for manufacturing aluminum having a surface treatment film according to a third embodiment of the present invention. 本発明の第4の実施形態に係る表面処理皮膜を有するアルミニウムの製造方法の手順を示すフローチャート。7 is a flowchart showing the steps of a method for manufacturing aluminum having a surface treatment film according to a fourth embodiment of the present invention.

本発明の実施形態に係る表面処理皮膜を有するアルミニウムの製造方法、表面処理皮膜を有するアルミニウム及び表面処理皮膜を有するアルミニウムで少なくとも一部を構成した容器について添付図面を参照して説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for producing aluminum having a surface treatment film, an aluminum having a surface treatment film, and a container at least partially made of aluminum having a surface treatment film according to embodiments of the present invention will be described with reference to the accompanying drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る表面処理皮膜を有するアルミニウムの製造方法の手順を示すフローチャートである。
(First embodiment)
FIG. 1 is a flowchart showing the steps of a method for manufacturing aluminum having a surface treatment film according to a first embodiment of the present invention.

図1に示すように、表面処理皮膜を有するアルミニウムの製造方法は、前処理を行う工程P1、陽極酸化(アルマイト)処理を行う工程P2、電気泳動電着によるヨウ素含浸処理を行う工程P3、封孔処理を行う工程P4、乾燥を行う工程P5を有する。 As shown in FIG. 1, the method for producing aluminum with a surface treatment film includes a step P1 of performing pretreatment, a step P2 of performing anodization (alumite) treatment, a step P3 of performing iodine impregnation treatment by electrophoretic electrodeposition, and a step P3 of performing iodine impregnation treatment by electrophoretic electrodeposition. It includes a step P4 of performing hole treatment and a step P5 of drying.

工程P1における前処理では、脱脂処理、エッチング及びスマット除去等の公知の処理が実施される。脱脂処理は、溶剤、アルカリ又は酸等を用いてアルミニウムの表面を洗浄することによって油分を除去する処理である。エッチングは、水酸化ナトリウム溶液等のアルカリ溶液を用いてアルミニウムの表面を溶解させることにより、傷を除去したり、脱脂処理後に残留する油分を落としたりする処理である。スマット除去は、エッチングの際にアルミニウムの表面に残る残渣を硝酸溶液等で落とす処理である。前処理としては、他に、化学研磨や化学梨地を行っても良い。 In the pretreatment in step P1, known treatments such as degreasing, etching, and smut removal are performed. Degreasing is a process in which oil is removed by cleaning the surface of aluminum using a solvent, alkali, acid, or the like. Etching is a process that removes scratches and removes oil remaining after degreasing by dissolving the surface of aluminum using an alkaline solution such as a sodium hydroxide solution. Smut removal is a process in which residues remaining on the aluminum surface during etching are removed using a nitric acid solution or the like. In addition to the pretreatment, chemical polishing or chemical polishing may be performed.

工程P2における陽極酸化処理は、電気分解によって微細な孔又は凹部を有する酸化皮膜をアルミニウムの表面に形成する処理である。具体的には、アルミニウムを酸性水溶液中に浸漬して陽極(アノード)とし、通電することによってアルミニウムの表面に酸化皮膜が形成される。 The anodizing treatment in step P2 is a treatment in which an oxide film having fine holes or recesses is formed on the surface of aluminum by electrolysis. Specifically, aluminum is immersed in an acidic aqueous solution to serve as an anode, and an oxide film is formed on the surface of the aluminum by applying electricity.

工程P2における陽極酸化処理は、10μm以上50μm以下の厚さを有する酸化皮膜が形成されるように、温度が5℃以上15℃以下であり、かつ硫酸の濃度が15wt%以上25wt%以下である硫酸の溶液中において行われる。 In the anodizing treatment in step P2, the temperature is 5°C or more and 15°C or less, and the concentration of sulfuric acid is 15wt% or more and 25wt% or less so that an oxide film having a thickness of 10μm or more and 50μm or less is formed. It is carried out in a solution of sulfuric acid.

工程P3におけるヨウ素含浸処理は、ヨウ素又はヨウ素化合物の電気泳動電着によって酸化皮膜の微細な孔又は凹部にヨウ素又はヨウ素化合物を含浸させる処理である。従って、工程P2における陽極酸化処理は、一次電解処理に該当し、工程P3におけるヨウ素含浸処理は、二次電解処理に該当する。 The iodine impregnation treatment in step P3 is a treatment in which fine pores or recesses of the oxide film are impregnated with iodine or an iodine compound by electrophoretic electrodeposition of iodine or an iodine compound. Therefore, the anodizing treatment in step P2 corresponds to primary electrolytic treatment, and the iodine impregnation treatment in step P3 corresponds to secondary electrolytic treatment.

入手が容易なヨウ素化合物の代表例としては、PVPIが挙げられるが、TMSOIやTMSIはもちろん、他のヨウ素化合物又はヨウ素単体を用いて電気泳動を行っても良い。ヨウ素化合物の種類に応じてヨウ素のみが酸化皮膜の微細な孔又は凹部に電着する場合と、ヨウ素化合物が酸化皮膜の微細な孔又は凹部に電着する場合がある。 A representative example of an easily available iodine compound is PVPI, but electrophoresis may be performed using TMSOI, TMSI, other iodine compounds, or iodine alone. Depending on the type of iodine compound, there are cases where only iodine is electrodeposited into the fine pores or recesses of the oxide film, and cases where the iodine compound is electrodeposited into the fine pores or recesses of the oxide film.

工程P3におけるヨウ素含浸処理は、ヨウ素の含有率が1.0wt%以上5.0wt%以下となるようにしたヨウ素又はヨウ素化合物の溶液に30V以上110V以下の電解電圧を1分以上5分以下の電解時間だけ印加することによって行われる。 The iodine impregnation treatment in step P3 is performed by applying an electrolytic voltage of 30 V to 110 V to a solution of iodine or an iodine compound whose iodine content is 1.0 wt% or more and 5.0 wt% or less for 1 minute or more and 5 minutes or less. This is done by applying only the electrolytic time.

工程P4における封孔処理は、ヨウ素含浸処理の後において酸化皮膜の微細な孔又は凹部を閉じる処理である。封孔処理の種類としては、加圧蒸気封孔、沸騰水封孔及びニッケル塩封孔が代表的であるが、加圧蒸気封孔は採用されない。これは、加圧蒸気封孔を行うと、ヨウ素が酸化皮膜の微細な孔又は凹部から漏れ出して、ムラが生じることが試験で確認されたためである。 The sealing treatment in step P4 is a treatment for closing fine pores or recesses in the oxide film after the iodine impregnation treatment. Typical types of sealing treatment include pressurized steam sealing, boiling water sealing, and nickel salt sealing, but pressurized steam sealing is not employed. This is because tests have confirmed that when pressurized steam sealing is performed, iodine leaks out from minute pores or recesses in the oxide film, causing unevenness.

加圧蒸気封孔以外の方法で封孔処理を行う場合には、封孔処理を行っても完全に酸化皮膜の微細な孔又は凹部が閉塞される訳ではなく、酸化皮膜の微細な孔又は凹部が部分的に閉塞されることになる。酸化皮膜の微細な孔又は凹部が閉塞される度合いは、封孔度を指標として評価される。封孔度を求めるための封孔度試験には、染色液点滴試験、りん酸-クロム酸水溶液浸せき試験、アドミッタンス測定試験など複数あり、封孔度試験ごとに封孔度は異なる値となる。 When sealing is performed using a method other than pressurized steam sealing, the fine pores or recesses in the oxide film will not be completely closed even if the sealing treatment is performed. The recess will be partially closed. The degree to which fine pores or recesses in the oxide film are blocked is evaluated using the degree of sealing as an index. There are multiple sealing tests to determine the sealing degree, such as a staining liquid drip test, a phosphoric acid-chromic acid aqueous solution immersion test, and an admittance measurement test, and the sealing degree has a different value for each sealing degree test.

封孔度が高い封孔方法を採用すれば、封孔処理の本来の目的である酸化皮膜の耐食性の向上に繋がる。一方、封孔度が低い封孔方法を採用すれば、不完全に閉塞された酸化皮膜の微細な孔又は凹部から漏れ出るヨウ素の量が増加するため、ヨウ素による殺菌効果及び抗菌効果の向上に繋がる。このため、表面処理皮膜を有するアルミニウムに要求される性質に合わせて封孔方法を選択することができる。 If a sealing method with a high degree of sealing is adopted, it will lead to improvement in the corrosion resistance of the oxide film, which is the original purpose of the sealing treatment. On the other hand, if a sealing method with a low degree of sealing is adopted, the amount of iodine leaking out from the minute pores or recesses of the incompletely sealed oxide film will increase, which will improve the bactericidal and antibacterial effects of iodine. Connect. Therefore, the sealing method can be selected according to the properties required of the aluminum having the surface treatment film.

ニッケル塩封孔は、フッ化ニッケルや酢酸ニッケル等のニッケル塩を主成分とする封孔液に酸化皮膜を浸漬することによって微細な孔又は凹部を閉じる封孔処理である。代表的な具体例として、酢酸ニッケルの水溶液からなる封孔液中において封孔処理を行う場合には、典型的には封孔液の温度を95℃以上とし、封孔液に酸化皮膜を10分から20分程度浸漬することによって封孔処理が行われる。 Nickel salt sealing is a sealing process in which fine holes or recesses are closed by immersing an oxide film in a sealing liquid whose main component is a nickel salt such as nickel fluoride or nickel acetate. As a typical example, when sealing is performed in a sealing liquid made of an aqueous solution of nickel acetate, the temperature of the sealing liquid is typically set to 95°C or higher, and an oxide film is added to the sealing liquid for 10 minutes. The pore sealing process is performed by soaking for about 20 minutes.

他にニッケル塩封孔以外の金属塩封孔として酢酸コバルト等のコバルト塩を用いた封孔処理も知られている。酢酸ニッケル封孔等のニッケル塩封孔又はコバルト塩封孔を採用すれば、ヨウ素の殺菌効果及び抗菌効果に加えて、ニッケル又はコバルトの殺菌効果及び抗菌効果を得ることができる。 In addition, sealing treatments using cobalt salts such as cobalt acetate as metal salt sealing other than nickel salt sealing are also known. If nickel salt sealing such as nickel acetate sealing or cobalt salt sealing is employed, in addition to the bactericidal and antibacterial effects of iodine, the bactericidal and antibacterial effects of nickel or cobalt can be obtained.

沸騰水封孔は、80℃以上の熱水、典型的には95℃から100℃の熱水に酸化皮膜を浸漬することによって微細な孔又は凹部を閉じる封孔処理である。沸騰水封孔を採用すれば、封孔処理後におけるアルミニウムの表面処理皮膜にニッケル元素が含まれないことになる。このため、沸騰水封孔を採用すれば、人体に有害である疑いがあるニッケルを使用することができない医療用器具や医療用部品の素材として表面処理皮膜を有するアルミニウムを用いることが可能となる。 Boiling water sealing is a sealing process in which fine holes or recesses are closed by immersing an oxide film in hot water of 80°C or higher, typically 95°C to 100°C. If boiling water sealing is employed, the aluminum surface treatment film after sealing treatment will not contain nickel element. Therefore, if boiling water sealing is adopted, aluminum with a surface treatment film can be used as a material for medical instruments and medical parts, where nickel, which is suspected to be harmful to the human body, cannot be used. .

逆に、ニッケル塩封孔等の金属塩封孔による封孔度は、沸騰水封孔による封孔度よりも高い。このため、表面処理皮膜を有するアルミニウムの耐食性を重視する場合には、金属塩封孔を採用しても良い。 Conversely, the degree of sealing achieved by metal salt sealing such as nickel salt sealing is higher than that achieved by boiling water sealing. Therefore, if importance is placed on the corrosion resistance of aluminum having a surface treatment film, metal salt sealing may be employed.

尚、実際に上述した処理条件で陽極酸化処理及びヨウ素含浸処理を行った後、ニッケル塩封孔のみを行った場合と、沸騰水封孔のみを行った場合について、それぞれアドミッタンス測定試験で封孔度を測定した。アドミッタンス測定試験は、酸化皮膜におけるアドミッタンスの測定値を封孔度とする封孔度試験である。アドミッタンスの測定値の単位は、ジーメンス[S]であり、ジーメンス[S]は電気抵抗(レジスタンス)及びインピーダンスの単位であるオーム[Ω]の逆数([S]=[1/Ω])である。 In addition, after actually performing anodization treatment and iodine impregnation treatment under the above-mentioned treatment conditions, the sealing was determined in the admittance measurement test when only nickel salt sealing was performed and when only boiling water sealing was performed. The degree of The admittance measurement test is a sealing degree test in which the measured value of admittance in the oxide film is taken as the sealing degree. The unit of admittance measurement is Siemens [S], and Siemens [S] is the reciprocal of ohm [Ω], which is the unit of electrical resistance and impedance ([S] = [1/Ω]). .

アドミッタンス測定試験の結果、5分間ニッケル塩封孔を行った場合における封孔度は20.0μS、85℃の熱水で5分間沸騰水封孔を行った場合における封孔度は30.0μSとなった。アドミッタンス測定試験によって測定される封孔度は、測定値[S]が小さい程、封孔度[%]が高いことを表す。例えば、最も高い封孔度が得られる加圧蒸気封孔を行った場合における封孔度は0μS付近に達する。このため、アドミッタンス測定試験の結果としても、ニッケル塩封孔による封孔度[%]が、沸騰水封孔による封孔度[%]よりも高いことが確認できる。 As a result of the admittance measurement test, the sealing degree was 20.0 μS when nickel salt sealing was performed for 5 minutes, and 30.0 μS when boiling water sealing was performed for 5 minutes with hot water at 85°C. became. The degree of sealing measured by the admittance measurement test indicates that the smaller the measured value [S] is, the higher the degree of sealing [%] is. For example, when pressurized steam sealing, which provides the highest sealing degree, is performed, the sealing degree reaches around 0 μS. Therefore, the results of the admittance measurement test also confirm that the sealing degree [%] by nickel salt sealing is higher than the sealing degree [%] by boiling water sealing.

封孔処理としては、異なる封孔処理を2回行う2段階封孔も知られている。このため、特に封孔度及び耐食性を向上することが望ましい場合には、酢酸ニッケル封孔等の金属塩封孔を行った後に、沸騰水封孔を行うようにしても良い。 As the sealing process, a two-stage sealing process in which different sealing processes are performed twice is also known. Therefore, if it is particularly desirable to improve the degree of sealing and corrosion resistance, boiling water sealing may be performed after metal salt sealing such as nickel acetate sealing.

工程P4における封孔処理が完了すると、酸化皮膜の表面が純水で洗浄される。このため。その後の工程P5において自然乾燥又は温風乾燥が実施される。 When the sealing treatment in step P4 is completed, the surface of the oxide film is washed with pure water. For this reason. In the subsequent step P5, natural drying or hot air drying is performed.

次に上述した製造方法で製造される表面処理皮膜を有するアルミニウムの詳細構造について説明する。 Next, the detailed structure of aluminum having a surface treatment film produced by the above-mentioned production method will be explained.

図2は、図1に示す製造方法で製造される表面処理皮膜1を有するアルミニウム2の詳細構造を示す模式図である。 FIG. 2 is a schematic diagram showing the detailed structure of aluminum 2 having a surface treatment film 1 manufactured by the manufacturing method shown in FIG.

図2に示すように母材であるアルミニウム2の表面には、表面処理皮膜1が形成される。そして、表面処理皮膜1は、微細な孔又は凹部3を有する酸化皮膜4、微細な孔又は凹部3に含浸されているヨウ素又はヨウ素化合物5、微細な孔又は凹部3の開口部付近において析出している封孔層6を有する構造となる。 As shown in FIG. 2, a surface treatment film 1 is formed on the surface of aluminum 2, which is a base material. The surface treatment film 1 includes an oxide film 4 having fine pores or recesses 3, iodine or an iodine compound 5 impregnated in the fine pores or recesses 3, and precipitation near the openings of the fine pores or recesses 3. The structure has a pore sealing layer 6.

典型的には、図2に例示されるように縦断面における形状がU字型となっており、中心軸及び深さ方向が概ね酸化皮膜4の表面に垂直となっている多数の微細な止まり孔3が酸化皮膜4に形成されると考えられている。そして、ヨウ素又はヨウ素化合物5は、止まり孔3の内面に析出すると考えられる。一方、封孔層6の大部分は、主に止まり孔3の開口部付近において止まり孔3の内面から止まり孔3の中心軸に向かって析出していると考えられる。 Typically, as illustrated in FIG. 2, the shape in the longitudinal section is U-shaped, and the central axis and depth direction are generally perpendicular to the surface of the oxide film 4. It is believed that pores 3 are formed in the oxide film 4. It is believed that iodine or iodine compound 5 is deposited on the inner surface of blind hole 3. On the other hand, most of the sealing layer 6 is considered to be deposited mainly in the vicinity of the opening of the blind hole 3 from the inner surface of the blind hole 3 toward the central axis of the blind hole 3 .

但し、陽極酸化処理の条件によっては、縦断面における形状がV字型等となっており、中心軸及び深さ方向が概ね酸化皮膜4の表面に垂直となっている多数の微細な凹部が酸化皮膜4に形成される場合もあると考えられる。その場合においても、ヨウ素又はヨウ素化合物5は凹部の内面に析出し、封孔層6の大部分は主に凹部の開口部付近において凹部の内面から凹部の中心軸に向かって析出していると考えられる。 However, depending on the conditions of the anodic oxidation treatment, the shape in the longitudinal section may be V-shaped, etc., and many minute recesses whose central axis and depth direction are generally perpendicular to the surface of the oxide film 4 may be oxidized. It is thought that it may be formed on the film 4 in some cases. Even in that case, iodine or iodine compound 5 is precipitated on the inner surface of the recess, and most of the sealing layer 6 is precipitated from the inner surface of the recess toward the central axis of the recess, mainly near the opening of the recess. Conceivable.

酸化皮膜4の封孔処理を行っても加圧蒸気封孔を行わない限り封孔度は100%とならない。すなわち、酸化皮膜4は完全封孔されず、半封孔の状態となる。具体的には、微細な孔又は凹部3が、封孔層6によって不完全に閉じられる。換言すれば、封孔層6には、微細な孔又は凹部3の開口部よりも更に狭い微細な隙間が残っており、微細な隙間のサイズは、封孔度に応じたサイズとなる。 Even if the oxide film 4 is sealed, the sealing degree will not be 100% unless pressurized steam sealing is performed. That is, the oxide film 4 is not completely sealed, but is in a semi-sealed state. Specifically, the fine holes or recesses 3 are incompletely closed by the sealing layer 6. In other words, fine gaps that are narrower than the fine holes or the openings of the recesses 3 remain in the sealing layer 6, and the size of the fine gaps corresponds to the degree of sealing.

このため、封孔層6の微細な隙間をヨウ素又はヨウ素化合物5が通過し、表面処理皮膜1の外部に拡散する。その結果、微細な孔又は凹部3から漏れ出たヨウ素又はヨウ素化合物5による殺菌効果及び抗菌効果を得ることができる。そこで、表面処理皮膜1を有するアルミニウム2で少なくとも器や箱等の容器の一部を構成することができる。すなわち、表面処理皮膜1を有するアルミニウム2を容器の素材として用いることができる。 Therefore, iodine or iodine compound 5 passes through the fine gaps in the sealing layer 6 and diffuses to the outside of the surface treatment film 1. As a result, a bactericidal effect and an antibacterial effect can be obtained by the iodine or iodine compound 5 leaking from the fine holes or recesses 3. Therefore, at least a part of a container such as a vessel or a box can be constructed from the aluminum 2 having the surface treatment film 1. That is, aluminum 2 having surface treatment film 1 can be used as a material for the container.

封孔層6の組成は、封孔処理の種類に応じた組成となる。例えば、ニッケル塩封孔を行う場合であれば、ニッケル及びニッケル塩の一方又は双方が封孔層6として析出する。一方、沸騰水封孔を行うとベーマイト(Al・HO)が封孔層6として形成される。 The composition of the sealing layer 6 depends on the type of sealing treatment. For example, in the case of performing nickel salt sealing, one or both of nickel and nickel salt is deposited as the sealing layer 6. On the other hand, when boiling water sealing is performed, boehmite (Al 2 O 3 .H 2 O) is formed as the sealing layer 6 .

(効果)
図3は、図1に示す陽極酸化処理における電解液の温度と、表面処理皮膜の状態との関係を示す表である。
(effect)
FIG. 3 is a table showing the relationship between the temperature of the electrolytic solution in the anodizing treatment shown in FIG. 1 and the state of the surface treatment film.

図3の表は、濃度が20wt%の硫酸溶液中においてアルミニウムの陽極酸化処理を行って厚さが30μmの酸化皮膜を形成した後、ヨウ素の含有率が3.0wt%となるようにしたPVPIの溶液に3分間電圧を印加することによってヨウ素の電気泳動電着を行った場合における表面処理皮膜の状態を示している。 The table in Figure 3 shows the results of PVPI with an iodine content of 3.0 wt% after aluminum was anodized in a sulfuric acid solution with a concentration of 20 wt% to form an oxide film with a thickness of 30 μm. This figure shows the state of the surface treatment film obtained when iodine was electrophoretically deposited by applying a voltage to the solution for 3 minutes.

図3の表に示すように一次電解として行われる陽極酸化処理の電解液温度と、二次電解として行われるヨウ素の電気泳動電着を行う際における電解電圧を変化させ、酸化皮膜の状態、ヨウ素の析出状態及びヨウ素の析出量をそれぞれ調べた。より具体的には、陽極酸化処理の電解液温度は、5℃から30℃まで5℃刻みで変化させた。一方、電気泳動電着を行う際における電解電圧は30V、50V、80V、100Vとした。尚、図3の表において、〇は品質が良好であることを、△は品質が許容範囲であることを、×は品質が許容範囲外であることを、それぞれ表している。 As shown in the table in Figure 3, the electrolyte temperature during the anodizing treatment performed as the primary electrolysis and the electrolytic voltage during the electrophoretic electrodeposition of iodine performed as the secondary electrolysis were varied, and the state of the oxide film and the iodine The state of precipitation of iodine and the amount of iodine precipitated were investigated. More specifically, the electrolyte temperature for the anodizing treatment was varied from 5°C to 30°C in 5°C increments. On the other hand, the electrolytic voltages during electrophoretic electrodeposition were 30V, 50V, 80V, and 100V. In the table of FIG. 3, ◯ indicates that the quality is good, △ indicates that the quality is within the acceptable range, and × indicates that the quality is outside the acceptable range.

表面処理試験の結果、陽極酸化処理の電解液温度が15℃を超えると、ヨウ素の電気泳動電着によって過剰な量のヨウ素が析出することが判明した。加えて、ヨウ素の過剰な析出によって、ムラが生じるなどヨウ素の析出状態も好ましくない状態になることが判明した。ヨウ素の析出量が過剰であると、表面処理皮膜の表面に接触又は近づけた物体にヨウ素の色や臭いが付着することになる。 As a result of surface treatment tests, it was found that when the electrolyte temperature for anodizing treatment exceeds 15° C., an excessive amount of iodine is deposited by electrophoretic electrodeposition of iodine. In addition, it has been found that excessive precipitation of iodine leads to unfavorable iodine precipitation conditions, such as unevenness. If the amount of iodine precipitated is excessive, the color and odor of iodine will adhere to objects that come into contact with or come close to the surface of the surface treatment film.

このため、硫酸の濃度が15wt%以上25wt%以下である硫酸の電解液中において10μm以上50μm以下の厚さを有する酸化皮膜を形成する陽極酸化処理を行う場合には、電解温度を5℃以上15℃以下とすることにより、ヨウ素の過剰な析出を回避することができる。その結果、表面処理皮膜の表面に接触又は近づけた物体にヨウ素の色や臭いが付着することを回避又は低減することができる。これは、ヨウ素化合物が析出する場合においても同様であると考えられる。 For this reason, when performing anodization treatment to form an oxide film with a thickness of 10 μm or more and 50 μm or less in a sulfuric acid electrolyte with a sulfuric acid concentration of 15 wt% or more and 25 wt% or less, the electrolysis temperature should be 5°C or more. By setting the temperature to 15° C. or lower, excessive precipitation of iodine can be avoided. As a result, it is possible to avoid or reduce the adhesion of the color and odor of iodine to objects that come into contact with or come close to the surface of the surface-treated film. This is considered to be the same even when an iodine compound is precipitated.

また、図3の表に示すように、陽極酸化処理の電解温度を5℃以上15℃以下とする場合において、ヨウ素含浸処理としてヨウ素の電気泳動電着を行う際における電解電圧の適切な範囲は、ヨウ素の過剰な析出を回避する観点から、30V以上110V以下であることも判明した。これは、ヨウ素化合物が析出する場合においても同様であると考えられる。 In addition, as shown in the table in Figure 3, when the electrolytic temperature for anodizing treatment is set to 5°C or more and 15°C or less, the appropriate range of electrolytic voltage when performing electrophoretic electrodeposition of iodine as iodine impregnation treatment is From the viewpoint of avoiding excessive precipitation of iodine, it was also found that the voltage is 30 V or more and 110 V or less. This is considered to be the same even when an iodine compound is precipitated.

図4は、図1に示すヨウ素含浸処理における通電時間、封孔方法及び表面処理皮膜の状態の関係を示す表である。 FIG. 4 is a table showing the relationship among the current application time, the sealing method, and the state of the surface treatment film in the iodine impregnation treatment shown in FIG.

図4の表は、液温が10℃で濃度が20wt%の硫酸溶液中においてアルミニウムの陽極酸化処理を行って厚さが30μmの酸化皮膜を形成した後、ヨウ素の含有率が3.0wt%となるようにしたPVPIの溶液に100Vの電圧を印加することによってヨウ素の電気泳動電着を行った場合における表面処理皮膜の状態を示している。 The table in Figure 4 shows that after aluminum was anodized in a sulfuric acid solution with a concentration of 20 wt% at a temperature of 10°C to form an oxide film with a thickness of 30 μm, the iodine content was 3.0 wt%. This figure shows the state of the surface treatment film obtained when iodine was electrophoretically deposited by applying a voltage of 100 V to a PVPI solution.

図4の表に示すように二次電解として行われるヨウ素の電気泳動電着を行う際における通電時間と、ヨウ素の電気泳動電着後における封孔方法を変えて表面処理皮膜の状態を調べた。より具体的には、ヨウ素の電気泳動電着を行う際における通電時間を、1分、3分、5分及び10分に設定した。一方、ニッケル塩封孔、85℃の熱水を用いた沸騰水封孔、75℃の温水を用いた温水封孔でそれぞれ封孔処理を行った他、封孔処理を行わない場合についても表面処理皮膜の状態を調べた。 As shown in the table in Figure 4, the state of the surface treatment film was investigated by changing the current application time during electrophoretic electrodeposition of iodine, which is performed as secondary electrolysis, and the sealing method after electrophoretic electrodeposition of iodine. . More specifically, the current application time during electrophoretic electrodeposition of iodine was set to 1 minute, 3 minutes, 5 minutes, and 10 minutes. On the other hand, in addition to sealing using nickel salt sealing, boiling water sealing using hot water at 85℃, and hot water sealing using hot water at 75℃, the surface was also sealed when no sealing treatment was performed. The condition of the treated film was examined.

表面処理皮膜の状態としては、ヨウ素の電気泳動電着直後かつ封孔処理前における皮膜表面の色調又は外観に加えて、封孔処理後又は封孔処理を行わない場合におけるその後のヨウ素の溶出状態、粉吹きの程度、脱色の程度及びヨウ素臭の程度をそれぞれ評価した。尚、図4の表において、〇は品質が良好であることを、△は品質が許容範囲であることを、×は品質が許容範囲外であることを、それぞれ表している。また、未封孔の場合における評価結果は、不純物を除去するための、常温の純水を用いた洗浄後における評価結果を表している。 The state of the surface treatment film includes the color tone or appearance of the film surface immediately after electrophoretic electrodeposition of iodine and before sealing treatment, as well as the subsequent state of iodine elution after sealing treatment or when no sealing treatment is performed. , the degree of powder blowing, the degree of decolorization, and the degree of iodine odor were evaluated. In the table of FIG. 4, ◯ indicates that the quality is good, △ indicates that the quality is within the acceptable range, and × indicates that the quality is outside the acceptable range. Moreover, the evaluation results in the case of unsealed holes represent the evaluation results after cleaning using pure water at room temperature to remove impurities.

表面処理試験の結果、ヨウ素の電気泳動電着を行う際における電解時間を5分超としても、有効なヨウ素の析出量の増加は確認できなかった。すなわち、PVPIの溶液に5分を超えて100Vの電圧を印加しても、ヨウ素に由来する色調の変化は確認できず、ヨウ素の過剰な析出が増加するのみであった。 As a result of the surface treatment test, no effective increase in the amount of iodine deposited could be confirmed even when the electrolysis time during electrophoretic electrodeposition of iodine exceeded 5 minutes. That is, even when a voltage of 100 V was applied to the PVPI solution for more than 5 minutes, no change in color tone due to iodine could be observed, and excessive precipitation of iodine only increased.

従って、ヨウ素含浸処理として、ヨウ素の含有率が1.0wt%以上5.0%以下であるヨウ素又はヨウ素化合物の溶液に30V以上110V以下の電解電圧を印加することによってヨウ素又はヨウ素化合物の電気泳動電着を行う場合には、電解電圧を1分以上5分以下の電解時間だけ印加することが、ヨウ素の過剰な析出を回避する観点から適切である。すなわち、二次電解処理の通電時間を1分以上5分以下とすれば、表面処理皮膜の表面に接触又は近づけた物体にヨウ素の色や臭いが付着することを回避又は低減することができる。これは、ヨウ素化合物が析出する場合においても同様であると考えられる。 Therefore, as an iodine impregnation treatment, electrophoresis of iodine or iodine compounds is carried out by applying an electrolytic voltage of 30 V or more and 110 V or less to a solution of iodine or iodine compounds whose iodine content is 1.0 wt% or more and 5.0% or less. When performing electrodeposition, it is appropriate to apply the electrolytic voltage for an electrolysis time of 1 minute or more and 5 minutes or less from the viewpoint of avoiding excessive precipitation of iodine. That is, by setting the energization time for the secondary electrolytic treatment to 1 minute or more and 5 minutes or less, it is possible to avoid or reduce the adhesion of the color and odor of iodine to objects that come into contact with or come close to the surface of the surface treatment film. This is considered to be the same even when an iodine compound is precipitated.

一方、封孔方法については、ニッケル塩の種類、封孔時間及び封孔温度等の封孔条件を変化させれば表面処理状態が変化する。すなわち、図4の表は、ある封孔条件と封孔方法で封孔処理を行った場合における表面処理試験の結果を表している。このため、封孔条件によっては、必ずしも図4の表に例示される表面処理試験の結果とはならない。従って、要求品質に対応する適切な封孔方法及び封孔処理条件を決定することによって、要求品質を満たす表面処理皮膜を有するアルミニウムを製作することができる。 On the other hand, regarding the sealing method, the surface treatment state can be changed by changing the sealing conditions such as the type of nickel salt, the sealing time, and the sealing temperature. That is, the table of FIG. 4 shows the results of a surface treatment test when sealing was performed under certain sealing conditions and sealing methods. Therefore, depending on the sealing conditions, the results of the surface treatment test illustrated in the table of FIG. 4 may not necessarily be obtained. Therefore, by determining an appropriate sealing method and sealing treatment conditions corresponding to the required quality, aluminum having a surface treatment film that satisfies the required quality can be manufactured.

以上のように、一次電解処理として行われるアルミニウムの陽極酸化処理及び二次電解処理として行われるヨウ素又はヨウ素化合物の電気泳動電着を行う際の各電解処理条件を図1に示すように適切に設定することにより、ヨウ素又はヨウ素化合物特有の茶色の色落ちや臭いを低減することができる。その結果、ヨウ素又はヨウ素化合物による殺菌効果及び抗菌効果を発揮しつつ物体への色や臭いの付着を低減又は回避することが可能となる。 As described above, the electrolytic treatment conditions for anodizing aluminum as the primary electrolytic treatment and electrophoretic electrodeposition of iodine or iodine compounds as the secondary electrolytic treatment are appropriately determined as shown in Figure 1. By setting this, it is possible to reduce brown discoloration and odor characteristic of iodine or iodine compounds. As a result, it becomes possible to reduce or avoid adhesion of colors and odors to objects while exhibiting the bactericidal and antibacterial effects of iodine or iodine compounds.

また、上述した製法で製作される表面処理皮膜を有するアルミニウムを、収納物への色や臭いの付着を回避すべき器や箱等の容器の素材として用いることが可能となる。すなわち、上述した製法で製作される表面処理皮膜を有するアルミニウムで容器を構成した場合において、容器に収納される物体に容器から色や臭いが付着することを低減又は回避することができる。 Moreover, aluminum having a surface-treated film produced by the above-described manufacturing method can be used as a material for containers such as vessels and boxes that should avoid adhesion of color and odor to stored items. That is, when a container is made of aluminum having a surface-treated film manufactured by the above-described manufacturing method, it is possible to reduce or avoid adhesion of color or odor from the container to objects stored in the container.

(第2の実施形態)
図5は、本発明の第2の実施形態に係る表面処理皮膜を有するアルミニウムの製造方法の手順を示すフローチャートである。
(Second embodiment)
FIG. 5 is a flowchart showing the steps of a method for manufacturing aluminum having a surface treatment film according to the second embodiment of the present invention.

図5に示された第2の実施形態における表面処理皮膜を有するアルミニウムの製造方法は、陽極酸化処理及びヨウ素含浸処理の条件を限定しない代わりに封孔処理を温水封孔に限定した点が第1の実施形態における表面処理皮膜を有するアルミニウムの製造方法と相違する。第2の実施形態における表面処理皮膜を有するアルミニウムの製造方法のその他の工程は、第1の実施形態における表面処理皮膜を有するアルミニウムの製造方法と実質的に異ならないため同一の工程には同符号を付して説明を省略する。 The method for manufacturing aluminum having a surface treatment film according to the second embodiment shown in FIG. 5 is characterized in that the conditions of the anodizing treatment and the iodine impregnation treatment are not limited, but the sealing treatment is limited to hot water sealing. This method is different from the method for manufacturing aluminum having a surface treatment film in the first embodiment. The other steps in the method for manufacturing aluminum with a surface treatment film in the second embodiment are not substantially different from the method for manufacturing aluminum in the first embodiment, so the same steps have the same reference numerals. will be added and the explanation will be omitted.

第2の実施形態における工程P2’では第1の実施形態における工程P2と同様に陽極酸化処理が行われるが、硫酸の他、クロム酸、リン酸又はシュウ酸等の酸性水溶液中において陽極酸化処理を行うようにしても良い。従って、電解処理条件を適宜変更しても良い。但し、第1の実施形態における工程P2と同様な電解処理条件でアルミニウムの陽極酸化処理を行えば、表面処理皮膜の表面に接触又は近づけた物体にヨウ素の色や臭いが付着することを一層良好に回避又は低減することができる。 In step P2' in the second embodiment, anodizing treatment is performed similarly to step P2 in the first embodiment, but the anodizing treatment is performed in an acidic aqueous solution such as chromic acid, phosphoric acid, or oxalic acid in addition to sulfuric acid. You may also do this. Therefore, the electrolytic treatment conditions may be changed as appropriate. However, if aluminum is anodized under the same electrolytic treatment conditions as in step P2 in the first embodiment, it will be better to prevent the color and odor of iodine from adhering to objects that come into contact with or come close to the surface of the surface treatment film. can be avoided or reduced.

第2の実施形態における工程P3’では第1の実施形態における工程P3と同様にヨウ素含浸処理が行われるが、ヨウ素又はヨウ素化合物の電気泳動電着に限らず、ヨウ素又はヨウ素化合物等のPVPIを含む溶液に浸漬することによってヨウ素含浸処理を行っても良い。但し、第1の実施形態における工程P3と同様な電解処理条件でヨウ素又はヨウ素化合物の電気泳動電着を行えば、表面処理皮膜の表面に接触又は近づけた物体にヨウ素の色や臭いが付着することを一層良好に回避又は低減することができる。 In step P3' in the second embodiment, iodine impregnation treatment is performed similarly to step P3 in the first embodiment. The iodine impregnation treatment may be performed by immersing it in a solution containing the iodine. However, if electrophoretic electrodeposition of iodine or an iodine compound is performed under the same electrolytic treatment conditions as in step P3 in the first embodiment, the color and odor of iodine will adhere to objects that come into contact with or come close to the surface of the surface treatment film. This can be better avoided or reduced.

第2の実施形態における工程P4’では、第1の実施形態における工程P4と同様に封孔処理が行われるが、封孔処理として温水封孔が行われる。温水封孔は、60℃以上80℃未満の温水を用いた封孔処理である。 In step P4' in the second embodiment, a sealing process is performed similarly to step P4 in the first embodiment, but hot water sealing is performed as the sealing process. Hot water sealing is a sealing process using hot water of 60°C or higher and lower than 80°C.

温水封孔は、沸騰水封孔と同様にニッケル塩やコバルト塩等の金属塩を使用しない封孔処理であるため、温水封孔を行えば人体への安全性を確保することができる。すなわち、表面処理皮膜を有するアルミニウムをニッケルフリーとすることができる。その結果、特に人体への安全性が要求される医療用の器具や容器の素材として表面処理皮膜を有するアルミニウムを用いることが可能となる。 Hot water sealing, like boiling water sealing, is a sealing process that does not use metal salts such as nickel salts and cobalt salts, so hot water sealing can ensure safety for the human body. That is, aluminum having a surface treatment film can be made nickel-free. As a result, it becomes possible to use aluminum having a surface-treated film as a material for medical instruments and containers that particularly require safety for the human body.

表面処理試験の結果、第1の実施形態において言及した図4の表に示すように、封孔処理として沸騰水封孔を行うと、ヨウ素又はヨウ素化合物の電気泳動電着の条件によっては、殺菌及び抗菌成分であるヨウ素が溶出してしまい、外観として均一ではない模様が発生したり、粉状の物質が析出してしまったりする場合があることが判明した。 As a result of the surface treatment test, as shown in the table of FIG. 4 mentioned in the first embodiment, when boiling water sealing is performed as the sealing treatment, sterilization may occur depending on the conditions of electrophoretic electrodeposition of iodine or iodine compounds. It has also been found that iodine, which is an antibacterial component, may be eluted, resulting in an uneven appearance or the precipitation of powdery substances.

これに対して、図4の表に示すように、温水封孔を行えば、沸騰水封孔を行った場合に生じるような外観ムラや粉吹きといった問題が生じないのみならず、ヨウ素又はヨウ素化合物の色や臭いが落ち難くなることが判明した。従って、温水封孔の封孔度は沸騰水封孔の封孔度より小さいものの、温水封孔を行えば、外観上のムラと粉の析出を減らせるのみならず、表面処理皮膜の表面に接触又は近づけた物体にヨウ素又はヨウ素化合物の色や臭いが付着することを回避又は低減することができる。簡潔に言えば、ヨウ素含浸処理と相性が良い封孔処理は、温水封孔であると言える。 On the other hand, as shown in the table in Figure 4, hot water sealing not only eliminates problems such as uneven appearance and powder blowing that occur when boiling water sealing is performed, but also eliminates iodine and iodine. It was found that the color and odor of the compound became difficult to remove. Therefore, although the sealing degree of hot water sealing is lower than that of boiling water sealing, hot water sealing not only reduces uneven appearance and powder precipitation, but also improves the surface of the surface treatment film. It is possible to avoid or reduce the adhesion of the color or odor of iodine or iodine compounds to objects that are touched or approached. Briefly speaking, it can be said that hot water sealing is a sealing treatment that is compatible with iodine impregnation treatment.

図6は、図5に示す温水封孔後における表面処理皮膜の状態を他の封孔処理後における表面処理皮膜の状態と比較した表である。 FIG. 6 is a table comparing the state of the surface treatment film after hot water sealing shown in FIG. 5 with the state of the surface treatment film after other sealing treatments.

図6の表は、工程P2’において液温が10℃で濃度が20wt%の硫酸溶液中においてアルミニウムの陽極酸化処理を行って厚さが30μmの酸化皮膜を形成した後、工程P3’においてヨウ素の含有率が3.0wt%となるようにしたPVPIの溶液に100Vの電圧を3分印加することによってヨウ素の電気泳動電着を行い、更にその後工程P4’において温水封孔を行った場合における表面処理皮膜の状態を、沸騰水封孔及びニッケル塩封孔を行った場合と比較した例を示している。 The table in FIG. 6 shows that after aluminum is anodized in a sulfuric acid solution with a liquid temperature of 10°C and a concentration of 20 wt% in step P2' to form an oxide film with a thickness of 30 μm, iodine is added in step P3'. In the case where electrophoretic electrodeposition of iodine is performed by applying a voltage of 100 V for 3 minutes to a solution of PVPI whose content is 3.0 wt%, and further hot water sealing is performed in the subsequent step P4'. An example is shown in which the state of the surface treatment film is compared with cases where boiling water sealing and nickel salt sealing were performed.

より具体的には、図6の表に示すように90℃の熱水を用いた沸騰水封孔、85℃の熱水を用いた沸騰水封孔、80℃の熱水を用いた沸騰水封孔、75℃の温水を用いた温水封孔及びニッケル塩封孔を行い、表面処理皮膜の状態を調べた。表面処理皮膜の状態としては、ヨウ素の溶出状態、粉吹きの程度、脱色の程度及び12時間後におけるヨウ素臭の程度をそれぞれ評価した。尚、図6の表において、〇は品質が良好であることを、△は品質が許容範囲であることを、×は品質が許容範囲外であることを、それぞれ表している。 More specifically, as shown in the table of Figure 6, boiling water sealing using 90°C hot water, boiling water sealing using 85°C hot water, and boiling water sealing using 80°C hot water Sealing, hot water sealing using 75°C hot water, and nickel salt sealing were performed, and the state of the surface treatment film was examined. As for the condition of the surface treatment film, the state of iodine elution, the degree of powder blowing, the degree of decolorization, and the degree of iodine odor after 12 hours were evaluated. In the table of FIG. 6, ◯ indicates that the quality is good, △ indicates that the quality is within the acceptable range, and × indicates that the quality is outside the acceptable range.

図6の表に示すように、封孔試験を含む表面処理試験を行った結果、ニッケル塩封孔を行った場合と85℃以上の熱水を用いて沸騰水封孔を行った場合には、粉吹きが生じた。また、封孔処理に用いる純水の温度が低い程、ヨウ素臭を低減できることが判明した。これは、酸化皮膜の封孔度が低くても、ヨウ素又はヨウ素化合物の色及び臭いの漏出量が観察できる程増加しないことを意味している。但し、純水の温度が過少になると封孔度が低下し、封孔処理本来の目的である酸化皮膜によるアルミニウム合金への耐食性付与が不十分となる恐れがある。 As shown in the table in Figure 6, as a result of surface treatment tests including sealing tests, the results showed that when nickel salt sealing was performed and when boiling water sealing was performed using hot water of 85°C or higher, , powder blowing occurred. It was also found that the lower the temperature of the pure water used for the sealing process, the more the iodine odor can be reduced. This means that even if the degree of pore sealing of the oxide film is low, the amount of leakage of color and odor of iodine or iodine compounds does not increase to an observable extent. However, if the temperature of the pure water becomes too low, the degree of sealing will decrease, and there is a risk that the original purpose of the sealing process, which is to impart corrosion resistance to the aluminum alloy by the oxide film, will be insufficient.

従って、60℃以上80℃未満の温水を用いる封孔処理が温水封孔に分類されるものの、ヨウ素又はヨウ素化合物の色及び臭気の拡散を抑制しつつアルミニウム合金の耐食性を確保する観点から好ましい温水の温度範囲は、70℃以上75℃以下であると考えられる。すなわち、封孔処理として70℃以上75℃以下の温水を用いた温水封孔を行えば、アルミニウム合金の耐食性を確保しつつ表面処理皮膜の表面に接触又は近づけた物体にヨウ素の色や臭いが付着することを一層良好に回避又は低減することができる。 Therefore, although sealing using hot water at a temperature of 60°C or higher and lower than 80°C is classified as hot water sealing, hot water is preferable from the viewpoint of ensuring the corrosion resistance of aluminum alloys while suppressing the color and odor diffusion of iodine or iodine compounds. The temperature range is considered to be 70°C or higher and 75°C or lower. In other words, if hot water sealing is performed using hot water of 70°C or higher and 75°C or lower as a sealing treatment, the color and odor of iodine will be removed from objects that come into contact with or come close to the surface of the surface treatment film, while ensuring the corrosion resistance of the aluminum alloy. Adhesion can be better avoided or reduced.

図7は、図5に示す温水封孔の処理時間と、表面処理皮膜の状態との関係を示す表である。 FIG. 7 is a table showing the relationship between the hot water sealing treatment time shown in FIG. 5 and the state of the surface treatment film.

図7の表は、工程P2’において液温が10℃で濃度が20wt%の硫酸溶液中においてアルミニウムの陽極酸化処理を行って厚さが30μmの酸化皮膜を形成した後、工程P3’においてヨウ素の含有率が3.0wt%となるようにしたPVPIの溶液に100Vの電圧を3分印加することによってヨウ素の電気泳動電着を行い、更にその後工程P4’において75℃の温水を用いて温水封孔を行った場合における表面処理皮膜の状態を示している。 The table in FIG. 7 shows that after aluminum is anodized in a sulfuric acid solution with a liquid temperature of 10°C and a concentration of 20 wt% in step P2' to form an oxide film with a thickness of 30 μm, iodine is added in step P3'. Electrophoretic electrodeposition of iodine is performed by applying a voltage of 100 V for 3 minutes to a solution of PVPI whose content is 3.0 wt%, and then in step P4', hot water at 75°C is used to deposit iodine. It shows the state of the surface treatment film after sealing.

図7の表に示すように、温水封孔の処理時間を変えて封孔試験を含む表面処理試験を行った。より具体的には、図7の表に示すように温水封孔の処理時間を10分、5分、1分及び10秒として表面処理皮膜の状態を調べた。表面処理皮膜の状態としては、ヨウ素の溶出状態、粉吹きの程度、脱色の程度及び12時間後におけるヨウ素臭の程度をそれぞれ評価した。尚、図7の表において、〇は品質が良好であることを、△は品質が許容範囲であることを、×は品質が許容範囲外であることを、それぞれ表している。 As shown in the table of FIG. 7, a surface treatment test including a sealing test was conducted while changing the hot water sealing treatment time. More specifically, as shown in the table of FIG. 7, the condition of the surface treatment film was examined with hot water sealing treatment times of 10 minutes, 5 minutes, 1 minute, and 10 seconds. As for the condition of the surface treatment film, the state of iodine elution, the degree of powder blowing, the degree of decolorization, and the degree of iodine odor after 12 hours were evaluated. In the table of FIG. 7, ◯ indicates that the quality is good, △ indicates that the quality is within the allowable range, and × indicates that the quality is outside the allowable range.

図7の表に示すように、封孔試験を含む表面処理試験の結果、温水封孔の処理時間を10分とした場合には、粉吹きが生じた。また、温水封孔の処理時間を5分とした場合に、外観ムラの原因となるヨウ素の溶出、ヨウ素の脱色及びヨウ素臭を最も低減できることが確認された。 As shown in the table of FIG. 7, as a result of the surface treatment test including the sealing test, powder blowing occurred when the hot water sealing treatment time was set to 10 minutes. Furthermore, it was confirmed that when the hot water sealing treatment time was set to 5 minutes, iodine elution, iodine decolorization, and iodine odor, which cause uneven appearance, could be reduced the most.

従って、粉吹きを回避しつつヨウ素又はヨウ素化合物の臭気を低減する観点から好ましい温水封孔の処理時間の範囲は、3分以上7分以下であると考えられる。すなわち、封孔処理として温水封孔を行い、かつ温水封孔の処理時間を3分以上7分以下とすれば、アルマイト処理における代表的な不具合である粉吹きを回避しつつ、表面処理皮膜の表面に接触又は近づけた物体にヨウ素の臭いが付着することを一層良好に回避又は低減することができる。 Therefore, from the viewpoint of reducing the odor of iodine or iodine compounds while avoiding powder blowing, the preferable range of hot water sealing treatment time is considered to be 3 minutes or more and 7 minutes or less. In other words, if hot water sealing is performed as the sealing treatment, and the hot water sealing time is set to 3 minutes or more and 7 minutes or less, the surface treatment film can be improved while avoiding powder blowing, which is a typical problem in alumite treatment. It is possible to better avoid or reduce the adhesion of iodine odor to objects that come into contact with or come close to the surface.

封孔処理として温水封孔を採用すると、微細な孔又は凹部を含む酸化皮膜の表面にはバイヤライト(Al・3HO)が析出する。すなわち、図2に示す表面処理皮膜1を有するアルミニウム2において、封孔層6の組成がバイヤライトとなる。より具体的には、バイヤライト層からなる封孔層6が微細な孔又は凹部3の開口部付近において酸化アルミニウム層からなる酸化皮膜4から微細な孔又は凹部3の中心に向かって成長していると考えられる。 When hot water sealing is employed as the sealing treatment, bayerite (Al 2 O 3 .3H 2 O) is precipitated on the surface of the oxide film containing minute pores or recesses. That is, in the aluminum 2 having the surface treatment film 1 shown in FIG. 2, the composition of the sealing layer 6 is bayerite. More specifically, the sealing layer 6 made of a bayerite layer grows from the oxide film 4 made of an aluminum oxide layer near the opening of the fine hole or recess 3 toward the center of the fine hole or recess 3. It is thought that there are.

従って、表面処理皮膜1にベーマイトが析出しておらず、バイヤライトが析出していれば、封孔処理として沸騰水封孔ではなく温水封孔が行われたことになる。また、表面処理皮膜1にバイヤライトが析出しており、ニッケル等の金属が元素として含まれていなければ、2段階封孔として金属塩封孔が行われなかったことになる。 Therefore, if boehmite is not precipitated in the surface treatment film 1 and bayerite is precipitated, then hot water sealing instead of boiling water sealing was performed as the sealing treatment. Further, if bayerite is precipitated in the surface treatment film 1 and metal such as nickel is not included as an element, it means that metal salt sealing was not performed as two-step sealing.

但し、表面処理皮膜にバイヤライト及びベーマイトのいずれが析出しているのかを直接調べることは容易ではない。そこで、酸化皮膜の封孔度を測定することによって表面処理皮膜にバイヤライト及びベーマイトのいずれが析出しているのかを間接的に調べる手法が通常採用される。 However, it is not easy to directly determine whether bayerite or boehmite is precipitated on the surface treatment film. Therefore, a method is usually employed to indirectly determine whether bayerite or boehmite is precipitated in the surface treatment film by measuring the degree of pore sealing of the oxide film.

沸騰水封孔によって酸化皮膜の表面にベーマイトが析出している場合には、第1の実施形態において説明したように、アドミッタンス測定試験による封孔度が概ね30.0μS前後になると考えられる。そして、封孔度は封孔時間や熱水の温度等の封孔条件に応じて変動すると考えられる。 When boehmite is deposited on the surface of the oxide film due to boiling water sealing, as explained in the first embodiment, the degree of sealing according to the admittance measurement test is considered to be approximately 30.0 μS. The degree of sealing is considered to vary depending on sealing conditions such as sealing time and temperature of hot water.

これに対して、温水封孔によって酸化皮膜の表面にバイヤライトが析出している場合には、アドミッタンス測定試験による封孔度が封孔時間や温水の温度等の封孔条件に応じて概ね40μS以上60μS以下の範囲になると考えられる。従って、アドミッタンス測定試験による酸化皮膜の封孔度が40μS以上60μS以下であれば、温水封孔によって酸化皮膜の表面にバイヤライトが析出していると考えられる。尚、実際に75℃の温水を用いて温水封孔を5分間行った場合にアドミッタンス測定試験で酸化皮膜の封孔度を測定したところ、封孔度は50μSとなった。 On the other hand, when bayerite is precipitated on the surface of the oxide film due to hot water sealing, the sealing degree determined by the admittance measurement test is approximately 40μS depending on the sealing conditions such as sealing time and hot water temperature. It is thought that the time will be in the range of 60 μS or less. Therefore, if the degree of sealing of the oxide film according to the admittance measurement test is 40 μS or more and 60 μS or less, it is considered that bayerite is precipitated on the surface of the oxide film due to hot water sealing. In addition, when the degree of sealing of the oxide film was measured in an admittance measurement test when hot water sealing was actually performed for 5 minutes using hot water at 75° C., the degree of sealing was 50 μS.

以上のように、第1の実施形態は、陽極酸化処理及びヨウ素含浸処理の各電解処理条件をヨウ素又はヨウ素化合物の色及び臭いが落ち難くなるように決定するものであるのに対して、第2の実施形態は、封孔処理の条件をヨウ素又はヨウ素化合物の色及び臭いが落ち難くなるように決定するものである。 As described above, in the first embodiment, the electrolytic treatment conditions of the anodic oxidation treatment and the iodine impregnation treatment are determined so that the color and odor of iodine or iodine compounds are difficult to remove. In the second embodiment, the conditions for the sealing treatment are determined so that the color and odor of iodine or iodine compounds are difficult to remove.

このため第2の実施形態によれば、第1の実施形態と同様に、ヨウ素又はヨウ素化合物による殺菌効果及び抗菌効果を発揮しつつ物体への色や臭いの付着を低減又は回避することが可能となる。加えて、第2の実施形態によれば、表面処理皮膜を有するアルミニウムをニッケルフリー等とすることによって、人体への安全性を確保することができる。このため、人体への安全性が要求される医療用の器具や容器の素材として表面処理皮膜を有するアルミニウムを用いることが可能となる。 Therefore, according to the second embodiment, as in the first embodiment, it is possible to reduce or avoid adhesion of color and odor to objects while exhibiting the bactericidal and antibacterial effects of iodine or iodine compounds. becomes. In addition, according to the second embodiment, safety to the human body can be ensured by making the aluminum having the surface treatment film nickel-free. Therefore, aluminum having a surface treatment film can be used as a material for medical instruments and containers that require safety for the human body.

もちろん、第1の実施形態と第2の実施形態を組合わせても良い。すなわち、一次電解処理として行われるアルミニウムの陽極酸化処理及び二次電解処理として行われるヨウ素又はヨウ素化合物の電気泳動電着を行う際の各電解処理条件を適切に設定するのみならず、封孔処理を温水封孔とすることによって、ヨウ素又はヨウ素化合物の色及び臭いが物体に付着し難くなるようにしても良い、 Of course, the first embodiment and the second embodiment may be combined. In other words, in addition to appropriately setting the electrolytic treatment conditions when performing the anodizing treatment of aluminum as the primary electrolytic treatment and the electrophoretic electrodeposition of iodine or iodine compounds as the secondary electrolytic treatment, the sealing treatment By sealing with hot water, the color and odor of iodine or iodine compounds may be made difficult to adhere to objects.

(第3の実施形態)
図8は、本発明の第3の実施形態に係る表面処理皮膜を有するアルミニウムの製造方法の手順を示すフローチャートである。
(Third embodiment)
FIG. 8 is a flowchart showing the steps of a method for manufacturing aluminum having a surface treatment film according to the third embodiment of the present invention.

図8に示された第3の実施形態における表面処理皮膜を有するアルミニウムの製造方法は、ヨウ素含浸処理を行った後、酸化皮膜の封孔処理を行わずに乾燥を兼ねた脱色脱臭処理を行う点が第2の実施形態における表面処理皮膜を有するアルミニウムの製造方法と相違する。第3の実施形態における表面処理皮膜を有するアルミニウムの製造方法のその他の工程は、第2の実施形態における表面処理皮膜を有するアルミニウムの製造方法と実質的に異ならないため同一の工程には同符号を付して説明を省略する。 In the method for manufacturing aluminum having a surface treatment film in the third embodiment shown in FIG. 8, after performing an iodine impregnation treatment, a decolorization and deodorization treatment that also serves as drying is performed without performing a sealing treatment for the oxide film. This is different from the method for manufacturing aluminum having a surface treatment film in the second embodiment. The other steps in the method for manufacturing aluminum with a surface treatment film in the third embodiment are not substantially different from the method for manufacturing aluminum in the second embodiment, so the same steps have the same reference numerals. The explanation will be omitted.

図8に示す第3の実施形態では、工程P3’におけるヨウ素含浸処理の後の工程P10において、ヨウ素又はヨウ素化合物の色及び臭いの拡散を無視できる程度まで低減する脱色脱臭処理が行われる。脱色脱臭処理は、酸化皮膜の微細な孔又は凹部に含浸させたヨウ素又はヨウ素化合物を空気中に曝すことによって、ヨウ素又はヨウ素化合物を空気中に拡散させる処理とすることができる。 In the third embodiment shown in FIG. 8, in step P10 after the iodine impregnation treatment in step P3', a decolorizing and deodorizing treatment is performed to reduce the color and odor diffusion of iodine or iodine compounds to a negligible extent. The decolorizing and deodorizing treatment can be a treatment in which the iodine or iodine compound impregnated into the fine pores or recesses of the oxide film is exposed to the air, thereby diffusing the iodine or the iodine compound into the air.

試験の結果、室温で酸化皮膜の表面を24時間以上空気に曝してもヨウ素又はヨウ素化合物の目立った脱臭及び脱色効果の向上は確認できなかった。従って、脱色脱臭処理は、酸化皮膜の微細な孔又は凹部に含浸させたヨウ素又はヨウ素化合物を24時間以上空気中に曝す処理とすることができる。但し、脱色脱臭処理を他の処理に置換又は脱色脱臭処理として他の処理を併用しても良い。また、常温下での脱色脱臭処理に限らず。温風を用いて脱色脱臭処理の少なくとも一部が温風乾燥を兼ねるようにしても良い。 As a result of the test, no noticeable improvement in the deodorizing and decolorizing effects of iodine or iodine compounds could be confirmed even when the surface of the oxide film was exposed to air for 24 hours or more at room temperature. Therefore, the decolorizing and deodorizing treatment can be a treatment in which iodine or an iodine compound impregnated into the fine pores or recesses of the oxide film is exposed to the air for 24 hours or more. However, the decolorizing and deodorizing treatment may be replaced with another treatment, or other treatments may be used together as the decolorizing and deodorizing treatment. In addition, it is not limited to decolorizing and deodorizing treatment at room temperature. At least a part of the decolorizing and deodorizing treatment using hot air may also serve as hot air drying.

脱色脱臭処理を行うと、図4の表に示すように、ヨウ素又はヨウ素化合物の色及び臭いが落ちない程度までヨウ素又はヨウ素化合物が大気中に拡散する。また、外観ムラの原因となるヨウ素の溶出や粉吹きといった不具合も生じない。 When the decolorizing and deodorizing treatment is performed, as shown in the table of FIG. 4, the iodine or iodine compound is diffused into the atmosphere to the extent that the color and odor of the iodine or iodine compound are not removed. Further, problems such as iodine elution and powder blowing, which cause uneven appearance, do not occur.

ヨウ素含浸処理直後における表面処理皮膜の色は図4の表に例示されるようにヨウ素含浸処理の条件に応じた色となるが、脱色脱臭処理後における表面処理皮膜の色は、薄い橙色又は黄色となる。典型的には、脱色脱臭処理を行うと、表面処理皮膜の色が茶色から徐々に黄色に変化する。その結果、母材であるアルミニウムの金属光沢によって、表面処理皮膜を有するアルミニウムの色は金色に近い色となる。 The color of the surface treatment film immediately after the iodine impregnation treatment is a color according to the conditions of the iodine impregnation treatment, as illustrated in the table of Figure 4, but the color of the surface treatment film after the decolorization and deodorization treatment is light orange or yellow. becomes. Typically, when the decolorizing and deodorizing treatment is performed, the color of the surface treatment film gradually changes from brown to yellow. As a result, the color of the aluminum with the surface treatment film becomes close to gold due to the metallic luster of the base material aluminum.

外観でも確認できる通り、脱色脱臭処理を行っても酸化皮膜の微細な孔又は凹部の内面には薄いヨウ素又はヨウ素化合物の層が残留する。その結果、ヨウ素又はヨウ素化合物による殺菌効果及び抗菌効果を維持することができる。 As can be seen from the appearance, even after decolorizing and deodorizing treatment, a thin layer of iodine or iodine compound remains on the inner surface of the fine pores or recesses of the oxide film. As a result, the bactericidal and antibacterial effects of iodine or iodine compounds can be maintained.

このため、以上の第3の実施形態によれば、ヨウ素又はヨウ素化合物による殺菌効果及び抗菌効果を維持しつつ、ヨウ素又はヨウ素化合物の色及び臭いが落ちて物体に付着することを一層低減又は一層確実に回避することが可能となる。加えて、金色に近い外観を得ることができる。 Therefore, according to the third embodiment described above, while maintaining the bactericidal effect and antibacterial effect of iodine or iodine compounds, it is possible to further reduce or further reduce the color and odor of iodine or iodine compounds from being attached to objects. This can be reliably avoided. In addition, an appearance close to gold can be obtained.

尚、工程P10における脱色脱臭処理を行えば、工程P3’におけるヨウ素含浸処理によってヨウ素又はヨウ素化合物の析出量が過剰となったり、ヨウ素が溶出して外観ムラが生じたりしても、その後の脱色脱臭処理においてヨウ素又はヨウ素化合物がら酸化皮膜から脱落することになる。 In addition, if the decolorization and deodorization treatment in step P10 is performed, even if the amount of precipitated iodine or iodine compound becomes excessive due to the iodine impregnation treatment in step P3', or if iodine is eluted and uneven appearance occurs, the subsequent decolorization will be performed. During the deodorizing treatment, iodine or iodine compounds fall off from the oxide film.

このため、厳密には第2の実施形態とは異なり、第3の実施形態では工程P2’における陽極酸化処理及び工程P3’におけるヨウ素含浸処理において、ヨウ素又はヨウ素化合物の過剰な析出やヨウ素の溶出を回避するための処理条件の好適化が重要ではない。例えば、第1の実施形態のように陽極酸化処理及びヨウ素含浸処理における各電解処理条件を、ヨウ素又はヨウ素化合物の色及び臭いが落ち難くなるように決定することは、第3の実施形態では重要ではない。 Therefore, strictly speaking, unlike the second embodiment, the third embodiment prevents excessive precipitation of iodine or iodine compounds and elution of iodine in the anodizing treatment in step P2' and the iodine impregnation treatment in step P3'. Optimization of processing conditions to avoid this is not important. For example, it is important in the third embodiment to determine the electrolytic treatment conditions in the anodizing treatment and iodine impregnation treatment so that the color and odor of iodine or iodine compounds are difficult to remove, as in the first embodiment. isn't it.

(第4の実施形態)
図9は、本発明の第4の実施形態に係る表面処理皮膜を有するアルミニウムの製造方法の手順を示すフローチャートである。
(Fourth embodiment)
FIG. 9 is a flowchart showing the steps of a method for manufacturing aluminum having a surface treatment film according to the fourth embodiment of the present invention.

図9に示された第4の実施形態における表面処理皮膜を有するアルミニウムの製造方法は、脱色脱臭処理を行った後、封孔処理及び乾燥を行う点が第3の実施形態における表面処理皮膜を有するアルミニウムの製造方法と相違する。第4の実施形態における表面処理皮膜を有するアルミニウムの製造方法の脱色脱臭処理までの工程は、第3の実施形態における表面処理皮膜を有するアルミニウムの製造方法と実質的に異ならない。また、第4の実施形態における表面処理皮膜を有するアルミニウムの製造方法において行われる乾燥は、第1の実施形態における表面処理皮膜を有するアルミニウムの製造方法と実質的に異ならない。このため、第4の実施形態において、第1又は第3の実施形態と同一の工程には同符号を付して説明を省略する。 The method for manufacturing aluminum having a surface treatment film according to the fourth embodiment shown in FIG. 9 differs from the surface treatment film according to the third embodiment in that after decolorizing and deodorizing treatment, pore sealing treatment and drying are performed. It is different from the manufacturing method of aluminum. The steps up to the decoloring and deodorizing treatment of the method for manufacturing aluminum having a surface treatment film in the fourth embodiment are not substantially different from the method for manufacturing aluminum having a surface treatment film in the third embodiment. Further, the drying performed in the method for manufacturing aluminum having a surface treatment film in the fourth embodiment is not substantially different from the method for manufacturing aluminum having a surface treatment film in the first embodiment. Therefore, in the fourth embodiment, steps that are the same as those in the first or third embodiment are given the same reference numerals, and description thereof will be omitted.

図9に示すように工程P10における脱色脱臭処理後に、酸化皮膜の封孔処理を行う工程P4”を実施しても良い。その場合には、工程P4”における封孔処理の後に、乾燥を行う工程P5が設けられる。 As shown in FIG. 9, after the decolorization and deodorization treatment in step P10, a step P4'' of sealing the oxide film may be performed.In that case, drying is performed after the sealing treatment in step P4''. A process P5 is provided.

脱色脱臭処理後に酸化皮膜の封孔処理を行う場合には、酸化皮膜の封孔処理前において既にヨウ素又はヨウ素化合物の色及び臭いが落ちて物体に付着しない程度までヨウ素又はヨウ素化合物の脱臭及び脱色が完了している。従って、第1の実施形態とは異なり、封孔処理の条件にヨウ素又はヨウ素化合物の色及び臭いが落ち難くするための制約が無い。このため、表面処理皮膜の耐食性向上等を目的として所望の封孔条件で封孔処理を行うことができる。 When sealing the oxide film after decolorizing and deodorizing treatment, deodorize and decolorize the iodine or iodine compound to the extent that the color and odor of the iodine or iodine compound has already been removed and does not adhere to objects before the sealing treatment of the oxide film. has been completed. Therefore, unlike the first embodiment, there are no restrictions on the conditions of the sealing treatment to make it difficult for the color and odor of iodine or iodine compounds to come off. Therefore, the sealing treatment can be performed under desired sealing conditions for the purpose of improving the corrosion resistance of the surface treatment film.

例えば、沸騰水封孔又は温水封孔を行えば、ニッケルフリーの表面処理皮膜を有するアルミニウムを製作することができる。特に、沸騰水封孔を行えば、温水封孔を行う場合に比べて封孔度が高くなるため、表面処理皮膜の耐食性を向上することができる。 For example, aluminum with a nickel-free surface treatment film can be produced by performing boiling water sealing or hot water sealing. In particular, if boiling water sealing is performed, the degree of sealing will be higher than when hot water sealing is performed, so that the corrosion resistance of the surface treatment film can be improved.

尚、言うまでもなく脱色脱臭処理後に行われる酸化皮膜の封孔処理は、酸化皮膜の腐食前に行うことが適切である。 Needless to say, it is appropriate that the oxide film sealing treatment performed after the decolorization and deodorization treatment is performed before the oxide film is corroded.

以上の第4の実施形態によれば、ヨウ素又はヨウ素化合物による殺菌効果及び抗菌効果を維持しつつ、ヨウ素又はヨウ素化合物の色及び臭いが落ちて物体に付着することを一層低減又は一層確実に回避できるのみならず、封孔処理によって表面処理皮膜に耐食性を付与することができる。加えて、ヨウ素又はヨウ素化合物の色及び臭いを落とす脱色脱臭工程を設けることによって、陽極酸化処理、ヨウ素含浸処理及び封孔処理の各処理条件に、ヨウ素又はヨウ素化合物の過剰な析出やヨウ素の溶出を回避するための制約が生じることを回避することができる。 According to the fourth embodiment described above, while maintaining the bactericidal effect and antibacterial effect of iodine or iodine compounds, it is possible to further reduce or more reliably prevent the color and odor of iodine or iodine compounds from fading and adhering to objects. Not only this, but also corrosion resistance can be imparted to the surface treated film through the pore sealing treatment. In addition, by providing a decolorizing and deodorizing process that removes the color and odor of iodine or iodine compounds, excessive precipitation of iodine or iodine compounds and elution of iodine can be prevented under each treatment condition of anodizing treatment, iodine impregnation treatment, and pore sealing treatment. It is possible to avoid the occurrence of constraints to avoid the above.

(実施例1)
硫酸の濃度を20wt%、電解浴温を10℃とした硫酸溶液中において一次電解処理としてアルミニウムの陽極酸化処理を行い、厚さが30μmの酸化皮膜を有するアルミニウムを得た。次に、二次電解処理として、ヨウ素の含有率が3.0%となるようにしたPVPIの溶液中においてヨウ素の電気泳動電着を行った。二次電解処理の電解電圧は100V、二次電解処理の電解時間は3分、二次電解処理の電解浴温は室温とした。
(Example 1)
Aluminum was anodized as a primary electrolytic treatment in a sulfuric acid solution with a sulfuric acid concentration of 20 wt % and an electrolytic bath temperature of 10° C. to obtain aluminum having an oxide film with a thickness of 30 μm. Next, as a secondary electrolytic treatment, iodine was electrophoretically deposited in a PVPI solution with an iodine content of 3.0%. The electrolytic voltage for the secondary electrolytic treatment was 100 V, the electrolytic time for the secondary electrolytic treatment was 3 minutes, and the electrolytic bath temperature for the secondary electrolytic treatment was room temperature.

その後、酢酸ニッケルを主成分とする封孔液に1分間浸漬するニッケル塩封孔を行い、乾燥することによって、第1の実施形態における製法による実施例1の表面処理皮膜を有するアルミニウムを製作した。 Thereafter, nickel salt sealing was performed by immersing the aluminum in a sealing liquid containing nickel acetate as a main component for 1 minute, and drying to produce aluminum having the surface treatment film of Example 1 according to the manufacturing method of the first embodiment. .

(実施例2)
実施例1と同一条件でアルミニウムの陽極酸化処理及びヨウ素の電気泳動電着を行った。その後、70℃の温水を用いて5分間温水封孔を行い、乾燥することによって、第2の実施形態における製法による実施例2の表面処理皮膜を有するアルミニウムを製作した。
(Example 2)
Anodizing treatment of aluminum and electrophoretic electrodeposition of iodine were performed under the same conditions as in Example 1. Thereafter, hot water sealing was performed for 5 minutes using hot water at 70° C., and drying was performed to produce aluminum having the surface treatment film of Example 2 according to the manufacturing method of the second embodiment.

(実施例3)
実施例1と同一条件でアルミニウムの陽極酸化処理及びヨウ素の電気泳動電着を行った。その後、純水で洗浄するのみで封孔を行わずに24時間以上空気中に曝すことによってヨウ素の脱色及び脱臭を行い、第3の実施形態における製法による実施例3の表面処理皮膜を有するアルミニウムを製作した。
(Example 3)
Anodizing treatment of aluminum and electrophoretic electrodeposition of iodine were performed under the same conditions as in Example 1. After that, the aluminum having the surface treatment film of Example 3 according to the manufacturing method of the third embodiment is decolorized and deodorized by exposing it to the air for 24 hours or more without sealing the aluminum with pure water. was produced.

(比較例1)
実施例1と同一条件でアルミニウムの陽極酸化処理及びヨウ素の電気泳動電着を行った。その後、図6の表に示すように85℃の熱水を用いて5分間沸騰水封孔を行い、乾燥することによって、粉吹きを有する比較例1の表面処理皮膜を有するアルミニウムを製作した。
(Comparative example 1)
Anodizing treatment of aluminum and electrophoretic electrodeposition of iodine were performed under the same conditions as in Example 1. Thereafter, as shown in the table of FIG. 6, boiling water sealing was performed using hot water at 85° C. for 5 minutes and drying to produce aluminum having the powder-blown surface treatment film of Comparative Example 1.

(他の実施形態)
以上、特定の実施形態について記載したが、記載された実施形態は一例に過ぎず、発明の範囲を限定するものではない。ここに記載された新規な方法及び装置は、様々な他の様式で具現化することができる。また、ここに記載された方法及び装置の様式において、発明の要旨から逸脱しない範囲で、種々の省略、置換及び変更を行うことができる。添付された請求の範囲及びその均等物は、発明の範囲及び要旨に包含されているものとして、そのような種々の様式及び変形例を含んでいる。
(Other embodiments)
Although specific embodiments have been described above, the described embodiments are merely examples and do not limit the scope of the invention. The novel methods and apparatus described herein can be implemented in a variety of other ways. Additionally, various omissions, substitutions, and changes may be made in the methods and apparatus described herein without departing from the spirit of the invention. The appended claims and their equivalents are intended to cover such modifications and variations as fall within the scope and spirit of the invention.

1 表面処理皮膜
2 アルミニウム
3 微細な孔又は凹部
4 酸化皮膜
5 ヨウ素又はヨウ素化合物
6 封孔層
1 Surface treatment film 2 Aluminum 3 Fine pores or recesses 4 Oxide film 5 Iodine or iodine compound 6 Sealing layer

Claims (11)

微細な孔又は凹部を有する酸化皮膜をアルミニウムの表面に形成する陽極酸化処理と、
前記酸化皮膜の前記微細な孔又は凹部にヨウ素又はヨウ素化合物を含浸させるヨウ素含浸処理と、
前記ヨウ素含浸処理後における前記酸化皮膜の封孔処理と、
を行う、表面処理皮膜を有するアルミニウムの製造方法であって、
前記封孔処理として60℃以上80℃未満の温水を用いた温水封孔を行う、表面処理皮膜を有するアルミニウムの製造方法。
Anodizing treatment to form an oxide film with fine holes or recesses on the surface of aluminum;
Iodine impregnation treatment in which the fine pores or recesses of the oxide film are impregnated with iodine or an iodine compound;
A sealing treatment for the oxide film after the iodine impregnation treatment;
A method for producing aluminum having a surface treatment film, the method comprising:
A method for producing aluminum having a surface treatment film, wherein the sealing treatment is performed by hot water sealing using hot water at a temperature of 60° C. or higher and lower than 80° C.
前記封孔処理として70℃以上75℃以下の温水を用いた温水封孔を行う請求項記載の表面処理皮膜を有するアルミニウムの製造方法。 2. The method for producing aluminum having a surface treatment film according to claim 1, wherein the sealing treatment is hot water sealing using hot water at a temperature of 70° C. or higher and 75° C. or lower. 前記温水封孔を行うことによって前記酸化皮膜の前記微細な孔又は凹部にベーマイトを析出させずにバイヤライトを析出させる請求項1記載の表面処理皮膜を有するアルミニウムの製造方法。2. The method for producing aluminum having a surface treatment film according to claim 1, wherein bayerite is precipitated in the fine pores or recesses of the oxide film without precipitating boehmite by performing the hot water sealing. 前記温水封孔を行うことによって前記酸化皮膜のアドミッタンス測定試験による封孔度を40μS以上60μS以下にする請求項1記載の表面処理皮膜を有するアルミニウムの製造方法。2. The method for producing aluminum having a surface treatment film according to claim 1, wherein the hot water sealing is performed so that the degree of sealing of the oxide film as determined by an admittance measurement test is set to 40 μS or more and 60 μS or less. 前記陽極酸化処理では、温度が5℃以上15℃以下であり、かつ硫酸の濃度が15wt%以上25wt%以下である硫酸の電解液中において10μm以上50μm以下の厚さを有する酸化皮膜を形成し、In the anodizing treatment, an oxide film having a thickness of 10 μm or more and 50 μm or less is formed in a sulfuric acid electrolyte at a temperature of 5° C. or more and 15° C. or less and a sulfuric acid concentration of 15 wt% or more and 25 wt% or less. ,
前記ヨウ素含浸処理では、前記ヨウ素又はヨウ素化合物の電気泳動電着によって前記酸化皮膜の前記微細な孔又は凹部に前記ヨウ素又はヨウ素化合物を含浸させ、かつヨウ素の含有率が1.0wt%以上5.0wt%以下となるようにした前記ヨウ素又はヨウ素化合物の溶液に30V以上110V以下の電解電圧を1分以上5分以下印加する、In the iodine impregnation treatment, the fine pores or recesses of the oxide film are impregnated with the iodine or iodine compound by electrophoretic electrodeposition, and the iodine content is 1.0 wt% or more.5. Applying an electrolytic voltage of 30 V or more and 110 V or less for 1 minute or more and 5 minutes or less to the solution of iodine or iodine compound whose concentration is 0 wt% or less,
請求項1記載の表面処理皮膜を有するアルミニウムの製造方法。A method for producing aluminum having the surface treatment film according to claim 1.
前記温水封孔の処理時間を3分以上7分以下とする請求項乃至のいずれか1項に記載の表面処理皮膜を有するアルミニウムの製造方法。 The method for producing aluminum having a surface treatment film according to any one of claims 1 to 5 , wherein the hot water sealing treatment time is 3 minutes or more and 7 minutes or less. 表面処理皮膜を有するアルミニウムであって、
前記表面処理皮膜は、
微細な孔又は凹部を有する酸化皮膜と、
前記微細な孔又は凹部に含浸されているヨウ素又はヨウ素化合物と、
を有し、
前記酸化皮膜のアドミッタンス測定試験による封孔度が40μS以上60μS以下となっているアルミニウム。
Aluminum having a surface treatment film,
The surface treatment film is
an oxide film having fine pores or recesses;
Iodine or an iodine compound impregnated in the fine pores or recesses;
has
Aluminum having a sealing degree of 40 μS or more and 60 μS or less as determined by an admittance measurement test of the oxide film.
表面処理皮膜を有するアルミニウムであって、
前記表面処理皮膜は、
微細な孔又は凹部を有する酸化皮膜と、
前記微細な孔又は凹部に含浸されているヨウ素又はヨウ素化合物と、
前記微細な孔又は凹部において析出しているバイヤライトと、
を有するアルミニウム。
Aluminum having a surface treatment film,
The surface treatment film is
an oxide film having fine pores or recesses;
Iodine or an iodine compound impregnated in the fine pores or recesses;
bayerite precipitated in the fine holes or recesses;
Aluminum with.
前記表面処理皮膜には、ニッケルが元素として含まれていない請求項又は記載のアルミニウム。 The aluminum according to claim 7 or 8 , wherein the surface treatment film does not contain nickel as an element. 前記表面処理皮膜には、ベーマイトが析出していない請求項又は記載のアルミニウム。 The aluminum according to claim 7 or 8 , wherein boehmite is not precipitated in the surface treatment film. 請求項又は記載の表面処理皮膜を有するアルミニウムで少なくとも一部を構成した容器。 A container comprising at least a portion of aluminum having the surface treatment film according to claim 7 or 8 .
JP2023181986A 2023-10-23 2023-10-23 Method for producing aluminum having a surface treatment film, aluminum having a surface treatment film, and container at least partially composed of aluminum having a surface treatment film Active JP7452826B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023181986A JP7452826B1 (en) 2023-10-23 2023-10-23 Method for producing aluminum having a surface treatment film, aluminum having a surface treatment film, and container at least partially composed of aluminum having a surface treatment film
JP2024022452A JP7489077B1 (en) 2023-10-23 2024-02-16 Method for producing aluminum having a surface treatment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023181986A JP7452826B1 (en) 2023-10-23 2023-10-23 Method for producing aluminum having a surface treatment film, aluminum having a surface treatment film, and container at least partially composed of aluminum having a surface treatment film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024022452A Division JP7489077B1 (en) 2023-10-23 2024-02-16 Method for producing aluminum having a surface treatment film

Publications (1)

Publication Number Publication Date
JP7452826B1 true JP7452826B1 (en) 2024-03-19

Family

ID=90273447

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2023181986A Active JP7452826B1 (en) 2023-10-23 2023-10-23 Method for producing aluminum having a surface treatment film, aluminum having a surface treatment film, and container at least partially composed of aluminum having a surface treatment film
JP2024022452A Active JP7489077B1 (en) 2023-10-23 2024-02-16 Method for producing aluminum having a surface treatment film

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024022452A Active JP7489077B1 (en) 2023-10-23 2024-02-16 Method for producing aluminum having a surface treatment film

Country Status (1)

Country Link
JP (2) JP7452826B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932437B1 (en) 1998-07-31 1999-08-09 株式会社フジクラ An oxide film structure of a metal material substrate impregnated with iodine or an iodine compound, a method for forming the same, and an applied article having the film structure.
JP2005350741A (en) 2004-06-11 2005-12-22 Yoshino Kk Oxide film structure of iodine or iodine compound-sealed metallic material base and its forming method and applied article having the film structure
JP2006111894A (en) 2004-10-12 2006-04-27 Fuji Heavy Ind Ltd Surface treatment method for aluminum alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5619657B2 (en) 2011-03-22 2014-11-05 株式会社Lixil Functional aluminum material and electrolytic treatment method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932437B1 (en) 1998-07-31 1999-08-09 株式会社フジクラ An oxide film structure of a metal material substrate impregnated with iodine or an iodine compound, a method for forming the same, and an applied article having the film structure.
JP2005350741A (en) 2004-06-11 2005-12-22 Yoshino Kk Oxide film structure of iodine or iodine compound-sealed metallic material base and its forming method and applied article having the film structure
JP2006111894A (en) 2004-10-12 2006-04-27 Fuji Heavy Ind Ltd Surface treatment method for aluminum alloy

Also Published As

Publication number Publication date
JP7489077B1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
CA1131160A (en) Electrolytic colouring of anodised aluminium by means of optical interference effects
US4066516A (en) Method for forming colorless or colored pattern having shade difference on an aluminum or aluminum alloy article
US5674371A (en) Process for electrolytically treating aluminum and compositions therefor
AU2011263550B2 (en) Metal treatment
US2578400A (en) Method for providing oxide coating on aluminum and its alloys
US20210262107A1 (en) Process for treating the surface of a part made of aluminium or aluminium alloy or of magnesium or magnesium alloy
Martínez et al. Corrosion resistance improvement of Ti-6Al-4V alloy by anodization in the presence of inhibitor ions
JP7452826B1 (en) Method for producing aluminum having a surface treatment film, aluminum having a surface treatment film, and container at least partially composed of aluminum having a surface treatment film
PT95029A (en) ELECTROLYTIC PROCESS FOR ANODIZED ALUMINUM COLLAR
US3616308A (en) Method of producing colored coatings on aluminum
JP5675590B2 (en) Coated article and associated method
CN112981490B (en) Micro-arc oxidation liquid, micro-arc oxidation method and aluminum alloy material
JP2012522136A (en) Metal processing to form a surface layer
KR102119308B1 (en) Nikel-free sealing treatment of aluminium anodizing
JP2007254784A (en) Sealing method for anodized film and anodized member
US10106908B1 (en) Nitinol fatigue resistance using electropolishing, magnetoelectropolishing, anodizing and magnetoanodizing or combinations thereof under oxygen evolution regime
JPH11181596A (en) Antibacterial anodic oxidation treated aluminum
JP2931177B2 (en) Highly transparent colored film and electrolytic coloring method
JP7467758B2 (en) Method for electrodepositing a dark chrome layer on a substrate and substrate completely covered on at least one side with a dark chrome layer
US3767474A (en) Sealing methods and compositions for aluminum oxide coatings
US4756772A (en) Method of coloring a porous anodic oxide film on the surface of an aluminum article
CN216585268U (en) Anodized aluminum alloy rim
JPS593559B2 (en) Dipping coloring method for aluminum or its alloy materials
RU2677388C1 (en) Method of making protective coatings on valve metals and alloys thereof
KR950000313B1 (en) Method for impartation of blue color to aluminum or aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231023

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240228

R150 Certificate of patent or registration of utility model

Ref document number: 7452826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150