JP7452812B2 - Method for manufacturing ZnO thin film, method for manufacturing transparent electrode, ZnO thin film, and transparent electrode - Google Patents

Method for manufacturing ZnO thin film, method for manufacturing transparent electrode, ZnO thin film, and transparent electrode Download PDF

Info

Publication number
JP7452812B2
JP7452812B2 JP2019228641A JP2019228641A JP7452812B2 JP 7452812 B2 JP7452812 B2 JP 7452812B2 JP 2019228641 A JP2019228641 A JP 2019228641A JP 2019228641 A JP2019228641 A JP 2019228641A JP 7452812 B2 JP7452812 B2 JP 7452812B2
Authority
JP
Japan
Prior art keywords
thin film
zno
zno thin
manufacturing
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019228641A
Other languages
Japanese (ja)
Other versions
JP2021097175A (en
Inventor
法弘 下位
俊一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tohoku Institute of Technology
Original Assignee
Tohoku University NUC
Tohoku Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tohoku Institute of Technology filed Critical Tohoku University NUC
Priority to JP2019228641A priority Critical patent/JP7452812B2/en
Publication of JP2021097175A publication Critical patent/JP2021097175A/en
Application granted granted Critical
Publication of JP7452812B2 publication Critical patent/JP7452812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

特許法第30条第2項適用 ・集 会 名:日本金属学会 2019年秋期(第165回)講演大会 開 催 日:2019年(令和1年)9月11日~9月13日Article 30, Paragraph 2 of the Patent Act applies ・Meeting name: Japan Institute of Metals Fall 2019 (165th) Lecture Conference Date: September 11th to September 13th, 2019 (Reiwa 1)

本発明は、ZnO薄膜の製造方法、透明電極の製造方法、ZnO薄膜、および透明電極に関する。 The present invention relates to a method for manufacturing a ZnO thin film, a method for manufacturing a transparent electrode, a ZnO thin film, and a transparent electrode.

近年、モノのインターネット(IoT)に関するアプリケーションにより、私たちの身の周りで、電子デバイスを使用する機会が増えている。また、これに伴い、さまざまなデバイスで情報を共有するネットワークが、確立されてきている。このような状況で、データの継続的な保存と共有とを可能にするウェアラブル端末の開発が進められており、かつてない機能を備えたウェアラブル電子端末の実現が期待されている。例えば、フレキシブルな形状で、軽量、大面積、かつ、光透過性のウェアラブル端末が求められている。 In recent years, opportunities to use electronic devices around us have increased due to applications related to the Internet of Things (IoT). Additionally, along with this, networks are being established to share information among various devices. Under these circumstances, the development of wearable terminals that enable continuous storage and sharing of data is progressing, and it is expected that wearable electronic terminals with unprecedented functions will be realized. For example, there is a demand for wearable terminals that have a flexible shape, are lightweight, have a large area, and are optically transparent.

このようなフレキシブルなウェアラブル端末の中核となる半導体材料として、酸化インジウムスズ(ITO)や酸化亜鉛(ZnO)などの導電性の酸化物薄膜が期待されており、例えば、ZnO薄膜を製造する方法として、従来、化学気相成長(CVD)、原子層堆積(ALD)、スパッタリングなどの方法が用いられている(例えば、特許文献1乃至3参照)。 Conductive oxide thin films such as indium tin oxide (ITO) and zinc oxide (ZnO) are expected to be used as core semiconductor materials for such flexible wearable devices. Conventionally, methods such as chemical vapor deposition (CVD), atomic layer deposition (ALD), and sputtering have been used (see, for example, Patent Documents 1 to 3).

なお、高結晶質の単層カーボンナノチューブ(hc-SWCNTs;highly crystalline single-walled carbon nanotubes)を使用して、電界電子放出により、カソードから均一に平面状の電子線を放出する方法が、本発明者等により開発されている(例えば、非特許文献1または2参照)。 The present invention is a method of emitting a uniform planar electron beam from a cathode by field electron emission using highly crystalline single-walled carbon nanotubes (hc-SWCNTs). (For example, see Non-Patent Document 1 or 2).

特開2008-244011号公報Japanese Patent Application Publication No. 2008-244011 特開2007-137757号公報Japanese Patent Application Publication No. 2007-137757 特開2010-109192号公報Japanese Patent Application Publication No. 2010-109192

N. Shimoi, L. E. Adriana, Y. Tanaka, and K. Tohji, “Properties of a field emission lighting plane employing highly crystalline single-walled carbon nanotubes fabricated by simple processes”, Carbon, 2013, 65, p.228-235N. Shimoi, L. E. Adriana, Y. Tanaka, and K. Tohji, “Properties of a field emission lighting plane employing highly crystalline single-walled carbon nanotubes fabricated by simple processes”, Carbon, 2013, 65, p.228-235 N. Shimoi, Y. Sato, and K. Tohji, “Highly crystalline single-walled carbon nanotube field emitters: Energy-loss-free high current output and long durability with high power”, ACS Appl. Electron. Mater., 2019, 1, p.163-171N. Shimoi, Y. Sato, and K. Tohji, “Highly crystalline single-walled carbon nanotube field emitters: Energy-loss-free high current output and long durability with high power”, ACS Appl. Electron. Mater., 2019, 1, p.163-171

ZnO薄膜をウェアラブル端末の材料として使用するためには、フレキシブルな基材上にZnO薄膜を形成し、柔軟性を維持しながら大量のデータを処理できる機能が要求される。しかしながら、特許文献1乃至3に記載の方法で製造されたZnO薄膜は、基材の柔軟性に対応することができず、基材が曲がったときに導電性が損なわれてしまうという問題があった。そこで、基材の柔軟性に対応するためには、基材が曲がっても導電性が損なわれない安定した構造および導電性を有するZnO薄膜を模索する必要がある。 In order to use a ZnO thin film as a material for wearable terminals, it is necessary to form the ZnO thin film on a flexible base material and to have the ability to process large amounts of data while maintaining flexibility. However, the ZnO thin films manufactured by the methods described in Patent Documents 1 to 3 cannot cope with the flexibility of the base material, and there is a problem that the conductivity is lost when the base material is bent. Ta. Therefore, in order to cope with the flexibility of the base material, it is necessary to search for a ZnO thin film that has a stable structure and conductivity that will not lose its conductivity even if the base material bends.

本発明は、このような課題に着目してなされたもので、優れた導電性と、これまでにない安定した構造とを有するZnO薄膜の製造方法、透明電極の製造方法、ZnO薄膜、および透明電極を提供することを目的とする。 The present invention was made with attention to such problems, and includes a method for manufacturing a ZnO thin film having excellent conductivity and an unprecedented stable structure, a method for manufacturing a transparent electrode, a ZnO thin film, and a method for manufacturing a transparent electrode. The purpose is to provide electrodes.

上記目的を達成するために、本発明に係るZnO薄膜の製造方法は、基材の表面にZnO粒子を層状に配置し、前記ZnO粒子に対して、電子分光法によるピークの半値幅が300meV以下の電子線を照射することにより、ZnO薄膜を形成することを特徴とする。 In order to achieve the above object, the method for manufacturing a ZnO thin film according to the present invention arranges ZnO particles in a layer on the surface of a base material, and the ZnO particles have a peak half width of 300 meV or less by electron spectroscopy. The method is characterized in that a ZnO thin film is formed by irradiating the electron beam.

本発明に係るZnO薄膜は、基材の表面に形成されたZnO薄膜であって、ZnO粒子が繋がった概ね楕円体状の凝集粒子を有し、前記凝集粒子中のZnO結晶のc軸の方向が、所定の軸に対して30°以下の範囲内に揃っており、ホール移動度(Hall mobility)が150cm /Vs以上であることを特徴とする。本発明に係るZnO薄膜は、凝集粒子中のZnO結晶のc軸の方向が、所定の軸に対して10°以下の範囲内に揃っていることが好ましい。
The ZnO thin film according to the present invention is a ZnO thin film formed on the surface of a base material, and has generally ellipsoidal aggregated particles in which ZnO particles are connected, and the direction of the c-axis of the ZnO crystal in the aggregated particles is are aligned within a range of 30° or less with respect to a predetermined axis , and the Hall mobility is 150 cm 2 /Vs or more . In the ZnO thin film according to the present invention, it is preferable that the c-axes of the ZnO crystals in the aggregated particles are aligned within a range of 10° or less with respect to a predetermined axis.

本発明に係るZnO薄膜の製造方法によれば、優れた導電性と、従来の製造方法では得られない、これまでにない安定した構造とを有する、本発明に係るZnO薄膜を好適に製造することができる。これにより、フレキシブルな基材を用いたときでも、基材の柔軟性に対応して優れた導電性を維持することができる材料の開発に寄与することができる。 According to the method for manufacturing a ZnO thin film according to the present invention, a ZnO thin film according to the present invention having excellent conductivity and an unprecedentedly stable structure that cannot be obtained by conventional manufacturing methods can be suitably manufactured. be able to. Thereby, even when a flexible base material is used, it is possible to contribute to the development of a material that can maintain excellent conductivity in response to the flexibility of the base material.

本発明に係るZnO薄膜の製造方法およびZnO薄膜で、基材は、いかなるものから成っていてもよく、例えば、ポリエチレンテレフタレート(PET)等の、光透過性の樹脂から成っていてもよい。また、基材は、使用状態に応じて、いかなる形状であってもよく、例えば、ウェアラブル端末で使用する場合には、フレキシブルな薄い板状やフィルム状であることが好ましい。 In the ZnO thin film manufacturing method and ZnO thin film according to the present invention, the base material may be made of any material, and may be made of a light-transmitting resin such as polyethylene terephthalate (PET). Further, the base material may have any shape depending on the usage condition, and for example, when used in a wearable terminal, it is preferably in the shape of a flexible thin plate or film.

本発明に係るZnO薄膜の製造方法で、前記電子線は、電子分光法によるピークの半値幅が200meV以下であることが好ましく、100meV以下であることがさらに好ましい。この場合、より優れた導電性と、安定した構造とを有するZnO薄膜を製造することができる。 In the method for manufacturing a ZnO thin film according to the present invention, the electron beam preferably has a peak half width of 200 meV or less, more preferably 100 meV or less. In this case, a ZnO thin film having better conductivity and a stable structure can be manufactured.

本発明に係るZnO薄膜の製造方法で、前記電子線は、いかなる方法により放出された電子から成っていてもよいが、電界電子放出(Field Emission)により放出された電子から成り、特に平面内を均一に電界付加することで得られる電子から成ることが好ましい。電界電子放出を利用することにより、電子線のエネルギー分解能を高めることができ、より優れた導電性と、安定した構造とを有するZnO薄膜を製造することができる。 In the method for manufacturing a ZnO thin film according to the present invention, the electron beam may be composed of electrons emitted by any method, but it may be composed of electrons emitted by field emission, particularly in a plane. It is preferable to consist of electrons obtained by uniformly applying an electric field. By utilizing field electron emission, the energy resolution of the electron beam can be improved, and a ZnO thin film having better conductivity and a stable structure can be manufactured.

本発明に係るZnO薄膜の製造方法は、前記電子線を95kV~115kVで加速して、前記ZnO粒子に照射することが好ましい。また、電子線を、数10 nA/cm2の電流密度で照射することが好ましい。これらの場合、凝集粒子中のZnO結晶のc軸の方向を、より狭い範囲に揃えることができ、さらに優れた導電性と、安定した構造とを有するZnO薄膜を製造することができる。 In the method for producing a ZnO thin film according to the present invention, it is preferable that the electron beam is accelerated at 95 kV to 115 kV and irradiated to the ZnO particles. Further, it is preferable to irradiate the electron beam at a current density of several tens of nA/cm 2 . In these cases, the directions of the c-axes of the ZnO crystals in the aggregated particles can be aligned within a narrower range, and a ZnO thin film having even better conductivity and a stable structure can be produced.

本発明に係るZnO薄膜の製造方法によれば、照射する電子線の条件により、例えば、前記凝集粒子が、概ね長軸を中心軸とした回転楕円体状を成し、前記c軸の方向が前記長軸に対して30°以下の範囲内に揃っているZnO薄膜を製造することができる。また、ホール移動度(Hall mobility)が150cm/Vs以上のZnO薄膜を製造することができる。 According to the method for manufacturing a ZnO thin film according to the present invention, depending on the conditions of the irradiated electron beam, for example, the aggregated particles form a spheroid shape with the long axis as the central axis, and the direction of the c-axis is It is possible to produce a ZnO thin film whose alignment is within a range of 30° or less with respect to the long axis. Furthermore, a ZnO thin film having a Hall mobility of 150 cm 2 /Vs or more can be manufactured.

本発明に係る透明電極の製造方法は、本発明に係るZnO薄膜の製造方法を利用した透明電極の製造方法であって、光透過性の樹脂から成る前記基材の表面に、電極材として前記ZnO薄膜を形成することを特徴とする。 The method for producing a transparent electrode according to the present invention is a method for producing a transparent electrode using the method for producing a ZnO thin film according to the present invention, wherein It is characterized by forming a ZnO thin film.

本発明に係る透明電極の製造方法によれば、電極材として、優れた導電性と、安定した構造とを有する本発明に係るZnO薄膜と、光透過性の樹脂から成る前記基材とを有する、本発明に係る透明電極を好適に製造することができる。本発明に係る透明電極の製造方法および透明電極で、前記基材はフレキシブルであってもよい。 According to the method for producing a transparent electrode according to the present invention, the electrode material includes the ZnO thin film according to the present invention having excellent conductivity and a stable structure, and the base material made of a light-transmitting resin. , the transparent electrode according to the present invention can be suitably manufactured. In the transparent electrode manufacturing method and transparent electrode according to the present invention, the base material may be flexible.

本発明によれば、優れた導電性と、これまでにない安定した構造とを有するZnO薄膜の製造方法、透明電極の製造方法、ZnO薄膜、および透明電極を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a ZnO thin film, a method for manufacturing a transparent electrode, a ZnO thin film, and a transparent electrode that have excellent conductivity and an unprecedented stable structure.

本発明の実施の形態のZnO薄膜の製造方法に関し、基材の表面にZnO薄膜を形成する実験の、電界電子放出により放出される電子線を照射してZnO薄膜を形成するためのZnO薄膜の製造装置を示す正面図である。Regarding the method for manufacturing a ZnO thin film according to an embodiment of the present invention, in an experiment to form a ZnO thin film on the surface of a base material, a ZnO thin film was formed by irradiating an electron beam emitted by field electron emission. It is a front view showing a manufacturing device. 図1に示す実験装置の、カソードとゲート電極との間にかけた電圧(Applied voltage on Gate)と、基材での電流密度(Current density on Anode)との関係を示すグラフである。2 is a graph showing the relationship between the voltage applied between the cathode and the gate electrode (Applied voltage on Gate) and the current density on the base material (Current density on Anode) of the experimental device shown in FIG. 1. 本発明の実施の形態のZnO薄膜の製造方法に関し、基材の表面にZnO薄膜を形成する実験の、(a)電子線照射前のZnO粒子の、走査型透過電子顕微鏡(SEM)による二次電子像、(b) (a)の一部を拡大した透過電子顕微鏡(TEM)による明視野像、(c)タングステンワイヤからの熱電子(hot electron)による電子線を照射後のZnO粒子のSTEMによる高角環状暗視野(HAADF)像、(d)電界電子放出型電子線(Field emission electron)を照射後のZnO粒子のSTEMによるHAADF像、(e) (c)のZnO粒子のTEMによる明視野像および回折パターン(挿入図)、(f) (d)のZnO粒子のTEMによる明視野像および回折パターン(挿入図)である。Regarding the method for manufacturing a ZnO thin film according to an embodiment of the present invention, (a) Secondary image of ZnO particles before electron beam irradiation using a scanning transmission electron microscope (SEM) in an experiment to form a ZnO thin film on the surface of a base material. Electron image, (b) Bright-field image with a transmission electron microscope (TEM) magnifying a part of (a), (c) STEM of ZnO particles after irradiation with an electron beam by hot electrons from a tungsten wire. (d) High-angle annular dark field (HAADF) image by STEM, (d) HAADF image by STEM of ZnO particles after field emission electron irradiation, (e) Bright field TEM image of ZnO particles in (c) (f) TEM bright-field image and diffraction pattern (inset) of the ZnO particles in (d). 本発明の実施の形態のZnO薄膜の製造方法に関し、基材の表面にZnO薄膜を形成する実験の、タングステンワイヤからの熱電子(hot electron)および電界電子放出の電子(FE electron)による電子線を照射後のZnO粒子、ならびに、電子線照射前のZnO粒子(As-grown)の、X線回折スペクトルである。Regarding the method for manufacturing a ZnO thin film according to an embodiment of the present invention, an electron beam using hot electrons from a tungsten wire and field emission electrons (FE electrons) was used in an experiment to form a ZnO thin film on the surface of a base material. These are X-ray diffraction spectra of ZnO particles after being irradiated with and of ZnO particles (As-grown) before being irradiated with an electron beam. 本発明の実施の形態のZnO薄膜の製造方法に関し、基材の表面にZnO薄膜を形成する実験の、電界電子放出型電子線を照射後の凝集粒子の、電子エネルギー損失分光スペクトル(EELS)、および、各スペクトルの測定位置を示すSTEMによるTEM像(挿入図)である。Regarding the manufacturing method of a ZnO thin film according to an embodiment of the present invention, electron energy loss spectroscopy (EELS) of aggregated particles after irradiation with a field emission electron beam in an experiment to form a ZnO thin film on the surface of a base material, and a TEM image (inset) by STEM showing the measurement positions of each spectrum. 本発明の実施の形態のZnO薄膜の製造方法に関し、基材の表面にZnO薄膜を形成する実験の、(a)形成されたZnO薄膜中の凝集粒子(Synthesized ZnO particle)の長軸と各ZnO結晶(ZnO grain)のc軸との関係を示す説明図、(b)タングステンワイヤからの熱電子(Hot electrons)、ショットキー(Schottky)接合型電子源からの電子、および電界電子放出(Field emission)の電子による電子線を照射後の凝集粒子の、加速エネルギー(Electron energy)に対する(a)に示すθ(Angle from normalized axis)の分布範囲を示すグラフ、(c) (b)に示す各電子線の加速電圧110 kV時のエネルギー分解能を示すスペクトルである。Regarding the method for manufacturing a ZnO thin film according to an embodiment of the present invention, in an experiment in which a ZnO thin film is formed on the surface of a base material, (a) the long axis of the aggregated particles (Synthesized ZnO particles) in the formed ZnO thin film and each ZnO Explanatory diagram showing the relationship with the c-axis of a crystal (ZnO grain), (b) Hot electrons from a tungsten wire, electrons from a Schottky junction electron source, and field emission Graph showing the distribution range of θ (Angle from normalized axis) shown in (a) against acceleration energy (Electron energy) of aggregated particles after irradiation with electron beam by electrons in (a), (c) Each electron shown in (b) This is a spectrum showing the energy resolution at a line acceleration voltage of 110 kV.

以下、実施例等に基づいて、本発明の実施の形態について説明する。
本発明の実施の形態のZnO薄膜の製造方法は、基材の表面にZnO粒子を層状に配置し、ZnO粒子に対して、電子分光法によるピークの半値幅が300meV以下の電子線を照射することにより、ZnO薄膜を形成する。
Embodiments of the present invention will be described below based on examples and the like.
In the method for manufacturing a ZnO thin film according to an embodiment of the present invention, ZnO particles are arranged in a layer on the surface of a base material, and the ZnO particles are irradiated with an electron beam having a peak half width of 300 meV or less by electron spectroscopy. By this, a ZnO thin film is formed.

基材は、いかなるものから成っていてもよく、例えば、ポリエチレンテレフタレート(PET)等の、光透過性の樹脂から成っていてもよい。光透過性の樹脂から成る基材を用いることにより、電極材として、優れた導電性と安定した構造とを有するZnO薄膜を有する透明電極を製造することができる。また、基材は、使用状態に応じて、いかなる形状であってもよく、例えば、ウェアラブル端末で使用する場合には、フレキシブルな薄い板状やフィルム状であることが好ましい。 The base material may be made of any material, for example, a light-transmitting resin such as polyethylene terephthalate (PET). By using a base material made of a light-transmitting resin, a transparent electrode having a ZnO thin film having excellent conductivity and a stable structure can be manufactured as an electrode material. Further, the base material may have any shape depending on the usage condition, and for example, when used in a wearable terminal, it is preferably in the shape of a flexible thin plate or film.

本発明に係るZnO薄膜の製造方法によれば、基材の表面に、ZnO粒子が繋がった概ね楕円体状の凝集粒子を有し、凝集粒子中のZnO結晶のc軸の方向が、所定の軸に対して30°以下、好ましくは10°以下の範囲内に揃った、本発明の実施の形態のZnO薄膜を製造することができる。また、本発明に係るZnO薄膜の製造方法によれば、加熱処理を行うことなく、本発明の実施の形態のZnO薄膜を製造することができる。製造されたZnO薄膜は、優れた導電性と、従来の製造方法では得られない、これまでにない安定した構造とを有している。このように、本発明に係るZnO薄膜の製造方法によれば、フレキシブルな基材を用いたときでも、基材の柔軟性に対応して優れた導電性を維持することができる材料の開発に寄与することができる。 According to the method for producing a ZnO thin film according to the present invention, the surface of the base material has aggregated particles having a generally ellipsoidal shape in which ZnO particles are connected, and the direction of the c-axis of the ZnO crystal in the aggregated particles is in a predetermined direction. It is possible to produce a ZnO thin film according to an embodiment of the present invention whose angles are aligned within a range of 30° or less, preferably 10° or less with respect to the axis. Moreover, according to the method for manufacturing a ZnO thin film according to the present invention, the ZnO thin film of the embodiment of the present invention can be manufactured without performing heat treatment. The manufactured ZnO thin film has excellent conductivity and an unprecedentedly stable structure that cannot be obtained by conventional manufacturing methods. As described above, according to the method for manufacturing a ZnO thin film according to the present invention, even when a flexible base material is used, it is possible to develop a material that can maintain excellent conductivity in response to the flexibility of the base material. can contribute.

本発明の実施の形態のZnO薄膜の製造方法で、電子線は、より優れた導電性と、安定した構造とを有するZnO薄膜を製造するために、電子分光法によるピークの半値幅が200meV以下であることが好ましく、100meV以下であることがさらに好ましい。また、電子線は、いかなる方法により放出された電子から成っていてもよいが、電子線のエネルギー分解能を高めるために、電界電子放出(Field Emission)により放出された電子から成ることが特に好ましい。 In the method for manufacturing a ZnO thin film according to an embodiment of the present invention, in order to manufacture a ZnO thin film having better conductivity and a stable structure, the electron beam has a peak half width of 200 meV or less by electron spectroscopy. It is preferable that it is, and it is more preferable that it is 100 meV or less. Further, the electron beam may be composed of electrons emitted by any method, but in order to improve the energy resolution of the electron beam, it is particularly preferable that the electron beam is composed of electrons emitted by field emission.

本発明の実施の形態のZnO薄膜の製造方法に関し、基材の表面にZnO薄膜を形成する実験を行った。実験では、ZnO粒子に対して照射する電子線として、タングステンワイヤから放出される熱電子線、ショットキー(Schottky)接合型電子源から放出される電子線、電界電子放出型電子線を使用した。また、原料のZnO粒子は、硝酸亜鉛と炭酸アンモニウムとエタノールと純水とを用いて合成した。基材は、光透過性樹脂のポリエチレンテレフタレート(PET)とした。 Regarding the method for manufacturing a ZnO thin film according to an embodiment of the present invention, an experiment was conducted in which a ZnO thin film was formed on the surface of a base material. In the experiment, a thermoelectron beam emitted from a tungsten wire, an electron beam emitted from a Schottky junction type electron source, and a field emission type electron beam were used as electron beams to irradiate the ZnO particles. Further, ZnO particles as a raw material were synthesized using zinc nitrate, ammonium carbonate, ethanol, and pure water. The base material was polyethylene terephthalate (PET), which is a light-transmitting resin.

電界電子放出型電子線を使用したときのZnO薄膜の製造装置10を、図1に示す。図1に示す実験では、非特許文献1および2に示す方法を用いて、電界電子放出により均一な平面状の電子線を放出するために、電子源として、高結晶質の単層カーボンナノチューブ(hc-SWCNTs)11を使用した。すなわち、図1に示すように、電界電子放出による実験では、基材12をアノード(Anode)とし、その基材12とカソード(Cathode)13とを対向して配置した。基材12のカソード13の側の表面には、ZnOナノ粒子14を層状に配置し、カソード13の基材12の側の表面には、hc-SWCNTs11が埋め込まれたITO膜15を形成した。 FIG. 1 shows an apparatus 10 for producing a ZnO thin film using a field emission type electron beam. In the experiment shown in FIG. 1, highly crystalline single-walled carbon nanotubes ( hc-SWCNTs) 11 were used. That is, as shown in FIG. 1, in the experiment using field electron emission, the base material 12 was used as an anode, and the base material 12 and the cathode 13 were placed facing each other. On the surface of the base material 12 on the cathode 13 side, ZnO nanoparticles 14 were arranged in a layered manner, and on the surface of the cathode 13 on the base material 12 side, an ITO film 15 in which hc-SWCNTs 11 were embedded was formed.

また、基材12とカソード13との間に、電子線のオンオフを制御するゲート電極16と、電子線を加速するための加速電極17とを配置した。加速電極17は、0kV~140kVの範囲の印加電圧で、電子線を加速可能になっている。カソード13とゲート電極16との間にかけた電圧(Applied voltage on Gate)と、基材12での電流密度(Current density on Anode)との関係を、図2に示す。なお、電子源としてタングステンワイヤやショットキー接合型電子源を使用した実験では、カソードとして、それらの電子源を配置している。また、各実験では、真空中で電子線を照射した。 Further, a gate electrode 16 for controlling on/off of the electron beam and an acceleration electrode 17 for accelerating the electron beam were arranged between the base material 12 and the cathode 13. The accelerating electrode 17 is capable of accelerating the electron beam with an applied voltage in the range of 0 kV to 140 kV. The relationship between the voltage applied between the cathode 13 and the gate electrode 16 (Applied voltage on Gate) and the current density on the base material 12 (Current density on Anode) is shown in FIG. Note that in experiments using tungsten wire or Schottky junction type electron sources as electron sources, these electron sources were placed as cathodes. In each experiment, electron beams were irradiated in a vacuum.

電子線照射前のZnO粒子の、走査型透過電子顕微鏡(SEM)による二次電子像および透過電子顕微鏡(TEM)による明視野像を、それぞれ図3(a)および(b)に示す。また、タングステンワイヤからの熱電子(hot electron)および電界電子放出の電子(FE electron)を利用したときの、電子線照射後のZnO薄膜中のZnO粒子の高角環状暗視野(HAADF)像を、それぞれ図3(c)および(d)に、それらのZnO粒子の透過電子顕微鏡(TEM)による明視野像ならびに回折パターンを、それぞれ図3(e)および(f)に示す。このときの各電子線の電流密度は、約10 nA/cm2(1016 electrons/cm2s)であり、加速エネルギーは、110 keVである。 A secondary electron image taken by a scanning transmission electron microscope (SEM) and a bright field image taken by a transmission electron microscope (TEM) of the ZnO particles before electron beam irradiation are shown in FIGS. 3(a) and 3(b), respectively. In addition, a high-angle annular dark field (HAADF) image of ZnO particles in a ZnO thin film after electron beam irradiation was obtained using hot electrons from a tungsten wire and field electron emission electrons (FE electrons). 3(c) and (d) respectively, and FIGS. 3(e) and (f) show bright field images and diffraction patterns of the ZnO particles by transmission electron microscopy (TEM), respectively. The current density of each electron beam at this time is approximately 10 nA/cm 2 (10 16 electrons/cm 2 s), and the acceleration energy is 110 keV.

図3(c)および(d)に示すように、電子線の照射により、接合剤や粘着性の物質がなくとも、複数のZnO粒子が凝集して繋がった凝集粒子が形成されていることが確認された。また、図3(c)に示すように、熱電子によるものは、各凝集粒子が不規則な形状を成しているのに対して、図3(d)に示すように、電界電子放出の電子によるものは、各凝集粒子が、概ね長軸が回転軸である回転楕円体形状を成していることが確認された。また、図3(e)に示すように、熱電子によるものは、各凝集粒子中のZnO結晶のc軸の方向(図中の矢印の方向)が不規則であるのに対し、図3(f)に示すように、電界電子放出の電子によるものは、各凝集粒子中のZnO結晶のc軸の方向(図中の矢印の方向)が、長軸の方向に揃っていることが確認された。また、図3(e)および(f)の回折パターンに示すように、電界電子放出電子によるもの方が、熱電子によるものよりも、結晶化度が高いことが確認された。 As shown in Figures 3(c) and (d), by irradiation with an electron beam, multiple ZnO particles are aggregated and connected to form aggregated particles even without a binder or adhesive substance. confirmed. In addition, as shown in Figure 3(c), in the case of thermionic emission, each aggregated particle has an irregular shape, whereas as shown in Figure 3(d), the field electron emission In the case of electrons, it was confirmed that each aggregated particle had an approximately spheroidal shape with the long axis being the axis of rotation. Furthermore, as shown in Fig. 3(e), in the case of thermal electrons, the direction of the c-axis of the ZnO crystal in each aggregated particle (the direction of the arrow in the figure) is irregular; As shown in f), it was confirmed that the direction of the c-axis (direction of the arrow in the figure) of the ZnO crystal in each aggregated particle was aligned with the direction of the major axis of the field electron emission caused by electrons. Ta. Furthermore, as shown in the diffraction patterns of FIGS. 3(e) and 3(f), it was confirmed that the crystallinity due to field emission electrons was higher than that due to thermal electrons.

タングステンワイヤからの熱電子(hot electron)および電界電子放出の電子(FE electron)による電子線を照射後のZnO粒子に対して、X線回折装置(株式会社リガク製)を用いてX線回折を行った結果を、図4に示す。このときの電子線の加速エネルギーは、110 keVである。なお、図4には、参考のため、電子線照射前のZnO粒子(As-grown)の結果も示す。図4に示すように、電界電子放出型電子を照射したZnO粒子の方が、熱電子を照射したものと比べて、X線スペクトルの各ピークの半値幅が小さく、各ピークの強度が大きいことが確認された。このことからも、電界電子放出型電子によるもの方が、熱電子によるものよりも、結晶化度が高いといえる。 X-ray diffraction was performed on ZnO particles after irradiation with electron beams from hot electrons from a tungsten wire and field electron emission electrons (FE electrons) using an X-ray diffraction device (manufactured by Rigaku Co., Ltd.). The results are shown in Figure 4. The acceleration energy of the electron beam at this time is 110 keV. For reference, FIG. 4 also shows the results of ZnO particles (As-grown) before electron beam irradiation. As shown in Figure 4, ZnO particles irradiated with field emission electrons have a smaller half-width of each peak in the X-ray spectrum and a higher intensity of each peak than those irradiated with thermoelectrons. was confirmed. From this, it can be said that the crystallinity caused by field emission type electrons is higher than that caused by thermionic electrons.

電界電子放出型電子による電子線を照射後の楕円体状の凝集粒子に対して、電子エネルギー損失分光(EELS)装置(Gatan社製)を用いて分析を行った結果を、図5に示す。このときのZnO薄膜形成時の電子線の加速エネルギーは、110 keVである。図5中の「1」~「3」のスペクトルは、TEMによる明視野像(挿入図)中の各位置に示すように、それぞれ凝集粒子の中心部、凝集粒子の短軸の端部、および凝集粒子の長軸の端部でのスペクトルである。図5に示すように、凝集粒子の各位置で、スペクトルが異なっていることから、互いに異なる組成および異なる電気的結合状態を有していると考えられる。 FIG. 5 shows the results of analyzing the ellipsoidal aggregated particles after irradiation with an electron beam using field emission electrons using an electron energy loss spectroscopy (EELS) device (manufactured by Gatan). The acceleration energy of the electron beam during formation of the ZnO thin film at this time was 110 keV. The spectra “1” to “3” in FIG. 5 are shown at each position in the TEM bright field image (inset), respectively, at the center of the aggregated particles, at the end of the short axis of the aggregated particles, and at each position. This is a spectrum at the end of the long axis of aggregated particles. As shown in FIG. 5, since the spectra are different at each position of the aggregated particles, it is thought that the aggregated particles have different compositions and different electrical bonding states.

タングステンワイヤからの熱電子(Hot electrons)、ショットキー(Schottky)接合型電子源からの電子、および電界電子放出(Field emission)の電子による電子線を照射後の凝集粒子について、HAADF像から各ZnO結晶のc軸の方向を読み取り、凝集粒子の長軸方向から時計回り方向に測定した角度θを求めた。凝集粒子(Synthesized ZnO particle)の長軸と各ZnO結晶(ZnO grain)のc軸との関係を、図6(a)に示す。また、各電子線について加速エネルギー(Electron energy)を変化させて、各電子線を照射後の凝集粒子に対して求めたθ(Angle from normalized axis)の分布範囲を、図6(b)に示す。また、電子分光法により測定した各電子線のエネルギー分解能を、図6(c)に示す。 The aggregated particles after irradiation with an electron beam of hot electrons from a tungsten wire, electrons from a Schottky junction type electron source, and field emission electrons were determined from the HAADF image of each ZnO The direction of the c-axis of the crystal was read, and the angle θ measured clockwise from the long axis direction of the aggregated particles was determined. The relationship between the long axis of an aggregated particle (Synthesized ZnO particle) and the c-axis of each ZnO crystal (ZnO grain) is shown in FIG. 6(a). In addition, Fig. 6(b) shows the distribution range of θ (Angle from normalized axis) obtained for aggregated particles after irradiation with each electron beam by changing the acceleration energy (Electron energy) for each electron beam. . Moreover, the energy resolution of each electron beam measured by electron spectroscopy is shown in FIG. 6(c).

図6(b)に示すように、凝集粒子中の各ZnO結晶のc軸の分布範囲は、各電子線を95 keV~115 keVの加速エネルギーで照射したときに狭くなることが確認された。特に、電界電子放出型電子線を、95 keV~115 keVの加速エネルギーで照射したものは、θが10°以下で、各ZnO結晶のc軸の分布範囲が最も狭くなっており、c軸の方向が凝集粒子の超軸方向に揃っていることが確認された。図6(c)に示すように、電界電子放出型電子線は、エネルギー分解能解析によるピークの半値幅が70 meVであり、最もエネルギー分解能が高いことから、エネルギー分解能が高い方が、各ZnO粒子のc軸が長軸方向に揃いやすいといえる。なお、タングステンワイヤからの熱電子による電子線は、エネルギー分解能解析によるピークの半値幅が5 eVであり、ショットキー(Schottky)接合型電子源からの電子線は、エネルギー分解能解析によるピークの半値幅が0.6 eVであった。 As shown in FIG. 6(b), it was confirmed that the c-axis distribution range of each ZnO crystal in the aggregated particles became narrower when each electron beam was irradiated with an acceleration energy of 95 keV to 115 keV. In particular, when irradiated with a field emission type electron beam at an acceleration energy of 95 keV to 115 keV, the c-axis distribution range of each ZnO crystal is the narrowest when θ is 10° or less, and the c-axis distribution range is the narrowest. It was confirmed that the direction was aligned with the superaxial direction of the aggregated particles. As shown in Figure 6(c), the field emission type electron beam has the highest half-width of the peak according to energy resolution analysis of 70 meV, which is the highest energy resolution. It can be said that the c-axes of are likely to be aligned in the long axis direction. Note that the electron beam from thermionic electrons from a tungsten wire has a peak half-width of 5 eV according to energy resolution analysis, and the electron beam from a Schottky junction electron source has a peak half-width of 5 eV according to energy resolution analysis. was 0.6 eV.

電界電子放出型電子線を、110 keVの加速エネルギーで照射して形成されたZnO薄膜に対して、キャリア密度、ホール移動度(Hall mobility)、抵抗値、および、550 nmの波長の光の透過度を測定した。その結果、キャリア密度は 1.8×1018 cm-3、ホール移動度は 158.6 cm2/Vs、抵抗値は 8.6×10-4 Ωcm、光の透過度は 78%であった。 Carrier density, Hall mobility, resistance value, and transmission of light at a wavelength of 550 nm for a ZnO thin film formed by irradiating a field emission type electron beam with an acceleration energy of 110 keV. The degree of As a result, the carrier density was 1.8×10 18 cm -3 , the hole mobility was 158.6 cm 2 /Vs, the resistance was 8.6×10 -4 Ωcm, and the light transmittance was 78%.

10 ZnO薄膜の製造装置
11 高結晶質の単層カーボンナノチューブ(hc-SWCNTs)
12 基材
13 カソード
14 ZnOナノ粒子
15 ITO膜
16 ゲート電極
17 加速電極
10 ZnO thin film production equipment 11 Highly crystalline single-walled carbon nanotubes (hc-SWCNTs)
12 Base material 13 Cathode 14 ZnO nanoparticles 15 ITO film 16 Gate electrode 17 Accelerating electrode

Claims (10)

基材の表面にZnO粒子を層状に配置し、前記ZnO粒子に対して、電子分光法によるピークの半値幅が300meV以下の電子線を照射することにより、ZnO薄膜を形成することを特徴とするZnO薄膜の製造方法。 A ZnO thin film is formed by arranging ZnO particles in a layered manner on the surface of a base material, and irradiating the ZnO particles with an electron beam having a peak half width of 300 meV or less by electron spectroscopy. A method for manufacturing a ZnO thin film. 前記電子線は、電子分光法によるピークの半値幅が100meV以下であることを特徴とする請求項1記載のZnO薄膜の製造方法。 2. The method of manufacturing a ZnO thin film according to claim 1, wherein the electron beam has a peak half width of 100 meV or less as determined by electron spectroscopy. 前記電子線は、電界電子放出(Field Emission)により放出された電子から成ることを特徴とする請求項1または2記載のZnO薄膜の製造方法。 3. The method of manufacturing a ZnO thin film according to claim 1, wherein the electron beam is composed of electrons emitted by field emission. 前記電子線を95kV~115kVで加速して、前記ZnO粒子に照射することを特徴とする請求項1乃至3のいずれか1項に記載のZnO薄膜の製造方法。 4. The method for manufacturing a ZnO thin film according to claim 1, wherein the electron beam is accelerated at 95 kV to 115 kV and irradiated onto the ZnO particles. 請求項1乃至4のいずれか1項に記載のZnO薄膜の製造方法を利用した透明電極の製造方法であって、
光透過性の樹脂から成る前記基材の表面に、電極材として前記ZnO薄膜を形成することを
特徴とする透明電極の製造方法。
A method for manufacturing a transparent electrode using the method for manufacturing a ZnO thin film according to any one of claims 1 to 4, comprising:
A method for manufacturing a transparent electrode, comprising forming the ZnO thin film as an electrode material on the surface of the base material made of a light-transmitting resin.
前記基材はフレキシブルであることを特徴とする請求項5記載の透明電極の製造方法。 6. The method of manufacturing a transparent electrode according to claim 5, wherein the base material is flexible. 基材の表面に形成されたZnO薄膜であって、
ZnO粒子が繋がった概ね楕円体状の凝集粒子を有し、前記凝集粒子中のZnO結晶のc軸の方向が、所定の軸に対して30°以下の範囲内に揃っており、
ホール移動度(Hall mobility)が150cm /Vs以上であることを
特徴とするZnO薄膜。
A ZnO thin film formed on the surface of a base material,
It has a generally ellipsoidal agglomerated particle in which ZnO particles are connected, and the direction of the c-axis of the ZnO crystal in the agglomerated particle is aligned within a range of 30° or less with respect to a predetermined axis,
A ZnO thin film characterized by a Hall mobility of 150 cm 2 /Vs or more .
前記凝集粒子は、概ね長軸を中心軸とした回転楕円体状を成し、前記c軸の方向が前記長軸に対して30°以下の範囲内に揃っていることを特徴とする請求項記載のZnO薄膜。 The aggregated particles generally have a spheroidal shape with the major axis as the central axis, and the c-axes are aligned within a range of 30° or less with respect to the major axis. 7. The ZnO thin film described in 7 . 電極材としての請求項7または8に記載のZnO薄膜と、
光透過性の樹脂から成る前記基材とを、
有することを特徴とする透明電極。
The ZnO thin film according to claim 7 or 8 as an electrode material,
and the base material made of a light-transmitting resin,
A transparent electrode comprising:
前記基材はフレキシブルであることを特徴とする請求項記載の透明電極。
10. The transparent electrode according to claim 9 , wherein the base material is flexible.
JP2019228641A 2019-12-18 2019-12-18 Method for manufacturing ZnO thin film, method for manufacturing transparent electrode, ZnO thin film, and transparent electrode Active JP7452812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019228641A JP7452812B2 (en) 2019-12-18 2019-12-18 Method for manufacturing ZnO thin film, method for manufacturing transparent electrode, ZnO thin film, and transparent electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019228641A JP7452812B2 (en) 2019-12-18 2019-12-18 Method for manufacturing ZnO thin film, method for manufacturing transparent electrode, ZnO thin film, and transparent electrode

Publications (2)

Publication Number Publication Date
JP2021097175A JP2021097175A (en) 2021-06-24
JP7452812B2 true JP7452812B2 (en) 2024-03-19

Family

ID=76432245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019228641A Active JP7452812B2 (en) 2019-12-18 2019-12-18 Method for manufacturing ZnO thin film, method for manufacturing transparent electrode, ZnO thin film, and transparent electrode

Country Status (1)

Country Link
JP (1) JP7452812B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055850A (en) 2005-08-24 2007-03-08 Stanley Electric Co Ltd MANUFACTURING METHOD OF ZnO COMPOUND SEMICONDUCTOR CRYSTAL AND ZnO COMPOUND SEMICONDUCTOR SUBSTRATE
JP2009057605A (en) 2007-08-31 2009-03-19 Hitachi Ltd Zinc oxide thin film, transparent conductive film using it, and indicating element
JP2013191520A (en) 2012-03-15 2013-09-26 Toppan Printing Co Ltd Conductive film and method of manufacturing the same, laminate, electronic device, and touch panel
JP2016505476A (en) 2012-10-29 2016-02-25 キング アブドラ ユニバーシティ オブ サイエンス アンド テクノロジー Nanometer-sized structures grown by pulsed laser deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055850A (en) 2005-08-24 2007-03-08 Stanley Electric Co Ltd MANUFACTURING METHOD OF ZnO COMPOUND SEMICONDUCTOR CRYSTAL AND ZnO COMPOUND SEMICONDUCTOR SUBSTRATE
JP2009057605A (en) 2007-08-31 2009-03-19 Hitachi Ltd Zinc oxide thin film, transparent conductive film using it, and indicating element
JP2013191520A (en) 2012-03-15 2013-09-26 Toppan Printing Co Ltd Conductive film and method of manufacturing the same, laminate, electronic device, and touch panel
JP2016505476A (en) 2012-10-29 2016-02-25 キング アブドラ ユニバーシティ オブ サイエンス アンド テクノロジー Nanometer-sized structures grown by pulsed laser deposition

Also Published As

Publication number Publication date
JP2021097175A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
Ma et al. Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange
Li et al. Highly electron transparent graphene for field emission triode gates
Zhang et al. Structural phase transition effect on resistive switching behavior of MoS2‐polyvinylpyrrolidone nanocomposites films for flexible memory devices
Patra et al. Field emission applications of graphene-analogous two-dimensional materials: recent developments and future perspectives
Wu et al. Unique visible-light-assisted field emission of tetrapod-shaped ZnO/reduced graphene-oxide core/coating nanocomposites
Semet et al. Field emission behavior of vertically aligned ZnO nanowire planar cathodes
Bandurin et al. Field emission spectroscopy evidence for dual-barrier electron tunnelling in nanographite
US9099272B2 (en) Field emission devices and methods for making the same
Karmakar et al. Optimal electron irradiation as a tool for functionalization of MoS2: Theoretical and experimental investigation
Li et al. Improved uniformity in resistive switching behaviors based on PMMA films with embedded carbon quantum dots
Shen et al. Highly conductive vertically aligned molybdenum nanowalls and their field emission property
Suryawanshi et al. Low frequency noise and photo-enhanced field emission from ultrathin PbBi 2 Se 4 nanosheets
JP7452812B2 (en) Method for manufacturing ZnO thin film, method for manufacturing transparent electrode, ZnO thin film, and transparent electrode
Chen et al. Fabrication and properties of Ag-nanoparticles embedded amorphous carbon nanowire/CNT heterostructures
Dong et al. Effect of fluorine ion irradiation on the properties of monolayer molybdenum disulfide
Abhirami et al. Effects of charged particle irradiation on the transport properties of bismuth chalcogenide topological insulators: a brief review
Sarker et al. Enhancement in field emission current density of Ni nanoparticles embedded in thin silica matrix by swift heavy ion irradiation
Late et al. Arc plasma synthesized LaB 6 nanocrystallite film on various substrates as a field emitter
Qureshi et al. Hierarchical MoS 2-Based Onion-Flower-like Nanostructures with and without Seedpods via Hydrothermal Route Exhibiting Low Turn-on Field Emission
Suryawanshi et al. Pulsed laser-deposited nanocrystalline GdB 6 thin films on W and Re as field emitters
Murakami et al. Observation of fringelike electron-emission pattern in field emission from Pt field emitter fabricated by electron-beam-induced deposition
Mistari et al. Synthesis, physico-chemical characterization and field emission behaviour of 3D chrysanthemum like pristine ReS2, and ReS2-rGO nanocomposite
Shimoi et al. Nonthermal and selective crystal bridging of ZnO grains by irradiation with electron beam as nonequilibrium reaction field
Zhbanov et al. Carbon nanotube field emitters
KR20200076643A (en) Tungsten doped grapheneoxide, manufacturing method thereof and electron emitter including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191219

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240228

R150 Certificate of patent or registration of utility model

Ref document number: 7452812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150