JP7452796B2 - Method for producing antifreeze agent derived from plant materials - Google Patents

Method for producing antifreeze agent derived from plant materials Download PDF

Info

Publication number
JP7452796B2
JP7452796B2 JP2020089284A JP2020089284A JP7452796B2 JP 7452796 B2 JP7452796 B2 JP 7452796B2 JP 2020089284 A JP2020089284 A JP 2020089284A JP 2020089284 A JP2020089284 A JP 2020089284A JP 7452796 B2 JP7452796 B2 JP 7452796B2
Authority
JP
Japan
Prior art keywords
acid
antifreeze agent
producing
plant materials
agent derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020089284A
Other languages
Japanese (ja)
Other versions
JP2021183671A (en
Inventor
芳久 清水
正勝 東
優 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Central Nippon Highway Engineering Nagoya Co Ltd
Original Assignee
Kyoto University
Central Nippon Highway Engineering Nagoya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Central Nippon Highway Engineering Nagoya Co Ltd filed Critical Kyoto University
Priority to JP2020089284A priority Critical patent/JP7452796B2/en
Publication of JP2021183671A publication Critical patent/JP2021183671A/en
Application granted granted Critical
Publication of JP7452796B2 publication Critical patent/JP7452796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、植物原料由来の凍結防止剤の製造方法に関するものである。 The present invention relates to a method for producing an antifreeze agent derived from plant materials.

冬季における道路の凍結を防止するために道路に散布される凍結防止剤として、従来から塩化ナトリウム、塩化カルシウム等の無機塩化物が大量に使用されている。しかしこれらの無機塩化物からなる凍結防止剤については、環境への二次的影響が指摘されている。具体的には、河川などの水質への影響、植物や農地への影響、周辺の鋼構造物や車両の金属腐食等である。特に高速道路や道路橋梁においては、凍結防止剤の塩化物イオンがコンクリートの内部に浸透して鉄筋を保護している不動態被膜を破壊し、鉄筋を錆びさせるのみならず、コンクリートにひび割れを生じさせ、コンクリートの剥離、剥落等の危険な状態を招くおそれがある。 BACKGROUND ART Large amounts of inorganic chlorides such as sodium chloride and calcium chloride have been used as antifreeze agents sprayed on roads to prevent roads from freezing in winter. However, it has been pointed out that these antifreeze agents made of inorganic chlorides have secondary effects on the environment. Specifically, these include impacts on water quality in rivers and other areas, impacts on plants and farmland, and metal corrosion of surrounding steel structures and vehicles. Particularly on highways and road bridges, chloride ions from antifreeze agents penetrate into the concrete and destroy the passive film that protects the reinforcing bars, causing not only rust but also cracks in the concrete. This may lead to dangerous conditions such as spalling or spalling of the concrete.

この問題を解決するため、塩化物イオンを避けた酢酸カルシウム・マグネシウム、酢酸ナトリウム等の有機酸系凍結防止剤が製造されている。しかし従来の有機酸系の凍結防止剤は無機塩化物系の凍結防止剤に比較して生産コストが数倍となるため、経済的観点から部分的な散布にしか使用することができない。 To solve this problem, organic acid-based antifreeze agents such as calcium/magnesium acetate and sodium acetate that avoid chloride ions have been produced. However, since the production cost of conventional organic acid-based antifreeze agents is several times higher than that of inorganic chloride-based antifreeze agents, they can only be used for partial spraying from an economical point of view.

一方、木材の伐採やその加工に伴って散材、廃材などの木質系廃棄物が大量に発生しており、その処分に困っている状況がある。そこでこれらの木質系廃材や稲わらなどの植物原料を用いて凍結防止剤を製造する試みがなされている。 On the other hand, large amounts of wood-based waste such as scattered wood and waste wood are generated as a result of logging and processing of wood, and there are situations in which it is difficult to dispose of this waste. Therefore, attempts have been made to produce antifreeze agents using these wood waste materials and plant materials such as rice straw.

例えば特許文献1には、枯れた松材を粉砕して熱風乾燥し、乾留により発生させた木ガスから木酢液を回収し、カルシウムと反応させて凍結防止剤を製造する方法が提案されている。また特許文献2には、枯れた松材のセルロースを希硫酸で熱水処理し、中和したうえ発酵処理して得られた有機酸から凍結防止剤を製造する方法が提案されている。しかしこれらの方法は加熱処理や薬剤を必要とすることもあって、やはり凍結防止剤の製造コストが高くなるという問題を持っていた。 For example, Patent Document 1 proposes a method of producing an antifreeze agent by pulverizing dead pine wood, drying it with hot air, recovering wood vinegar from the wood gas generated by carbonization, and reacting it with calcium. . Further, Patent Document 2 proposes a method of producing an antifreeze agent from an organic acid obtained by subjecting cellulose of dead pine wood to hot water treatment with dilute sulfuric acid, neutralizing it, and then fermenting it. However, these methods also require heat treatment and chemicals, and thus have the problem of increasing the production cost of the antifreeze agent.

特開2010-155913号公報Japanese Patent Application Publication No. 2010-155913 特開2011-205934号公報JP2011-205934A

従って本発明の目的は上記した従来の問題点を解決して、木質系廃材などの安価な植物原料を用いて、有機酸系凍結防止剤を低コストで製造することができる新規な技術を提供することである。 Therefore, the purpose of the present invention is to solve the above-mentioned conventional problems and provide a new technology that can produce an organic acid antifreeze agent at low cost using inexpensive plant materials such as wood waste. It is to be.

上記の課題を解決するためになされた本発明の植物原料由来の凍結防止剤の製造方法は、植物原料に含まれるリグニンなどの難分解性有機物を白色腐朽菌により好気性分解して低分子化したうえ、これをアルカリ条件下で酸生成菌により嫌気性処理して有機酸を生成させ、この嫌気性処理液の上澄み液に含まれる有機酸を溶媒抽出により濃縮し、凍結防止剤とすることを特徴とするものである。 In order to solve the above-mentioned problems, the method for producing an antifreeze agent derived from plant materials of the present invention is to aerobically decompose refractory organic substances such as lignin contained in plant materials using white rot fungi to reduce the molecular weight. Then, this is anaerobically treated with acid-producing bacteria under alkaline conditions to generate organic acids, and the organic acids contained in the supernatant liquid of this anaerobically treated liquid are concentrated by solvent extraction and used as an antifreeze agent. It is characterized by:

なお、植物原料は木質系廃材又は稲わらなどとすることができる。また、植物原料をマイクロ波または高温高圧で前処理したうえで、白色腐朽菌により好気性分解することにより、分解効率を高めることもできる。また、前記有機酸が、酪酸、プロピオン酸、酢酸などの低級脂肪酸を含有するものであることが好ましい。 Note that the plant material may be wood waste, rice straw, or the like. Furthermore, the decomposition efficiency can be increased by pretreating the plant material with microwaves or high temperature and high pressure, and then subjecting it to aerobic decomposition using white rot fungi. Moreover, it is preferable that the organic acid contains lower fatty acids such as butyric acid, propionic acid, and acetic acid.

この方法で製造された植物原料由来の凍結防止剤は塩分を含有せず、有機酸を主成分とするものであるため、従来のように環境への二次的影響が生じたり、鉄筋を錆びさせたり、コンクリートにひび割れを生じさせたりすることもない。 The plant-based antifreeze produced by this method does not contain salt and is mainly composed of organic acids, so it does not cause secondary effects on the environment or rust the reinforcing steel. It will not cause any damage or cause cracks in the concrete.

本発明の製造工程を示すブロック図である。FIG. 2 is a block diagram showing the manufacturing process of the present invention. 実施例におけるリグニン量のグラフである。It is a graph of the amount of lignin in Examples. 実施例における酸溶解性リグニン量のグラフである。It is a graph of the amount of acid-soluble lignin in Examples. 嫌気性処理における有機酸生成量のグラフである。It is a graph of the organic acid production amount in anaerobic treatment.

以下に本発明の好ましい実施形態を示す。
図1は本発明の製造工程を示すブロック図である。本発明では凍結防止剤の原料として、植物原料を使用する。植物原料の種類は特に限定されるものではないが、散材、廃材などの木質系廃棄物のほか、稲わらなども用いることができる。これらは安価、または無料で入手できるうえに、木質系廃棄物を用いれば処分に困っていた廃棄物の処理に貢献することもできる。原料となる植物原料は反応を促進するために、微粉砕しておくことが好ましい。
Preferred embodiments of the present invention are shown below.
FIG. 1 is a block diagram showing the manufacturing process of the present invention. In the present invention, plant raw materials are used as raw materials for the antifreeze agent. The type of plant material is not particularly limited, but in addition to wood waste such as scattered wood and waste wood, rice straw and the like can also be used. Not only can these be obtained cheaply or for free, but using wood-based waste can also contribute to the treatment of waste that has been difficult to dispose of. It is preferable that the plant material used as a raw material is pulverized in order to promote the reaction.

木材は主要成分であるセルロース、ヘミセルロース、難分解性のリグニンを含むものである。本発明では木材腐朽菌の一種である白色腐朽菌を用いてこれらを好気性条件下で分解し、低分子化して多糖類とする。白色腐朽菌は木材に含まれる難分解性のリグニンを分解する能力を持ち、リグニンが分解された後に残留する、セルロース、ヘミセルロースの色である白色に変色させることから、白色腐朽菌と呼ばれる。本発明では例えばウスキイロカワタケ(phanerochaete sordida)を利用することができるが、白色腐朽菌の種類はこれに限定されるものではない。 Wood contains the main components cellulose, hemicellulose, and persistent lignin. In the present invention, these are decomposed under aerobic conditions using white rot fungi, which is a type of wood-decaying fungi, and are converted into low-molecular-weight polysaccharides. White-rot fungi have the ability to decompose the persistent lignin contained in wood, and are called white-rot fungi because they change the color to white, which is the color of cellulose and hemicellulose that remain after the lignin is decomposed. In the present invention, for example, phanerochaete sordida can be used, but the type of white rot fungus is not limited thereto.

寒天あるいは液体培地で予め白色腐朽菌を培養したうえ、上記した植物原料の粉砕物を添加し、室温の好気性条件下に置けば、植物原料に含まれるリグニンを白色腐朽菌が好気性分解して低分子化し、多糖類が生成される。白色腐朽菌を培養するための培地には、リン酸塩などの栄養塩やグルコースなどの易分解性有機物を添加して菌糸の成長を促進することができる。好気性分解を進行させる培地としては水を加えた液体培地を用いることにより、リグニン分解時間を短縮できることが判明した。好ましい含水率は50~90wt%程度である。 If white-rot fungi are cultured in advance in agar or liquid medium, and the above-mentioned pulverized plant material is added and placed under aerobic conditions at room temperature, the white-rot fungi will aerobically decompose the lignin contained in the plant material. The molecules are reduced and polysaccharides are produced. Nutrient salts such as phosphates and easily decomposable organic substances such as glucose can be added to the medium for culturing white rot fungi to promote the growth of hyphae. It was found that the lignin decomposition time could be shortened by using a liquid medium to which water was added as a medium for aerobic decomposition. The preferred moisture content is about 50 to 90 wt%.

本発明者の実験によれば、2週間で木材中のリグニンの約50wt%が分解された。このように白色腐朽菌によるリグニンの分解にはある程度の時間を要するが、粉砕した植物原料をマイクロ波による前処理を行うことにより、リグニン分解を促進することができる。このほか、粉砕された木質原料に例えば130℃、200kPaの高温高圧による処理を施せば、さらにリグニン分解を促進することができる。 According to the inventor's experiments, about 50 wt% of the lignin in wood was decomposed in two weeks. Although it takes a certain amount of time for lignin to be decomposed by white rot fungi, lignin decomposition can be promoted by pre-treating the crushed plant material using microwaves. In addition, lignin decomposition can be further promoted by subjecting the pulverized wood material to a high temperature and high pressure treatment of, for example, 130° C. and 200 kPa.

次に、多糖類を含む好気性分解液を嫌気性処理リアクターに送り込み、酸生成菌などの嫌気性菌により嫌気性処理を行うことにより有機酸を生成させる。酸生成菌は汚泥中から採取し、嫌気性処理リアクター内において数日間馴致しておく。実験の結果、pHが比較的高い領域において有機酸の生成量が多くなることが確認されたので、pHを7.3~7.9のアルカリ側に調整しておくことが好ましい。pHが8を超えると有機酸の生成量が低下する傾向を示す。 Next, the aerobic decomposition solution containing polysaccharides is sent to an anaerobic treatment reactor, and anaerobic treatment is performed using anaerobic bacteria such as acid-producing bacteria to generate organic acids. Acid-producing bacteria are collected from sludge and allowed to acclimate in an anaerobic treatment reactor for several days. As a result of experiments, it was confirmed that the amount of organic acid produced increases in a relatively high pH region, so it is preferable to adjust the pH to an alkaline range of 7.3 to 7.9. When the pH exceeds 8, the amount of organic acid produced tends to decrease.

この嫌気性処理はバッチ処理であっても、連続処理であってもよい。連続処理の場合には、例えばスパイラル状の撹拌手段により嫌気性処理リアクターの槽内液を低速で出口側に向けて徐々に移動させながら、嫌気性処理を進行させることができる。この嫌気性処理により、処理液中に酢酸、プロピオン酸、酢酸などの低級脂肪酸を主とする水溶性の有機酸が生成される。 This anaerobic treatment may be a batch process or a continuous process. In the case of continuous treatment, the anaerobic treatment can be progressed while gradually moving the liquid in the tank of the anaerobic treatment reactor toward the outlet side at low speed using, for example, a spiral stirring means. This anaerobic treatment produces water-soluble organic acids, mainly lower fatty acids such as acetic acid, propionic acid, and acetic acid, in the treatment liquid.

嫌気性処理リアクターには嫌気性汚泥とその上澄み液が発生するが、上記した有機酸は上澄み液中に含まれる。嫌気性処理装置から上澄み液を抽出することによって、処理槽内液に含まれる有機酸の濃度を10倍程度に濃縮することができる。なお、嫌気性汚泥は酸生成菌などの嫌気性菌を多量に含有するため沈降分離して再使用できるが、必要に応じて余剰汚泥は嫌気性処理リアクターから取り除けばよい。 Anaerobic sludge and its supernatant are generated in the anaerobic treatment reactor, and the above-mentioned organic acids are contained in the supernatant. By extracting the supernatant liquid from the anaerobic treatment device, the concentration of the organic acid contained in the liquid in the treatment tank can be concentrated to about 10 times. Note that since anaerobic sludge contains a large amount of anaerobic bacteria such as acid-producing bacteria, it can be reused by sedimentation separation, but if necessary, excess sludge may be removed from the anaerobic treatment reactor.

嫌気性処理リアクターから取り出される上澄み液は黒色の液体であるうえ有機酸の濃度が低いため、そのままでは凍結防止剤として道路に散布することはできない。そこでさらに溶媒抽出により、上澄み液から水溶性の有機酸を抽出する。溶媒としては、例えばトリブチルリン酸を使用することができる。この結果、酢酸、プロピオン酸、酪酸などの有機酸をさらに10倍程度濃縮することができる。また黒色の色素は抽出されないため無色となり、そのまま道路に散布することができる凍結防止剤が得られる。 The supernatant liquid taken out from the anaerobic treatment reactor is a black liquid and has a low concentration of organic acids, so it cannot be sprayed on roads as an antifreeze agent. Therefore, a water-soluble organic acid is further extracted from the supernatant liquid by solvent extraction. As a solvent, for example, tributyl phosphoric acid can be used. As a result, organic acids such as acetic acid, propionic acid, and butyric acid can be further concentrated by about 10 times. Furthermore, since the black pigment is not extracted, the antifreeze agent becomes colorless and can be sprayed directly onto roads.

このようにして得られた植物原料由来の凍結防止剤は塩分を含有せず、有機酸を主成分とするものである。その凍結効果を確認したところ、本発明の凍結防止剤を用いることにより、4℃における融氷速度が水道水に比較して8%速くなり、また凍結時間は水道水の6倍となることが確認された。 The antifreeze agent derived from plant materials thus obtained does not contain salt and has an organic acid as its main component. When the freezing effect was confirmed, it was found that by using the antifreeze of the present invention, the ice melting rate at 4°C was 8% faster than that of tap water, and the freezing time was six times longer than that of tap water. confirmed.

以上に説明した通り、本発明によれば植物原料を白色腐朽菌による好気性処理したうえで酸生成菌による嫌気性処理を行うことにより有機酸を生成することができ、塩分を含有しない植物原料由来の凍結防止剤を安価に製造することができる。以下に本発明の実施例を示す。 As explained above, according to the present invention, organic acids can be produced by subjecting plant materials to aerobic treatment using white-rot bacteria and then anaerobic treatment using acid-producing bacteria, and the plant materials do not contain salt. It is possible to produce anti-freezing agents derived from these materials at low cost. Examples of the present invention are shown below.

菌類キノコ遺伝資源研究センターから分譲された白色腐朽菌(ウスキイロカワタケ、phanerochaete sordida)を(ポテト・デキストロース・寒天)培地に接種して7日間培養した。 A white rot fungus (phanerochaete sordida) provided by the Fungi and Mushroom Genetic Resources Research Center was inoculated into a (potato/dextrose/agar) medium and cultured for 7 days.

杉と檜の混合物である木質系散材を汎用粉砕機を用いて粉砕して粒子径を1mm以下に調整し、三角フラスコに入れ、通気性の蓋で密閉した。これをオートクレーブ処理(120℃、30分)して滅菌したうえ、超純水で散材木粉の含水率を50wt%に調整した。上記の培地から直径5mmのコルクボーラーで白色腐朽菌を培地とともに打ち抜き、得られた円板を散材木粉の入った三角フラスコの中央部に1枚ずつ接種した。コントロールサンプルとして散材木粉のみの三角フラスコを作成した。双方を25℃のインキュベータ内にて好気性条件下で2週間培養した。 Wood powder, which is a mixture of cedar and cypress, was ground using a general-purpose grinder to adjust the particle size to 1 mm or less, placed in an Erlenmeyer flask, and sealed with a breathable lid. This was sterilized by autoclaving (120° C., 30 minutes), and the moisture content of the scattered wood powder was adjusted to 50 wt% with ultrapure water. White rot fungi were punched out from the above medium together with the medium using a cork borer with a diameter of 5 mm, and the resulting disks were inoculated one by one into the center of an Erlenmeyer flask containing scattered wood powder. As a control sample, an Erlenmeyer flask containing only scattered wood powder was prepared. Both were cultured for 2 weeks under aerobic conditions in an incubator at 25°C.

その後、散材木粉のリグニン量を測定した。リグニン量の測定手順は次の通りである。 Thereafter, the amount of lignin in the scattered wood flour was measured. The procedure for measuring the amount of lignin is as follows.

先ず、木粉サンプル1gを入れた円筒形ろ紙をエタノールとベンゼンの混合有機溶媒で、6時間ソックスレー抽出を行い、有機溶媒可溶分を抽出し、混合有機溶媒を除去した後に円筒形ろ紙とともに秤量して有機溶媒可用分を測定した。 First, a cylindrical filter paper containing 1 g of wood powder sample was subjected to Soxhlet extraction for 6 hours using a mixed organic solvent of ethanol and benzene to extract the organic solvent soluble content, and after removing the mixed organic solvent, it was weighed together with the cylindrical filter paper. The amount of organic solvent available was measured.

上述の有機溶媒可溶分を抽出した後の脱脂木粉約0.3gを氷上にて4.5mlの72%H2SO4と合わせ、30℃で1時間インキュベーションした。次に蒸留水でH2SO4の濃度を3%にまで薄め、オートクレーブで30分間加熱処理した後、ろ過吸引した。残渣を秤量してリグニン量とした。またこのろ液0.3mLに2.7mLの3%H2SO4を加えて10倍希釈し、分光光度計を用いて205~210nm近傍の吸光度を測定し、酸溶解性リグニン量を求めた。 Approximately 0.3 g of the defatted wood flour from which the organic solvent soluble content had been extracted was combined with 4.5 ml of 72% H 2 SO 4 on ice and incubated at 30° C. for 1 hour. Next, the concentration of H 2 SO 4 was diluted to 3% with distilled water, heated in an autoclave for 30 minutes, and filtered and suctioned. The residue was weighed to determine the amount of lignin. Further, 2.7 mL of 3% H 2 SO 4 was added to 0.3 mL of this filtrate to dilute it 10 times, and the absorbance in the vicinity of 205 to 210 nm was measured using a spectrophotometer to determine the amount of acid-soluble lignin.

その結果は、図2、図3に示すとおりであった。図2はリグニン量を示し、コントロールサンプルでは14日経過後もリグニン量は変化しなかったが、白色腐朽菌を接種したサンプルではリグニン量が顕著に低下し、分解率は約50%であった。一方、図3に示す酸溶解性リグニンは14日経過後に少量ながら増加した。これにより、白色腐朽菌の存在により難分解性でしかも高分子のリグニンが低分子の有機物である酸溶解性リグニンに分解されていることが確認された。 The results were as shown in FIGS. 2 and 3. Figure 2 shows the amount of lignin. In the control sample, the amount of lignin did not change after 14 days, but in the sample inoculated with white rot fungi, the amount of lignin decreased significantly, and the decomposition rate was about 50%. On the other hand, the acid-soluble lignin shown in FIG. 3 increased slightly after 14 days. This confirmed that the presence of white-rot fungi decomposed the lignin, which is difficult to decompose and has a high molecular weight, into acid-soluble lignin, which is a low-molecular organic substance.

次に、嫌気性処理リアクターに馴致した嫌気性汚泥を採取し、好気性処理された散材木粉含有液を投入して室温で嫌気性処理を行った。有機酸生成量を毎日測定した結果、図4の通りの結果が得られた。酢酸、プロピオン酸、イソ酪酸、酪酸が生成されたことを示している。 Next, the anaerobic sludge that had adapted to the anaerobic treatment reactor was collected, and a solution containing aerobically treated scattered wood flour was added to perform anaerobic treatment at room temperature. As a result of measuring the amount of organic acid produced every day, the results shown in FIG. 4 were obtained. This shows that acetic acid, propionic acid, isobutyric acid, and butyric acid were produced.

この嫌気性処理リアクターから上澄み液を抽出し、トリブチルリン酸による溶媒抽出を行った。得られた凍結防止剤は無色であり塩分を含有しないものである。凍結防止効果を確認したところ、前記した通りこの凍結防止剤を添加することにより4℃における融氷速度が水道水に比較して8%速くなり、また凍結時間は水道水の6倍となった。これにより本発明の凍結防止剤の融雪効果、凍結防止効果が確認された。 A supernatant liquid was extracted from this anaerobic treatment reactor and subjected to solvent extraction with tributyl phosphoric acid. The obtained antifreeze is colorless and does not contain salt. When we confirmed the antifreeze effect, as mentioned above, by adding this antifreeze, the ice melting rate at 4℃ was 8% faster than that of tap water, and the freezing time was six times longer than that of tap water. . This confirmed the snow melting effect and antifreeze effect of the antifreeze agent of the present invention.

Claims (4)

植物原料に含まれるリグニンなどの難分解性有機物を白色腐朽菌により好気性分解して低分子化したうえ、これをアルカリ条件下で酸生成菌により嫌気性処理して有機酸を生成させ、この嫌気性処理液の上澄み液に含まれる有機酸を溶媒抽出により濃縮し、凍結防止剤とすることを特徴とする植物原料由来の凍結防止剤の製造方法。 Recalcitrant organic substances such as lignin contained in plant materials are decomposed aerobically by white-rot bacteria to reduce molecular weight, and then treated anaerobically by acid-producing bacteria under alkaline conditions to produce organic acids. A method for producing an antifreeze agent derived from plant materials, which comprises concentrating an organic acid contained in a supernatant liquid of an anaerobic treatment liquid by solvent extraction to obtain an antifreeze agent. 前記植物原料が、木質系廃材又は稲わらなどであることを特徴とする請求項1に記載の植物原料由来の凍結防止剤の製造方法。 The method for producing an antifreeze agent derived from a plant material according to claim 1, wherein the plant material is wood waste, rice straw, or the like. 前記植物原料をマイクロ波または高温高圧で前処理したうえで、白色腐朽菌により好気性分解することを特徴とする請求項1又は2に記載の植物原料由来の凍結防止剤の製造方法。 3. The method for producing an antifreeze agent derived from plant materials according to claim 1, wherein the plant materials are pretreated with microwaves or high temperature and high pressure, and then aerobically decomposed by white rot fungi. 前記有機酸が、酪酸、プロピオン酸、酢酸などの低級脂肪酸を主とするものであることを特徴とする請求項1から3の何れかに記載の植物原料由来の凍結防止剤の製造方法。 4. The method for producing an antifreeze agent derived from plant materials according to any one of claims 1 to 3, wherein the organic acid is mainly a lower fatty acid such as butyric acid, propionic acid, or acetic acid.
JP2020089284A 2020-05-22 2020-05-22 Method for producing antifreeze agent derived from plant materials Active JP7452796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020089284A JP7452796B2 (en) 2020-05-22 2020-05-22 Method for producing antifreeze agent derived from plant materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020089284A JP7452796B2 (en) 2020-05-22 2020-05-22 Method for producing antifreeze agent derived from plant materials

Publications (2)

Publication Number Publication Date
JP2021183671A JP2021183671A (en) 2021-12-02
JP7452796B2 true JP7452796B2 (en) 2024-03-19

Family

ID=78767159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020089284A Active JP7452796B2 (en) 2020-05-22 2020-05-22 Method for producing antifreeze agent derived from plant materials

Country Status (1)

Country Link
JP (1) JP7452796B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048684A (en) 1999-08-10 2001-02-20 Gun Ei Chem Ind Co Ltd Crop nutrient supplement, and crop culture method for snow ladenarable land using this crop nutrient supplement
JP2007037469A (en) 2005-08-03 2007-02-15 Kyoto Univ White-rot fungus having lignocellulose-degrading activity, and utilization thereof
JP2008263862A (en) 2007-04-20 2008-11-06 National Agriculture & Food Research Organization Method for creating transformant of white-rot fungus and transformant obtained by the method
JP2011205934A (en) 2010-03-29 2011-10-20 Akita Prefectural Univ Method for producing organic acid, organic acid, biodegradable plastic, snow melting agent and recycle system
JP2012515549A (en) 2009-01-26 2012-07-12 キシレコ インコーポレイテッド Biomass processing method
CN105131984A (en) 2015-07-07 2015-12-09 大连民族大学 Continuous reproduction technology using biomass wastes and waste liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048684A (en) 1999-08-10 2001-02-20 Gun Ei Chem Ind Co Ltd Crop nutrient supplement, and crop culture method for snow ladenarable land using this crop nutrient supplement
JP2007037469A (en) 2005-08-03 2007-02-15 Kyoto Univ White-rot fungus having lignocellulose-degrading activity, and utilization thereof
JP2008263862A (en) 2007-04-20 2008-11-06 National Agriculture & Food Research Organization Method for creating transformant of white-rot fungus and transformant obtained by the method
JP2012515549A (en) 2009-01-26 2012-07-12 キシレコ インコーポレイテッド Biomass processing method
JP2011205934A (en) 2010-03-29 2011-10-20 Akita Prefectural Univ Method for producing organic acid, organic acid, biodegradable plastic, snow melting agent and recycle system
CN105131984A (en) 2015-07-07 2015-12-09 大连民族大学 Continuous reproduction technology using biomass wastes and waste liquid

Also Published As

Publication number Publication date
JP2021183671A (en) 2021-12-02

Similar Documents

Publication Publication Date Title
CN1283595C (en) High-temperature aerobic fermentation of organic refuse material
WO2014139360A1 (en) Humic acid-rich biologic soil conditioner made from alcohol waste liquid and sludge from sugar mill
CN112337033B (en) Harmless treatment method of abamectin slag, product and application of product as sandy soil modifier
CN105967436A (en) Method for biodegradation of organic phosphorus pesticide wastewater
CN109530414B (en) Method for restoring heavy metals in soil by utilizing compost humic acid
JP7452796B2 (en) Method for producing antifreeze agent derived from plant materials
Sanchez et al. Determination of the kinetic constants of anaerobic digestion of sugar-mill-mud waste (SMMW)
JP2011205934A (en) Method for producing organic acid, organic acid, biodegradable plastic, snow melting agent and recycle system
JP3694744B2 (en) Biogas resource recovery method
CN106906261A (en) A kind of method that utilization biofermentation extracts biochemical fulvic acid from black liquid
CN107568023A (en) A kind of method for preparing artificial soil using Bayer process red mud and cane mill's discarded object
CN109628499B (en) High-temperature hydrothermal method for improving biogas production from garden waste
CN114985433B (en) Method for soil full utilization of red mud
CN108341564B (en) Preparation of humus and method for repairing heavy metal polluted bottom mud by humus
US20150361004A1 (en) Fertilizer using crushed stone powder and manufacturing method thereof
CN105110589A (en) Deep dewatering method for municipal sludge
CN115053659A (en) Red mud yard in-situ matrix improvement and direct vegetation recovery method
JP4456461B2 (en) Method for reducing hexavalent chromium concentration
CN105693398A (en) Method for producing agricultural biological agent with natural latex separating liquid
CN102093091A (en) Method for producing fertilizer from paper-making black liquor
CN112808740B (en) Method for treating chromium slag by using plant extract
KR100489812B1 (en) Recovering method of humic acid from livestock manure waste using the chitosan as precipitation reagent
CN115055508B (en) Preparation of soil remediation material and application of soil remediation material in soil remediation of composite polluted farmland
JP7262456B2 (en) Method for producing sugar derived from biomass collected from guayule plant
JP2019017388A (en) Wood decomposition product containing fulvic acid, fulvic acid, and method of producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240227

R150 Certificate of patent or registration of utility model

Ref document number: 7452796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150