JP7452267B2 - Abrasive paper for preparing observation samples for mineral analysis and polishing method using the same - Google Patents

Abrasive paper for preparing observation samples for mineral analysis and polishing method using the same Download PDF

Info

Publication number
JP7452267B2
JP7452267B2 JP2020099400A JP2020099400A JP7452267B2 JP 7452267 B2 JP7452267 B2 JP 7452267B2 JP 2020099400 A JP2020099400 A JP 2020099400A JP 2020099400 A JP2020099400 A JP 2020099400A JP 7452267 B2 JP7452267 B2 JP 7452267B2
Authority
JP
Japan
Prior art keywords
polishing
abrasive paper
wax
abrasive
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020099400A
Other languages
Japanese (ja)
Other versions
JP2021193349A (en
Inventor
大典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020099400A priority Critical patent/JP7452267B2/en
Publication of JP2021193349A publication Critical patent/JP2021193349A/en
Application granted granted Critical
Publication of JP7452267B2 publication Critical patent/JP7452267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、鉱物分析用の観察試料を作製するための研磨紙及びこれを用いた研磨方法に関し、より詳しくは、鉱物分析装置(MLA)の分析対象となる鉱石が樹脂に埋包された埋包試料を研磨する研磨紙及びこれを用いて観察試料を作製する方法に関する。 The present invention relates to an abrasive paper for preparing an observation sample for mineral analysis and a polishing method using the same, and more specifically to an abrasive paper in which an ore to be analyzed by a mineral analyzer (MLA) is embedded in a resin. The present invention relates to an abrasive paper for polishing a package sample and a method for preparing an observation sample using the abrasive paper.

鉱山から採掘される鉱石は、銅、鉛、亜鉛、ニッケル等の金属の酸化物や硫化物等を含んだ鉱物が複数種類混在しており、該鉱石を原料とする金属製錬においては、該鉱石に対して破砕、選鉱、製錬、電解等の一連の処理を施すことで、対象となる有価金属を所定の品位まで段階的に高めることが行われている。上記の鉱石の処理においては、処理対象となる鉱石原料やある程度処理された中間物に含まれる鉱物の種類、含有量、粒度分布、単位鉱の存在割合、不用鉱物の存在割合等の情報を予め把握しておくことが好ましい。これにより、より効率のよい処理プロセスや処理条件を定めることができるので、製錬コストを抑えることが可能になる。 Ore extracted from mines contains multiple types of minerals containing oxides and sulfides of metals such as copper, lead, zinc, and nickel, and in metal smelting using these ores as raw materials, By subjecting ores to a series of treatments such as crushing, beneficiation, smelting, and electrolysis, the target valuable metals are gradually raised to a predetermined grade. In the processing of the above ores, information such as the type, content, particle size distribution, proportion of unit ores, proportion of unused minerals, etc. of minerals contained in the ore raw materials to be processed and intermediates that have been processed to some extent is collected in advance. It is preferable to know this. This makes it possible to determine more efficient treatment processes and treatment conditions, thereby making it possible to reduce smelting costs.

上記の鉱石原料や中間物の情報を予め把握する方法としては、サンプリングした鉱石試料に対して光学顕微鏡を用いて撮像し、その光学的性質の違いから鉱物種を同定したり面積比から定量分析を行なったりする方法や、走査型電子顕微鏡SEM及びエネルギー分散型X線分光分析装置EDSを用いる鉱物分析装置MLA(Mineral Liberation Analyzer)による分析が知られている。いずれの方法を採用する場合においても、分析対象となる鉱石試料を樹脂に包埋することで固結させた後、得られた埋包試料を鉱石試料を含む断面で平滑に研磨した観察試料が使用される。 A method to obtain information on the ore raw materials and intermediates in advance is to image the sampled ore sample using an optical microscope, identify the mineral species based on the difference in optical properties, and perform quantitative analysis based on the area ratio. There are known methods for conducting an analysis using a mineral analysis device MLA (Mineral Liberation Analyzer) using a scanning electron microscope SEM and an energy dispersive X-ray spectrometer EDS. In either method, an observation sample is obtained by embedding the ore sample to be analyzed in resin and solidifying it, and then polishing the resulting embedded sample to a smooth cross section that includes the ore sample. used.

上記の埋包試料の研磨には、湿式で研磨を行なう自動研磨装置が一般的に使用されている。この自動研磨装置は、例えばストルアス社製の回転式の研磨装置Tegramin-25のように、回転可能に設けられているターンテーブルに耐水研磨紙をセットすると共に、これに対向しながら回転するアーム部に埋包試料を取り付け、例えば砥粒サイズ5μm程度まで水を供給しながら研磨するものであり、その後必要に応じてバフ研磨装置や砥粒サイズ1μm程度のダイヤモンド粒子を使用して、いわゆる鏡面状態になるまで研磨することが行われる。 An automatic polishing device that performs wet polishing is generally used to polish the embedded sample. This automatic polishing device, such as the rotary polishing device Tegramin-25 manufactured by Struers, sets water-resistant abrasive paper on a turntable that is rotatable, and has an arm that rotates while facing the turntable. The embedded sample is attached to the surface and polished while supplying water to an abrasive grain size of approximately 5 μm. After that, if necessary, a buffing device or diamond particles with an abrasive grain size of approximately 1 μm are used to achieve a so-called mirror-like state. Polishing is performed until it becomes .

上記の湿式の研磨装置で大抵の鉱石試料を研磨することができるが、鉱石試料の中には水に弱い鉱物を含むものや、鉱石全体として脆い種類のものがあり、これらの鉱石試料を含む埋包試料は、上記の湿式の自動研磨装置で研磨するのは難しい。そこで、水に弱い鉱物を含む鉱石試料や脆い鉱石試料の場合は、手作業による乾式研磨が好適に行われている。すなわち、乾式研磨では研磨紙に水を供給することなく埋包試料を手で把持して研磨紙に擦り付けて研磨するので、水に弱い鉱物でも良好に研磨することができる。なお、水に弱い鉱石とは、鉱石中に水溶性成分を含むため、水と接触すると鉱石の一部が溶出し、これに伴い周辺の鉱物に脱落が生じやすい鉱石のことである。 Most ore samples can be polished with the above wet polishing equipment, but some ore samples include minerals that are sensitive to water, and some ore samples are brittle as a whole. It is difficult to polish embedded samples with the above-mentioned wet automatic polishing equipment. Therefore, in the case of ore samples containing water-resistant minerals or brittle ore samples, manual dry polishing is preferably performed. That is, in dry polishing, the embedded sample is held by hand and rubbed against the polishing paper to polish it without supplying water to the polishing paper, so even minerals that are sensitive to water can be polished well. Note that an ore that is weak in water refers to an ore that contains water-soluble components, so that when it comes into contact with water, a part of the ore is eluted, and surrounding minerals are likely to fall off accordingly.

また、手作業による乾式研磨では、埋包試料を手で押さえ付ける力を自在に調整することができるので、研磨面に加わる摩擦力を鉱石試料が破損しない程度に抑えることができる。ょって、脆い鉱石でも良好に研磨することができる。これに対して、上記の湿式の自動研磨機では、前述したようにターンテーブル上にセットした耐水研磨紙に対して埋包試料の観察面をアーム部で押し付けながら研磨するので、微妙な力加減ができず、また、回転数は調節できるものの毎分数十回転以上の速度で研磨することが普通であるため、脆い鉱石の場合は容易に破損して鉱物の一部又は全部が脱落してしまうことがあった。 In addition, in manual dry polishing, the force with which the embedded sample is pressed by hand can be freely adjusted, so the frictional force applied to the polished surface can be suppressed to a level that does not damage the ore sample. Therefore, even brittle ores can be polished well. On the other hand, with the above-mentioned wet-type automatic polishing machine, as mentioned above, the observation surface of the embedded sample is pressed against the water-resistant abrasive paper set on the turntable while being polished by the arm, so the slight adjustment of the force is required. Furthermore, although the rotation speed can be adjusted, it is common to polish at a speed of several tens of revolutions per minute or more, so brittle ores can easily break and some or all of the minerals can fall off. Sometimes I put it away.

上記の乾式研磨法に適した埋包試料の作製方法として、特許文献1には脆弱試料薄片を作製する技術が開示されている。具体的には、脆弱試料を樹脂により包埋固化して得た埋包試料を直方体形状に切断した後、少なくとも研磨面に直交する4面に岩石又は鉱物を貼り付けて研磨を行なうものであり、薄片表面であっても高度の平滑性を得ることができると記載されている。 As a method for preparing an embedded sample suitable for the above-mentioned dry polishing method, Patent Document 1 discloses a technique for preparing a fragile sample thin section. Specifically, the embedded sample obtained by embedding and solidifying a fragile sample in resin is cut into a rectangular parallelepiped shape, and then rocks or minerals are pasted on at least four sides perpendicular to the polished surface and polished. , it is stated that a high degree of smoothness can be obtained even on the surface of a thin piece.

特開2014-126546号公報Japanese Patent Application Publication No. 2014-126546

上記の特許文献1の技術は、埋包試料に対して、その観察面の平面性を保ちつつ且つ該埋包試料の厚さを判断しながら研磨を可能とする方法であるため、試料の厚さには特に制限がなく、且つ鏡面研磨までは要しないMLA用の観察試料の作製には過剰であった。また、特許文献1の埋包試料を用いても、手作業による乾式研磨の場合は観察試料の出来栄えが作業者の熟練度に左右されることが多かった。 The technique of Patent Document 1 mentioned above is a method that enables polishing of an embedded sample while maintaining the flatness of the observation surface and determining the thickness of the embedded sample. There is no particular limit to the amount of polishing, and it was excessive for producing an observation sample for MLA which does not require mirror polishing. Further, even when using the embedded sample of Patent Document 1, in the case of manual dry polishing, the quality of the observation sample often depended on the skill level of the operator.

よって、作業者の熟練度に左右されることがなく、比較的簡単にMLA等の鉱物分析用の観察試料作製する方法が求められていた。本発明は、このような状況に鑑みてなされたものであり、水に弱い鉱石試料や脆い鉱石試料であっても、作業員の熟練度に左右されることなく比較的簡単にMLA等の鉱石分析用の観察試料を作製できる研磨方法を提供することを目的としている。 Therefore, there has been a need for a method for relatively easily preparing observation samples for mineral analysis such as MLA without being affected by the skill level of the operator. The present invention was made in view of the above situation, and it is possible to relatively easily process ore samples such as MLA, regardless of the skill level of the worker, even if the ore sample is water-resistant or brittle. The purpose of this invention is to provide a polishing method that can produce observation samples for analysis.

上記目的を達成するため、本発明に係る鉱物分析用の観察試料の作製のための研磨方法は、樹脂に包埋された鉱石試料を手作業で乾式研磨する方法であって、砥粒が埋没しない程度に表面側にロウが塗布された研磨紙を使用して鉱石試料を研磨した後、ロウが塗布されていないより細かな砥粒サイズの研磨紙を使用して該鉱石試料を仕上げ研磨することを特徴としている。 In order to achieve the above object, the polishing method for preparing an observation sample for mineral analysis according to the present invention is a method of manually dry polishing an ore sample embedded in a resin, in which the abrasive grains are embedded. After polishing the ore sample using abrasive paper coated with wax on the surface side to the extent that no wax is applied, the ore sample is finally polished using abrasive paper with a finer abrasive grain size that is not coated with wax. It is characterized by

また、本発明の研磨紙は、樹脂に包埋された鉱石試料の研磨に使用する耐水研磨紙であって、砥粒が埋設しない程度に基部の表面側にロウが直接塗布されていることを特徴としている。 In addition, the abrasive paper of the present invention is a waterproof abrasive paper used for polishing ore samples embedded in resin, and wax is directly applied to the surface of the base to an extent that the abrasive grains are not buried. It is a feature.

本発明によれば、水に弱い鉱石試料や脆い鉱石試料が埋包された埋包試料であっても、作業員の熟練度に左右されずに比較的簡単に乾式研磨を行なうことが可能になる。 According to the present invention, it is possible to perform dry polishing relatively easily, regardless of the skill level of the worker, even if the ore sample is water-resistant or an embedded sample containing a brittle ore sample. Become.

本発明の実施形態の研磨方法が対象とする埋包試料の斜視図である。1 is a perspective view of an embedded sample targeted by a polishing method according to an embodiment of the present invention. 本発明の実施形態に係るロウの塗布された研磨紙及び該ロウの塗布前の研磨紙の模式的な部分拡大縦断面図である。1 is a schematic partially enlarged vertical cross-sectional view of the abrasive paper coated with wax and the abrasive paper before the wax is applied according to an embodiment of the present invention; FIG. ロウの塗布前及び塗布後の顕微鏡写真である。These are microscopic photographs before and after wax application. 本発明の一具体例の研磨紙を用意するために研磨紙にロウを塗布する手順を示す写真である。1 is a photograph showing a procedure for applying wax to abrasive paper in order to prepare an abrasive paper according to a specific example of the present invention. 本発明の実施例1で作製した観察試料の観察面の顕微鏡写真であり、白丸で囲んだ部分が脱落した部分である。It is a micrograph of the observation surface of the observation sample produced in Example 1 of the present invention, and the part surrounded by a white circle is the part that fell off. 本発明の比較例で作製した観察試料の観察面の顕微鏡写真であり、白丸で囲んだ部分が脱落した部分である。This is a micrograph of the observation surface of an observation sample prepared in a comparative example of the present invention, and the part surrounded by a white circle is the part that fell off.

以下、鉱物分析用の観察試料の作製のための本発明の実施形態に係る研磨方法について詳細に説明する。この本発明の実施形態に係る研磨方法は、鉱石試料を樹脂で埋包することで固結させた埋包試料を対象にしている。この埋包試料は、例えば図1に示すような円柱形状を有しており、紙面上側の観察面に鉱石1が露出するように、好適にはフェノール系樹脂からなる樹脂2によって包埋された円板状の固化ペレット部3と、該固化ペレット部3をその観察面を除いて覆う好適にはフィラーを含んだフェノール系樹脂からなる被覆部4とから構成される。なお、上記の円柱形状の埋包試料のサイズには特に限定はないが、一般的には外径が25~30mm程度、高さが10~20mm程度である。また、上記の埋包試料は、例えばストルアス社製の熱間固結機であるシトプレスにより作製することができる。 Hereinafter, a polishing method according to an embodiment of the present invention for preparing an observation sample for mineral analysis will be described in detail. The polishing method according to this embodiment of the present invention targets an embedded sample obtained by embedding an ore sample in a resin and solidifying it. This embedded sample has a cylindrical shape, for example, as shown in FIG. It is composed of a disk-shaped solidified pellet part 3 and a covering part 4 preferably made of a phenolic resin containing a filler and covering the solidified pellet part 3 except for its observation surface. The size of the cylindrical embedded sample is not particularly limited, but generally the outer diameter is about 25 to 30 mm and the height is about 10 to 20 mm. Further, the above-mentioned embedding sample can be produced, for example, using a Citopress, which is a hot consolidation machine manufactured by Struers.

本発明の実施形態の研磨方法は、上記埋包試料に対して、水を使わない乾式法で手作業により研磨を行なう。具体的には、ガラス板などの平坦な基板の表面に研磨紙を載せ、上記埋包試料の被覆部を把持して鉱石が露出している観察面側を下に向けて該研磨紙に当接させる。この状態で該埋包試料を一方向にスライドさせるか、あるいは円を描くように回転させることにより該観察面を研磨する。上記のように、研磨紙をガラス板の上に載せる理由は、ガラス板は局部的な傾きや凸凹部がなく全面に亘ってほぼ平坦であるからであり、これにより手作業による研磨であっても極めて平滑な研磨面を形成することができる。これに対して、研磨紙を載せる基台が平坦でなければ、平滑な研磨面が得られないばかりか、固結した試料が脱落するおそれがある。 In the polishing method of the embodiment of the present invention, the embedded sample is manually polished using a dry method that does not use water. Specifically, abrasive paper is placed on the surface of a flat substrate such as a glass plate, the covered part of the embedded sample is grasped, and the surface to be observed where the ore is exposed is faced down, and the sample is placed on the abrasive paper. Let them come into contact with you. In this state, the observation surface is polished by sliding the embedded sample in one direction or rotating it in a circular motion. As mentioned above, the reason why the abrasive paper is placed on top of the glass plate is that the glass plate is almost flat over its entire surface without any local inclinations or irregularities. It is also possible to form an extremely smooth polished surface. On the other hand, if the base on which the abrasive paper is placed is not flat, not only will it not be possible to obtain a smooth polished surface, but there is also a risk that the solidified sample will fall off.

上記の研磨紙には耐水研磨紙を用いるのが好ましく、特にJISR6253で規定する番手番号が#1000、#1200、#1500、#2000、#2500及び#4000の研磨紙の中から選んだ研磨紙を使用するのが好ましい。以下、これら研磨紙の中から#1200を用いて粗研磨を行い、いずれもロウが塗布された#1200、#2000、及び#2500を用いてそれぞれ第1、第2及び第3の研磨を行い、#4000を用いて仕上げ研磨を行なう場合を例に挙げて説明する。 It is preferable to use water-resistant abrasive paper as the above abrasive paper, especially abrasive paper selected from abrasive papers with count numbers #1000, #1200, #1500, #2000, #2500, and #4000 specified in JISR6253. It is preferable to use From among these abrasive papers, rough polishing was performed using #1200, and first, second, and third polishing were performed using #1200, #2000, and #2500 coated with wax, respectively. , #4000 is used for final polishing as an example.

1.粗研磨工程
粗研磨工程は、埋包試料の観察面にできるだけ多くの鉱石が露出するように、この粗研磨前の段階で樹脂の中にほぼ完全に埋没している鉱物を出すことを目的にしている。このように、粗研磨では、とにかく観察面に多くの鉱石を露出させることが重要なので、一部の鉱石が脱落してもかまわない。そのため、後工程の第1研磨で使用する研磨紙の砥粒サイズ以上の砥粒サイズである#1200(粒径15μm)の研磨紙をそのまま使用し、埋包試料を後工程の第1、第2、及び第3研磨よりも少し強めに研磨紙に押し付けて研磨する。なお、観察試料の作製に時間を掛けても良いのであれば、この粗研磨工程を省いて後工程の第1研磨から始めてもよい。
1. Rough polishing process The purpose of the rough polishing process is to remove the minerals that are almost completely buried in the resin before this rough polishing so that as much ore as possible is exposed on the observation surface of the embedded sample. ing. In this way, in rough polishing, it is important to expose as much ore as possible on the viewing surface, so it does not matter if some ore falls off. Therefore, we use #1200 (particle size 15 μm) abrasive paper, which has an abrasive grain size larger than that of the abrasive paper used in the first polishing in the post-process, as it is, and transfer the embedded sample to the first polishing in the post-process. Polish by pressing it against the abrasive paper a little more forcefully than in the second and third polishing steps. Note that if it is acceptable to take time to prepare the observation sample, this rough polishing step may be omitted and the process may be started from the first polishing in the subsequent step.

2.研磨紙表面へのロウの塗布工程
塗布工程では、後工程の第1~第3研磨工程でそれぞれ使用する#1200(粒径約15μm)、#2000(粒径約12μm)、及び#2500(粒径約8μm)の研磨紙の表面側にロウを塗布する。その際、ロウを研磨紙の表面に擦り付けるように塗り、ロウが砥粒を覆いつくさない程度に、すなわち砥粒が見えなくなるまでロウ内に埋没することのないように薄くロウを塗布する。具体的には、図2に示すように、研磨紙の基部10から突出している砥粒11の高さの約1/3~1/2程度が埋まるようにロウ12を塗布するのが好ましい。
2. Process of applying wax to the surface of the abrasive paper In the application process, #1200 (particle size of about 15 μm), #2000 (particle size of about 12 μm), and #2500 (particle size of about 12 μm), which are used in the first to third polishing steps in the subsequent process, are used. Apply wax to the surface of abrasive paper with a diameter of approximately 8 μm. At this time, the wax is applied so as to be rubbed against the surface of the abrasive paper, and the wax is applied thinly so that the wax does not completely cover the abrasive grains, that is, so that the abrasive grains are not buried in the wax until they are no longer visible. Specifically, as shown in FIG. 2, it is preferable to apply the wax 12 so as to fill approximately 1/3 to 1/2 of the height of the abrasive grains 11 protruding from the base 10 of the abrasive paper.

図3のロウの塗布前(紙面左)及び塗布後(紙面右)のように、研磨紙の表面の全面積の1/3~1/2程度の領域にのみ砥粒がちょうど見えなくなる程度の厚さでロウを擦り付けてもよい。このように研磨紙の全面にロウを塗布しなくてもよい理由は、ロウが部分的に塗布されている研磨紙に対して埋包試料を擦り付けて研磨を始めると、ロウは容易に変形しながら砥粒の間を押し広げられていくので、結果的に図2の右図に示すように、ほぼ全ての砥粒がロウの層から突出する状態にできるからである。 As shown in Figure 3 before wax application (on the left of the page) and after application (on the right of the page), the abrasive grains are only visible in an area that is about 1/3 to 1/2 of the total surface area of the abrasive paper. You can also rub the wax in a thick layer. The reason why it is not necessary to apply wax to the entire surface of the abrasive paper is that if you start polishing by rubbing the embedded sample against the abrasive paper that has been partially coated with wax, the wax will easily deform. This is because the gap between the abrasive grains is pushed out, and as a result, almost all of the abrasive grains protrude from the wax layer, as shown in the right diagram of FIG.

研磨紙に塗布したロウの量が適切か否かは、ロウの塗布後の研磨紙に実際に埋包試料を滑らせてみることで容易に判断できる。すなわち、埋包試料から鉱石の脱落が継続して生じる場合は塗布量が少なく、埋包試料がまったく研磨されない場合は塗布量が過多であることが分かる。研磨紙の砥粒のサイズやロウの種類によって、研磨紙に塗布する際のロウを押し付ける力の加減を調整してもよい。なお、図4には、研磨紙にロウを塗布する手順の一例が示されており、ここではパラフィンワックスからなる一般的なロウソクを持ちやすいサイズに切断して使用している。 Whether or not the amount of wax applied to the abrasive paper is appropriate can be easily determined by actually sliding an embedded sample on the abrasive paper after applying the wax. That is, if the ore continues to fall off from the embedded sample, the amount of coating is small, and if the embedded sample is not polished at all, the amount of coating is excessive. Depending on the size of the abrasive grains of the abrasive paper and the type of wax, the force with which the wax is pressed when applied to the abrasive paper may be adjusted. Note that FIG. 4 shows an example of a procedure for applying wax to abrasive paper, in which a general candle made of paraffin wax is cut into a size that is easy to hold.

3.ロウが塗布された研磨紙による研磨工程
(1)第1研磨
上記の塗布工程でロウの塗布を行なった#1200の研磨紙を上記ガラス板などの基板の上に置き、好ましくは片方の手で研磨紙が動かないように押さえ付けながら、もう片方の手で埋包試料を把持してその観察面側を下に向けて研磨紙に当接させ、この状態で埋包試料を左右等の一方向に15cm程度のストローク距離を往復動させるか、あるいは直径15cm程度の円を描くように回転させることで研磨を行なう。
3. Polishing process using abrasive paper coated with wax (1) First polishing Place the #1200 abrasive paper coated with wax in the above coating process on the substrate such as the glass plate, preferably with one hand. While holding down the abrasive paper so that it does not move, hold the embedded sample with your other hand and place it against the abrasive paper with the observation side facing down. Polishing is performed by reciprocating a stroke distance of about 15 cm in the direction or rotating in a circle with a diameter of about 15 cm.

この研磨の際、前工程の粗研磨のときよりも埋包試料を研磨紙に押し付ける力を弱めにするのが好ましい。この第1研磨で使用する研磨紙は、ロウの塗布により意図的に砥粒の隙間を埋めて目詰まりさせることで研磨紙表面の凸凹の高低差を低くしているので、研削力は研磨紙本来のものよりも低下している。これにより、脆弱な鉱物を殆ど脱落させずに研磨することができる。また、前工程の粗研磨で生じた脱落による穴を効率よく消し去ることができる。 During this polishing, it is preferable to use a weaker force to press the embedded sample against the polishing paper than during the rough polishing in the previous step. The abrasive paper used in this first polishing is coated with wax to intentionally fill in the gaps between the abrasive grains and clog them, thereby reducing the height difference between the unevenness on the surface of the abrasive paper. It's lower than it should be. This makes it possible to polish most of the fragile minerals without them falling off. In addition, holes caused by falling off during rough polishing in the previous step can be efficiently erased.

(2)第2研磨
第2研磨は、上記の塗布工程でロウの塗布を行なった#2000の研磨紙を使用する以外は上記の第1研磨と同様にして埋包試料の研磨を行なう。この第2研磨で使用する研磨紙は、その砥粒のサイズが粗研磨や第1研磨で使用した研磨紙のものより細かいので、埋包試料の観察面上に生じる研磨傷がこれら粗研磨や第1研磨の場合より細くなり、よって顕微鏡で見たときの見栄えが綺麗になる。
(2) Second polishing In the second polishing, the embedded sample is polished in the same manner as the first polishing described above, except that #2000 abrasive paper coated with wax in the coating process described above is used. The abrasive paper used in this second polishing has finer abrasive grains than the abrasive paper used in the rough polishing and the first polishing, so the polishing scratches that occur on the observation surface of the embedded sample are caused by these coarse polishings. It becomes thinner than in the case of the first polishing, and therefore looks better when viewed under a microscope.

(3)第3研磨
第3研磨は、上記の塗布工程でロウの塗布を行なった#2500の研磨紙を使用する以外は上記の第1研磨や第2研磨と同様にして埋包試料の研磨を行なう。この第3研磨で使用する研磨紙は、その砥粒のサイズが第2研磨で使用した研磨紙のものより細かいので、埋包試料の観察面上に生じる研磨傷が第2研磨の場合より細くなり、よって顕微鏡で見たときの見栄えが更に綺麗になる。
(3) Third polishing In the third polishing, the embedded sample is polished in the same manner as the first polishing and second polishing described above, except that #2500 abrasive paper that has been coated with wax in the coating process described above is used. Do this. The size of the abrasive grains of the abrasive paper used in this third polishing is finer than that of the abrasive paper used in the second polishing, so the polishing scratches that occur on the observation surface of the embedded sample are thinner than in the second polishing. Therefore, the appearance when viewed under a microscope becomes even more beautiful.

なお、上記のロウが塗布された研磨紙による研磨工程では、#1200、#2000、及び#2500の砥粒サイズの3種類の研磨紙を用いて3段階に分けて研磨を行なった例を説明したが、後工程の仕上げ研磨工程で使用する研磨紙の砥粒サイズよりも粗い砥粒サイズの研磨紙を用いるのであればこれに限定されるものではなく、1~2種類の研磨紙を用いて研磨を行なってもよいし、4種類以上の研磨紙を用いて研磨を行なってもよい。複数種類の研磨紙を用いる場合は、番手番号が小さいものから順に使用するのが好ましい。 In addition, in the polishing process using abrasive paper coated with wax, an example will be described in which polishing was performed in three stages using three types of abrasive paper with abrasive grain sizes of #1200, #2000, and #2500. However, it is not limited to this, as long as abrasive paper with an abrasive grain size coarser than that of the abrasive paper used in the final polishing process in the subsequent process is used, and one or two types of abrasive paper may be used. Polishing may be performed using abrasive paper, or polishing may be performed using four or more types of abrasive paper. When using multiple types of abrasive papers, it is preferable to use them in descending order of number.

3.仕上げ研磨工程
最終工程である仕上げ研磨は、第3研磨で使用した研磨紙の砥粒サイズよりも小さい#4000(粒径約5μm)の研磨紙をロウを塗布せずにそのまま使用して研磨を行なう。その際、埋包試料を研磨紙に押し付ける力の加減は前工程の第1研磨~第3研磨のときよりもやや強めにするのが好ましい。また、往復動させるときはそのストローク距離を短く(5cm程度)し、円を描くように回転運動させるときはその直径を小さく(5cm程度)するのが好ましい。
3. Final polishing process The final polishing process is performed by using #4000 (particle size approximately 5 μm) abrasive paper, which is smaller than the abrasive grain size of the abrasive paper used in the third polishing, without applying wax. Let's do it. At this time, it is preferable that the force with which the embedded sample is pressed against the abrasive paper be slightly stronger than in the first to third polishing steps in the previous steps. Further, it is preferable to make the stroke distance short (about 5 cm) when making a reciprocating motion, and to make the diameter small (about 5 cm) when making a circular rotational motion.

これにより、観察面上に生じる研磨傷を極めて微細にでき、また、図1に示す固化ペレット3と、これを囲む被覆部4との境界線5をはっきり視認することが可能になる。このように観察面に生じる研磨傷が微細になることで、見栄えが綺麗になることに加えて、MLAで分析する際、研削傷に電子線が当たることによるチャージアップ現象を防止することができ、MLA用として好適な観察試料を作製することができる。 As a result, polishing scratches generated on the observation surface can be made extremely fine, and the boundary line 5 between the solidified pellet 3 shown in FIG. 1 and the covering portion 4 surrounding it can be clearly seen. By making the polishing scratches that occur on the observation surface finer in this way, not only does the appearance become clearer, but it also prevents the charge-up phenomenon caused by the electron beam hitting the polishing scratches when analyzing with MLA. , an observation sample suitable for MLA can be prepared.

なお、乾式研磨では水を供給しながら研磨を行なうバフ研磨は行なわないので、上記のように砥粒サイズ約5μm程度の研磨紙番手#4000程度の研磨紙が最終的な仕上げ研磨用の研磨紙になる。このため、鏡面研磨まで仕上げることは困難であるが、MLAにより分析を行なう観察試料であれば、#4000の研磨紙で研磨することで実用的な分析精度を担保することができる。 In addition, in dry polishing, buffing is not performed in which polishing is performed while supplying water, so as mentioned above, abrasive paper with an abrasive paper count of about 4000 and an abrasive grain size of about 5 μm is used as the final abrasive paper for final polishing. become. For this reason, it is difficult to finish to a mirror polish, but if it is an observation sample to be analyzed by MLA, practical analysis accuracy can be ensured by polishing with #4000 abrasive paper.

上記のように、粗研磨、第1~第3研磨、及び仕上げ研磨は全て手作業による乾式研磨であるため、作業員が埋包試料を1個ずつ研磨する必要があり、複数の埋包試料をアーム部にセットして一括して研磨することが可能な湿式の自動研磨機を用いた研磨に比べて観察試料1個当たりの作製に必要な時間は長くなる。更に、脆い鉱石の場合は、鉱物の脱落が起きないように観察面に掛かる力を加減したり、埋包試料を擦り付けて動かす速度を増減したりする必要がある。 As mentioned above, rough polishing, first to third polishing, and final polishing are all manual dry polishing processes, so it is necessary for the operator to polish each embedded sample one by one. Compared to polishing using a wet-type automatic polishing machine that can be set on the arm and polished all at once, the time required to prepare each observation sample is longer. Furthermore, in the case of brittle ores, it is necessary to adjust the force applied to the observation surface or to increase or decrease the speed at which the embedded sample is rubbed and moved to prevent the mineral from falling off.

そのため、第1~第3研磨、及び仕上げ研磨を全てロウが塗布されていない従来の研磨紙で行なう場合は、熟練した作業員であっても埋包試料から観察試料を作製するまでの作業時間が90分程度であった。これに対して、上記したように、粗研磨を行なってから第1~第3研磨にロウを塗布した研磨紙を使用して研磨を行なうことで、バラつきの少ない観察試料を埋包試料から約60分程度で作製することが可能になる。 Therefore, if the first to third polishing and final polishing are all done using conventional abrasive paper that is not coated with wax, even experienced workers will have to spend a lot of time to prepare the observation sample from the embedded sample. It took about 90 minutes. On the other hand, as mentioned above, by performing rough polishing and then polishing using abrasive paper coated with wax in the first to third polishing, observation samples with less variation can be obtained from embedded samples by approximately It can be manufactured in about 60 minutes.

上記のようにバラつきの少ない観察試料を作製できる理由は、研磨紙の表面側にロウを塗布することで、砥粒群の基部側をロウ層内に埋めることができ、よって、研磨紙表面の凹凸の高さをロウが塗布されていないものに比べて低くできるので、埋包試料を研磨紙に強く押さえ付けながら擦り付けても、過度に削られにくく、よって鉱物が容易に脱落するのを抑制することができるからである。一方、研摩時間を1個当たり約30分程度短縮できる理由は、目地に相当する砥粒の間の隙間部分にロウが層状に充填されているため、摩擦抵抗が小さくなるので、滑りがよくなって研磨の作業性が向上するうえ、ロウを塗布しない最も粗い砥粒の研磨紙を用いて粗研磨を行なうからである。 The reason why we are able to create observation samples with little variation as described above is that by applying wax to the surface of the abrasive paper, the base side of the abrasive grains can be buried in the wax layer. The height of the unevenness can be made lower than that without wax coating, so even if the embedded sample is strongly pressed against the abrasive paper and rubbed, it is less likely to be scraped excessively, thus preventing minerals from falling off easily. This is because it can be done. On the other hand, the reason why the polishing time can be reduced by about 30 minutes per piece is because the gaps between the abrasive grains, which correspond to the joints, are filled with a layer of wax, which reduces frictional resistance and improves sliding. This is because the workability of polishing is improved, and rough polishing is performed using an abrasive paper with the coarsest abrasive grains that is not coated with wax.

更に、研磨紙に塗布するロウは疎水性であって環境中の水分をはじくので、水に弱い鉱物を含む鉱石試料に及ぼす悪影響を抑制することができる。加えて、耐水研磨紙を用いることで砥粒を支持する基部が耐水性を備えるので、研磨作業中に摩擦熱でロウが溶解したとしても、基部に浸透することがない。よって、砥粒の凸凹の高低差が顕著に大きくなることがないので、研削力を抑えた研磨をある程度維持することができる。 Furthermore, since the wax applied to the abrasive paper is hydrophobic and repels moisture in the environment, it is possible to suppress any adverse effects on ore samples containing minerals that are sensitive to water. In addition, by using waterproof abrasive paper, the base that supports the abrasive grains is water resistant, so even if the wax melts due to frictional heat during polishing, it will not penetrate into the base. Therefore, the height difference between the unevenness of the abrasive grains does not become significantly large, so that polishing can be maintained to a certain extent with reduced grinding force.

以上説明したように、本発明に係る鉱物分析用の観察試料の作製のための研磨方法は、水に弱い鉱石試料や脆い鉱石試料であっても、研磨作業員の熟練度に左右されることなく比較的簡単にMLA等の鉱物分析用の観察試料を作製することができる。 As explained above, the polishing method for preparing observation samples for mineral analysis according to the present invention is dependent on the skill level of the polishing worker, even for ore samples that are sensitive to water or brittle. Observation samples for mineral analysis, such as MLA, can be produced relatively easily.

[実施例1]
埋め込み装置であるストルアス社製の熱間固結機「シトプレス」にストルアス社製の熱間固結樹脂である「マルチファスト」を装入し、更に水酸化鉄などの水に溶解しやすい鉱物を含む脆い鉱石が主成分の鉱石試料を装入することで、図1に示すような円柱状の埋包試料を作製した。この埋包試料に対して、熟練した作業員が、粗研磨、第1~第3研磨、及び仕上げ研磨をこの順に乾式の手作業で行なって観察試料を作製した。
[Example 1]
Struers' hot-setting resin "Multifast" is charged into the embedding device, Struers' hot-setting machine "SitoPress", and minerals that are easily soluble in water such as iron hydroxide are added. A cylindrical embedded sample as shown in FIG. 1 was prepared by charging an ore sample whose main component was brittle ore. For this embedded sample, a skilled worker manually performed rough polishing, first to third polishing, and final polishing in this order to prepare an observation sample.

これら研磨には、ストルアス社製の耐水研磨紙「SiC-Paper」を複数種類使用した。具体的には、粗研磨にはJIS規格の番手#1200を使用し、第1、第2及び第3研磨にはそれぞれJIS規格の番手#1200、#2000、及び#2500にロウを塗布したものを使用し、仕上げ研磨にはJIS番手#4000を使用した。 For these polishings, multiple types of water-resistant abrasive paper "SiC-Paper" manufactured by Struers were used. Specifically, JIS standard #1200 was used for rough polishing, and JIS standard #1200, #2000, and #2500 were coated with wax for the first, second, and third polishing, respectively. JIS #4000 was used for final polishing.

なお、上記第1、第2及び第3研磨で使用した研磨紙に塗布したロウには、光陽社蝋燭工業所製のロウソク(直径約40mm)を、高さ20mm程度の円柱状にカットしたもの(固体状)を使用した。このようにして、図5に示すような観察試料を得ることができた。なお、この観察試料を作製するために埋包試料の研磨に要した作業時間は1個当たり約60分だった。得られた観察試料に対して、FEI社製のMLA装置であるMLA650FEGを用いて分析したところ、特に問題なく分析結果を得ることができた。 The wax applied to the abrasive paper used in the first, second, and third polishing was prepared by cutting a candle (approximately 40 mm in diameter) manufactured by Koyosha Candle Industries into a cylinder shape with a height of approximately 20 mm ( (solid form) was used. In this way, an observation sample as shown in FIG. 5 could be obtained. In addition, the working time required for polishing the embedded samples to prepare this observation sample was about 60 minutes per piece. When the obtained observation sample was analyzed using MLA650FEG, which is an MLA device manufactured by FEI, analysis results could be obtained without any particular problem.

(実施例2)
熟練作業員でない一般的な作業員が、手作業による乾式研磨について熟練作業員から指導を受けた後に研磨を行なったこと以外は、上記実施例1と同様にしてMLA用の観察試料を作製した。その結果、実施例1と同程度のMLA装置で分析を行なっても特に問題の生じない観察試料を作製することができた。この実施例2の観察試料の作製のために埋包試料の研磨に要した作業時間は1個当たり約60分だった。
(Example 2)
An observation sample for MLA was prepared in the same manner as in Example 1 above, except that a general worker who was not a skilled worker performed manual dry polishing after receiving guidance from a skilled worker. . As a result, it was possible to produce an observation sample that would not cause any particular problems even when analyzed using an MLA apparatus comparable to that used in Example 1. The working time required for polishing the embedded samples to prepare the observation samples of Example 2 was about 60 minutes per piece.

(比較例)
第1~第3研磨に使用した研磨紙にロウを塗布しなかった以外は上記実施例1と同様にして熟練した作業員がMLA用の観察試料を作製した。その結果、図6に示すようなMLA用の分析に使用すると信頼性の高い情報を得ることが期待できない脱落の極めて多い観察試料しか作製することができなかった。この比較例の観察試料の作製のために埋包試料の研磨に要した作業時間は1個当たり約60分だった。
(Comparative example)
Observation samples for MLA were prepared by skilled workers in the same manner as in Example 1 above, except that no wax was applied to the abrasive paper used in the first to third polishing. As a result, it was possible to produce only observation samples with extremely large amounts of shedding, from which highly reliable information could not be expected to be obtained when used for MLA analysis, as shown in FIG. The working time required for polishing the embedded samples to prepare the observation samples of this comparative example was about 60 minutes per piece.

1 鉱石
2 樹脂
3 固化ペレット部
4 被覆部
5 境界線
10 基部
11 砥粒
12 ロウ
1 Ore 2 Resin 3 Solidified pellet portion 4 Covering portion 5 Boundary line 10 Base portion 11 Abrasive grains 12 Wax

Claims (6)

樹脂に包埋された鉱石試料を手作業で乾式研磨する方法であって、砥粒が埋没しない程度に表面側にロウが塗布された研磨紙を使用して鉱石試料を研磨した後、ロウが塗布されていないより細かな砥粒サイズの研磨紙を使用して該鉱石試料を仕上げ研磨することを特徴とする鉱物分析用観察試料の研磨方法。 This is a manual dry polishing method for ore samples embedded in resin, in which the ore sample is polished using abrasive paper coated with wax on the surface to an extent that the abrasive grains are not buried, and then the wax is removed. A method for polishing an observation sample for mineral analysis, characterized by final polishing the ore sample using an uncoated abrasive paper with finer abrasive grain size. 前記ロウが塗布された研磨紙を使用して研磨する前に、該ロウが塗布された研磨紙の砥粒サイズ以上の砥粒サイズを有し且つロウが塗布されていない研磨紙を使用して粗研磨をすることを特徴とする、請求項1に記載の鉱物分析用観察試料の研磨方法。 Before polishing using the abrasive paper coated with the wax, use an abrasive paper to which wax is not coated and which has an abrasive grain size larger than the abrasive grain size of the abrasive paper coated with the wax. 2. The method of polishing an observation sample for mineral analysis according to claim 1, comprising rough polishing. 前記研磨紙が耐水研磨紙であることを特徴とする、請求項1又は2に記載の鉱物分析用観察試料の研磨方法。 3. The method for polishing an observation sample for mineral analysis according to claim 1, wherein the abrasive paper is a waterproof abrasive paper. 前記ロウが塗布された研磨紙に、JISR6253で規定する番手番号が#1000、#1200、#1500、#2000、及び#2500の研磨紙の中から選んだ少なくとも1種類を使用することを特徴とする、請求項3に記載の鉱物分析用観察試料の研磨方法。 The wax-coated abrasive paper is characterized by using at least one type of abrasive paper selected from among abrasive papers having count numbers #1000, #1200, #1500, #2000, and #2500 specified in JISR6253. The method of polishing an observation sample for mineral analysis according to claim 3. 前記ロウが塗布された研磨紙を複数種類を使用する場合は、前記番手番号の小さい方から順に使用することを特徴とする、請求項4に記載の鉱物分析用観察試料の研磨方法。 5. The method of polishing an observation sample for mineral analysis according to claim 4, wherein when using a plurality of types of abrasive paper coated with the wax, the abrasive papers are used in order from the one with the smallest number. 樹脂に包埋された鉱石試料の研磨に使用する耐水研磨紙であって、砥粒が埋設しない程度に基部の表面側にロウが直接塗布されていることを特徴とする研磨紙。 A water-resistant abrasive paper used for polishing ore samples embedded in resin, characterized in that wax is directly applied to the surface of the base to an extent that abrasive grains are not embedded.
JP2020099400A 2020-06-08 2020-06-08 Abrasive paper for preparing observation samples for mineral analysis and polishing method using the same Active JP7452267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020099400A JP7452267B2 (en) 2020-06-08 2020-06-08 Abrasive paper for preparing observation samples for mineral analysis and polishing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020099400A JP7452267B2 (en) 2020-06-08 2020-06-08 Abrasive paper for preparing observation samples for mineral analysis and polishing method using the same

Publications (2)

Publication Number Publication Date
JP2021193349A JP2021193349A (en) 2021-12-23
JP7452267B2 true JP7452267B2 (en) 2024-03-19

Family

ID=79168767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020099400A Active JP7452267B2 (en) 2020-06-08 2020-06-08 Abrasive paper for preparing observation samples for mineral analysis and polishing method using the same

Country Status (1)

Country Link
JP (1) JP7452267B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114523428A (en) * 2022-01-25 2022-05-24 南通市锋芒复合材料科技有限公司 Preparation process of environment-friendly waterproof abrasive paper
CN118130191A (en) * 2024-02-05 2024-06-04 南昌航空大学 Preparation method and application of high-temperature laser scanning confocal microscope small-size in-situ observation sample

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340851A (en) 2003-05-19 2004-12-02 Sumitomo Metal Mining Co Ltd Sample polishing method
JP2014126546A (en) 2012-12-27 2014-07-07 National Institute Of Advanced Industrial & Technology Method for preparing thin section of fragile sample by dry polishing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150193A (en) * 1975-06-19 1976-12-23 Sankyo Rikagaku Kk Process for producing an abrasiv e sheet
JPS53126593A (en) * 1977-04-13 1978-11-04 Daichiku Co Ltd Wax substance treating abraisive cloth and paper
JPH10151572A (en) * 1996-11-19 1998-06-09 Motoyasu Tejima Abrasive cloth and paper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340851A (en) 2003-05-19 2004-12-02 Sumitomo Metal Mining Co Ltd Sample polishing method
JP2014126546A (en) 2012-12-27 2014-07-07 National Institute Of Advanced Industrial & Technology Method for preparing thin section of fragile sample by dry polishing method

Also Published As

Publication number Publication date
JP2021193349A (en) 2021-12-23

Similar Documents

Publication Publication Date Title
JP7452267B2 (en) Abrasive paper for preparing observation samples for mineral analysis and polishing method using the same
CN1092842C (en) Method for preparing integrated circuit plane figure sample for transmission electron microscopy, and observation method thereof
CN103492851A (en) Automated sample preparation
CN110018028B (en) Preparation method of metallographic section sample of sapphire substrate electronic component
US6435958B1 (en) Abrasive means and a grinding process
CN113533398B (en) Method for representing multi-phase oxide layer of steel plate section by adopting EBSD technology
TW201944060A (en) Glass plate, and glass plate manufacturing method and end surface inspection method
Riggs et al. Metallography and image analysis
JP2004340851A (en) Sample polishing method
JP2001129763A (en) Truer for eliminating side face runout of diamond blade or the like and side face runout eliminating method using it
Awadh et al. Tigris river sediments as abrasive for polishing marble
JP6394969B2 (en) Electron microscope sample preparation method and reaction product metal-containing particle analysis method
JP4508355B2 (en) Grinding method
Erdman et al. Argon beam cross sectioning
US2863750A (en) Method, composition and apparatus for mechanically setting or resetting diamond particles in a working surface
Geller et al. Sample preparation for electron probe microanalysis—pushing the limits
CN117129297B (en) Method for manufacturing standard light sheet of single-particle lunar soil sample
JP2606598B2 (en) Ruby polishing method
Awadh et al. Assessment of the Rutba Formation silica sand as abrasive for grinding and polishing galena: Contribution in ore microscopy
CN113933327A (en) Preparation method of microsphere EBSD sample
US2775851A (en) Applicator for applying a diamond filled paste to a working surface
Ahmed et al. Petrographic examination methods
CN115307998A (en) Rapid sample preparation method for stainless steel metallographic sample
JP2004249417A (en) Cutting edge polishing/finishing method by electric-field abrasive grains, method of producing minute member with cutting edge, and minute member with cutting edge
JPS591163A (en) Method of working base plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R150 Certificate of patent or registration of utility model

Ref document number: 7452267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150