JP7451223B2 - Optical communication system, transmitting side device, receiving side device, and optical communication method - Google Patents

Optical communication system, transmitting side device, receiving side device, and optical communication method Download PDF

Info

Publication number
JP7451223B2
JP7451223B2 JP2020029350A JP2020029350A JP7451223B2 JP 7451223 B2 JP7451223 B2 JP 7451223B2 JP 2020029350 A JP2020029350 A JP 2020029350A JP 2020029350 A JP2020029350 A JP 2020029350A JP 7451223 B2 JP7451223 B2 JP 7451223B2
Authority
JP
Japan
Prior art keywords
optical
code
wavelength
optical communication
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020029350A
Other languages
Japanese (ja)
Other versions
JP2021136489A (en
Inventor
行史 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020029350A priority Critical patent/JP7451223B2/en
Publication of JP2021136489A publication Critical patent/JP2021136489A/en
Application granted granted Critical
Publication of JP7451223B2 publication Critical patent/JP7451223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本実施形態は、光通信システム、送信側装置、受信側装置及び光通信方法に関する。 The present embodiment relates to an optical communication system, a transmitting side device, a receiving side device, and an optical communication method.

光通信システムにあっては、伝送データの漏洩に対する安全性を考慮した技術として、ビット誤りを生じさせるような揺らぎを伴ったキャリア光を用いて誤り訂正符号付きのデータを送受信する方式がある。この方式は、比較的シンプルな方式であるが、誤り訂正に要する時間がかかり、伝送効率が落ちるという問題がある。他の技術として、量子暗号化技術による位相変調量の不正読み取り防止対策も提案されているが、量子暗号化による誤り率の増加から誤り訂正符号を用いることが必然となるため、やはり伝送効率が落ちてしまう。また、波長可変レーザアレイの波長制御による対策も提案されている。この提案によれば、伝送効率は良いが、通信の秘匿性は低い。また、個別のデータ値をそれぞれ複数の波長に関連付けて送信し、複数のデータアイテムを含むデータセットを受信及び解析することで暗号化するシステムが提案されている。この提案によれば、伝送効率は良いが、多波長のレーザを必要とするため、コストが高い上に、小型化が困難であることや、光波長が固定となるため、多変量解析により伝送データが特定される恐れがある。 In optical communication systems, there is a method of transmitting and receiving data with an error correction code using carrier light with fluctuations that cause bit errors, as a technique that takes into consideration safety against leakage of transmitted data. Although this method is relatively simple, there is a problem that error correction takes time and transmission efficiency decreases. As another technique, countermeasures to prevent unauthorized reading of the amount of phase modulation using quantum encryption technology have been proposed, but the increase in error rate due to quantum encryption necessitates the use of error correction codes, which still reduces transmission efficiency. I fall. Additionally, a countermeasure using wavelength control of a wavelength tunable laser array has also been proposed. According to this proposal, transmission efficiency is high, but communication confidentiality is low. Additionally, systems have been proposed in which individual data values are transmitted in association with a plurality of wavelengths, and a data set including a plurality of data items is received and analyzed to be encrypted. According to this proposal, the transmission efficiency is good, but since it requires a multi-wavelength laser, it is expensive, it is difficult to miniaturize, and the optical wavelength is fixed, so the transmission is carried out by multivariate analysis. Data may be identified.

特開2010-035072号公報Japanese Patent Application Publication No. 2010-035072 特開2007-251998号公報Japanese Patent Application Publication No. 2007-251998 特開2015-207738号公報JP2015-207738A 特開2018-98762号公報Japanese Patent Application Publication No. 2018-98762

マイクロマシン構造を用いた温度無依存・波長可変レーザ,中濱正統,東京工業大学大学院,http://www.fbi-award.jp/sentan/jusyou/2014/1.pdfTemperature-independent, wavelength-tunable laser using micromachine structure, Masatoshi Nakahama, Tokyo Institute of Technology, http://www.fbi-award.jp/sentan/jusyou/2014/1.pdf

以上のように、光通信システムにおいて、安全性を確保する従来の手法では、コスト、伝送効率、小型化、秘匿性を同時に満足させることが困難な状況にある。 As described above, it is difficult to simultaneously satisfy cost, transmission efficiency, miniaturization, and confidentiality using conventional methods for ensuring safety in optical communication systems.

本実施形態は上記課題に鑑みなされたもので、光波長の判別が困難で、光伝送路における漏洩から解読が困難であり、コスト、伝送効率、小型化、秘匿性に優れた光通信システム、送信側装置、受信側装置及び光通信方法を提供することを目的とする。 The present embodiment has been developed in view of the above-mentioned problems, and is an optical communication system in which it is difficult to distinguish optical wavelengths, difficult to decipher due to leakage in optical transmission paths, and excellent in cost, transmission efficiency, miniaturization, and confidentiality. The object of the present invention is to provide a transmitting side device, a receiving side device, and an optical communication method.

上記の課題を解決するために、本実施形態に係る光通信システムは、伝送データを符号化し暗号化した後、光信号に変換して光通信路に出力する送信側装置と、前記光通信路を介して前記送信側装置から送信される光信号を受信して前記暗号化を解読し前記符号化された伝送データを復号する受信側装置とを具備する。前記送信側装置は、前記暗号化のための選択された暗号化パターンに基づいて前記光通信路に出力する光信号の波長を制御し、前記受信側装置は、前記光通信路を通じて受信された前記送信側装置からの光信号の波長の変化を検出して前記暗号化パターンを照合し、照合された暗号化パターンにより前記暗号化を解読する。 In order to solve the above problems, the optical communication system according to the present embodiment includes a transmitting side device that encodes and encrypts transmission data, converts it into an optical signal, and outputs it to an optical communication path, and and a receiving device that receives an optical signal transmitted from the transmitting device via a receiver, decrypts the encryption, and decodes the encoded transmission data. The transmitting side device controls the wavelength of the optical signal output to the optical communication path based on the selected encryption pattern for the encryption, and the receiving side device controls the wavelength of the optical signal output to the optical communication path based on the selected encryption pattern for the encryption. A change in the wavelength of the optical signal from the transmitting device is detected, the encryption pattern is verified, and the encryption is decoded using the verified encryption pattern.

図1は、実施形態に係る光通信システムの構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of an optical communication system according to an embodiment. 図2は、実施形態に用いる情報処理例を示す図。FIG. 2 is a diagram showing an example of information processing used in the embodiment. 図3は、図2に示す情報処理例の暗号化コード表を示す図。FIG. 3 is a diagram showing an encryption code table of the information processing example shown in FIG. 2. 図4は、実施形態に用いる送信波長の変動例を示す波形図。FIG. 4 is a waveform diagram showing an example of variation in transmission wavelength used in the embodiment. 図5は、実施形態に用いる送信強度の変動例を示す波形図。FIG. 5 is a waveform diagram showing an example of variation in transmission strength used in the embodiment. 図6は、実施形態に用いる2つの波長フィルタの透過特性を示す波形図。FIG. 6 is a waveform diagram showing the transmission characteristics of two wavelength filters used in the embodiment. 図7は、実施形態に用いる2つの波長フィルタの出力をO/E変換した波長検出用の差分情報を示す特性図。FIG. 7 is a characteristic diagram showing difference information for wavelength detection obtained by O/E converting the outputs of two wavelength filters used in the embodiment. 図8は、実施形態に用いる2つの波長フィルタの出力それぞれのO/E変換結果を示す波形図。FIG. 8 is a waveform diagram showing the O/E conversion results of the outputs of two wavelength filters used in the embodiment. 図9は、実施形態に用いる波長変動と同符号連続数の関係性をイメージ化して示す特性図。FIG. 9 is a characteristic diagram illustrating the relationship between wavelength fluctuation and the number of consecutive same codes used in the embodiment. 図10は、実施形態に用いる暗号化コードの切替周期に応じて行われる波長予測結果を示す波形図。FIG. 10 is a waveform diagram showing the results of wavelength prediction performed according to the switching cycle of the encryption code used in the embodiment. 図11は、実施形態に用いる波長の予測値と実測値の誤差を示す波形図。FIG. 11 is a waveform diagram showing the error between the predicted value and the actual measured value of the wavelength used in the embodiment. 図12は、実施形態に用いる受信系の情報処理例を示す図。FIG. 12 is a diagram showing an example of information processing of a receiving system used in the embodiment. 図13は、実施形態の変形例として、システム1とシステム2が光通信路で接続されたシステム例を示すブロック図。FIG. 13 is a block diagram showing an example of a system in which system 1 and system 2 are connected via an optical communication path as a modification of the embodiment. 図14は、実施形態の変形例として、多波長化した光通信システムの構成を示すブロック図。FIG. 14 is a block diagram showing the configuration of a multi-wavelength optical communication system as a modification of the embodiment.

まず、実施形態に係る光通信システムの概要について説明する。 First, an overview of the optical communication system according to the embodiment will be explained.

本実施形態は、「光波長・光強度」(物理層)及び「データ処理(データリンク層)」を用いて多次元的な変調を行うことにより、暗号性の高いシステムを提案する。すなわち、正規送信側では、通信データに依存した熱起因する光波長シフトとは別に、外部からデバイスの温度を制御することで微量の光波長シフトを行い、この光波長シフトによって暗号情報(暗号化コード)を重畳する。一方の正規受信側では、光強度及び波長フィルタを用いて精密な波長計測を行い、受信強度に応じて波長変動量を予測する。この波長変動の予測値と実測値の乖離量から暗号情報(暗号化コード)を推定し、データ処理で本来の通信データを復号する。このように本実施形態は、「多次元的な変調を行うこと」と「微小な波長変動」で暗号情報の伝送を煩雑化して、第三者に通信情報が解読されにくいようにしている点に特徴がある。 This embodiment proposes a system with high encryption performance by performing multidimensional modulation using "light wavelength/light intensity" (physical layer) and "data processing (data link layer)." In other words, on the regular transmitter side, in addition to the optical wavelength shift caused by heat that depends on the communication data, a small amount of optical wavelength shift is performed by controlling the temperature of the device from the outside, and this optical wavelength shift causes the encrypted information (encrypted code). On the other hand, on the regular receiving side, precise wavelength measurement is performed using a light intensity and a wavelength filter, and the amount of wavelength fluctuation is predicted according to the received intensity. Encrypted information (encrypted code) is estimated from the amount of deviation between the predicted value and the actual measured value of wavelength fluctuation, and the original communication data is decoded through data processing. In this way, the present embodiment uses "multidimensional modulation" and "minor wavelength fluctuations" to complicate the transmission of encrypted information, making it difficult for third parties to decode the communication information. There are characteristics.

以下、実施形態について、図面を参照して説明する。 Embodiments will be described below with reference to the drawings.

図1は、実施形態に係る光通信システムの構成を示すブロック図である。図1において、光通信システムは送信側装置100と受信側装置200を備え、両者は光通信路で光接続される。 FIG. 1 is a block diagram showing the configuration of an optical communication system according to an embodiment. In FIG. 1, the optical communication system includes a transmitting side device 100 and a receiving side device 200, which are optically connected through an optical communication path.

上記送信側装置100において、送信データは伝送符号暗号化器101で所定の伝送符号で暗号化された後、符号変換器102で指定パターンによる符号変換が施される。符号変換された送信データは、電流増幅器103で電流増幅された後、E/O(電気/光)変換器104で半導体レーザ等の光デバイスにより電気信号から光信号に変換される。この光信号は、必要に応じてオプションの可変減衰器105で指定量の減衰処理が施された後、分配器106で外部系統と内部系統に分配される。 In the sending device 100, transmission data is encrypted with a predetermined transmission code by a transmission code encoder 101, and then code-converted by a code converter 102 according to a designated pattern. The code-converted transmission data is current-amplified by a current amplifier 103, and then converted from an electrical signal to an optical signal by an E/O (electrical/optical) converter 104 using an optical device such as a semiconductor laser. This optical signal is subjected to a specified amount of attenuation processing by an optional variable attenuator 105 as required, and then distributed to an external system and an internal system by a distributor 106.

一方、外乱測定器107によって光伝送の外乱となる外気温が測定される。この外気温の測定結果は、温度制御パターン選択器108に送られる。この温度制御パターン選択器108は、外気温の測定結果に対応した温度制御パターンを選択し、その温度制御バターンでE/O変換器104に装着された温度制御器109の温度を制御することで、E/O変換器104で発生する光信号の波長をシフトする。さらに、暗号化の秘匿性を高めるため、パターン設定信号により暗号パターン選択器110を通じて温度制御パターン選択器108の温度制御パターンを選択指定し、選択されたパターン情報を符号変換器102に送り、符号変換に埋め込む。 On the other hand, the disturbance measuring device 107 measures the outside temperature, which is a disturbance to the optical transmission. The outside temperature measurement result is sent to the temperature control pattern selector 108. This temperature control pattern selector 108 selects a temperature control pattern corresponding to the measurement result of the outside air temperature, and controls the temperature of the temperature controller 109 attached to the E/O converter 104 using the selected temperature control pattern. , shifts the wavelength of the optical signal generated by the E/O converter 104. Furthermore, in order to improve the confidentiality of encryption, the temperature control pattern of the temperature control pattern selector 108 is selected and designated by the pattern setting signal through the encryption pattern selector 110, and the selected pattern information is sent to the code converter 102, and the code Embed in transformation.

ただし、外気温による外乱は、短時間では見えづらく、長時間の伝送で補正が必要になる。そこで、外乱補正はオプションとし、長時間伝送の要求があった場合に追加するようにしてもよい。 However, disturbances caused by outside temperature are difficult to see in a short period of time, and correction is required for long-term transmission. Therefore, disturbance correction may be made optional and added when there is a request for long-term transmission.

上記分配器106で内部系統に分配された光信号は、さらに分配器111で強度検出用と波長検出用に2分配され、それぞれ波長フィルタ112,113に入力される。波長フィルタ112,113の通過帯域の中心は、それぞれ伝送帯域中心の上側と下側に設定され、通過光はそれぞれO/E(光/電気)変換器114,115で電気信号に変換されて外乱補正器116に送られる。外乱補正器116は、O/E変換器114,115で得られた電気信号から、外乱(外気温)によって生じた光信号の光波長シフト量と光強度変化量を検出する。検出された光波長シフト量は、温度制御パターン選択器108を通じてE/O変換における温度制御によって補正され、光強度変化量は可変減衰器105で補正される。 The optical signal distributed to the internal system by the distributor 106 is further divided into two parts by a distributor 111, one for intensity detection and one for wavelength detection, and is input to wavelength filters 112 and 113, respectively. The centers of the passbands of the wavelength filters 112 and 113 are set above and below the center of the transmission band, respectively, and the passing light is converted into an electrical signal by O/E (optical/electrical) converters 114 and 115, respectively, to remove the disturbance. The signal is sent to a corrector 116. The disturbance corrector 116 detects, from the electrical signals obtained by the O/E converters 114 and 115, the amount of optical wavelength shift and the amount of change in optical intensity of the optical signal caused by the disturbance (outside temperature). The detected light wavelength shift amount is corrected by temperature control in E/O conversion through the temperature control pattern selector 108, and the light intensity change amount is corrected by the variable attenuator 105.

なお、上記温度制御パターン選択器108には、外乱測定器107の測定結果と外乱補正器116の補正値が与えられるが、両方でよいし、いずれか一方でもよい。 Note that the temperature control pattern selector 108 is provided with the measurement result of the disturbance measuring device 107 and the correction value of the disturbance corrector 116, but either one or both may be provided.

上記受信側装置200において、送信側装置100から伝送される光信号は分配器201で2系統に分配され、その一方はO/E変換器202で電気信号に変換され、強度検出器203で光強度の振幅が検出される。その検出結果は、受信データとして照合器204に送られる。照合器204で後述の照合で正規認証が得られた場合には、受信データは符号逆変換器205で符号化の逆変換が施された後、伝送符号復号器206に送られる。ここで、入力の分配器201で分配された光信号は、分配器207でさらに2分配され、それぞれ波長フィルタ208,209に送られる。波長フィルタ208,209の通過帯域の中心は、それぞれ伝送帯域中心の上側と下側に設定され、通過光はそれぞれO/E(光/電気)変換器210,211で電気信号に変換されて波長検出器212に送られる。波長検出器212は、入力された2系統の電気信号から伝送光信号の波長変化のパターンを検出し、このパターンを照合器204に送り、強度検出器203の出力との照合を図る。その照合で一致が検出された場合は、暗号パターン選択器213に照合パターンを送り、対応する暗号パターンを選択させる。選択された暗号パターンは伝送符号復号器206に送られ、暗号パターンにより符号逆変換器205からの受信データの暗号化を解除する。 In the receiving device 200, the optical signal transmitted from the transmitting device 100 is divided into two systems by a distributor 201, one of which is converted into an electrical signal by an O/E converter 202, and an optical signal is transmitted by an intensity detector 203. The amplitude of the intensity is detected. The detection result is sent to the collation device 204 as received data. When the verification device 204 obtains regular authentication through verification described later, the received data is subjected to inverse encoding conversion in the code inverse converter 205 and then sent to the transmission code decoder 206 . Here, the optical signal distributed by input divider 201 is further divided into two by divider 207 and sent to wavelength filters 208 and 209, respectively. The centers of the passbands of the wavelength filters 208 and 209 are set above and below the center of the transmission band, respectively, and the passing light is converted into electrical signals by O/E (optical/electrical) converters 210 and 211, respectively, and converted into wavelengths. The signal is sent to a detector 212. The wavelength detector 212 detects a pattern of wavelength change of the transmitted optical signal from the two input electric signals, sends this pattern to the collation device 204, and collates it with the output of the intensity detector 203. If a match is detected in the comparison, the matching pattern is sent to the encryption pattern selector 213 to select the corresponding encryption pattern. The selected encryption pattern is sent to the transmission code decoder 206, and the received data from the code inverse converter 205 is decrypted using the encryption pattern.

上記構成による光通信システムにおいて、以下にその処理動作を説明する。 The processing operation of the optical communication system having the above configuration will be explained below.

まず、送信側装置100の処理を説明する。送信側装置100において、E/O変換器104に用いられる半導体レーザ等の光デバイスでは、伝送符号の変化に伴う変調やデバイス周囲温度の変動により、発振モード数の増減や送信波長の変動が発生する。高密度波長多重送信においては、光波長変動により相互干渉が発生するため、送信周波数を安定的に伝送するための補正方法が数多く検討されている。本実施形態では、単に光波長安定化だけではなく、光波長シフト自体に暗号情報を組み込む方式を提案する。 First, the processing of the sending device 100 will be explained. In the transmitting device 100, in an optical device such as a semiconductor laser used in the E/O converter 104, an increase or decrease in the number of oscillation modes or a fluctuation in the transmission wavelength occurs due to modulation due to a change in the transmission code or fluctuations in the device ambient temperature. do. In high-density wavelength division multiplexing transmission, mutual interference occurs due to optical wavelength fluctuations, so many correction methods have been studied to ensure stable transmission of the transmission frequency. In this embodiment, we propose a method that not only stabilizes the optical wavelength but also incorporates cryptographic information into the optical wavelength shift itself.

光波長シフトが起きる主な要因は、半導体レーザなどの光デバイスに注入する電流キャリア効果や温度に依存している。光デバイスの温度は、「伝送符号のパターンに依存してパルス駆動のレーザに過渡的な温度変化が起きる内部発熱量」と「周囲構造の熱伝導や外部温度制御によって決まる外部発熱量(吸熱量)」に依存する。ここで外部温度制御に着目し、暗号情報(暗号化コード)に従って、伝送符号とは異なるパターンにより光デバイスの温度を変化させて送信波長をシフトさせる。正規受信側の器材では、光強度と光波長のシフト量を測定する。受信した光強度から光波長の予測値が割り出せ、実際の観測値との僅かなずれを読み解くと、暗号情報(暗号化コード)が算出できる。この暗号情報(暗号化コード)を用いて受信した信号を復調し、正規データを得ることができる。 The main factors that cause optical wavelength shifts depend on the current carrier effect and temperature injected into optical devices such as semiconductor lasers. The temperature of an optical device is determined by the ``internal heat generation amount that causes a transient temperature change in the pulse-driven laser depending on the transmission code pattern'' and the ``external heat generation amount (heat absorption amount) determined by the heat conduction of the surrounding structure and external temperature control.'' )”. Here, we focus on external temperature control and shift the transmission wavelength by changing the temperature of the optical device using a pattern different from the transmission code according to the encryption information (encryption code). The equipment on the official receiving side measures the optical intensity and the amount of shift in optical wavelength. The predicted value of the optical wavelength can be determined from the received light intensity, and by deciphering the slight deviation from the actual observed value, the encrypted information (encrypted code) can be calculated. The received signal can be demodulated using this encryption information (encryption code) to obtain regular data.

この方式では盗聴者が光通信路から光漏れを検出できたとしても、波長変動を検出する上で十分なS/N比を確保できず、暗号情報(暗号化コード)を抽出することは困難であるため、極めて秘匿性が高い。また、正規受信側の最小受信感度になるように送信側で光強度を小さくすれば、さらに暗号情報(暗号化コード)を解読することが物理的に難しくなる。 With this method, even if an eavesdropper can detect light leakage from the optical communication path, it is difficult to secure a sufficient S/N ratio to detect wavelength fluctuations, making it difficult to extract the encrypted information (encrypted code). Therefore, the confidentiality is extremely high. Furthermore, if the light intensity is reduced on the transmitting side so as to reach the minimum reception sensitivity of the authorized receiving side, it becomes even more physically difficult to decipher the encrypted information (encrypted code).

具体的な暗号化の仕組みについて動作内容を説明する。まず、図2乃至図5を参照して、送信側装置100の処理を説明する。ここで、図2は情報処理例を示す図、図3は図2に示す情報処理例の暗号化コード表を示す図、図4は送信波長の変動例を示す波形図、図5は送信強度の変動例を示す波形図である。 The operation details of the specific encryption mechanism will be explained. First, the processing of the sending device 100 will be explained with reference to FIGS. 2 to 5. Here, FIG. 2 is a diagram showing an example of information processing, FIG. 3 is a diagram showing an encryption code table of the information processing example shown in FIG. 2, FIG. 4 is a waveform diagram showing an example of variation in transmission wavelength, and FIG. 5 is a diagram showing transmission strength FIG.

図2に示す情報処理例では、送信データのビット系列を「55aa55aa…」とする。符号に対して任意に設定した暗号化コードに基づいて、パターン表を選択して暗号化を施す。ここでは分かりやすく説明するために、図3に示すように、暗号化コードを3種(コード1、コード2、コード3)に限定する。そして、波長情報を予測しやすくするための同符号連続数の制限を行う。同符号連続数制限の仕組みとしては8ビット/10ビット変換(高速シリアル転送方式の一種である符号長変換)を例とする。同符号連続数を制限すれば、波長シフト量の幅を小さくすることができる。伝送効率が低下するが光波長シフト量が微量であるほど第三者に光波長の変動を検出されにくいメリットがある。 In the information processing example shown in FIG. 2, the bit sequence of the transmission data is "55aa55aa...". A pattern table is selected and encrypted based on an encryption code arbitrarily set for the code. Here, for easy explanation, the encryption codes are limited to three types (code 1, code 2, and code 3), as shown in FIG. Then, the number of consecutive identical codes is limited in order to make it easier to predict wavelength information. An example of a mechanism for limiting the number of consecutive same codes is 8-bit/10-bit conversion (code length conversion, which is a type of high-speed serial transfer method). By limiting the number of consecutive same signs, the width of the wavelength shift amount can be reduced. Although transmission efficiency decreases, the smaller the amount of optical wavelength shift, the more difficult it is for third parties to detect optical wavelength fluctuations.

この後、送信符号に基づき電流を増幅させ、レーザなどでE/O変換する。ここで同時に暗号化コードに応じて温度制御を行って微小の波長変動を起こす。例えば、「コード1では低波長側、コード2は現状維持、コード3では高波長シフト」とする。すると、E/O変換後の光波長と光強度は、例えば図4、図5に示すような特性となる。 Thereafter, the current is amplified based on the transmission code, and E/O conversion is performed using a laser or the like. At the same time, temperature control is performed according to the encryption code to cause minute wavelength fluctuations. For example, it is assumed that "code 1 is on the lower wavelength side, code 2 is the same as it is, and code 3 is a higher wavelength shift." Then, the light wavelength and light intensity after E/O conversion have characteristics as shown in FIGS. 4 and 5, for example.

次に、図6乃至図12を参照して、受信側装置200の処理を説明する。ここで、図6は2つの波長フィルタ208,209の透過特性を示す波形図、図7は2つの波長フィルタ208,209の出力をO/E変換した波長検出用の差分情報を示す特性図、図8は2つの波長フィルタ208,209の出力それぞれのO/E変換結果を示す波形図、図9は波長変動と同符号連続数の関係性をイメージ化して示す特性図、図10は暗号化コードの切替周期に応じて行われる波長予測結果を示す波形図、図11は波長の予測値と実測値の誤差を示す波形図、図12は受信側の情報処理例を示す図である。 Next, the processing of the receiving device 200 will be explained with reference to FIGS. 6 to 12. Here, FIG. 6 is a waveform diagram showing the transmission characteristics of the two wavelength filters 208 and 209, and FIG. 7 is a characteristic diagram showing difference information for wavelength detection obtained by O/E converting the outputs of the two wavelength filters 208 and 209. Fig. 8 is a waveform diagram showing the O/E conversion results of the outputs of the two wavelength filters 208 and 209, Fig. 9 is a characteristic diagram showing the relationship between wavelength fluctuation and the number of consecutive same codes as an image, and Fig. 10 is an encryption FIG. 11 is a waveform diagram showing the results of wavelength prediction performed according to the code switching cycle, FIG. 11 is a waveform diagram showing the error between the predicted wavelength value and the actual measured value, and FIG. 12 is a diagram showing an example of information processing on the receiving side.

受信側装置200において、送信側装置100から光通信路を介して送られてくる光信号を分配器201に入力し、強度検出用と波長検出用に分光して測定を行う。受信光の光変調度が小さい場合には、移動平均閾値などにより微弱な光の2値判定を行う。同符号連続数制限を行うとクロック再生が容易にできるので、そのクロックをもとに波長予測する区間を決める。光波長を精度検出するために、2つの波長フィルタ208,209を用いる。波長-利得特性があればどのようなフィルタでもよい。例えば、図6に示すような波長-利得特性を持つバンドイルミネーションフィルタを用いることができる。なお、フィルタによっては、図6の縦軸と横軸が変わる特性を持つものもある。 In the receiving device 200, an optical signal sent from the transmitting device 100 via an optical communication path is input to a distributor 201, and the optical signal is separated into intensity detection and wavelength detection for measurement. When the degree of optical modulation of the received light is small, binary determination of weak light is performed using a moving average threshold value or the like. Since clock recovery can be easily performed by limiting the number of consecutive same codes, the interval for wavelength prediction is determined based on the clock. Two wavelength filters 208 and 209 are used to accurately detect the optical wavelength. Any filter may be used as long as it has wavelength-gain characteristics. For example, a band illumination filter having wavelength-gain characteristics as shown in FIG. 6 can be used. Note that some filters have characteristics in which the vertical and horizontal axes in FIG. 6 change.

2つの波長フィルタ208,209を用いると、図7に示すように波長検出用のO/E変換の差分情報から波長が割り出せる。発展形として、波長検出用の和情報は光強度の情報として置き換えることも可能である。O/E変換後の情報を図8に示す。 When two wavelength filters 208 and 209 are used, the wavelength can be determined from the difference information of O/E conversion for wavelength detection, as shown in FIG. As a further development, the sum information for wavelength detection can be replaced with light intensity information. Information after O/E conversion is shown in FIG.

ここで、送信側の外部温度が一定のときに、波長変動と同符号連続数の関係性を1次遅れ系に近似したイメージを図9に示す。DFB(Distributed Feedback:分布帰還型)レーザのように安定性の高いレーザを採用した場合には、温度による屈折率変化は遅いため、波長変動量は小さい。デバイス固有の熱伝導の時定数に応じて暗号化コードの切替周期を予め送信側装置100、受信側装置200のそれぞれに既知の情報としておく。 Here, when the external temperature on the transmitting side is constant, FIG. 9 shows an image in which the relationship between wavelength fluctuation and the number of consecutive same signs is approximated to a first-order lag system. When a highly stable laser such as a DFB (Distributed Feedback) laser is used, the change in refractive index due to temperature is slow, so the amount of wavelength fluctuation is small. The switching period of the encryption code is set as information known in advance to each of the transmitting side device 100 and the receiving side device 200 in accordance with the heat conduction time constant specific to the device.

図9に示した特性は送信デバイス固有のものである。予め受信側装置200にも既知の情報として保持させておく。受信側装置200では、暗号化コードの切替周期に応じて波長予測を行う。波長予測した結果を図10に示す。ここでは伝送符号のある長さ毎に波長予測の初期値を実測値に逐次刷新しながら、予測を繰り返した例を示している。 The characteristics shown in FIG. 9 are specific to the transmitting device. The receiving device 200 also holds this information in advance as known information. The receiving device 200 performs wavelength prediction according to the switching cycle of the encryption code. The results of wavelength prediction are shown in FIG. Here, an example is shown in which the prediction is repeated while the initial value of the wavelength prediction is updated to the actual value one by one for each length of the transmission code.

続いて予測値と実測値の誤差を図11に示す。この誤差値から暗号化コードを割り出すことができる。そして、受信側で予め持たせた図12に示すパターン表により、受信したバイナリデータに対して復号化を行い、元の送信データを得る。 Next, FIG. 11 shows the error between the predicted value and the actual measured value. The encryption code can be determined from this error value. Then, the received binary data is decoded using the pattern table shown in FIG. 12 prepared in advance on the receiving side to obtain the original transmission data.

以上のように、上記構成による光通信システムによれば、「光波長・光強度」(物理層)及び「データ処理(データリンク層)」を用いて多次元的な変調を行うようにしているので、より暗号性の高いシステムを構築することができる。すなわち、正規送信者の通信データに依存した熱起因する光波長シフトとは別に、外部から光デバイスの温度制御をすることで微量の光波長シフトを行い、暗号情報(暗号化コード)を重畳する。一方の正規受信側では、光強度の検出及び波長フィルタを用いた精密な波長計測を行い、受信強度に応じて波長変動量を予測する。この波長変動の予測値と実測値の乖離量から暗号情報(暗号化コード)を推定し、データ処理で本来の通信データを復号する。このように、本実施形態では、「多次元的な変調を行うこと」と「微小な波長変動」で暗号情報の伝送が煩雑化されており、光通信路から漏洩情報を取得したとしても、その漏洩光量が極めて微弱であることから多次元的な変調、微小な波長変動を識別して暗号情報を取得することは極めて困難である。よって、従来のシステムに比して第三者に通信情報が解読されにくい、優れた効果を奏するものである。 As described above, according to the optical communication system with the above configuration, multidimensional modulation is performed using "light wavelength/light intensity" (physical layer) and "data processing (data link layer)". Therefore, it is possible to construct a system with higher encryption performance. In other words, in addition to the optical wavelength shift caused by heat that depends on the communication data of the authorized sender, a small amount of optical wavelength shift is performed by controlling the temperature of the optical device from the outside, and encryption information (encryption code) is superimposed. . On the other hand, on the regular receiving side, optical intensity detection and precise wavelength measurement using a wavelength filter are performed, and the amount of wavelength fluctuation is predicted according to the received intensity. Encrypted information (encrypted code) is estimated from the amount of deviation between the predicted value and the actual measured value of wavelength fluctuation, and the original communication data is decoded through data processing. As described above, in this embodiment, the transmission of encrypted information is complicated by "multidimensional modulation" and "minor wavelength fluctuations", and even if leaked information is obtained from the optical communication channel, Since the amount of leaked light is extremely weak, it is extremely difficult to identify multidimensional modulation and minute wavelength fluctuations and obtain encrypted information. Therefore, compared to conventional systems, communication information is less likely to be deciphered by a third party, which is an excellent effect.

なお、上記実施形態の構成は、以下のような種々の変形が可能である。
(1)波長可変構造の変更
本実施形態においては、波長制御のために温度調整を用いている。温度上昇により光路長や屈折率が変化することで波長が変化するが、そのほかの波長制御でも適用できる。例えば、発振波長調整用のマイクロマシン(MEMS:Micro Electro Mechanical Systems)による共振器長の変化を用いてもよい。また波長変化量については、制御量を可変させて、波長変動量のタイムマネージメントをしてよい。(非特許文献1参照)
(2)送信光強度の可変
情報漏洩に対する堅牢性を高める上で、送信側にオプションとして光信号の可変減衰器105を用いて送信利得を下げてもよい。2つ以上の器材が双方向通信可能なとき、解読率を下げられるように、送信光の光強度を最小受信感度近傍に設定する。この設定には、光強度・光波長を変動させながら最小受信感度を見つけることができるようなハンドシェーク機能が考えられる。この機能を用いて、[受信利得=光送信利得-伝送路損失(ファイバ損失+コネクタ損失+波長フィルタ感度損失)>最小受信感度]を満たす範囲で、送信利得を調整するとよい。
Note that the configuration of the above embodiment can be modified in various ways as described below.
(1) Change of wavelength variable structure In this embodiment, temperature adjustment is used for wavelength control. The wavelength changes as the optical path length and refractive index change due to temperature rise, but other wavelength control methods can also be applied. For example, changing the resonator length using a micromachine (MEMS: Micro Electro Mechanical Systems) for adjusting the oscillation wavelength may be used. Further, regarding the amount of wavelength variation, time management of the amount of wavelength variation may be performed by varying the control amount. (See Non-Patent Document 1)
(2) Variation of transmitted light intensity In order to improve robustness against information leakage, a variable attenuator 105 for optical signals may be used as an option on the transmitting side to lower the transmission gain. When two or more devices are capable of bidirectional communication, the light intensity of the transmitted light is set near the minimum receiving sensitivity so that the decoding rate can be lowered. This setting may include a handshake function that can find the minimum reception sensitivity while varying the light intensity and wavelength. Using this function, it is preferable to adjust the transmission gain within a range that satisfies [reception gain = optical transmission gain - transmission line loss (fiber loss + connector loss + wavelength filter sensitivity loss) > minimum reception sensitivity].

(3)波長計測の変更
波長フィルタには、多層膜フィルタ、FBG(Fiber Bragg Grating)、複屈折フィルタ、ファブリペロエタロンのように周波数-減衰特性があるものを使用する。光強度と光波長ができればよいので、受信側の光分配器の位置や分配比は任意に変更してよい。
(3) Change in wavelength measurement For the wavelength filter, use one that has frequency-attenuation characteristics, such as a multilayer filter, FBG (Fiber Bragg Grating), birefringence filter, or Fabry-Perot etalon. Since the optical intensity and optical wavelength need only be determined, the position and distribution ratio of the optical distributor on the receiving side may be changed arbitrarily.

(4)波長変調種別の変更
図13に示すように、システム1とシステム2が光通信路で接続された状態で、それぞれのシステムがGPS衛星から時刻情報T1を受け取り可能とする場合、システム間の時刻同期をした上で、波長情報に暗号化コードの代わりに時刻情報を挿入する。このようにすれば、データ到達時刻とそのデータに含まれる時刻情報を比較することにより、第三者が光伝送路の途中に設置した中継器の遅延が割り出せるので、再生中継方式による障害を発見することができる。具体的には、
安全:到達時刻T2-時刻情報T1≒伝送時間
危険:到達時刻T3-時刻情報T1≠伝送時間
のように判定基準を設けるとよい。
(4) Changing the wavelength modulation type As shown in Figure 13, when system 1 and system 2 are connected via an optical communication channel and each system is enabled to receive time information T1 from the GPS satellite, the system After synchronizing the time, time information is inserted into the wavelength information instead of the encryption code. In this way, by comparing the data arrival time and the time information included in that data, it is possible to determine the delay of a repeater installed by a third party in the middle of the optical transmission line, and discover failures caused by the regenerative repeating method. can do. in particular,
Safety: Arrival time T2 - time information T1 ≒ transmission time
Danger: Arrival time T3 - time information T1 ≠ transmission time
It is a good idea to set up judgment criteria like this.

(5)外乱成分の抑制
外気温が波長と光強度における外乱成分の一つとなる。外乱測定器107において、サーミスタなどで外乱量を測定し、温度制御パターン選択器108に入力して、フィードバック制御により外乱となる波長変動と出力変動を抑制する。もしくは、分配器106で送信光の一部を折り返して受信させることにより、外乱成分を相殺することができる。
(5) Suppression of disturbance components Outside temperature is one of the disturbance components in wavelength and light intensity. In the disturbance measuring device 107, the amount of disturbance is measured with a thermistor or the like, and is inputted to the temperature control pattern selector 108, and wavelength fluctuations and output fluctuations that become disturbances are suppressed by feedback control. Alternatively, the disturbance component can be canceled by returning and receiving a part of the transmitted light by the distributor 106.

(6)暗号化コードの多値化
本実施形態では、暗号化コードを3種類としたが、さらに多値化できる。さらには、波長変動の傾き(微小変動量=差分δ)にも情報を含めることができる。また、光強度にも多値化を持たせることができる。この多値化は必ずしも線形性を担保する必要はなく、例えば指数関数系の投射による数値変換を行ってもよい。
(6) Multi-value encryption code In this embodiment, three types of encryption codes are used, but it is also possible to make the encryption code multi-value. Furthermore, information can also be included in the slope of wavelength fluctuation (amount of minute fluctuation=difference δ). Further, the light intensity can also be multivalued. This multivalue conversion does not necessarily need to ensure linearity, and for example, numerical conversion by projection of an exponential function system may be performed.

(7)誤り訂正及び誤り検出
暗号化コードの代わりに、例えばリードソロモンやCRC(Cyclic Redundancy Check:巡回冗長検査)などの情報を波長領域に盛り込むことによって、低ビットレートの信号伝送においても、波長情報からデータ伝送の信頼性を向上させることができる。
(7) Error correction and error detection By incorporating information such as Reed-Solomon and CRC (Cyclic Redundancy Check) into the wavelength domain instead of an encryption code, even in low bit rate signal transmission, wavelength The reliability of data transmission can be improved from the information.

(8)波長フィルタの温度制御
温度依存性のある波長検出用の波長フィルタ208,209のロバスト性向上(周囲環境の状態による外乱成分抑制)として、波長フィルタ208,209の周囲温度を一定温度に制御することが考えられる。例えば、2つのフィルタ208,209にそれぞれ温度検出用の素子と温度調整用の素子を設けるとよい。
(8) Temperature control of wavelength filters In order to improve the robustness of the wavelength filters 208 and 209 for temperature-dependent wavelength detection (suppression of disturbance components due to the state of the surrounding environment), the ambient temperature of the wavelength filters 208 and 209 is kept at a constant temperature. It is possible to control it. For example, the two filters 208 and 209 may each be provided with a temperature detection element and a temperature adjustment element.

(9)多波長化
システムコストの低減・小型化に背くが、複数の波長光源を使ったマルチ型の多次元の変調による暗号方式を採用した光通信システムも考えらえる。図14に多波長化した光通信システムの構成を示す。このシステムは、送信側装置において、送信系1と送信系2に送信データを分配して互いに異なる波長で多次元の暗号化を施した光信号を結合器で結合し、光通信路を介して受信側装置に送る。受信側装置において、光通信路からの光信号を分配器で受信系1と受信系2に分配し、それぞれに割り当てられた波長の光信号を受信して受信データを復号する。さらに、受信データを解析して機械学習させ、学習結果から推論する。
(9) Multiple wavelengths Although it goes against the trend of system cost reduction and miniaturization, it is also possible to consider an optical communication system that employs an encryption method based on multi-dimensional modulation using multiple wavelength light sources. FIG. 14 shows the configuration of an optical communication system with multiple wavelengths. This system distributes transmission data to transmission system 1 and transmission system 2 in the transmission side device, combines optical signals that have been multidimensionally encrypted at different wavelengths using a coupler, and transmits the data via an optical communication path. Send to receiving device. In the receiving side device, the optical signal from the optical communication path is distributed to the receiving system 1 and the receiving system 2 by a distributor, and the optical signals of the wavelengths assigned to each are received and the received data is decoded. Furthermore, it analyzes the received data, performs machine learning, and makes inferences from the learning results.

上記構成によれば、各送信系1,2において、多次元をさらに増やしていくので、同時組み合わせ伝送や冗長系伝送にも使用できる。受信側装置では多次元のパラメータが多くなるため、通信初期の段階で、外乱成分などを抑制するパラメータを学習させた上で、推論に基づく数値判定を行う方法も考えらえる。さらには、暗号化コードを定期的に送信側で更新し、受信側で同期コード(Syncコード)を検出しやすいように再学習させる方法も考えられる。 According to the above configuration, since the number of dimensions is further increased in each of the transmission systems 1 and 2, it can be used for simultaneous combined transmission and redundant transmission. Since there are many multidimensional parameters in the receiving side device, a method can be considered in which parameters for suppressing disturbance components are learned at the initial stage of communication, and then numerical judgments are made based on inference. Another possibility is to periodically update the encryption code on the sending side and have the receiving side relearn the Sync code so that it can be easily detected.

その他、本発明は上記実施形態をそのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 In addition, the present invention is not limited to the above-described embodiments as they are, and in the implementation stage, the constituent elements can be modified and embodied without departing from the gist of the present invention. Moreover, various inventions can be formed by appropriately combining the plurality of components disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, components from different embodiments may be combined as appropriate.

100…送信側装置、101…伝送符号暗号化器、102…符号変換器、103…電流増幅器、104…E/O(電気/光)変換器、105…可変減衰器、106…分配器、107…外乱測定器、108…温度制御パターン選択器、109…温度制御器、110…暗号パターン選択器、111…分配器、112,113…波長フィルタ、114,115…O/E(光/電気)変換器、116…外乱補正器、
200…受信側装置、201…分配器、202…O/E変換器、203…強度検出器、204…照合器、205…符号逆変換器、206…伝送符号復号器、207…分配器、208,209…波長フィルタ、210,211…O/E(光/電気)変換器、212…波長検出器、213…暗号パターン選択器。
100... Transmission side device, 101... Transmission code encoder, 102... Code converter, 103... Current amplifier, 104... E/O (electrical/optical) converter, 105... Variable attenuator, 106... Distributor, 107 ... Disturbance measurement device, 108 ... Temperature control pattern selector, 109 ... Temperature controller, 110 ... Code pattern selector, 111 ... Distributor, 112, 113 ... Wavelength filter, 114, 115 ... O/E (optical/electrical) Converter, 116...disturbance corrector,
200... Receiving side device, 201... Distributor, 202... O/E converter, 203... Intensity detector, 204... Collator, 205... Code inverse converter, 206... Transmission code decoder, 207... Distributor, 208 , 209...wavelength filter, 210, 211...O/E (optical/electrical) converter, 212...wavelength detector, 213...cipher pattern selector.

Claims (9)

伝送データを所定の伝送符号で暗号化した後、光信号に変換して光通信路に出力する送信側装置と、
前記光通信路を介して前記送信側装置から出力される光信号を受信して電気信号に変換し、前記電気信号の暗号化を解読して正規の伝送データを出力する受信側装置と
を具備し、
前記送信側装置は、
前記伝送データを所定の伝送符号で暗号化する伝送符号暗号化手段と、
前記伝送符号で暗号化された伝送データに、指定の制御パターンによる符号変換を施す符号変換手段と、
前記符号変換が施された伝送データの電気量の振幅を電気/光変換デバイスによって光信号の光強度の振幅に変換して前記光通信路に出力する電気/光変換手段と、
複数の暗号情報から任意の暗号情報を選択する送信側暗号情報選択手段と、
前記送信側暗号情報選択手段で選択された前記暗号情報に対応する制御パターンを選択し、選択された制御パターンを前記指定の制御パターンとして前記符号変換手段に出力する制御パターン選択手段と、
前記制御パターン選択手段で選択された制御パターンに従って前記光信号の波長をシフトさせる波長制御手段と
を備え、
前記受信側装置は、
前記光通信路を介して伝送される光信号を電気信号に変換し、前記光信号の光強度の振幅変化を受信データとして検出する光強度検出手段と、
前記光通信路を介して伝送される光信号を入力してその波長変化を検出する波長検出手段と、
前記光強度検出手段で検出された前記光信号の光強度の振幅変化のパターンと前記波長検出手段で検出される波長変化のパターンとを照合して、両者のパターンの一致を検出する照合手段と、
前記照合によってパターンの一致が検出されたとき、一致が検出されたパターンに対応する暗号情報を前記複数の暗号情報から選択する受信側暗号情報選択手段と、
前記光強度検出手段で検出された受信データに前記一致が検出されたパターンによる符号逆変換を施す符号逆変換手段と、
前記符号逆変換手段で符号逆変換が施された受信データを入力し、前記受信側暗号情報選択手段で選択された暗号情報に基づいて前記伝送データの暗号化を解読して正規の伝送データとして出力する暗号化解読手段と
を備える光通信システム。
a transmission side device that encrypts transmission data with a predetermined transmission code, converts it into an optical signal, and outputs it to an optical communication path;
a receiving device that receives an optical signal output from the transmitting device via the optical communication path, converts it into an electrical signal, decrypts the electrical signal, and outputs legitimate transmission data;
Equipped with
The transmitting device includes:
transmission code encryption means for encrypting the transmission data with a predetermined transmission code;
code conversion means for performing code conversion according to a specified control pattern on the transmission data encrypted with the transmission code;
an electrical/optical converter that converts the amplitude of the electrical quantity of the code-converted transmission data into the amplitude of the optical intensity of an optical signal by an electrical/optical conversion device, and outputs the converted signal to the optical communication path;
a sender-side cryptographic information selection means for selecting arbitrary cryptographic information from a plurality of cryptographic information;
control pattern selection means for selecting a control pattern corresponding to the cryptographic information selected by the transmitting side cryptographic information selection means and outputting the selected control pattern to the code conversion means as the designated control pattern;
wavelength control means for shifting the wavelength of the optical signal according to the control pattern selected by the control pattern selection means;
Equipped with
The receiving device includes:
light intensity detection means for converting an optical signal transmitted via the optical communication path into an electrical signal and detecting an amplitude change in the light intensity of the optical signal as received data;
wavelength detection means for inputting an optical signal transmitted via the optical communication path and detecting a change in wavelength;
collating means for collating a pattern of amplitude changes in the light intensity of the optical signal detected by the light intensity detecting means and a pattern of wavelength changes detected by the wavelength detecting means to detect a match between the two patterns; ,
Receiving-side cryptographic information selection means for selecting cryptographic information corresponding to the detected pattern from the plurality of cryptographic information when a pattern match is detected by the matching;
code inverse conversion means that performs code inverse conversion on the received data detected by the light intensity detection means according to the pattern in which the match is detected;
The received data subjected to code inverse conversion by the code inverse conversion means is input, and the transmission data is decrypted based on the encryption information selected by the receiving side encryption information selection means, and is converted into regular transmission data. Output encryption/decryption means and
An optical communication system equipped with
伝送データを所定の伝送符号で暗号化した後、光信号に変換して光通信路に出力する送信側装置と、
前記光通信路を介して前記送信側装置から出力される光信号を受信して電気信号に変換し、前記電気信号の暗号化を解読して正規の伝送データを出力する受信側装置と
を具備する光通信システムに用いられ、
前記伝送データを所定の伝送符号で暗号化する伝送符号暗号化手段と、
前記伝送符号で暗号化された伝送データに、指定の制御パターンによる符号変換を施す符号変換手段と、
前記符号変換が施された伝送データの電気量の振幅を電気/光変換デバイスによって光信号の光強度の振幅に変換して前記光通信路に出力する電気/光変換手段と、
複数の暗号情報から任意の暗号情報を選択する送信側暗号情報選択手段と、
前記送信側暗号情報選択手段で選択された前記暗号情報に対応する制御パターンを選択し、選択された制御パターンを前記指定の制御パターンとして前記符号変換手段に出力する制御パターン選択手段と、
前記制御パターン選択手段で選択された制御パターンに従って前記光信号の波長をシフトさせる波長制御手段と
を備える光通信システムの送信側装置。
a transmission side device that encrypts transmission data with a predetermined transmission code, converts it into an optical signal, and outputs it to an optical communication path;
a receiving device that receives an optical signal output from the transmitting device via the optical communication path, converts it into an electrical signal, decrypts the electrical signal, and outputs legitimate transmission data;
Used in optical communication systems equipped with
transmission code encryption means for encrypting the transmission data with a predetermined transmission code;
code conversion means for performing code conversion on the transmission data encrypted with the transmission code according to a specified control pattern;
an electrical/optical converter that converts the amplitude of the electrical quantity of the code-converted transmission data into the amplitude of the optical intensity of an optical signal by an electrical/optical conversion device, and outputs the converted signal to the optical communication path;
a sender-side cryptographic information selection means for selecting arbitrary cryptographic information from a plurality of cryptographic information;
control pattern selection means for selecting a control pattern corresponding to the cryptographic information selected by the transmitting side cryptographic information selection means and outputting the selected control pattern to the code conversion means as the designated control pattern;
wavelength control means for shifting the wavelength of the optical signal according to the control pattern selected by the control pattern selection means;
A transmitting side device of an optical communication system comprising :
前記波長制御手段は、前記電気/光変換手段に用いる電気/光変換デバイスの温度を制御する請求項2記載の光通信システムの送信側装置。 3. The transmission side apparatus of an optical communication system according to claim 2, wherein said wavelength control means controls the temperature of an electric/optical conversion device used in said electric/optical conversion means. 前記波長制御手段は、前記電気/光変換手段に用いる前記光信号の発振波長調整用の共振器の長さを制御する請求項2記載の光通信システムの送信側装置。 3. The transmission side device of an optical communication system according to claim 2, wherein the wavelength control means controls the length of a resonator for adjusting the oscillation wavelength of the optical signal used in the electric/optical conversion means. 前記波長制御手段は、前記波長の変化を傾きに情報を含める請求項2記載の光通信システムの送信側装置。 3. The transmission side device of an optical communication system according to claim 2, wherein said wavelength control means includes information on a change in said wavelength in a slope. さらに、前記電気/光変換手段は、前記光通信路に出力する光信号を最小受信感度に合わせて減衰する可変減衰器を備える請求項2記載の光通信システムの送信側装置。 3. The transmission side device of an optical communication system according to claim 2, wherein the electrical/optical conversion means further includes a variable attenuator that attenuates the optical signal output to the optical communication path in accordance with a minimum receiving sensitivity. 伝送データを所定の伝送符号で暗号化した後、光信号に変換して光通信路に出力する送信側装置と、
前記光通信路を介して前記送信側装置から出力される光信号を受信して電気信号に変換し、前記電気信号の暗号化を解読して正規の伝送データを出力する受信側装置と
を具備する光通信システムに用いられ、
前記送信側装置が、
前記伝送データを所定の伝送符号で暗号化する伝送符号暗号化手段と、
前記伝送符号で暗号化された伝送データに、指定の制御パターンによる符号変換を施す符号変換手段と、
前記符号変換が施された伝送データの電気量の振幅を電気/光変換デバイスによって光信号の光強度の振幅に変換して前記光通信路に出力する電気/光変換手段と、
複数の暗号情報から任意の暗号情報を選択する送信側暗号情報選択手段と、
前記送信側暗号情報選択手段で選択された前記暗号情報に対応する制御パターンを選択し、選択された制御パターンを前記指定の制御パターンとして前記符号変換手段に出力する制御パターン選択手段と、
前記制御パターン選択手段で選択された制御パターンに従って前記光信号の波長をシフトさせる波長制御手段と
を備えるとき、
前記光通信路を介して伝送される光信号を電気信号に変換し、前記光信号の光強度の振幅変化を受信データとして検出する光強度検出手段と、
前記光通信路を介して伝送される光信号を入力してその波長変化を検出する波長検出手段と、
前記光強度検出手段で検出された前記光信号の光強度の振幅変化のパターンと前記波長検出手段で検出される波長変化のパターンとを照合して、両者のパターンの一致を検出する照合手段と、
前記照合によってパターンの一致が検出されたとき、一致が検出されたパターンに対応する暗号情報を前記複数の暗号情報から選択する受信側暗号情報選択手段と、
前記光強度検出手段で検出された受信データに前記一致が検出されたパターンによる符号逆変換を施す符号逆変換手段と、
前記符号逆変換手段で符号逆変換が施された受信データを入力し、前記受信側暗号情報選択手段で選択された暗号情報に基づいて前記伝送データの暗号化を解読して正規の伝送データとして出力する暗号化解読手段と
を備える光通信システムの受信側装置。
a transmission side device that encrypts transmission data with a predetermined transmission code, converts it into an optical signal, and outputs it to an optical communication path;
a receiving device that receives an optical signal output from the transmitting device via the optical communication path, converts it into an electrical signal, decrypts the electrical signal, and outputs legitimate transmission data;
Used in optical communication systems equipped with
The transmitting device,
transmission code encryption means for encrypting the transmission data with a predetermined transmission code;
code conversion means for performing code conversion on the transmission data encrypted with the transmission code according to a specified control pattern;
an electrical/optical converter that converts the amplitude of the electrical quantity of the code-converted transmission data into the amplitude of the optical intensity of an optical signal by an electrical/optical conversion device, and outputs the converted signal to the optical communication path;
a sender-side cryptographic information selection means for selecting arbitrary cryptographic information from a plurality of cryptographic information;
control pattern selection means for selecting a control pattern corresponding to the cryptographic information selected by the transmitting side cryptographic information selection means and outputting the selected control pattern to the code conversion means as the designated control pattern;
wavelength control means for shifting the wavelength of the optical signal according to the control pattern selected by the control pattern selection means;
When preparing
light intensity detection means for converting an optical signal transmitted via the optical communication path into an electrical signal and detecting an amplitude change in the light intensity of the optical signal as received data;
wavelength detection means for inputting an optical signal transmitted via the optical communication path and detecting a change in wavelength;
collating means for collating a pattern of amplitude changes in the light intensity of the optical signal detected by the light intensity detecting means and a pattern of wavelength changes detected by the wavelength detecting means to detect a match between the two patterns; ,
Receiving-side cryptographic information selection means for selecting cryptographic information corresponding to the detected pattern from the plurality of cryptographic information when a pattern match is detected by the matching;
code inverse conversion means that performs code inverse conversion on the received data detected by the light intensity detection means according to the pattern in which the match is detected;
The received data subjected to code inverse conversion by the code inverse conversion means is input, and the transmission data is decrypted based on the encryption information selected by the receiving side encryption information selection means and becomes regular transmission data. Output encryption/decryption means and
A receiving side device of an optical communication system comprising :
前記送信側装置で複数の波長光源を使ったマルチ型の多次元の変調による暗号方式を採用するとき、前記光通信路からの光信号を分配手段で複数の受信系に分配し、それぞれに割り当てられた波長の光信号を受信して受信データを復号するものとし、さらに前記受信データを解析して機械学習させ、学習結果から伝送データを推論する請求項7記載の光通信システムの受信側装置。 When the transmitting side device employs a multi-type multidimensional modulation encryption method using a plurality of wavelength light sources, the optical signal from the optical communication path is distributed to a plurality of receiving systems by a distribution means and assigned to each. 8. The receiving side device of an optical communication system according to claim 7, wherein the receiving side device of an optical communication system is configured to receive an optical signal of a given wavelength and decode the received data, further analyze the received data and perform machine learning, and infer transmission data from the learning result. . 送信側で、伝送データを所定の伝送符号で暗号化した後、光信号に変換して光通信路に出力し、
受信側で、前記光通信路を介して前記送信側装置から出力される光信号を受信して電気信号に変換し、前記電気信号の暗号化を解読して正規の伝送データを出力するものとし、
前記送信側は、
前記伝送データを所定の伝送符号で暗号化し、
前記伝送符号で暗号化された伝送データに、指定の制御パターンによる符号変換を施し、
前記符号変換が施された伝送データの電気量の振幅を電気/光変換デバイスによって光信号の光強度の振幅に変換して前記光通信路に出力し、
複数の暗号情報から任意の暗号情報を選択し、
前記選択された前記暗号情報に対応する制御パターンを選択し、選択された制御パターンを前記指定の制御パターンとして前記符号変換に用い、
前記選択された前記暗号情報に対応する制御パターンに従って前記光信号の波長をシフトさせ、
前記受信側は、
前記光通信路を介して伝送される光信号を電気信号に変換し、前記光信号の光強度の振幅変化を受信データとして検出し、
前記光通信路を介して伝送される光信号を入力してその波長変化を検出し、
前記光信号の光強度の振幅変化のパターンと前記光信号の波長変化のパターンとを照合して、両者のパターンの一致を検出し、
前記照合によってパターンの一致が検出されたとき、一致が検出されたパターンに対応する暗号情報を前記複数の暗号情報から選択し、
前記検出された受信データに前記一致が検出されたパターンによる符号逆変換を施し、
前記符号逆変換が施された受信データを入力し、前記選択された暗号情報に基づいて前記伝送データの暗号化を解読して正規の伝送データとして出力する
光通信方法。
On the transmitting side, after encrypting the transmitted data with a predetermined transmission code, it is converted into an optical signal and output to an optical communication channel.
The receiving side receives the optical signal output from the transmitting side device via the optical communication path, converts it into an electrical signal, decrypts the encryption of the electrical signal, and outputs regular transmission data. ,
The sending side is
encrypting the transmission data with a predetermined transmission code;
The transmission data encrypted with the transmission code is subjected to code conversion according to a specified control pattern,
converting the amplitude of the electrical quantity of the transmission data subjected to the code conversion into the amplitude of the optical intensity of the optical signal by an electrical/optical conversion device, and outputting the converted signal to the optical communication channel;
Select any encryption information from multiple encryption information,
selecting a control pattern corresponding to the selected cryptographic information, and using the selected control pattern as the designated control pattern for the code conversion;
shifting the wavelength of the optical signal according to a control pattern corresponding to the selected cryptographic information;
The receiving side is
converting an optical signal transmitted via the optical communication path into an electrical signal, detecting an amplitude change in the optical intensity of the optical signal as received data,
inputting an optical signal transmitted via the optical communication path and detecting a change in its wavelength;
comparing a pattern of amplitude changes in the light intensity of the optical signal with a pattern of wavelength changes of the optical signal to detect a match between the two patterns;
When a pattern match is detected by the matching, selecting cryptographic information corresponding to the detected pattern from the plurality of cryptographic information;
performing code inverse conversion on the detected received data according to the pattern in which the match was detected;
An optical communication method , wherein the received data subjected to the code inverse conversion is input, the transmission data is decrypted based on the selected encryption information, and the transmitted data is output as regular transmission data.
JP2020029350A 2020-02-25 2020-02-25 Optical communication system, transmitting side device, receiving side device, and optical communication method Active JP7451223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020029350A JP7451223B2 (en) 2020-02-25 2020-02-25 Optical communication system, transmitting side device, receiving side device, and optical communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020029350A JP7451223B2 (en) 2020-02-25 2020-02-25 Optical communication system, transmitting side device, receiving side device, and optical communication method

Publications (2)

Publication Number Publication Date
JP2021136489A JP2021136489A (en) 2021-09-13
JP7451223B2 true JP7451223B2 (en) 2024-03-18

Family

ID=77661684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020029350A Active JP7451223B2 (en) 2020-02-25 2020-02-25 Optical communication system, transmitting side device, receiving side device, and optical communication method

Country Status (1)

Country Link
JP (1) JP7451223B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246683A (en) 2001-02-15 2002-08-30 Toshiba Corp Optical transmitter and optical transmission system
JP2008263300A (en) 2007-04-10 2008-10-30 Mitsubishi Electric Corp Subscriber-side terminating device
JP2009253563A (en) 2008-04-03 2009-10-29 Nec Corp Content encryption distribution system, content encryption distribution method, and program for content encryption distribution
JP2010135903A (en) 2008-12-02 2010-06-17 Fuji Xerox Co Ltd Communication medium and communication system
JP2015213223A (en) 2014-05-02 2015-11-26 国立研究開発法人情報通信研究機構 Physical layer encryption apparatus and method
JP2017085250A (en) 2015-10-23 2017-05-18 株式会社東芝 Plant security device and plant security system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246683A (en) 2001-02-15 2002-08-30 Toshiba Corp Optical transmitter and optical transmission system
JP2008263300A (en) 2007-04-10 2008-10-30 Mitsubishi Electric Corp Subscriber-side terminating device
JP2009253563A (en) 2008-04-03 2009-10-29 Nec Corp Content encryption distribution system, content encryption distribution method, and program for content encryption distribution
JP2010135903A (en) 2008-12-02 2010-06-17 Fuji Xerox Co Ltd Communication medium and communication system
JP2015213223A (en) 2014-05-02 2015-11-26 国立研究開発法人情報通信研究機構 Physical layer encryption apparatus and method
JP2017085250A (en) 2015-10-23 2017-05-18 株式会社東芝 Plant security device and plant security system

Also Published As

Publication number Publication date
JP2021136489A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
US7986783B2 (en) Data transmitting apparatus
JP5558579B2 (en) Quantum communication system and method
US10291399B2 (en) Quantum-secured communications overlay for optical fiber communications networks
JP5036707B2 (en) Phase lock method in multi-channel quantum communication system
JP4848283B2 (en) Data communication device
JP5266928B2 (en) Method and apparatus for secure communication
JP5377934B2 (en) Optical transmitter
KR101610747B1 (en) Method and apparatus for quantum cryptographic communication
JP4124194B2 (en) Shared information generation method and system
US20120328100A1 (en) Optical transmission device and reception device for yuen encryption, optical transmission method and reception method for yuen encryption, and encrypted communication system
EP1726118A1 (en) Secure data communication apparatus and method
US11101893B2 (en) Optical cryptography for high speed coherent systems
WO2010103677A1 (en) Encryption communication system
JP5125583B2 (en) Optical multiplexing communication system and crosstalk elimination method thereof
JP7451223B2 (en) Optical communication system, transmitting side device, receiving side device, and optical communication method
US7437082B1 (en) Private optical communications systems, devices, and methods
US20070177724A1 (en) Data transmitter and data receiver
WO2015166719A1 (en) Physical layer encryption device and method
JP6237217B2 (en) Modulation apparatus and modulation method
JP2011061292A (en) Pulse position modulation noise secret communication system
JP7176070B2 (en) Optical system and method
CN113572562B (en) Transmitting device and receiving device of wavelength division multiplexing polarization compensation system
US7907670B2 (en) Data transmitting apparatus and data receiving apparatus
US7839946B2 (en) Data communication apparatus and data communication method
US20210376936A1 (en) Mitigation of temperature variations and crosstalk in silicon photonics interconnects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240306

R150 Certificate of patent or registration of utility model

Ref document number: 7451223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150