JP7450951B2 - Production of new FXR small molecule agonists and their use - Google Patents

Production of new FXR small molecule agonists and their use Download PDF

Info

Publication number
JP7450951B2
JP7450951B2 JP2022023294A JP2022023294A JP7450951B2 JP 7450951 B2 JP7450951 B2 JP 7450951B2 JP 2022023294 A JP2022023294 A JP 2022023294A JP 2022023294 A JP2022023294 A JP 2022023294A JP 7450951 B2 JP7450951 B2 JP 7450951B2
Authority
JP
Japan
Prior art keywords
group
compound
general formula
substituted
unsubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022023294A
Other languages
Japanese (ja)
Other versions
JP2023120086A (en
Inventor
ザオ,イシュアン
チャン,ゼンウェイ
ウー,ギュオフイ
ヤン,シェンシェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cascade Pharmaceuticals Inc
Original Assignee
Cascade Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cascade Pharmaceuticals Inc filed Critical Cascade Pharmaceuticals Inc
Priority to JP2022023294A priority Critical patent/JP7450951B2/en
Publication of JP2023120086A publication Critical patent/JP2023120086A/en
Application granted granted Critical
Publication of JP7450951B2 publication Critical patent/JP7450951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

技術分野
本発明は、医薬の分野に属し、FXR作動剤としての非ステロイド化合物の製造および使用に関する。具体的に、FXR作動剤として有用な有機小分子化合物およびそのエナンチオマー、ジアステレオマー、互変異性体、ラセミ体、水和物、溶媒和物、プロドラッグまたはこれらの薬学的に許容される塩の製造方法ならびにFXR関連疾患を治療する医薬の製造におけるその使用に関する。
TECHNICAL FIELD The present invention is in the field of medicine and relates to the manufacture and use of non-steroidal compounds as FXR agonists. Specifically, small organic molecule compounds useful as FXR agonists and their enantiomers, diastereomers, tautomers, racemates, hydrates, solvates, prodrugs, or pharmaceutically acceptable salts thereof. and its use in the manufacture of medicaments for treating FXR-related diseases.

背景技術
ファルネソイドX受容体(Farnesoid X receptor)は、核内受容体スーパーファミリーの一員で、リガンド依存性核転写因子に属し、主に肝臓、腸管、腎臓、胆管などのシステムに発現される。FXRは、内因性リガンドである胆汁酸によって活性化され、胆汁酸代謝やコレステロール代謝などの重要な一環であるため、胆汁酸受容体とも呼ばれる。FXRは、直接脂質代謝、糖質代謝、炎症、線維化、肝臓再生、細胞の分化と増殖などの生理過程を含む300超の遺伝子の発現に関与する。自然環境において、そのリガンドは一次胆汁酸のケノデオキシコール酸、二次胆汁酸のリトコール酸、デオキシコール酸などを含む。たとえば、内因性リガンドである胆汁酸によって活性化されたFXRはトリグリセリド(triglyceride、TG)代謝の過程において重要な作用を果たし、 FXRはTG代謝に関連する主要酵素、リポタンパク質および相応する受容体を調節することにより、肝臓および循環血液におけるTG含有量が安定平衡になるようにすることができる。そのため、今まで、肝臓などの代謝性疾患の応用分野には、既に多くのFXR合成型リガンド分子がある。
BACKGROUND ART Farnesoid X receptor is a member of the nuclear receptor superfamily, belongs to ligand-dependent nuclear transcription factors, and is mainly expressed in systems such as the liver, intestinal tract, kidney, and bile duct. FXR is activated by bile acids, which are endogenous ligands, and is an important part of bile acid metabolism and cholesterol metabolism, so it is also called the bile acid receptor. FXR is directly involved in the expression of over 300 genes, including physiological processes such as lipid metabolism, carbohydrate metabolism, inflammation, fibrosis, liver regeneration, and cell differentiation and proliferation. In its natural environment, its ligands include the primary bile acid chenodeoxycholic acid, the secondary bile acids lithocholic acid, deoxycholic acid, and the like. For example, FXR activated by its endogenous ligand bile acids plays an important role in the process of triglyceride (TG) metabolism, and FXR regulates the key enzymes, lipoproteins and corresponding receptors involved in TG metabolism. Through regulation, the TG content in the liver and circulating blood can be brought to a stable equilibrium. Therefore, there are already many FXR synthetic ligand molecules in the application field of metabolic diseases such as the liver.

FXR作動剤分子は、肝臓疾患、たとえば原発性胆汁性肝硬変(primary biliary cirrhosis、PBC)、原発性硬化性胆管炎(primary sclerosing cholangitis、PSC)や非アルコール性脂肪肝(nonalcoholic steatohepatitis、NASH)などの治療において、既に優れた臨床効果を示している。今まで、最初に市販を許可されようとするFXR作動剤分子であるオベチコール酸(obeticholic acid、OCA)は、多くの代謝性症状の顕著な改善、たとえば肝臓脂肪含有量の降下、炎症反応の減少や肝線維化などが実証される。しかし、OCAも日々多くの臨床上の不都合、たとえば痒みの誘発、高密度リポタンパク質(high-density lipoprotein cholesterol、HDLc)の低下、低密度リポタンパク質(low-density lipoprotein cholesterol、LDLc)の上昇などが現れてきた等。そのため、臨床の需要の面では、臨床効果が良く、毒性・副作用が低い、新たなFXR作動剤分子の出現が切望されている。
また、ある研究では、FXRは腫瘍の発生・発展に密接に関連することが実証された。多くの腫瘍において、FXRは癌抑制遺伝子の役割を担う。たとえば、肝細胞癌および直腸癌において、FXRは低発現の状態で、FXRが活性化すると、β-カテニンの活性が抑制され、肝臓癌または直腸癌の進展が顕著に抑制される。最近の研究では、胆管癌において、FXRの作動剤であるOCAは顕著に肝臓内の胆管細胞の増殖、移動およびクローン形成などを抑制することが示された。
FXR agonist molecules can be used to treat liver diseases such as primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and nonalcoholic fatty liver disease (NASH). It has already shown excellent clinical efficacy in treatment. Until now, obeticholic acid (OCA), the first FXR agonist molecule to be approved commercially, has shown significant improvements in many metabolic symptoms, such as lowering liver fat content and reducing inflammatory responses. and liver fibrosis. However, OCA also causes many clinical problems, such as itch induction, decrease in high-density lipoprotein cholesterol (HDLc), and increase in low-density lipoprotein cholesterol (LDLc). It has appeared, etc. Therefore, in terms of clinical demand, there is a strong desire for the emergence of new FXR agonist molecules with good clinical efficacy and low toxicity and side effects.
Additionally, one study demonstrated that FXR is closely related to tumor initiation and development. In many tumors, FXR plays the role of a tumor suppressor gene. For example, in hepatocellular carcinoma and rectal cancer, FXR is in a low expression state, and when FXR is activated, β-catenin activity is suppressed, and the progression of liver cancer or rectal cancer is significantly suppressed. Recent studies have shown that in cholangiocarcinoma, OCA, an FXR agonist, significantly inhibits the proliferation, migration, and clonogenesis of bile duct cells within the liver.

さらに、FXR作動剤は新たな抗ウイルス薬の候補として有用で、ある研究では、FXRリガンドは新たなB型肝炎ウイルス(hepatitis B virus、HBV)の複製を抑制する治療策になることが可能である。FXR作動剤はHBV表面抗原の合成を抑制し、HBVのDNAとRNAの複製を抑制し、最も重要に、HBVのcccDNAの生成を抑制することができる。C型肝炎ウイルス(hepatitis C virus、HCV)において、FXR作動剤であるGW4064は間接的な手段を通してHCVの肝臓組織細胞への侵入を抑制することができる。そのため、FXRの作動剤分子は抗ウイルス薬の開発としても将来性が大いにある。
上記のように、本分野では、製造方法が簡単で、抑制効果が良い、新規なFXR作動剤分子が欠けている。
Additionally, FXR agonists are useful as new antiviral drug candidates, and one study showed that FXR ligands could be a potential therapeutic to inhibit the replication of a novel hepatitis B virus (HBV). be. FXR agonists can inhibit HBV surface antigen synthesis, inhibit HBV DNA and RNA replication, and most importantly, inhibit HBV cccDNA production. In hepatitis C virus (HCV), GW4064, an FXR agonist, can inhibit HCV invasion into liver tissue cells through indirect means. Therefore, FXR agonist molecules have great potential for the development of antiviral drugs.
As mentioned above, the field lacks novel FXR agonist molecules that are easy to prepare and have good inhibitory effects.

本発明の目的は、製造方法が簡単で、抑制効果が良い、新規なFXR作動剤分子を提供することである。
本発明の第一の側面では、一般式Iで表される化合物、またはそのエナンチオマー、ジアステレオマー、互変異性体、ラセミ体、水和物、溶媒和物、プロドラッグ、あるいはこれらの薬学的に許容される塩を提供する。
(ただし、
Arは、置換または無置換のC6-C10アリール基、置換または無置換の5-9員ヘテロ芳香環(単環または縮合環を含み、1-3個の酸素、硫黄および窒素から選ばれるヘテロ原子を含有する)からなる群から選ばれる。
Aは、置換または無置換のC6-C10アリール基、置換または無置換の5-9員ヘテロ芳香環(単環または縮合環を含み、1-3個の酸素、硫黄および窒素から選ばれるヘテロ原子を含有する)からなる群から選ばれる。
R1は、置換または無置換のC1-C6アルキル基、置換または無置換のC3-C6シクロアルキル基、置換または無置換の5-9員複素環(1-3個の酸素、硫黄および窒素から選ばれるヘテロ原子を含有する)からなる群から選ばれる。
Xは、水素または重水素からなる群から選ばれる。
ここで、前記の置換とは、基における1個または複数の水素原子がそれぞれ独立にハロゲン、C1-C6ハロアルキル基、C1-C6ハロアルコキシ基、C1-C6アルキル基、C1-C6アルコキシ基、C3-C6シクロアルキル基、C3-C6シクロアルキルオキシ基、シアノ基またはニトロ基からなる群から選ばれる置換基で置換されることである。)
The aim of the present invention is to provide a new FXR agonist molecule that is easy to produce and has good inhibitory effects.
In a first aspect of the present invention, compounds represented by general formula I, or enantiomers, diastereomers, tautomers, racemates, hydrates, solvates, prodrugs thereof, or pharmaceutical Provide acceptable salt.
(however,
Ar is a substituted or unsubstituted C 6 -C 10 aryl group, a substituted or unsubstituted 5-9 membered heteroaromatic ring (including a single ring or a fused ring, and is selected from 1-3 oxygen, sulfur and nitrogen) containing heteroatoms).
A is a substituted or unsubstituted C 6 -C 10 aryl group, a substituted or unsubstituted 5-9 membered heteroaromatic ring (including a single ring or fused rings, and 1-3 atoms selected from oxygen, sulfur and nitrogen) containing heteroatoms).
R 1 is a substituted or unsubstituted C 1 -C 6 alkyl group, a substituted or unsubstituted C 3 -C 6 cycloalkyl group, a substituted or unsubstituted 5-9 membered heterocycle (1-3 oxygen atoms, containing a heteroatom selected from sulfur and nitrogen).
X is selected from the group consisting of hydrogen or deuterium.
Here, the above substitution means that one or more hydrogen atoms in the group are each independently halogen, C 1 -C 6 haloalkyl group, C 1 -C 6 haloalkoxy group, C 1 -C 6 alkyl group, C It is substituted with a substituent selected from the group consisting of 1 -C 6 alkoxy group, C 3 -C 6 cycloalkyl group, C 3 -C 6 cycloalkyloxy group, cyano group or nitro group. )

もう一つの好適な例において、前記のR1は、置換または無置換のC1-C6アルキル基、置換または無置換のC3-C6シクロアルキル基からなる群から選ばれ、ここで、前記の置換とは、基における1個または複数の水素原子がそれぞれ独立にハロゲン、C1-C6ハロアルキル基、C1-C6ハロアルコキシ基、C1-C6アルキル基、C1-C6アルコキシ基、C3-C6シクロアルキル基、C3-C6シクロアルキルオキシ基、シアノ基またはニトロ基からなる群から選ばれる置換基で置換されることである。 In another preferred example, R 1 is selected from the group consisting of a substituted or unsubstituted C 1 -C 6 alkyl group, a substituted or unsubstituted C 3 -C 6 cycloalkyl group, where: The above substitution means that one or more hydrogen atoms in the group are each independently halogen, C 1 -C 6 haloalkyl group, C 1 -C 6 haloalkoxy group, C 1 -C 6 alkyl group, C 1 -C 6 alkoxy group, C 3 -C 6 cycloalkyl group, C 3 -C 6 cycloalkyloxy group, cyano group or nitro group.

もう一つの好適な例において、前記のArは、置換または無置換のC6-C10アリール基、置換または無置換の5-9員ヘテロ芳香環からなる群から選ばれ、かつ前記の置換基は、水素、フッ素、塩素、臭素、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、トリフルオロメチル基、またはトリフルオロメトキシ基からなる群から選ばれる。 In another preferred example, the above Ar is selected from the group consisting of a substituted or unsubstituted C 6 -C 10 aryl group, a substituted or unsubstituted 5-9 membered heteroaromatic ring, and the above substituent is selected from the group consisting of hydrogen, fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, trifluoromethyl, or trifluoromethoxy.

もう一つの好適な例において、前記のAは、置換または無置換のC6-C10アリール基、置換または無置換の5-9員ヘテロ芳香環からなる群から選ばれ、ここで、前記のアリール基またはヘテロアリール基の置換基は、水素、フッ素、塩素、臭素、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、トリフルオロメチル基、またはトリフルオロメトキシ基からなる群から選ばれる。
もう一つの好適な例において、Arは、置換または無置換のフェニル基、置換または無置換の5-7員ヘテロ芳香環(単環または縮合環を含み、1-3個の酸素、硫黄および窒素から選ばれるヘテロ原子を含有する)からなる群から選ばれる。
In another preferred example, said A is selected from the group consisting of a substituted or unsubstituted C 6 -C 10 aryl group, a substituted or unsubstituted 5-9 membered heteroaromatic ring; Substituents on aryl or heteroaryl groups include hydrogen, fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, trifluoromethyl, or trifluoromethoxy. selected from the group consisting of
In another preferred example, Ar is a substituted or unsubstituted phenyl group, a substituted or unsubstituted 5-7 membered heteroaromatic ring (including a single ring or fused rings, containing 1-3 oxygen, sulfur and nitrogen containing a heteroatom selected from the group consisting of

もう一つの好適な例において、Aは、置換または無置換のフェニル基、置換または無置換の5-7員ヘテロ芳香環(単環または縮合環を含み、1-3個の酸素、硫黄および窒素から選ばれるヘテロ原子を含有する)からなる群から選ばれる。
もう一つの好適な例において、Aは置換または無置換のベンゾチアゾールである。
もう一つの好適な例において、前記のArまたはAは、それぞれ独立に、置換または無置換の、ベンゼン環、ピリジン環、ピリミジン環、ピリダジン環、ピリミジン環、ピリダジン環、フラン環、チオフェン環、ピロール環、チアゾール環、またはイミダゾール環からなる群から選ばれる基から選ばれる。
In another preferred example, A is a substituted or unsubstituted phenyl group, a substituted or unsubstituted 5-7 membered heteroaromatic ring (including a single ring or fused rings, containing 1-3 oxygen, sulfur and nitrogen containing a heteroatom selected from the group consisting of
In another preferred example, A is substituted or unsubstituted benzothiazole.
In another preferred example, Ar or A is each independently a substituted or unsubstituted benzene ring, pyridine ring, pyrimidine ring, pyridazine ring, pyrimidine ring, pyridazine ring, furan ring, thiophene ring, pyrrole ring, thiazole ring, or imidazole ring.

もう一つの好適な例において、前記のR1は、置換または無置換のC1-4アルキル基、置換または無置換のシクロプロピル基からなる群から選ばれる。
もう一つの好適な例において、前記のArは置換または無置換のベンゼン環である。
もう一つの好適な例において、前記のArは、2,5-ジクロロフェニル基、2-メチルフェニル基、2-トリフルオロメチルフェニル基、2-トリフルオロメトキシフェニル基からなる群から選ばれる。
もう一つの好適な例において、前記のR1は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル、シクロプロピル基、シクロブチル基またはシクロペンチル基からなる群から選ばれる。
In another preferred example, R 1 is selected from the group consisting of a substituted or unsubstituted C 1-4 alkyl group and a substituted or unsubstituted cyclopropyl group.
In another preferred example, the above Ar is a substituted or unsubstituted benzene ring.
In another preferred example, said Ar is selected from the group consisting of 2,5-dichlorophenyl, 2-methylphenyl, 2-trifluoromethylphenyl, 2-trifluoromethoxyphenyl.
In another preferred example, R 1 is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, cyclopropyl, cyclobutyl or cyclopentyl. .

もう一つの好適な例において、前記の式(I)化合物は、下記式で表される構造を有する。
もう一つの好適な例において、前記の式(I)化合物は、下記式で表される構造を有する。
In another preferred example, the compound of formula (I) has a structure represented by the following formula.
In another preferred example, the compound of formula (I) has a structure represented by the following formula.

もう一つの好適な例において、前記の化合物は以下の群から選ばれる。
本発明の第二の側面では、本発明の第一の側面に記載の化合物の製造方法であって、以下のスキーム1またはスキーム2に記載の方法によって式I化合物を製造する工程を含む方法を提供する:
In another preferred example, said compound is selected from the group below.
A second aspect of the invention provides a method for producing a compound according to the first aspect of the invention, comprising the steps of producing a compound of formula I by the method described in Scheme 1 or Scheme 2 below. provide:

(a) 置換ベンズアルデヒドである一般式IIで表される化合物を開始原料として塩基の作用下で塩酸ヒドロキシアミンと反応させて中間体を得た後、N-クロロスクシンイミド(NCS)で塩化させて一般式IIIで表される化合物になる;
(b) その後、一般式IIIで表される化合物を塩基の作用下で相応する3-オキソプロピオン酸エステルと反応させて一般式IVで表される化合物を得る;
(c) 一般式IVで表される化合物におけるエステルを重水素化還元剤の作用下で相応するアルコール、すなわち、一般式Vで表される化合物に還元させる;
(d) 一般式Vで表される化合物を臭素試薬で臭化し、VIで表される化合物を生成させる;
(e) 一般式VIで表される化合物とVIIで表される化合物を塩基の作用下で反応させ、一般式VIIIで表される化合物になる;
(f) 一般式VIIIで表される化合物を塩基の作用下で塩酸ヒドロキシアミンと反応させ、一般式IXで表される化合物を生成させる;
(g) 一般式IXで表される化合物をホスゲン、トリホスゲンまたはカルボニルジイミダゾールの作用下で反応させ、一般式Iで表される化合物を生成させる;
(ただし、Xは重水素で、R1、Ar、Aの定義は本発明の第一の側面に記載の通りである。)
(a) Using a substituted benzaldehyde, a compound represented by the general formula II, as a starting material, it is reacted with hydroxyamine hydrochloride under the action of a base to obtain an intermediate, which is then salified with N-chlorosuccinimide (NCS) to obtain a general becomes a compound represented by formula III;
(b) then reacting the compound of general formula III with the corresponding 3-oxopropionic ester under the action of a base to obtain a compound of general formula IV;
(c) reducing the ester in the compound of general formula IV to the corresponding alcohol, i.e. the compound of general formula V, under the action of a deuterated reducing agent;
(d) brominating a compound represented by general formula V with a bromine reagent to produce a compound represented by VI;
(e) reacting a compound represented by general formula VI and a compound represented by VII under the action of a base to form a compound represented by general formula VIII;
(f) reacting a compound of general formula VIII with hydroxyamine hydrochloride under the action of a base to produce a compound of general formula IX;
(g) reacting a compound of general formula IX under the action of phosgene, triphosgene or carbonyldiimidazole to produce a compound of general formula I;
(However, X is deuterium, and the definitions of R 1 , Ar, and A are as described in the first aspect of the present invention.)

(a) 一般式IVで表される化合物におけるエステルを還元剤の作用下で相応するアルコール、すなわち、一般式Xで表される化合物に還元させる;
(b) 一般式Xで表される化合物を酸化剤の作用下で相応するアルデヒド、すなわち、一般式XIで表される化合物に酸化させる;
(c) 一般式XIで表される化合物におけるエステルを重水素化還元剤の作用下で一般式Vで表される化合物に還元させる;
(d) 一般式Vで表される化合物を臭素試薬で臭化し、VIで表される化合物を生成させる;
(e) 一般式VIで表される化合物とVIIで表される化合物を塩基の作用下で反応させ、一般式VIIIで表される化合物になる;
(f) 一般式VIIIで表される化合物を塩基の作用下で塩酸ヒドロキシアミンと反応させ、一般式IXで表される化合物を生成させる;
(g) 一般式IXで表される化合物をホスゲン、トリホスゲンまたはカルボニルジイミダゾールの作用下で反応させ、一般式Iで表される化合物を生成させる。
(各式において、Xは水素で、R1、Ar、Aの定義は本発明の第一の側面に記載の通りである。)
(a) reducing the ester in the compound of general formula IV to the corresponding alcohol, i.e. the compound of general formula X, under the action of a reducing agent;
(b) oxidizing the compound of general formula X to the corresponding aldehyde, i.e. the compound of general formula XI, under the action of an oxidizing agent;
(c) reducing the ester in the compound of general formula XI to a compound of general formula V under the action of a deuterated reducing agent;
(d) brominating a compound represented by general formula V with a bromine reagent to produce a compound represented by VI;
(e) reacting a compound represented by general formula VI and a compound represented by VII under the action of a base to form a compound represented by general formula VIII;
(f) reacting a compound of general formula VIII with hydroxyamine hydrochloride under the action of a base to produce a compound of general formula IX;
(g) Reacting a compound of general formula IX under the action of phosgene, triphosgene or carbonyldiimidazole to produce a compound of general formula I.
(In each formula, X is hydrogen, and the definitions of R 1 , Ar, and A are as described in the first aspect of the present invention.)

もう一つの好適な例において、一般式VIIで表される化合物は以下の工程で製造される:
(k) 一般式XIIで表される化合物と一般式XIIIで表される化合物を塩基の作用下で反応させ、一般式VIIで表される化合物を生成させる。
(各式において、Aの定義は本発明の第一の側面に記載の通りである。)
In another preferred example, the compound of general formula VII is prepared by the following steps:
(k) A compound represented by general formula XII and a compound represented by general formula XIII are reacted under the action of a base to produce a compound represented by general formula VII.
(In each formula, the definition of A is as described in the first aspect of the present invention.)

もう一つの好適な例において、産物に光学異性体が存在する場合、相応する光学配置の原料で製造される。
本発明の第三の側面では、本発明の第一の側面に記載の一般式Iで表される化合物、またはそのエナンチオマー、ジアステレオマー、互変異性体、ラセミ体、水和物、溶媒和物、プロドラッグ、薬学的に許容される塩と、薬学的に許容される担体とを含む医薬組成物を提供する。
In another preferred example, if optical isomers exist in the product, they are prepared with raw materials of corresponding optical configuration.
In a third aspect of the present invention, a compound represented by general formula I according to the first aspect of the present invention, or an enantiomer, diastereomer, tautomer, racemate, hydrate, or solvate thereof, is provided. A pharmaceutical composition comprising a drug, a prodrug, a pharmaceutically acceptable salt, and a pharmaceutically acceptable carrier is provided.

本発明の第四の側面では、本発明の第一の側面に記載の一般式Iで表される化合物、またはそのエナンチオマー、ジアステレオマー、互変異性体、ラセミ体、水和物、溶媒和物、プロドラッグあるいはこれらの薬学的に許容される塩の使用であって、FXRの活性または発現量に関連する疾患または病症を治療する医薬組成物の製造に用いられる使用を提供する。
もう一つの好適な例において、前記のFXR関連疾患は、胆汁酸代謝、糖質代謝、脂質代謝、炎症、および/または肝臓線維化の過程に関連する疾患からなる群から選ばれる。
A fourth aspect of the present invention provides a compound represented by the general formula I according to the first aspect of the present invention, or an enantiomer, diastereomer, tautomer, racemate, hydrate, or solvate thereof. The present invention provides the use of a compound, a prodrug, or a pharmaceutically acceptable salt thereof for the manufacture of a pharmaceutical composition for treating a disease or disease related to the activity or expression level of FXR.
In another preferred example, said FXR-related disease is selected from the group consisting of diseases associated with processes of bile acid metabolism, carbohydrate metabolism, lipid metabolism, inflammation, and/or liver fibrosis.

もう一つの好適な例において、前記FXR関連疾患は非アルコール性脂肪肝(NASH)、原発性胆汁性肝硬変(PBC)、原発性胆汁性肝硬変(PSC)、胆石、非アルコール性肝硬変、B型肝炎(HBV)、C型肝炎(HCV)、肝線維化、胆汁鬱滞性肝疾患、高脂血症、高コレステロール血症または糖尿病である。
もう一つの好適な例において、前記の医薬組成物はFXR作動剤として使用される。
もう一つの好適な例において、前記の医薬組成物は血清におけるALP、ALT、AST、TBAのレベルの降下に使用される。
もう一つの好適な例において、前記の医薬組成物は肝臓組織におけるヒドロキシプロリンの含有量の降下に使用される。
In another preferred example, the FXR-related disease is non-alcoholic fatty liver (NASH), primary biliary cirrhosis (PBC), primary biliary cirrhosis (PSC), gallstones, non-alcoholic cirrhosis, hepatitis B. (HBV), hepatitis C (HCV), liver fibrosis, cholestatic liver disease, hyperlipidemia, hypercholesterolemia, or diabetes.
In another preferred example, the pharmaceutical composition described above is used as an FXR agonist.
In another preferred example, said pharmaceutical composition is used for lowering the levels of ALP, ALT, AST, TBA in serum.
In another preferred example, the pharmaceutical composition described above is used for lowering the content of hydroxyproline in liver tissue.

もう一つの好適な例において、前記の医薬組成物は肝臓組織におけるα-SMAおよびCol1α1 mRNAの発現の下方調節に使用される。
もう一つの好適な例において、前記の医薬組成物はHBV表面抗原の合成の抑制、HBVのDNAとRNAの複製の抑制、HBVのcccDNAの生成の抑制に使用される。
もう一つの好適な例において、前記の医薬組成物は肝臓におけるコラーゲンの含有量の減少に使用される。
In another preferred example, said pharmaceutical composition is used to down-regulate the expression of α-SMA and Col1α1 mRNA in liver tissue.
In another preferred embodiment, the pharmaceutical composition is used to inhibit the synthesis of HBV surface antigen, inhibit the replication of HBV DNA and RNA, and inhibit the production of HBV cccDNA.
In another preferred example, said pharmaceutical composition is used for reducing the content of collagen in the liver.

もう一つの好適な例において、前記の医薬組成物は、式I化合物を薬用可能な補助剤(たとえば、賦形剤、希釈剤など)と混合し、経口投与の錠剤、カプセル剤、顆粒剤またはシロップ剤などに調製する方法によって製造される。
もちろん、本発明の範囲内において、本発明の上記の各技術特徴および下記(たとえば実施例)の具体的に記述された各技術特徴は互いに組合せ、新しい、または好適な技術方案を構成できることが理解される。紙数に限りがあるため、ここで逐一説明しない。
In another preferred example, said pharmaceutical composition is prepared by mixing a compound of formula I with medicinal adjuvants (e.g. excipients, diluents, etc.) and forming tablets, capsules, granules or tablets for oral administration. It is manufactured by a method of preparing syrup, etc.
Of course, it is understood that within the scope of the present invention, each of the above-mentioned technical features of the present invention and each of the specifically described technical features below (for example, in the embodiments) can be combined with each other to constitute a new or preferred technical solution. be done. Due to space limitations, we will not explain each part here.

具体的な実施形態
本願の発明者は、幅広く深く研究したところ、FXR作動剤として有用な非ステロイド化合物であって、分子レベルと細胞レベルのいずれにおいてもFXRに作動能力があるものを研究・開発したが、研究では、本願の化合物は、血清におけるALP、ALT、AST、TBAのレベルを降下させ、肝臓組織におけるヒドロキシプロリンの含有量を降下させ、肝臓組織におけるα-SMAおよびCol1α1 mRNAの発現を下方調節し、に肝臓におけるコラーゲンの含有量を減少させ、HBV表面抗原の合成を抑制し、HBVのDNAとRNAの複製を抑制し、HBVのcccDNAの生成を抑制することができることが示された。本発明の化合物は、FXR作動活性が高い、合成が簡単、原料が得られやすいといった利点があるため、FXR関連疾患を治療するための薬物の製造に使用することができる。これに基づき、本発明を完成させた。
Specific Embodiments After extensive and deep research, the inventor of the present application has researched and developed a non-steroidal compound useful as an FXR agonist, which has the ability to act on FXR at both the molecular and cellular levels. However, in studies, the present compound lowered the levels of ALP, ALT, AST, and TBA in serum, lowered the content of hydroxyproline in liver tissue, and decreased the expression of α-SMA and Col1α1 mRNA in liver tissue. It was shown that it can down-regulate and reduce the content of collagen in the liver, suppress the synthesis of HBV surface antigen, suppress the replication of HBV DNA and RNA, and suppress the production of HBV cccDNA. . The compounds of the present invention have the advantages of high FXR agonist activity, easy synthesis, and easy availability of raw materials, so they can be used in the production of drugs for treating FXR-related diseases. Based on this, the present invention was completed.

用語
本発明において、特別に説明しない限り、用いられる用語は、当業者に公知の一般的な意味を持つ。
本発明において、前記ハロゲンは、F、Cl、Br又はIである。
本発明において、用語「C1-C6」とは、1、2、3、4、5または6個の炭素原子を有することで、「C3-C6」とは3、4、5または6個の炭素原子を有することで、このように類推する。
本発明において、用語「アルキル基」は飽和の線形または分岐鎖の炭化水素部分を表し、たとえば用語「C1-C6アルキル基」とは、炭素原子を1~6個有する直鎖または分岐鎖のアルキル基で、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ペンチル基やヘキシル基などを、好ましくはエチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基やt-ブチル基を含むが、これらに限定されない。
Terminology In the present invention, unless otherwise specified, the terms used have their common meanings known to those skilled in the art.
In the present invention, the halogen is F, Cl, Br or I.
In the present invention, the term "C1-C6" means having 1, 2, 3, 4, 5 or 6 carbon atoms, and "C3-C6" means having 3, 4, 5 or 6 carbon atoms. This analogy can be made by having atoms.
In the present invention, the term "alkyl group" refers to a saturated linear or branched hydrocarbon moiety; for example, the term "C1-C6 alkyl group" refers to a linear or branched alkyl group having 1 to 6 carbon atoms. The groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl and hexyl groups, preferably ethyl, propyl, isopropyl, It includes, but is not limited to, butyl, isobutyl, sec-butyl and t-butyl.

本発明において、用語「アルコキシ基」は-O-(C1-C6アルキル)基を表す。たとえば、用語「C1-C6アルコキシ基」とは、1~6個の炭素原子を有する直鎖または分岐鎖のアルコキシ基のことで、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基やブトキシ基などを含むが、これらに限定されない。
本発明において、用語「シクロアルキル基」は飽和の環状炭化水素基の部分を表し、たとえば用語「C3-C6シクロアルキル基」とは、環に3~6個の炭素原子を有する環状アルキル基のことで、シクロプロピル基、シクロブチル基、シクロペンチル基やシクロヘキシル基などを含むが、これらに限定されない。
In the present invention, the term "alkoxy group" represents an -O-(C1-C6 alkyl) group. For example, the term "C1-C6 alkoxy" refers to a straight or branched alkoxy group having 1 to 6 carbon atoms, such as methoxy, ethoxy, propoxy, isopropoxy or butoxy. including but not limited to.
In the present invention, the term "cycloalkyl group" refers to a saturated cyclic hydrocarbon group, for example, the term "C3-C6 cycloalkyl group" refers to a cyclic alkyl group having 3 to 6 carbon atoms in the ring. This includes, but is not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.

本発明において、用語「シクロアルキルオキシ基」はシクロアルキル-O-基を表し、シクロアルキル基は上記の通りである。
本発明において、用語の「アリール基」は一つまたは複数の芳香環を含む炭化水素基の部分を表す。アリール基の例は、フェニル基(Ph)、ナフチル基、ピレニル基、フルオレニル基、アントリル基やフェナントリル基を含むが、これらに限定されない。
本発明において、用語「ヘテロアリール基」は一つまたは複数の少なくとも1個のヘテロ原子(たとえばN、OまたはS)を含む芳香環を有する部分を表す。ヘテロアリール基の例は、フリル基、ピロリル基、チエニル基、オキサゾリル基、イミダゾリル基、チアゾリル基、ピリジル基、ピリミジニル基、キナゾリニル基、キノリニル基、イソキノリニル基やインドリル基などを含む。
In the present invention, the term "cycloalkyloxy group" refers to a cycloalkyl-O- group, where the cycloalkyl group is as described above.
In the present invention, the term "aryl group" refers to a portion of a hydrocarbon group containing one or more aromatic rings. Examples of aryl groups include, but are not limited to, phenyl (Ph), naphthyl, pyrenyl, fluorenyl, anthryl and phenanthryl groups.
In the present invention, the term "heteroaryl group" refers to a moiety having one or more aromatic rings containing at least one heteroatom (eg N, O or S). Examples of heteroaryl groups include furyl, pyrrolyl, thienyl, oxazolyl, imidazolyl, thiazolyl, pyridyl, pyrimidinyl, quinazolinyl, quinolinyl, isoquinolinyl, indolyl, and the like.

別途に説明しない限り、本明細書に記載のアルキル基、アルコキシ基、シクロアルキル基、シクロアルキルオキシ基、アリール基およびヘテロアリール基は置換および無置換の基である。アルキル基、アルコキシ基、シクロアルキル基、シクロアルキルオキシ基、アリール基およびヘテロアリール基における可能な置換基は、ヒドロキシ基、アミノ基、ニトロ基、ニトリル基、ハロゲン、C1-C6アルキル基、C2-C10アルケニル基、C2-C10アルキニル基、C3-C20シクロアルキル基、C3-C20シクロアルケニル基、C1-C20ヘテロシクロアルキル基、C1-C20ヘテロシクロアルケニル基、C1-C6アルコキシ基、アリール基、ヘテロアリール基、ヘテロアロキシル基、C1-C10アルキルアミノ基、C1-C20ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、C1-C10アルキルアミノスルホニル基、アリールアミノスルホニル基、C1-C10アルキルイミノ基、C1-C10アルキルスルホニルイミノ基、アリールスルホニルイミノ基、メルカプト基、C1-C10アルキルチオ基、C1-C10アルキルスルホニル基、アリールスルホニル基、アシルアミノ基、アミノアシル基、アミノチオアシル基、グアニジル基、ウレア基、シアノ基、アシル基、チオアシル基、アシルオキシ基、カルボキシ基およびカルボン酸エステル基を含むが、これらに限定されない。一方、シクロアルキル基、ヘテロシクロアルキル基、ヘテロシクロアルケニル基、アリール基およびヘテロアリール基も互いに縮合してもよい。 Unless otherwise stated, the alkyl, alkoxy, cycloalkyl, cycloalkyloxy, aryl, and heteroaryl groups described herein are substituted and unsubstituted groups. Possible substituents on alkyl, alkoxy, cycloalkyl, cycloalkyloxy, aryl and heteroaryl groups include hydroxy, amino, nitro, nitrile, halogen, C 1 -C 6 alkyl, C2 - C10 alkenyl group, C2 - C10 alkynyl group, C3 - C20 cycloalkyl group, C3 - C20 cycloalkenyl group, C1 - C20 heterocycloalkyl group, C1 - C20 hetero Cycloalkenyl group, C1- C6 alkoxy group, aryl group, heteroaryl group, heteroaloxyl group, C1 - C10 alkylamino group, C1 - C20 dialkylamino group, arylamino group, diarylamino group, C 1 -C 10 alkylaminosulfonyl group, arylaminosulfonyl group, C 1 -C 10 alkylimino group, C 1 -C 10 alkylsulfonylimino group, arylsulfonylimino group, mercapto group, C 1 -C 10 alkylthio group, C 1 -C 10 alkylsulfonyl group, arylsulfonyl group, acylamino group, aminoacyl group, aminothioacyl group, guanidyl group, urea group, cyano group, acyl group, thioacyl group, acyloxy group, carboxy group and carboxylic acid ester group including but not limited to. On the other hand, cycloalkyl groups, heterocycloalkyl groups, heterocycloalkenyl groups, aryl groups and heteroaryl groups may also be condensed with each other.

本発明において、前記置換は単置換または多置換で、前記多置換は二置換、三置換、四置換、または五置換である。前記二置換とは、二つの置換基を有することで、このように類推する。
本発明に記載の薬学的に許容される塩は、アニオンと式I化合物における正電荷を持つ基からなる塩でもよい。適切なアニオンは、塩素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、硝酸イオン、リン酸イオン、クエン酸イオン、メタンスルホン酸イオン、トリフルオロ酢酸イオン、酢酸イオン、リンゴ酸イオン、トルエンスルホン酸イオン、酒石酸イオン、フマル酸イオン、グルタミン酸イオン、グルクロン酸イオン、乳酸イオン、グルタル酸イオンまたはマレイン酸イオンである。同様に、カチオンと式I化合物における負電荷を持つ基からなる塩でもよい。適切なカチオンは、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオンおよびアンモニウムイオン、たとえばテトラメチルアンモニウムイオンを含む。
In the present invention, said substitution is monosubstitution or polysubstitution, and said polysubstitution is disubstitution, trisubstitution, tetrasubstitution, or pentasubstitution. The above-mentioned disubstitution means having two substituents, which is analogous to this.
The pharmaceutically acceptable salts according to the present invention may be salts consisting of an anion and a positively charged group in a compound of formula I. Suitable anions include chloride, bromide, iodine, sulfate, nitrate, phosphate, citrate, methanesulfonate, trifluoroacetate, acetate, malate, toluenesulfonate, These are tartrate ion, fumarate ion, glutamate ion, glucuronate ion, lactate ion, glutarate ion, or maleate ion. Similarly, a salt consisting of a cation and a negatively charged group in a compound of formula I may be used. Suitable cations include sodium, potassium, magnesium, calcium and ammonium ions, such as tetramethylammonium ion.

もう一つの好適な例において、「薬学的に許容される塩」とは、式I化合物とフッ化水素酸、塩酸、臭化水素酸、リン酸、酢酸、シュウ酸、硫酸、硝酸、メタンスルホン酸、アミノスルホン酸、サリチル酸、トリフルオロメタンスルホン酸、ナフタレンスルホン酸、マレイン酸、クエン酸、酢酸、乳酸、酒石酸、コハク酸、シュウ酸、ピルビン酸、リンゴ酸、グルタミン酸、p-トルエンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸、マロン酸、フマル酸、プロピオン酸、シュウ酸、トリフルオロ酢酸、ステアリン酸、パモ酸、ヒドロキシマレイン酸、フェニル酢酸、安息香酸、グルタミン酸、アスコルビン酸、p-アミノベンゼンスルホン酸、2-アセチルオキシ安息香酸およびヒドロキシエタンスルホン酸からなる群から選ばれる酸からなる塩類、あるいは式I化合物と無機塩基からなるナトリウム塩、カリウム塩、カルシウム塩、アルミニウム塩またはアンモニウム塩、あるいは一般式I化合物と有機塩基からなるメチルアミン塩、エチルアミン塩またはエタノールアミン塩のことである。
もう一つの好適な例において、前記の化合物では、A環、Ar、XおよびR1のうちの任意の一つはそれぞれ実施例に記載の具体的な化合物における相応する基である。
本発明の化合物は、不斉中心、キラル軸およびキラル面を有し、且つラセミ体、R-異性体またはS-異性体の形態で存在してもよい。本分野の技術者は、通常の技術手段によってラセミ体から分割してR-異性体及び/又はS-異性体を得ることができる。
In another preferred example, "pharmaceutically acceptable salts" refers to salts of formula I with hydrofluoric acid, hydrochloric acid, hydrobromic acid, phosphoric acid, acetic acid, oxalic acid, sulfuric acid, nitric acid, methanesulfonic acid, etc. Acids, aminosulfonic acid, salicylic acid, trifluoromethanesulfonic acid, naphthalenesulfonic acid, maleic acid, citric acid, acetic acid, lactic acid, tartaric acid, succinic acid, oxalic acid, pyruvic acid, malic acid, glutamic acid, p-toluenesulfonic acid, naphthalene Sulfonic acid, naphthalenedisulfonic acid, malonic acid, fumaric acid, propionic acid, oxalic acid, trifluoroacetic acid, stearic acid, pamoic acid, hydroxymaleic acid, phenylacetic acid, benzoic acid, glutamic acid, ascorbic acid, p-aminobenzenesulfonic acid , 2-acetyloxybenzoic acid and hydroxyethanesulfonic acid, or sodium, potassium, calcium, aluminum or ammonium salts of a compound of formula I and an inorganic base, or the general formula Methylamine salt, ethylamine salt, or ethanolamine salt consisting of I compound and an organic base.
In another preferred example, in the above compounds, any one of ring A, Ar, X and R 1 is each the corresponding group in the specific compounds described in the Examples.
The compounds of the invention have asymmetric centers, chiral axes and chiral faces, and may exist in the form of racemates, R-isomers or S-isomers. A person skilled in the art can resolve the racemate to obtain the R-isomer and/or the S-isomer by conventional technical means.

製造方法
本発明の一般式Iで表される化合物の製造方法は、合成スキーム以下の通りである。
(a) 置換ベンズアルデヒドである一般式IIで表される化合物を開始原料として塩基の作用下で塩酸ヒドロキシアミンと反応させて中間体を得た後、N-クロロスクシンイミド(NCS)で塩化させて一般式IIIで表される化合物になる;
(b) その後、一般式IIIで表される化合物を塩基の作用下で相応する3-オキソプロピオン酸エステルと反応させて一般式IVで表される化合物を得る;
(c) 一般式IVで表される化合物におけるエステルを重水素化還元剤の作用下で相応するアルコール、すなわち、一般式Vで表される化合物に還元させる;
(d) 一般式Vで表される化合物を臭素試薬で臭化し、VIで表される化合物を生成させる;
(e) 一般式VIで表される化合物とVIIで表される化合物を塩基の作用下で反応させ、一般式VIIIで表される化合物になる;
(f) 一般式VIIIで表される化合物を塩基の作用下で塩酸ヒドロキシアミンと反応させ、一般式IXで表される化合物を生成させる;
(g) 一般式IXで表される化合物をホスゲン、トリホスゲンまたはカルボニルジイミダゾールの作用下で反応させ、一般式Iで表される化合物を生成させる。
(ただし、Xは重水素で、R1、Ar、Aの定義は請求項1に記載の通りである。)
Manufacturing method The method for manufacturing the compound represented by the general formula I of the present invention is as shown in the synthesis scheme below.
(a) Using a substituted benzaldehyde, a compound represented by the general formula II, as a starting material, it is reacted with hydroxyamine hydrochloride under the action of a base to obtain an intermediate, which is then salified with N-chlorosuccinimide (NCS) to obtain a general becomes a compound represented by formula III;
(b) then reacting the compound of general formula III with the corresponding 3-oxopropionic ester under the action of a base to obtain a compound of general formula IV;
(c) reducing the ester in the compound of general formula IV to the corresponding alcohol, i.e. the compound of general formula V, under the action of a deuterated reducing agent;
(d) brominating a compound represented by general formula V with a bromine reagent to produce a compound represented by VI;
(e) reacting a compound represented by general formula VI and a compound represented by VII under the action of a base to form a compound represented by general formula VIII;
(f) reacting a compound of general formula VIII with hydroxyamine hydrochloride under the action of a base to produce a compound of general formula IX;
(g) Reacting a compound of general formula IX under the action of phosgene, triphosgene or carbonyldiimidazole to produce a compound of general formula I.
(However, X is deuterium, and the definitions of R 1 , Ar, and A are as described in claim 1.)

(h) 一般式IVで表される化合物におけるエステルを還元剤の作用下で相応するアルコール、すなわち、一般式Xで表される化合物に還元させる;
(i) 一般式Xで表される化合物を酸化剤の作用下で相応するアルデヒド、すなわち、一般式XIで表される化合物に酸化させる;
(j) 一般式XIで表される化合物におけるエステルを重水素化還元剤の作用下で一般式Vで表される化合物に還元させる;
(d) 一般式Vで表される化合物を臭素試薬で臭化し、VIで表される化合物を生成させる;
(e) 一般式VIで表される化合物とVIIで表される化合物を塩基の作用下で反応させ、一般式VIIIで表される化合物になる;
(f) 一般式VIIIで表される化合物を塩基の作用下で塩酸ヒドロキシアミンと反応させ、一般式IXで表される化合物を生成させる;
(g) 一般式IXで表される化合物をホスゲン、トリホスゲンまたはカルボニルジイミダゾールの作用下で反応させ、一般式Iで表される化合物を生成させる。
(各式において、Xは水素で、R1、Ar、Aの定義は本発明の第一の側面に記載の通りである。)
(h) reducing the ester in the compound of general formula IV to the corresponding alcohol, i.e. the compound of general formula X, under the action of a reducing agent;
(i) oxidizing the compound of general formula X to the corresponding aldehyde, i.e. the compound of general formula XI, under the action of an oxidizing agent;
(j) reducing the ester in the compound of general formula XI to the compound of general formula V under the action of a deuterated reducing agent;
(d) brominating a compound represented by general formula V with a bromine reagent to produce a compound represented by VI;
(e) reacting a compound represented by general formula VI and a compound represented by VII under the action of a base to form a compound represented by general formula VIII;
(f) reacting a compound of general formula VIII with hydroxyamine hydrochloride under the action of a base to produce a compound of general formula IX;
(g) Reacting a compound of general formula IX under the action of phosgene, triphosgene or carbonyldiimidazole to produce a compound of general formula I.
(In each formula, X is hydrogen, and the definitions of R 1 , Ar, and A are as described in the first aspect of the present invention.)

もう一つの好適な例において、一般式VIIで表される化合物は以下の工程で製造される:
(k) 一般式XIIで表される化合物と一般式XIIIで表される化合物を塩基の作用下で反応させ、一般式VIIで表される化合物を生成させる。
(各式において、Aの定義は本発明の第一の側面に記載の通りである。)
In another preferred example, the compound of general formula VII is prepared by the following steps:
(k) A compound represented by general formula XII and a compound represented by general formula XIII are reacted under the action of a base to produce a compound represented by general formula VII.
(In each formula, the definition of A is as described in the first aspect of the present invention.)

医薬組成物及びその治療用途
本発明によって提供される化合物は、単独で使用してもよく、あるいはそれを薬用可能な補助剤(例えば、賦形剤、希釈剤など)と混合し、経口投与の錠剤、カプセル剤、顆粒剤またはシロップ剤などに調製してもよい。当該医薬組成物は製薬学における通常の方法によって製造することができる。本発明の医薬組成物は、安全有効量の範囲内の活性成分と、薬学的に許容される担体とを含む。
本発明に記載の「活性成分」とは、本発明に記載の式I化合物のことである。
本発明に記載の「活性成分」および医薬組成物はFXR関連疾患を治療する薬物の製造に使用される。本発明に記載の「活性成分」および医薬組成物はFXR作動剤として有用である。もう一つの好適な例において、前記の活性成分はFXR作動剤によって調節される疾患を予防および/または治療する薬物の製造に使用することができる。
PHARMACEUTICAL COMPOSITIONS AND THERAPEUTIC USE THEREOF The compounds provided by the present invention may be used alone or they may be mixed with medicinal adjuvants (e.g. excipients, diluents, etc.) for oral administration. It may be prepared into tablets, capsules, granules, syrups, etc. The pharmaceutical composition can be manufactured by conventional methods in pharmaceutical science. The pharmaceutical compositions of the present invention contain an active ingredient within a safe and effective amount and a pharmaceutically acceptable carrier.
An "active ingredient" according to the present invention refers to a compound of formula I according to the present invention.
The "active ingredients" and pharmaceutical compositions according to the present invention are used for the manufacture of medicaments for treating FXR-related diseases. The "active ingredients" and pharmaceutical compositions described in this invention are useful as FXR agonists. In another preferred example, the active ingredients described above can be used for the manufacture of a medicament for preventing and/or treating diseases modulated by FXR agonists.

「安全有効量」とは、活性成分の量が病状の顕著な改善に充分で、重度な副作用が生じないことをいう。通常、医薬組成物は、1単位製剤あたりに、1~2000mg、好ましくは10~200mgの活性成分を含む。好ましくは、前記の「1単位製剤」は、一つの錠である。
「薬学的に許容される担体」とは、ヒトに適用でき、かつ十分な純度および充分に低い毒性を持たなければならない、1つまたは複数の相溶性固体または液体フィラーまたはゲル物質をいう。「相溶性」とは、組成物における各成分が本発明の活性成分と、またその同士の間で配合することができ、活性成分の効果を顕著に低下させないことをいう。薬学的に許容される担体の例の一部として、セルロースおよびその誘導体(たとえばカルボキシメチルセルロースナトリウム、エチルセルロースナトリウム、セルロースアセテートなど)、ゼラチン、タルク、固体潤滑剤(たとえばステアリン酸、ステアリン酸マグネシウム)、硫酸カルシウム、植物油(たとえば大豆油、ゴマ油、落花生油、オリーブオイルなど)、多価アルコール(たとえばプロピレングリコール、グリセリン、マンニトール、ソルビトールなど)、乳化剤(たとえばツイン(登録商標))、湿潤剤(たとえばドデシル硫酸ナトリウム)、着色剤、調味剤、安定剤、酸化防止剤、防腐剤、発熱性物質除去蒸留水などがある。
A "safe and effective amount" refers to an amount of active ingredient that is sufficient to significantly improve a medical condition and does not cause serious side effects. Typically, pharmaceutical compositions contain 1 to 2000 mg, preferably 10 to 200 mg of active ingredient per unit dosage. Preferably, said "unit dosage" is one tablet.
"Pharmaceutically acceptable carrier" refers to one or more compatible solid or liquid filler or gel substances that are applicable to humans and must have sufficient purity and sufficiently low toxicity. "Compatible" means that the components in the composition can be blended with the active ingredients of the present invention and with each other without significantly reducing the effectiveness of the active ingredients. Some examples of pharmaceutically acceptable carriers include cellulose and its derivatives (e.g. sodium carboxymethylcellulose, sodium ethylcellulose, cellulose acetate, etc.), gelatin, talc, solid lubricants (e.g. stearic acid, magnesium stearate), sulfuric acid. Calcium, vegetable oils (e.g. soybean oil, sesame oil, peanut oil, olive oil, etc.), polyhydric alcohols (e.g. propylene glycol, glycerin, mannitol, sorbitol, etc.), emulsifiers (e.g. Twin®), wetting agents (e.g. dodecyl sulfate). (sodium), colorants, seasonings, stabilizers, antioxidants, preservatives, pyrogen-free distilled water, etc.

本発明の活性成分または医薬組成物の施用様態は、特に限定されないが、代表的な施用様態は、経口投与、腫瘍内、直腸、胃腸外(静脈内、筋肉内、または皮下)などを含むが、これらに限定されない。
経口投与に用いられる固体剤形は、カプセル剤、錠剤、丸剤、散剤および顆粒剤を含む。
経口投与に用いられる液体剤形は、薬学的に許容される乳液、溶液、懸濁液、シロップまたはチンキ剤を含む。活性成分の他、液体剤型は、本分野で通常使用される不活性希釈剤、たとえば、水または他の溶媒、相溶剤および乳化剤、たとえば、エタノール、イソプロパノール、炭酸エチル、酢酸エチル、プロピレングリコール、1,3-ブタンジオール、ジメチルホルムアミドおよび油、特に、綿実油、落花生油、コーン油、オリーブ油、ヒマシ油やゴマ油またはこれらの物質の混合物などを含んでもよい。これらの不活性希釈剤の他、組成物は助剤、たとえば、湿潤剤、乳化剤、懸濁剤、甘味料、矯味剤や香料を含んでもよい。
The mode of application of the active ingredient or pharmaceutical composition of the present invention is not particularly limited, but typical modes of application include oral administration, intratumor, rectal, extra-gastrointestinal (intravenous, intramuscular, or subcutaneous), etc. , but not limited to.
Solid dosage forms used for oral administration include capsules, tablets, pills, powders and granules.
Liquid dosage forms used for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or tinctures. Besides the active ingredient, the liquid dosage form contains inert diluents commonly used in the field, such as water or other solvents, compatibilizers and emulsifiers, such as ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, It may also include 1,3-butanediol, dimethylformamide and oils, especially cottonseed oil, peanut oil, corn oil, olive oil, castor oil or sesame oil or mixtures of these substances. Besides these inert diluents, the compositions can also contain auxiliary agents, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.

活性成分の他、懸濁液は、懸濁剤、例えば、エトキシ化イソオクタデカノール、ポリオキシエチレンソルビトールやソルビタンエステル、微晶質セルロース、メトキシアルミニウムや寒天またはこれらの物質の混合物などを含んでもよい。
胃腸外注射用組成物は、生理的に許容される無菌の水含有または無水溶液、分散液、懸濁液や乳液、および再溶解して無菌の注射可能な溶液または分散液にするための無菌粉末を含む。適切な水含有または非水性担体、希釈剤、溶媒または賦形剤は、水、エタノール、多価アルコールおよびその適切な混合物を含む。
本発明化合物は、単独で投与してもよいし、あるいはほかの治療薬(たとえば脂質降下薬)と併用して投与してもよい。
In addition to the active ingredients, suspensions may contain suspending agents, such as ethoxylated isooctadecanol, polyoxyethylene sorbitol or sorbitan esters, microcrystalline cellulose, methoxyaluminum or agar or mixtures of these substances. good.
Compositions for parenteral injection include physiologically acceptable sterile aqueous or anhydrous solutions, dispersions, suspensions and emulsions, and sterile preparations for reconstitution into sterile injectable solutions or dispersions. Contains powder. Suitable aqueous or non-aqueous carriers, diluents, solvents or excipients include water, ethanol, polyhydric alcohols and appropriate mixtures thereof.
The compounds of the invention may be administered alone or in combination with other therapeutic agents (eg, hypolipidemic agents).

医薬組成物を使用する場合、安全な有効量の本発明の化合物を治療の必要のある哺乳動物(たとえばヒト)に使用し、使用の際の用量は薬学上で効果があるとされる投与量で、体重60 kgのヒトの場合、毎日の投与量は、通常1~2000 mg、好ましくは20~500 mgである。勿論、具体的な投与量は、さらに投与の様態、患者の健康状況などの要素を考えるべきで、すべて熟練の医者の技能範囲以内である。 When using a pharmaceutical composition, a safe and effective amount of a compound of the present invention is used in a mammal (e.g., a human) in need of treatment, and the dosage used is a dosage that is known to be pharmaceutically effective. For a human weighing 60 kg, the daily dose is usually 1-2000 mg, preferably 20-500 mg. Of course, the specific dosage should further take into account factors such as the mode of administration and the health status of the patient, all of which are within the skill of a skilled physician.

以下、具体的な実施例によって、さらに本発明を説明する。これらの実施例は本発明を説明するために用いられるものだけで、本発明の範囲の制限にはならないと理解されるものである。以下の実施例で具体的な条件が示されていない実験方法は、通常、たとえばSambrookら、「モレキュラー・クローニング:研究室マニュアル」(ニューヨーク、コールド・スプリング・ハーバー研究所出版社、1989) に記載の条件などの通常の条件に、あるいは、メーカーのお薦めの条件に従う。特に説明しない限り、百分率および部は重量百分率および重量部である。
別途に定義しない限り、本文に用いられるすべての専門用語と科学用語は、当業者に熟知される意味と同様である。また、記載の内容と類似あるいは同等の方法および材料は、いずれも本発明の方法に用いることができる。ここで記載の好ましい実施方法及び材料は例示のためだけである。
The present invention will be further explained below with reference to specific examples. It is understood that these examples are only used to illustrate the invention and are not intended to limit the scope of the invention. Experimental methods for which specific conditions are not given in the examples below are generally described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Publishers, 1989). or in accordance with the manufacturer's recommended conditions. Unless otherwise stated, percentages and parts are by weight.
Unless otherwise defined, all technical and scientific terms used herein have meanings that are familiar to those of ordinary skill in the art. Additionally, any methods and materials similar or equivalent to those described can be used in the method of the present invention. The preferred implementation methods and materials described herein are for illustration only.

使用される装置および主な実験材料は以下の通りである。
使用される試薬および無水溶媒は中国商業公司から購入され、特別に説明しない限り、いずれもそのまま使用される。1Hおよび13C NMRはBrukerAM-400型およびVarian Mercury plus-400型核磁気共鳴装置が使用され、質量分析はAgilent 6230型質量分析装置が使用され、そして200-300メッシュカラムクロマトグラフィーシリカゲル(青島海洋化工工場)、HSGF254 TLCプレート(煙台市化工研究院)である。
本発明の化合物は以下のスキーム1、スキーム2のいずれかの方法により、適切な開始原料を使用して製造した。
The equipment and main experimental materials used are as follows.
The reagents and anhydrous solvents used were purchased from China Commercial Corporation, and all were used as received unless otherwise stated. For 1 H and 13 C NMR, Bruker AM-400 and Varian Mercury plus-400 nuclear magnetic resonance instruments were used, for mass spectrometry, an Agilent 6230 mass spectrometer was used, and for 200-300 mesh column chromatography on silica gel (Qingdao HSGF254 TLC plate (Yantai Chemical Industry Research Institute).
Compounds of the present invention were prepared using appropriate starting materials according to either Scheme 1 or Scheme 2 below.

実施例中間体VII-1の合成:
エンド-8-アザビシクロ[3.2.1]オクタン-3-オールXII(10g, 78.7mmol)およびp-フルオロベンゾニトリルXIII-1(78.7mmol)をN,N-ジメチルホルムアミド(150 mL)に溶解させ、室温の条件において炭酸カリウム(197mmol)を分けて入れ、80℃で一晩反応させた。酢酸エチル(500 mL)を入れて反応液を希釈し、水で洗浄し、そして酢酸エチル(300 mLずつ、計3回)で水相を抽出した。有機相を混合し、飽和食塩水で洗浄し、濃縮した。カラムクロマトグラフィーによって中間体VII-1(11 g、収率61%)を得た。1H NMR (400 MHz, DMSO-d6) δ 7.51 - 7.48 (m, 2H), 6.82 - 6.79 (m, 2H), 4.62 (s, 1H), 4.27 (d, J = 5.2 Hz, 2H), 3.78 (s, 1H), 2.28 (d, J = 6.8 Hz, 2H), 1.91 - 1.85 (m, 4H), 1.57 (d, J = 14.0 Hz, 2H). MS(ESI, m/z):229[M+H]+
Synthesis of Example Intermediate VII-1:
Endo-8-azabicyclo[3.2.1]octan-3-ol XII (10 g, 78.7 mmol) and p-fluorobenzonitrile XIII-1 (78.7 mmol) were dissolved in N,N-dimethylformamide (150 mL), Potassium carbonate (197 mmol) was added in portions at room temperature, and the mixture was reacted at 80°C overnight. The reaction was diluted with ethyl acetate (500 mL), washed with water, and the aqueous phase was extracted with ethyl acetate (3 x 300 mL). The organic phases were combined, washed with saturated brine, and concentrated. Intermediate VII-1 (11 g, yield 61%) was obtained by column chromatography. 1 H NMR (400 MHz, DMSO-d 6 ) δ 7.51 - 7.48 (m, 2H), 6.82 - 6.79 (m, 2H), 4.62 (s, 1H), 4.27 (d, J = 5.2 Hz, 2H), 3.78 (s, 1H), 2.28 (d, J = 6.8 Hz, 2H), 1.91 - 1.85 (m, 4H), 1.57 (d, J = 14.0 Hz, 2H). MS(ESI, m/z): 229 [M+H] + .

実施例化合物1の合成:
Synthesis of Example Compound 1:

0℃で炭酸カリウム水溶液(3N,182 mmol)を1滴ずつ撹拌中の塩酸ヒドロキシアミン(182 mmol)のエタノール(100 mL)溶液に入れ、2,6-ジクロロベンズアルデヒドII-1(20 g,114 mmol)を100 mLのエタノールに溶解させた後、上記反応溶液に入れ、温度を90℃に昇温させ、2時間反応させた。反応液が室温に冷却したら、固体になるように濃縮した。水/エタノール(1000 mL/100 mL)溶液を入れて撹拌し、固体を破砕させ、ろ過し、50℃で一晩真空乾燥し、化合物中間体(18.4 g)を得た。当該中間体をN,N-ジメチルホルムアミド(50 mL)に溶解させ、0℃でN-クロロスクシンイミド(97 mmol)のN,N-ジメチルホルムアミド(100 mL)溶液に1滴ずつ入れ、一晩撹拌した。反応液を0℃の氷水に注いだ後、メチル-t-ブチルエーテル(200 mLずつ、計3回)で抽出し、飽和食塩水で有機相を洗浄し、濃縮して粗製品を得た。粗製品が入ったフラスコにn-ヘキサン(600 mL)を入れ、磁気撹拌し、ろ過し、固体を真空(30oC)で乾燥して中間体III-1(18.3 g、収率73%)を得た。1H NMR (400 MHz, CDCl3) δ 7.43 - 7.39 (m, 2H), 7.39 - 7.33 (m, 1H)。 Add potassium carbonate aqueous solution (3N, 182 mmol) drop by drop to a stirring solution of hydroxyamine hydrochloride (182 mmol) in ethanol (100 mL) at 0°C, and add 2,6-dichlorobenzaldehyde II-1 (20 g, 114 mmol) in 100 mL of ethanol, the solution was added to the above reaction solution, the temperature was raised to 90°C, and the mixture was reacted for 2 hours. Once the reaction was cooled to room temperature, it was concentrated to a solid. A water/ethanol (1000 mL/100 mL) solution was added and stirred to crush the solid, filtered, and vacuum dried at 50° C. overnight to obtain a compound intermediate (18.4 g). Dissolve the intermediate in N,N-dimethylformamide (50 mL), add dropwise to a solution of N-chlorosuccinimide (97 mmol) in N,N-dimethylformamide (100 mL) at 0 °C, and stir overnight. did. The reaction solution was poured into ice water at 0°C, extracted with methyl-t-butyl ether (200 mL each, three times in total), and the organic phase was washed with saturated brine and concentrated to obtain a crude product. Add n-hexane (600 mL) to the flask containing the crude product, stir magnetically, filter, and dry the solid in vacuo (30oC) to obtain intermediate III-1 (18.3 g, 73% yield). Ta. 1H NMR (400 MHz, CDCl3 ) δ 7.43 - 7.39 (m, 2H), 7.39 - 7.33 (m, 1H).

トリエチルアミン(8.2 g)を3-シクロプロピル-3-オキソプロピオン酸メチル(82 mmol)に入れ、30分間撹拌した。その後、10℃に冷却し、さらに中間体III-1(18.3 g,82 mmol)の無水エタノール(80 mL)溶液を1滴ずつそれに入れ(内温が30℃以下になるように)、室温で一晩反応させた。酢酸エチル(100 mL)を入れて反応液を希釈し、水で洗浄し、そして酢酸エチル(100 mLずつ、計3回)で水相を抽出した。有機相を混合し、飽和食塩水で洗浄し、濃縮した。濃縮物に100 mLのエチルエーテルを入れて撹拌し、真空で溶媒を除去して固体産物の化合物IV-1(21.6 g、収率84%)を得た。1H NMR (400 MHz, CDCl3) δ 7.43 - 7.39 (m, 2H), 7.39 - 7.33 (m, 1H), 3.72 (s, 3H), 2.21 - 2.09 (m, 1H), 1.35 - 1.28 (m, 2H), 1.25 - 1.18 (m, 2H);MS(ESI, m/z):312[M+H]+ Triethylamine (8.2 g) was added to methyl 3-cyclopropyl-3-oxopropionate (82 mmol) and stirred for 30 minutes. Then, cool to 10°C, add a solution of intermediate III-1 (18.3 g, 82 mmol) in absolute ethanol (80 mL) drop by drop (so that the internal temperature is below 30°C), and let it cool at room temperature. The reaction was allowed to proceed overnight. The reaction was diluted with ethyl acetate (100 mL), washed with water, and the aqueous phase was extracted with ethyl acetate (3 x 100 mL). The organic phases were combined, washed with saturated brine, and concentrated. The concentrate was stirred with 100 mL of ethyl ether and the solvent was removed in vacuo to give a solid product, Compound IV-1 (21.6 g, 84% yield). 1 H NMR (400 MHz, CDCl 3 ) δ 7.43 - 7.39 (m, 2H), 7.39 - 7.33 (m, 1H), 3.72 (s, 3H), 2.21 - 2.09 (m, 1H), 1.35 - 1.28 (m , 2H), 1.25 - 1.18 (m, 2H); MS(ESI, m/z): 312[M+H] + .

重水素化リチウムアルミニウム(7.3 g)をテトラヒドロフラン(200 mL)に入れ、0℃に冷却し、さらに化合物IV-1(21.6 g,69.2 mmol)のテトラヒドロフラン(50mL)溶液を1滴ずつそれに入れ(内温が5℃以下になるように)、反応液を室温で2 h撹拌した。0℃で氷水(9mL)を入れて反応をクエンチングした後、それぞれ15%水酸化ナトリウム水溶液(9 mL)および氷水(27 mL)を1滴ずつ入れた後、さらに無水硫酸マグネシウム(100 g)を入れ、上記混合物を室温で0.5 h撹拌し、ろ過し、濃縮し、カラムクロマトグラフィーによって中間体V-1(19 g、収率96%)を得た。1H NMR (400 MHz, DMSO-d6) δ 7.72 - 7.59 (m, 2H), 7.58 - 7.50 (m, 1H), 4.90 (s, 1H), 2.38 - 2.26 (m, 1H), 1.16 - 1.03 (m, 4H). MS(ESI, m/z):286[M+H]+ Lithium aluminum deuteride (7.3 g) was placed in tetrahydrofuran (200 mL), cooled to 0°C, and a solution of compound IV-1 (21.6 g, 69.2 mmol) in tetrahydrofuran (50 mL) was added dropwise (internally). The reaction solution was stirred at room temperature for 2 h so that the temperature was below 5°C. Quench the reaction by adding ice water (9 mL) at 0°C, then add one drop each of 15% aqueous sodium hydroxide solution (9 mL) and ice water (27 mL), and then add anhydrous magnesium sulfate (100 g). The mixture was stirred at room temperature for 0.5 h, filtered, concentrated, and subjected to column chromatography to obtain Intermediate V-1 (19 g, yield 96%). 1 H NMR (400 MHz, DMSO-d 6 ) δ 7.72 - 7.59 (m, 2H), 7.58 - 7.50 (m, 1H), 4.90 (s, 1H), 2.38 - 2.26 (m, 1H), 1.16 - 1.03 (m, 4H). MS(ESI, m/z): 286[M+H] + .

化合物V-1(19 g,66.4 mmol)をジクロロメタン(200 mL)に溶解させ、0℃に冷却し、溶液にゆっくり三臭化リン(66.4 mmol)を滴下し、反応液を室温で2 h撹拌した。反応液から溶媒を除去して油状物を得、酢酸エチル(100 mL)を入れ、飽和炭酸水素ナトリウム水溶液で反応溶液のpH値が中性になるように調整し、水で洗浄し、そして酢酸エチル(100 mLずつ、計3回)で水相を抽出した。有機相を混合し、飽和食塩水で洗浄した後、濃縮した。カラムクロマトグラフィーによって中間体VI-1(20.2 g、収率87%)を得た。1H NMR (400 MHz, DMSO-d6) δ 7.72 - 7.65 (m, 2H), 7.64 - 7.56 (m, 1H), 2.48 - 2.39 (m, 1H), 1.26 - 1.10 (m, 4H). MS(ESI, m/z):348[M+H]+ Compound V-1 (19 g, 66.4 mmol) was dissolved in dichloromethane (200 mL), cooled to 0°C, phosphorus tribromide (66.4 mmol) was slowly added dropwise to the solution, and the reaction solution was stirred at room temperature for 2 h. did. The solvent was removed from the reaction solution to obtain an oil, which was then added with ethyl acetate (100 mL), the pH value of the reaction solution was adjusted to neutrality with saturated aqueous sodium bicarbonate solution, washed with water, and then diluted with acetic acid. The aqueous phase was extracted with ethyl (3 times, 100 mL each). The organic phases were mixed, washed with saturated brine, and then concentrated. Intermediate VI-1 (20.2 g, yield 87%) was obtained by column chromatography. 1 H NMR (400 MHz, DMSO- d6 ) δ 7.72 - 7.65 (m, 2H), 7.64 - 7.56 (m, 1H), 2.48 - 2.39 (m, 1H), 1.26 - 1.10 (m, 4H). MS (ESI, m/z): 348[M+H] + .

0℃で、化合物VII-1(1.96g,8.6mmol)の無水テトラヒドロフラン(150 mL)溶液にカリウムt-ブトキシド(21.4mmol)を入れ、15分間撹拌した後、1滴ずつ化合物VI-1(8.6mmol)の無水テトラヒドロフラン(50 mL)溶液を入れ、反応液を室温で4 h撹拌した。反応液に水(200 mL)を入れ、酢酸エチル(200 mLずつ、計3回)で抽出し、有機相を飽和食塩水で洗浄し、濃縮し、カラムクロマトグラフィーによって中間体VIII-1(2.1 g、収率49%)を得た。1H NMR (400 MHz, DMSO-d6) δ 7.73-7.63 (m, 2H), 7.64 - 7.55 (m, 3H), 6.83 (d, J = 8.4 Hz, 2H), 4.16 (s, 2H), 3.37 (s, 1H), 2.38 - 2.31 (m, 1H), 1.83 - 1.74 (m, 6H), 1.56 - 1.49 (m, 2H), 1.16 - 1.06 (m, 4H). MS(ESI, m/z):496[M+H]+ Potassium t-butoxide (21.4 mmol) was added to a solution of compound VII-1 (1.96 g, 8.6 mmol) in anhydrous tetrahydrofuran (150 mL) at 0°C, and after stirring for 15 minutes, compound VII-1 (8.6 mmol) was added dropwise. mmol) in anhydrous tetrahydrofuran (50 mL), and the reaction mixture was stirred at room temperature for 4 h. Water (200 mL) was added to the reaction solution, extracted with ethyl acetate (200 mL each, 3 times in total), the organic phase was washed with saturated brine, concentrated, and the intermediate VIII-1 (2.1 g, yield 49%). 1 H NMR (400 MHz, DMSO-d 6 ) δ 7.73-7.63 (m, 2H), 7.64 - 7.55 (m, 3H), 6.83 (d, J = 8.4 Hz, 2H), 4.16 (s, 2H), 3.37 (s, 1H), 2.38 - 2.31 (m, 1H), 1.83 - 1.74 (m, 6H), 1.56 - 1.49 (m, 2H), 1.16 - 1.06 (m, 4H). MS(ESI, m/z ):496[M+H] + .

中間体VIII-1(2.1 g,4.2 mmol)、塩酸ヒドロキシアミン(8.4 mmol)、無水エタノール(80 mL)を丸底フラスコに入れて撹拌し、ゆっくりトリエチルアミン(8.4 mmol)を滴下し、80℃に加熱して一晩反応させた。室温に冷却し、溶媒を除去し、ジクロロメタン(150 mL)で溶解させ、さらに水、飽和食塩水で洗浄し、有機相を濃縮し、シリカゲルカラムクロマトグラフィーによって中間体IX-1(1.1 g、収率50%)を得た。1HNMR (400 MHz, DMSO-d6) δ 7.73 - 7.63 (m, 2H), 7.64 - 7.55 (m, 3H), 6.83 (d, J = 8.4 Hz, 2H), 4.67 (s, 2H), 3.43 - 3.35 (m, 1H), 2.39 - 2.32 (m, 1H), 1.89 - 1.78 (m, 6H), 1.57 - 1.48 (m, 2H), 1.16 - 1.06 (m, 4H). MS(ESI, m/z):529[M+H]+ Intermediate VIII-1 (2.1 g, 4.2 mmol), hydroxyamine hydrochloride (8.4 mmol), and absolute ethanol (80 mL) were placed in a round bottom flask and stirred, triethylamine (8.4 mmol) was slowly added dropwise, and the mixture was heated to 80 °C. The mixture was heated and reacted overnight. Cool to room temperature, remove the solvent, dissolve in dichloromethane (150 mL), wash with water and saturated brine, concentrate the organic phase, and obtain Intermediate IX-1 (1.1 g, yield) by silica gel column chromatography. 50%). 1 HNMR (400 MHz, DMSO-d 6 ) δ 7.73 - 7.63 (m, 2H), 7.64 - 7.55 (m, 3H), 6.83 (d, J = 8.4 Hz, 2H), 4.67 (s, 2H), 3.43 - 3.35 (m, 1H), 2.39 - 2.32 (m, 1H), 1.89 - 1.78 (m, 6H), 1.57 - 1.48 (m, 2H), 1.16 - 1.06 (m, 4H). MS(ESI, m/ z):529[M+H] + .

中間体IX-1(1.1 g,2.1 mmol)、N,N'-カルボニルジイミダゾール(3.1 mmol)、1,4-ジオキサン(100 mL)を丸底フラスコに入れた後、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(3.1 mmol)を入れ、100℃に加熱して8時間反応させた。反応駅を室温に冷却し、水(100 mL)を入れて希釈し、1M塩酸水溶液でpHが約3になるように調整した後、酢酸エチル(100 mLずつ、計3回)で抽出した。有機相を合併し、飽和食塩水で洗浄し、濃縮して得られた粗製品をさらにシリカゲルカラムクロマトグラフィーによって最終産物の化合物1(158 mg、収率13%)を得た。1HNMR (400 MHz, DMSO-d6) δ 7.65 - 7.63 (m, 2H), 7.59 - 7.55 (m, 3H), 6.83 (d, J = 8.4 Hz, 2H), 4.17 (s, 2H), 3.38 (s, 1H), 2.37 - 2.30 (m, 1H), 1.80 - 1.72 (m, 6H), 1.51 (d, J = 14.4 Hz, 2H), 1.16 - 1.06 (m, 4H). MS(ESI, m/z):555[M+H]+ Intermediate IX-1 (1.1 g, 2.1 mmol), N,N'-carbonyldiimidazole (3.1 mmol), and 1,4-dioxane (100 mL) were placed in a round bottom flask, and then 1,8-diazabicyclo[ 5.4.0] undecene-7 (3.1 mmol) was added, heated to 100°C, and reacted for 8 hours. The reaction station was cooled to room temperature, diluted with water (100 mL), adjusted to pH approximately 3 with 1M aqueous hydrochloric acid solution, and extracted with ethyl acetate (100 mL each, three times in total). The organic phases were combined, washed with saturated brine, and concentrated, and the resulting crude product was further subjected to silica gel column chromatography to obtain the final product, Compound 1 (158 mg, yield 13%). 1 HNMR (400 MHz, DMSO-d 6 ) δ 7.65 - 7.63 (m, 2H), 7.59 - 7.55 (m, 3H), 6.83 (d, J = 8.4 Hz, 2H), 4.17 (s, 2H), 3.38 (s, 1H), 2.37 - 2.30 (m, 1H), 1.80 - 1.72 (m, 6H), 1.51 (d, J = 14.4 Hz, 2H), 1.16 - 1.06 (m, 4H). MS(ESI, m /z):555[M+H] + .

実施例2:
実施例2の製造は、中間体VII-2からスキーム1によって製造したが、合成スキームは以下の通りである。
Example 2:
Example 2 was produced from Intermediate VII-2 according to Scheme 1, and the synthesis scheme is as follows.

原料XIII-2から中間体VII-1を合成する合成方法によって化合物VII-2を合成した後、スキーム1によって化合物2を得たが、ここで、
白色固体の化合物VIII-2:収率77%,1HNMR (400 MHz, DMSO-d6) δ8.21 (s, 1H), 7.70 - 7.62 (m, 3H), 7.60 - 7.54 (m, 1H), 7.16 (d, J = 8.4 Hz, 1H), 4.29 (s, 2H), 3.43 - 3.35 (m, 1H), 2.37 - 2.29 (m, 1H), 1.85-1.65 (m, 6H), 1.63 - 1.54 (m, 2H), 1.17 - 1.05 (m, 4H). MS(ESI, m/z):497[M+H]+
白色固体の化合物2:収率64%,1HNMR (400 MHz, DMSO-d6) δ 8.20 - 8.16 (m, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.67 - 7.62 (m, 2H), 7.60 - 7.53 (m, 1H), 7.28 - 7.21 (m, 1H), 4.28 (s,br, 2H), 3.42 - 3.40 (m, 1H), 2.38 - 2.29 (m, 1H), 1.81 - 1.69 (m, 6H), 1.60 - 1.52 (m, 2H), 1.16 - 1.05 (m, 2H). MS(ESI, m/z):556[M+H]+
After synthesizing compound VII-2 by a synthetic method of synthesizing intermediate VII-1 from raw material XIII-2, compound 2 was obtained according to scheme 1, where:
White solid compound VIII-2: yield 77%, 1 HNMR (400 MHz, DMSO-d 6 ) δ8.21 (s, 1H), 7.70 - 7.62 (m, 3H), 7.60 - 7.54 (m, 1H) , 7.16 (d, J = 8.4 Hz, 1H), 4.29 (s, 2H), 3.43 - 3.35 (m, 1H), 2.37 - 2.29 (m, 1H), 1.85-1.65 (m, 6H), 1.63 - 1.54 (m, 2H), 1.17 - 1.05 (m, 4H). MS(ESI, m/z): 497[M+H] + .
White solid compound 2: yield 64%, 1 HNMR (400 MHz, DMSO-d 6 ) δ 8.20 - 8.16 (m, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.67 - 7.62 (m, 2H), 7.60 - 7.53 (m, 1H), 7.28 - 7.21 (m, 1H), 4.28 (s,br, 2H), 3.42 - 3.40 (m, 1H), 2.38 - 2.29 (m, 1H), 1.81 - 1.69 (m, 6H), 1.60 - 1.52 (m, 2H), 1.16 - 1.05 (m, 2H). MS(ESI, m/z): 556[M+H] + .

実施例3:
実施例3の製造は、中間体VII-3からスキーム1によって製造したが、合成スキームは以下の通りである。
Example 3:
Example 3 was prepared from Intermediate VII-3 according to Scheme 1, and the synthesis scheme is as follows.

原料XIII-3から中間体VII-1を合成する合成方法によって化合物VII-3を合成した後、スキーム1によって化合物3を得たが、ここで、
白色固体の化合物VIII-3:収率67%,HNMR (400 MHz, DMSO-d6) δ7.68 - 7.45 (m, 4H), 6.69 (t, J = 12.0 Hz, 2H), 4.18 (s, 2H), 3.46 - 3.36 (m, 1H), 2.38 - 2.27 (m, 1H), 1.80 - 1.66 (m, 6H), 1.60 - 1.51 (m, 2H), 1.20 - 1.03 (m, 4H). MS(ESI, m/z):497[M+H]+
白色固体の化合物3:収率38%,1H NMR (400 MHz, DMSO-d6) δ7.69 - 7.42 (m, 4H), 6.74 (d, J = 13.6 Hz, 1H), 6.63 (d, J = 8.8 Hz, 1H), 4.21 (s, 2H), 3.47 - 3.43 (m, 1H), 2.35 - 2.30 (m, 1H), 1.76 - 1.70 (m, 6H), 1.58 - 1.50 (m, 2H), 1.20 - 1.06 (m, 4H). MS(ESI, m/z):573[M+H]+
After synthesizing compound VII-3 by a synthetic method of synthesizing intermediate VII-1 from raw material XIII-3, compound 3 was obtained by scheme 1, where:
White solid compound VIII-3: yield 67%, HNMR (400 MHz, DMSO-d 6 ) δ7.68 - 7.45 (m, 4H), 6.69 (t, J = 12.0 Hz, 2H), 4.18 (s, MS( ESI, m/z): 497[M+H] + .
White solid compound 3: yield 38%, 1 H NMR (400 MHz, DMSO-d 6 ) δ7.69 - 7.42 (m, 4H), 6.74 (d, J = 13.6 Hz, 1H), 6.63 (d, J = 8.8 Hz, 1H), 4.21 (s, 2H), 3.47 - 3.43 (m, 1H), 2.35 - 2.30 (m, 1H), 1.76 - 1.70 (m, 6H), 1.58 - 1.50 (m, 2H) , 1.20 - 1.06 (m, 4H). MS(ESI, m/z): 573[M+H] + .

実施例4:
実施例4の製造は、実施例3の操作を参照し、中間体IV-1からスキーム2によってを化合物4を製造したが、合成スキームは以下の通りである。
Example 4:
In the production of Example 4, Compound 4 was produced from Intermediate IV-1 according to Scheme 2 with reference to the operation of Example 3, and the synthesis scheme is as follows.

水素化リチウムアルミニウム(420 mg,10 mmol)をテトラヒドロフラン(8 mL)に入れ、0℃に冷却し、さらに化合物IV-1(2 mmol)のテトラヒドロフラン(2 mL)溶液を1滴ずつそれに入れ(内温が5℃以下になるように)、反応液を室温で2 h撹拌した。0℃で氷水(0.4 mL)を入れて反応をクエンチングした後、それぞれ15%水酸化ナトリウム水溶液(0.4 mL)および氷水(1.2 mL)を1滴ずつ入れた後、さらに無水硫酸マグネシウム(8 g)を入れ、上記混合物を室温で0.5 h撹拌し、ろ過し、濃縮し、カラムクロマトグラフィーによって中間体X-1(1 g、収率84%)を得た。MS(ESI, m/z):284[M+H]+ Lithium aluminum hydride (420 mg, 10 mmol) was placed in tetrahydrofuran (8 mL), cooled to 0°C, and a solution of compound IV-1 (2 mmol) in tetrahydrofuran (2 mL) was added drop by drop (internally). The reaction solution was stirred at room temperature for 2 h so that the temperature was below 5°C. After quenching the reaction by adding ice water (0.4 mL) at 0°C, add one drop each of 15% aqueous sodium hydroxide solution (0.4 mL) and ice water (1.2 mL), and then add anhydrous magnesium sulfate (8 g). ), and the mixture was stirred at room temperature for 0.5 h, filtered, concentrated, and subjected to column chromatography to obtain Intermediate X-1 (1 g, yield 84%). MS(ESI, m/z): 284[M+H] + .

中間体X-1(1 g,3.53 mmol)をジクロロメタン(20mL)に入れ、室温でクロロクロム酸ピリジニウム(14.14 mmol)を入れ、反応液を室温で1 h撹拌した。ろ過し、濃縮し、カラムクロマトグラフィーによって中間体XI-1(870 mg、収率88%)を得た。MS(ESI, m/z):282[M+H]+
水素化リチウムアルミニウム(260 mg,6.2 mmol)をテトラヒドロフラン(4 mL)に入れ、0℃に冷却し、さらに化合物XI-1(3.1 mmol)のテトラヒドロフラン(1 mL)溶液を1滴ずつそれに入れ(内温が5℃以下になるように)、反応液を室温で2 h撹拌した。0℃で氷水(0.2 mL)を入れて反応をクエンチングした後、それぞれ15%水酸化ナトリウム水溶液(0.2 mL)および氷水(0.6 mL)を1滴ずつ入れた後、さらに無水硫酸マグネシウム(10 g)を入れ、上記混合物を室温で0.5 h撹拌し、ろ過し、濃縮し、カラムクロマトグラフィーによって中間体V-2(730 mg、収率83%)を得た。1H NMR (400 MHz, DMSO-d6) δ 7.62-7.60 (m, 2H), 7.56-7.52 (m, 1H), 4.92 (d, J = 5.2 Hz, 1H), 4.18 (d, J = 5.2 Hz, 1H), 2.35 - 2.28 (m, 1H), 1.14 - 1.04 (m, 4H). MS(ESI, m/z):285[M+H]+
Intermediate X-1 (1 g, 3.53 mmol) was placed in dichloromethane (20 mL), and pyridinium chlorochromate (14.14 mmol) was added at room temperature, and the reaction solution was stirred at room temperature for 1 h. Intermediate XI-1 (870 mg, 88% yield) was obtained by filtration, concentration, and column chromatography. MS(ESI, m/z): 282[M+H] + .
Lithium aluminum hydride (260 mg, 6.2 mmol) was placed in tetrahydrofuran (4 mL), cooled to 0°C, and a solution of compound XI-1 (3.1 mmol) in tetrahydrofuran (1 mL) was added dropwise (internally). The reaction solution was stirred at room temperature for 2 h so that the temperature was below 5°C. Quench the reaction by adding ice water (0.2 mL) at 0°C, then add one drop each of 15% aqueous sodium hydroxide solution (0.2 mL) and ice water (0.6 mL), and then add anhydrous magnesium sulfate (10 g). ), and the mixture was stirred at room temperature for 0.5 h, filtered, concentrated, and subjected to column chromatography to obtain Intermediate V-2 (730 mg, 83% yield). 1 H NMR (400 MHz, DMSO-d 6 ) δ 7.62-7.60 (m, 2H), 7.56-7.52 (m, 1H), 4.92 (d, J = 5.2 Hz, 1H), 4.18 (d, J = 5.2 Hz, 1H), 2.35 - 2.28 (m, 1H), 1.14 - 1.04 (m, 4H). MS(ESI, m/z): 285[M+H] + .

中間体V-2(730 mg,2.57 mmol)をジクロロメタン(10 mL)に溶解させ、0℃に冷却し、溶液にゆっくり三臭化リン(3.08 mmol)を滴下し、反応液を室温で2 h撹拌した。反応液から溶媒を除去して油状物を得、酢酸エチル(20 mL)を入れ、飽和炭酸水素ナトリウム水溶液で反応溶液のpH値が中性になるように調整し、水で洗浄し、そして酢酸エチル(100 mLずつ、計3回)で水相を抽出した。有機相を混合し、飽和食塩水で洗浄した後、濃縮した。カラムクロマトグラフィーによって中間体VI-2(720 mg、収率81%)を得た。MS(ESI, m/z):347[M+H]+ Intermediate V-2 (730 mg, 2.57 mmol) was dissolved in dichloromethane (10 mL), cooled to 0 °C, phosphorus tribromide (3.08 mmol) was slowly added dropwise to the solution, and the reaction solution was incubated at room temperature for 2 h. Stirred. The solvent was removed from the reaction solution to obtain an oil, which was then charged with ethyl acetate (20 mL), the pH value of the reaction solution was adjusted to neutral with saturated aqueous sodium bicarbonate solution, washed with water, and acetic acid was added. The aqueous phase was extracted with ethyl (3 times, 100 mL each). The organic phases were mixed, washed with saturated brine, and then concentrated. Intermediate VI-2 (720 mg, yield 81%) was obtained by column chromatography. MS(ESI, m/z): 347[M+H] + .

0℃で、化合物VII-2(512mg,2.08mmol)の無水テトラヒドロフラン(10 mL)溶液にカリウムt-ブトキシド(4.16mmol)を入れ、15分間撹拌した後、1滴ずつ化合物VI-2(2.08mmol)の無水テトラヒドロフラン(5 mL)溶液を入れ、反応液を室温で4 h撹拌した。反応液に水(20 mL)を入れ、酢酸エチル(20 mLずつ、計3回)で抽出し、有機相を飽和食塩水で洗浄し、濃縮し、カラムクロマトグラフィーによって中間体VIII-4(420 mg、収率39%)を得た。MS(ESI, m/z):513[M+H]+
中間体VIII-4(420 mg,0.82 mmol)、塩酸ヒドロキシアミン(1.64 mmol)、無水エタノール(5 mL)を丸底フラスコに入れて撹拌し、ゆっくりトリエチルアミン(1.64 mmol)を滴下し、80℃に加熱して一晩反応させた。室温に冷却し、溶媒を除去し、ジクロロメタン(20 mL)で溶解させ、さらに水、飽和食塩水で洗浄し、有機相を濃縮し、シリカゲルカラムクロマトグラフィーによって中間体IX-4(360 mg、収率81%)を得た。MS(ESI, m/z):546[M+H]+
Potassium t-butoxide (4.16 mmol) was added to a solution of compound VII-2 (512 mg, 2.08 mmol) in anhydrous tetrahydrofuran (10 mL) at 0°C, and after stirring for 15 minutes, compound VII-2 (2.08 mmol) was added dropwise. ) in anhydrous tetrahydrofuran (5 mL) was added, and the reaction mixture was stirred at room temperature for 4 h. Water (20 mL) was added to the reaction mixture, extracted with ethyl acetate (20 mL each, three times in total), the organic phase was washed with saturated brine, concentrated, and the intermediate VIII-4 (420 mg, yield 39%). MS(ESI, m/z): 513[M+H] + .
Intermediate VIII-4 (420 mg, 0.82 mmol), hydroxyamine hydrochloride (1.64 mmol), and absolute ethanol (5 mL) were placed in a round bottom flask and stirred, triethylamine (1.64 mmol) was slowly added dropwise, and the mixture was heated to 80°C. The mixture was heated and reacted overnight. Cool to room temperature, remove the solvent, dissolve in dichloromethane (20 mL), wash with water and saturated brine, concentrate the organic phase, and remove intermediate IX-4 (360 mg, yield) by silica gel column chromatography. 81%). MS(ESI, m/z): 546[M+H] + .

中間体IX-4(360 mg,0.66 mmol)、N,N'-カルボニルジイミダゾール(0.99 mmol)、1,4-ジオキサン(5 mL)を丸底フラスコに入れた後、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(0.99 mmol)を入れ、100℃に加熱して8時間反応させた。反応駅を室温に冷却し、水(10 mL)を入れて希釈し、1M塩酸水溶液でpHが約3になるように調整した後、酢酸エチル(10 mLずつ、計3回)で抽出した。有機相を合併し、飽和食塩水で洗浄し、濃縮して得られた粗製品をさらにシリカゲルカラムクロマトグラフィーによって最終産物の化合物4(76.7 mg、収率20%)を得た。1HNMR (400 MHz, DMSO-d6) δ7.65-7.62 (m, 2H), 7.58 - 7.55 (m, 1H), 7.47 (t, J = 8.6 Hz, 1H), 6.72 - 6.65 (m, 2H), 4.22 (s, 1H), 4.17 (s, 2H), 3.39 (s, 1H), 2.36 - 2.30 (m, 1H), 1.76-1.73 (m, 6H), 1.52 (d, J = 14.8 Hz, 2H), 1.14 - 1.08 (m, 4H). MS(ESI, m/z):572[M+H]+ Intermediate IX-4 (360 mg, 0.66 mmol), N,N'-carbonyldiimidazole (0.99 mmol), and 1,4-dioxane (5 mL) were placed in a round bottom flask, and then 1,8-diazabicyclo[ 5.4.0] undecene-7 (0.99 mmol) was added, heated to 100°C, and reacted for 8 hours. The reaction station was cooled to room temperature, diluted with water (10 mL), adjusted to pH approximately 3 with 1M aqueous hydrochloric acid solution, and extracted with ethyl acetate (10 mL each, three times in total). The organic phases were combined, washed with saturated brine, and concentrated, and the resulting crude product was further subjected to silica gel column chromatography to obtain the final product, Compound 4 (76.7 mg, yield 20%). 1 HNMR (400 MHz, DMSO-d 6 ) δ7.65-7.62 (m, 2H), 7.58 - 7.55 (m, 1H), 7.47 (t, J = 8.6 Hz, 1H), 6.72 - 6.65 (m, 2H) ), 4.22 (s, 1H), 4.17 (s, 2H), 3.39 (s, 1H), 2.36 - 2.30 (m, 1H), 1.76-1.73 (m, 6H), 1.52 (d, J = 14.8 Hz, 2H), 1.14 - 1.08 (m, 4H). MS(ESI, m/z): 572[M+H] + .

実施例5:
実施例5の製造は、中間体VII-4からスキーム1によって製造したが、合成スキームは以下の通りである。
Example 5:
Example 5 was prepared from Intermediate VII-4 according to Scheme 1, and the synthesis scheme is as follows.

原料XIII-4から中間体VII-1を合成する合成方法によって化合物VII-4を合成した後、スキーム1によって化合物5を得たが、ここで、
白色固体の化合物VIII-5:収率47%,1HNMR (400 MHz, DMSO-d6) δ7.68 - 7.61 (m, 2H), 7.60 - 7.55 (m, 1H), 7.42 (d, J = 8.4 Hz, 1H), 6.71 (s, br, 1H), 6.62 (d, J = 8.8 Hz, 1H), 4.17 (s, 2H), 3.41 - 3.36 (m, 1H), 2.39 - 2.26 (m, 4H), 1.84 - 1.66 (m, 6H), 1.58 - 1.46 (m, 2H), 1.19 - 1.02 (m, 4H). MS(ESI, m/z):510[M+H]+
白色固体の化合物3:収率11%,1H NMR (400 MHz, DMSO-d6) δ7.69 - 7.62 (m, 2H), 7.60 - 7.35 (m, 2H), 6.75 - 6.545 (m, 2H), 4.19 (s, 2H), 3.43 - 3.33 (m, 1H), 2.41 - 2.29 (m, 4H), 1.88 - 1.66 (m, 6H), 1.60 - 1.46 (m, 2H), 1.21 - 1.03 (m, 4H). MS(ESI, m/z):569[M+H]+
After synthesizing compound VII-4 by the synthetic method of synthesizing intermediate VII-1 from raw material XIII-4, compound 5 was obtained according to scheme 1, where:
Compound VIII-5 as a white solid: yield 47%, 1 HNMR (400 MHz, DMSO-d 6 ) δ7.68 - 7.61 (m, 2H), 7.60 - 7.55 (m, 1H), 7.42 (d, J = 8.4 Hz, 1H), 6.71 (s, br, 1H), 6.62 (d, J = 8.8 Hz, 1H), 4.17 (s, 2H), 3.41 - 3.36 (m, 1H), 2.39 - 2.26 (m, 4H) ), 1.84 - 1.66 (m, 6H), 1.58 - 1.46 (m, 2H), 1.19 - 1.02 (m, 4H). MS(ESI, m/z): 510[M+H] + .
White solid compound 3: yield 11%, 1 H NMR (400 MHz, DMSO-d 6 ) δ7.69 - 7.62 (m, 2H), 7.60 - 7.35 (m, 2H), 6.75 - 6.545 (m, 2H) ), 4.19 (s, 2H), 3.43 - 3.33 (m, 1H), 2.41 - 2.29 (m, 4H), 1.88 - 1.66 (m, 6H), 1.60 - 1.46 (m, 2H), 1.21 - 1.03 (m , 4H). MS(ESI, m/z): 569[M+H] + .

実施例6:
実施例6の製造は、中間体VII-5からスキーム1によって製造したが、合成スキームは以下の通りである。
Example 6:
Example 6 was prepared from Intermediate VII-5 according to Scheme 1, and the synthesis scheme is as follows.

原料XIII-5から中間体VII-1を合成する合成方法によって化合物VII-5を合成した後、スキーム1によって化合物6を得たが、ここで、
白色固体の化合物VIII-6:収率32%,1HNMR (400 MHz, DMSO-d6) δ7.66 - 7.61 (m, 2H), 7.60 - 7.52 (m, 1H), 7.32 (d, J = 8.4 Hz, 1H), 6.39 - 6.29 (m, 2H), 4.22 (s, 2H), 3.83 (s, 3H), 3.41 - 3.32 (m, 1H), 2.36 - 2.28 (m, 1H), 1.84 - 1.66 (m, 6H), 1.60 - 1.49 (m, 2H), 1.20 - 1.02 (m, 4H). MS(ESI, m/z):526[M+H]+
白色固体の化合物3:収率9%,1H NMR (400 MHz, DMSO-d6) δ7.69 - 7.52 (m, 3H), 7.37 - 7.29 (m, 1H), 6.45 - 6.36 (m, 2H), 4.28 (s, 2H), 3.87 (s, 3H), 3.43 - 3.32 (m, 1H), 2.42 - 2.27 (m, 1H), 1.87 - 1.64 (m, 6H), 1.61 - 1.47 (m, 2H), 1.21 - 1.02 (m, 4H). MS(ESI, m/z):585[M+H]+
After synthesizing compound VII-5 by a synthetic method of synthesizing intermediate VII-1 from raw material XIII-5, compound 6 was obtained according to scheme 1, where:
White solid compound VIII-6: yield 32%, 1 HNMR (400 MHz, DMSO-d 6 ) δ7.66 - 7.61 (m, 2H), 7.60 - 7.52 (m, 1H), 7.32 (d, J = 8.4 Hz, 1H), 6.39 - 6.29 (m, 2H), 4.22 (s, 2H), 3.83 (s, 3H), 3.41 - 3.32 (m, 1H), 2.36 - 2.28 (m, 1H), 1.84 - 1.66 (m, 6H), 1.60 - 1.49 (m, 2H), 1.20 - 1.02 (m, 4H). MS(ESI, m/z): 526[M+H] + .
White solid compound 3: yield 9%, 1 H NMR (400 MHz, DMSO-d 6 ) δ7.69 - 7.52 (m, 3H), 7.37 - 7.29 (m, 1H), 6.45 - 6.36 (m, 2H) ), 4.28 (s, 2H), 3.87 (s, 3H), 3.43 - 3.32 (m, 1H), 2.42 - 2.27 (m, 1H), 1.87 - 1.64 (m, 6H), 1.61 - 1.47 (m, 2H) ), 1.21 - 1.02 (m, 4H). MS(ESI, m/z): 585[M+H] + .

実施例7:
実施例7の製造は、中間体VII-6からスキーム1によって製造したが、合成スキームは以下の通りである。
Example 7:
Example 7 was prepared from Intermediate VII-6 according to Scheme 1, and the synthesis scheme is as follows.

原料XIII-6から中間体VII-1を合成する合成方法によって化合物VII-6を合成した後、スキーム1によって化合物7を得たが、ここで、
白色固体の化合物VIII-7:収率56%,1HNMR (400 MHz, DMSO-d6) δ7.75 (d, J = 9.2 Hz, 1H), 7.67 - 7.52 (m, 3H), 7.08 (s, 1H), 7.02 (d, J = 8.8 Hz, 1H), 4.32 (s, 2H), 3.43 - 3.32 (m, 1H), 2.36 - 2.28 (m, 1H), 1.78 - 1.69 (m, 3H), 1.61 - 1.50 (m, 2H), 1.16 - 1.06 (m, 4H). MS(ESI, m/z):564[M+H]+
白色固体の化合物7:収率49%, 1H NMR (400 MHz, DMSO-d6) δ 7.67 - 7.47 (m, 4H), 7.11 - 7.04 (m, 2H), 4.27 (s, 2H), 3.48 - 3.44 (m, 1H), 2.35 - 2.31 (m, 1H), 1.85 - 1.69 (m, 6H), 1.62 - 1.48 (m, 2H), 1.20 - 1.01 (m, 4H). MS(ESI, m/z):623[M+H]+
After synthesizing compound VII-6 by a synthetic method of synthesizing intermediate VII-1 from raw material XIII-6, compound 7 was obtained according to scheme 1, where:
Compound VIII-7 as a white solid: yield 56%, 1 HNMR (400 MHz, DMSO-d 6 ) δ7.75 (d, J = 9.2 Hz, 1H), 7.67 - 7.52 (m, 3H), 7.08 (s , 1H), 7.02 (d, J = 8.8 Hz, 1H), 4.32 (s, 2H), 3.43 - 3.32 (m, 1H), 2.36 - 2.28 (m, 1H), 1.78 - 1.69 (m, 3H), 1.61 - 1.50 (m, 2H), 1.16 - 1.06 (m, 4H). MS(ESI, m/z): 564[M+H] + .
White solid compound 7: yield 49%, 1 H NMR (400 MHz, DMSO-d 6 ) δ 7.67 - 7.47 (m, 4H), 7.11 - 7.04 (m, 2H), 4.27 (s, 2H), 3.48 - 3.44 (m, 1H), 2.35 - 2.31 (m, 1H), 1.85 - 1.69 (m, 6H), 1.62 - 1.48 (m, 2H), 1.20 - 1.01 (m, 4H). MS(ESI, m/ z): 623[M+H] + .

実施例8:
実施例8の製造は、原料II-2からスキーム1によって製造したが、合成スキームは以下の通りである。
Example 8:
Example 8 was produced from raw material II-2 according to Scheme 1, and the synthesis scheme is as follows.

ここで、
コロイドの化合物V-3:収率98%, 1HNMR (400 MHz, DMSO-d6) δ7.88 (d, J = 7.6 Hz, 1H), 7.81 - 7.71 (m, 2H), 7.59 (d, J = 7.2 Hz, 1H), 4.90 (s, 1H), 2.33-2.26 (m, 1H), 1.12-1.05 (m, 4H). MS(ESI, m/z):286[M+H]+
白色固体の化合物VIII-8:収率31%, 1HNMR (400 MHz, DMSO-d6) δ7.90 (d, J = 7.6 Hz, 1H), 7.81-7.72 (m, 2H), 7.58 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 8.4 Hz, 1H), 6.74 (dd, J = 13.8, 2.2 Hz, 1H), 6.63 (dd, J = 8.6, 2.2 Hz, 1H), 4.20 (s, 1H), 3.61 - 3.57 (m, 1H), 3.40 - 3.32 (m, 1H), 2.33 - 2.29 (m, 1H), 1.76-1.69 (m, 6H), 1.54 (d, J = 14.4 Hz, 2H), 1.18 - 1.05 (m, 4H). MS(ESI, m/z):514[M+H]+
白色固体の化合物8:収率29%, 1HNMR (400 MHz, DMSO-d6) δ7.90 (d, J = 8.0 Hz, 1H), 7.81 - 7.72 (m, 2H), 7.58 (d, J = 7.2 Hz, 1H), 7.47 (t, J = 8.6 Hz, 1H), 6.72 - 6.66 (m, 2H), 4.17 (s, 2H), 3.38 (s, 1H), 2.34 - 2.28 (m, 1H), 1.77 - 1.73 (m, 6H), 1.52 (d, J = 14.8 Hz, 2H), 1.13 - 1.05 (m, 4H). MS(ESI, m/z):573[M+H]+
here,
Colloidal compound V-3: yield 98%, 1 HNMR (400 MHz, DMSO-d 6 ) δ7.88 (d, J = 7.6 Hz, 1H), 7.81 - 7.71 (m, 2H), 7.59 (d, J = 7.2 Hz, 1H), 4.90 (s, 1H), 2.33-2.26 (m, 1H), 1.12-1.05 (m, 4H). MS(ESI, m/z): 286[M+H] + .
Compound VIII-8 as a white solid: yield 31%, 1 HNMR (400 MHz, DMSO-d 6 ) δ7.90 (d, J = 7.6 Hz, 1H), 7.81-7.72 (m, 2H), 7.58 (d , J = 7.6 Hz, 1H), 7.50 (t, J = 8.4 Hz, 1H), 6.74 (dd, J = 13.8, 2.2 Hz, 1H), 6.63 (dd, J = 8.6, 2.2 Hz, 1H), 4.20 (s, 1H), 3.61 - 3.57 (m, 1H), 3.40 - 3.32 (m, 1H), 2.33 - 2.29 (m, 1H), 1.76-1.69 (m, 6H), 1.54 (d, J = 14.4 Hz , 2H), 1.18 - 1.05 (m, 4H). MS(ESI, m/z): 514[M+H] + .
White solid compound 8: yield 29%, 1 HNMR (400 MHz, DMSO-d 6 ) δ7.90 (d, J = 8.0 Hz, 1H), 7.81 - 7.72 (m, 2H), 7.58 (d, J = 7.2 Hz, 1H), 7.47 (t, J = 8.6 Hz, 1H), 6.72 - 6.66 (m, 2H), 4.17 (s, 2H), 3.38 (s, 1H), 2.34 - 2.28 (m, 1H) , 1.77 - 1.73 (m, 6H), 1.52 (d, J = 14.8 Hz, 2H), 1.13 - 1.05 (m, 4H). MS(ESI, m/z): 573[M+H] + .

実施例9:
実施例9の製造は、原料II-3からスキーム1によって製造したが、合成スキームは以下の通りである。
Example 9:
Example 9 was produced from raw material II-3 according to Scheme 1, and the synthesis scheme is as follows.

ここで、
コロイドの化合物V-4:収率76%, 1HNMR (400 MHz, DMSO-d6) δ 7.67-7.63 (m, 2H), 7.53 (d, J = 6.8 Hz, 2H), 4.96 (s, 1H), 2.32-2.27 (m, 1H), 1.13-1.04 (m, 4H). MS(ESI, m/z):302[M+H]+
コロイドの化合物VIII-9:収率47%, 1HNMR (400 MHz, DMSO-d6) δ 7.69 - 7.61 (m, 2H), 7.56 - 7.49 (m, 3H), 6.75 (d, J = 14.0 Hz, 1H), 6.64 (d, J = 8.8 Hz, 1H), 4.21 (s, 2H), 3.45 - 3.43 (m, 1H), 2.36 - 2.29 (m, 1H), 1.77 - 1.69 (m, 6H), 1.56 (d, J = 14.8 Hz, 2H), 1.23 - 1.06 (m, 4H). MS(ESI, m/z):530[M+H]+
白色固体の化合物8:収率21%, 1HNMR (400 MHz, DMSO-d6) δ7.69 - 7.62 (m, 2H), 7.56 - 7.46 (m, 3H), 6.72 - 6.66 (m, 2H), 4.18 (s, 2H), 3.43 (s, 1H), 2.35 - 2.31 (m, 1H), 1.80 - 1.75 (m, 6H), 1.54 (d, J = 14.4 Hz, 2H), 1.13 - 1.06 (m, 4H). MS(ESI, m/z):589[M+H]+
here,
Colloidal compound V-4: yield 76%, 1 HNMR (400 MHz, DMSO-d 6 ) δ 7.67-7.63 (m, 2H), 7.53 (d, J = 6.8 Hz, 2H), 4.96 (s, 1H) ), 2.32-2.27 (m, 1H), 1.13-1.04 (m, 4H). MS(ESI, m/z): 302[M+H] + .
Colloidal compound VIII-9: 47% yield, 1 HNMR (400 MHz, DMSO-d 6 ) δ 7.69 - 7.61 (m, 2H), 7.56 - 7.49 (m, 3H), 6.75 (d, J = 14.0 Hz , 1H), 6.64 (d, J = 8.8 Hz, 1H), 4.21 (s, 2H), 3.45 - 3.43 (m, 1H), 2.36 - 2.29 (m, 1H), 1.77 - 1.69 (m, 6H), 1.56 (d, J = 14.8 Hz, 2H), 1.23 - 1.06 (m, 4H). MS(ESI, m/z): 530[M+H] + .
White solid compound 8: yield 21%, 1 HNMR (400 MHz, DMSO-d 6 ) δ7.69 - 7.62 (m, 2H), 7.56 - 7.46 (m, 3H), 6.72 - 6.66 (m, 2H) , 4.18 (s, 2H), 3.43 (s, 1H), 2.35 - 2.31 (m, 1H), 1.80 - 1.75 (m, 6H), 1.54 (d, J = 14.4 Hz, 2H), 1.13 - 1.06 (m , 4H). MS(ESI, m/z): 589[M+H] + .

薬理実験実施例:
レポーター遺伝子活性検出に基づいた方法によって化合物のFXR作動活性を検出する方法:
1.1 プラスミドpGAL4-FXR-LBDおよびpG5-Lucの構築および製造
レポーター遺伝子検出システムに使用されるpGAL4-FXR-LBDおよびpG5-Lucプラスミドは通常の分子クローニング方法によって構築された。主な工程は、PCR技術によってFXR-LBD(212-476AA)のアミノ酸配列に相応するFXR(NM_001206979.2)のcDNA配列を、pGAL4ベクターのBamHIおよびNotIの酵素切断部位に挿入し、pGAL4-FXR-LBDを得た。pG5-LucおよびphRL-TKプラスミドは中国科学院上海薬物研究所によって贈与された。CaCl2法によってプラスミドでDH5α大腸菌を形質転換させ、さらに培養して増幅させた後、プラスミド抽出キット(TIANGEN、#D107)によって精製して相応するプラスミドDNAを得た。
Examples of pharmacological experiments:
Methods for detecting FXR agonistic activity of compounds by methods based on reporter gene activity detection:
1.1 Construction and production of plasmids pGAL4-FXR-LBD and pG5-Luc The pGAL4-FXR-LBD and pG5-Luc plasmids used in the reporter gene detection system were constructed by conventional molecular cloning methods. The main step is to insert the cDNA sequence of FXR (NM_001206979.2) corresponding to the amino acid sequence of FXR-LBD (212-476AA) into the BamHI and NotI enzyme cleavage sites of the pGAL4 vector using PCR technology, and - Got LBD. pG5-Luc and phRL-TK plasmids were a gift from the Shanghai Institute of Drug Research, Chinese Academy of Sciences. The plasmid was transformed into DH5α E. coli using the CaCl 2 method, further cultured and amplified, and then purified using a plasmid extraction kit (TIANGEN, #D107) to obtain the corresponding plasmid DNA.

プラスミドのHEK293T細胞への共形質移入および化合物による処理
プラスミドの形質移入の前日にHEK293T細胞を1×104/ウェルの密度で96ウェルプレートに接種した。形質移入試薬FuGENE(登録商標) HD(Promega,# E2311)の説明書に従って細胞の形質移入を行った。主な工程は、一つのウェルを例とすると、プラスミドpGAL4-FXR-LBD、pG5-LucおよびphRL-TKを20 ng、50 ngおよび5 ngの比率で10 μLのOpti-MEM(商標) I培地(Gibco、#11058021)に入れて均一に混合した。さらに0.25 μLのFuGENE(登録商標) HDを入れ、均一に混合した後、室温で5 min静置した。さらにこの10 μLの混合物を100 μLの培養液を含有する細胞ウェルに入れた。細胞の共形質移入から6 hで、化合物を1 μMを最高濃度に、3倍の勾配で希釈し、計10の濃度で細胞培養液に入れて24 h処理し、計2つの重複ウェルを設け、LJN452化合物を陽性対照とした。
Co-transfection of plasmids into HEK293T cells and treatment with compounds HEK293T cells were seeded in 96-well plates at a density of 1×10 4 /well the day before plasmid transfection. Cells were transfected according to the instructions for the transfection reagent FuGENE® HD (Promega, #E2311). The main steps are to take one well as an example, add plasmids pGAL4-FXR-LBD, pG5-Luc and phRL-TK to 10 μL of Opti-MEM™ I medium at the ratio of 20 ng, 50 ng and 5 ng. (Gibco, #11058021) and mixed uniformly. Further, 0.25 μL of FuGENE (registered trademark) HD was added, mixed uniformly, and left at room temperature for 5 min. Additionally, 10 μL of this mixture was placed into cell wells containing 100 μL of culture medium. 6 h after co-transfection of cells, compounds were diluted in a 3-fold gradient to a maximum concentration of 1 μM and treated in cell culture medium for 24 h at a total of 10 concentrations, with a total of 2 duplicate wells. , LJN452 compound served as a positive control.

1.3 Dual-Gloルシフェラーゼによる検出
細胞を化合物で24 h処理した後、Dual-Glo(登録商標)ルシフェラーゼアッセイシステム(Promega、# E2940)の説明書に従って検出した。主な工程は、各ウェルから50 μLの培養液を吸って捨て、さらに50 μLのDual-Glo(登録商標)ルシフェラーゼ試薬を入れ、室温で10 min振とうした。80 μLの分解反応液を白色の不透明のoptiPlate-96ウェルプレートに取り、MD i3xマルチラベルプレートリーダーによってホタルルシフェラーゼ(Firefly luciferase)の発光信号の値(Firefly-Luc)を検出した。さらに40 μLのDual-Glo(登録商標) Stop & Glo(登録商標) 試薬を入れ、室温で10 min振とうした。さらにMD i3xマルチラベルプレートリーダーによってウミシイタケルシフェラーゼ(Renilla luciferase)の発光信号の値(Renilla-Luc)を検出した。Firefly-Luc/Renilla-Luc比の値を化合物のFXRに対する作動活性とし、そして溶媒DMSO群の比の値で正規化処理を行い、GraphPad Prism6.0ソフトによって4パラメーターで投与量-反応曲線をフィッティングし、EC50値を計算した。
1.3 Detection with Dual-Glo Luciferase Cells were treated with compounds for 24 h and then detected according to the instructions of the Dual-Glo® Luciferase Assay System (Promega, #E2940). The main steps were aspirating and discarding 50 μL of culture solution from each well, adding an additional 50 μL of Dual-Glo® luciferase reagent, and shaking for 10 min at room temperature. 80 μL of the digestion reaction solution was placed in a white opaque optiPlate-96 well plate, and the luminescence signal value of Firefly luciferase (Firefly-Luc) was detected using an MD i3x multilabel plate reader. Furthermore, 40 μL of Dual-Glo (registered trademark) Stop & Glo (registered trademark) reagent was added, and the mixture was shaken at room temperature for 10 min. Furthermore, the luminescent signal value of Renilla luciferase (Renilla-Luc) was detected using an MD i3x multilabel plate reader. The value of the Firefly-Luc/Renilla-Luc ratio was taken as the FXR agonistic activity of the compound, and the normalization process was performed using the ratio value of the solvent DMSO group, and a dose-response curve was fitted with 4 parameters using GraphPad Prism 6.0 software. and calculated the EC50 value.

2. 結果
実験のデータから、化合物のいずれもある程度のFXR作動活性を有し、中でも、実施例1、2、3、4のEC50がいずれも5 nM未満で、非常強いFXR作動活性を有することがわかる。ほかの実施例のFXR作動活性のデータを表1に示す。
****: EC50(nM) < 5;***: 5 < EC50(nM) < 10; **: 10 < EC50(nM) < 50; *: 50 < EC50(nM)。
2. Results From the experimental data, all of the compounds have some degree of FXR agonist activity, and among them, the EC 50 of Examples 1, 2, 3, and 4 are all less than 5 nM, and they have very strong FXR agonist activity. I understand that. FXR agonist activity data for other Examples are shown in Table 1.
****: EC 50 (nM) <5; ***: 5 < EC 50 (nM) <10; **: 10 < EC 50 (nM) <50; *: 50 < EC 50 (nM).

結果から、本発明の化合物が既存のFXR作動剤の化合物LJN452および無重水素化の対照品1よりも優れた細胞レベルの活性を示すことがわかる。特に、本願の実施例3の化合物は無重水素化の対照品1の構造に基づいて重水素化したもので、活性が顕著に向上したことから、当該部位がこのような化合物の主要な重水素化部位であることが示唆された。 The results show that the compounds of the present invention exhibit superior cellular level activity over the existing FXR agonist compound LJN452 and the deuterated control 1. In particular, the compound of Example 3 of the present application was deuterated based on the structure of the deuterium-free control product 1, and the activity was significantly improved, indicating that the relevant site is the main deuterium of such a compound. It was suggested that this was a hydrogenation site.

薬物動態学の評価
マウスモデルにおいて、重水素化の実施例8と非重水素化の対照品2の生物利用能および薬物動態学の挙動を比較した。各群の実施例では、体重が近い雄ICRマウスを6匹選び、中では、3匹のマウスに単回の経口投与で3 mg/kg投与し、3匹のマウスに1 mg/kgの単回の投与量で静脈内投与した。投与後15分間、30分間、1時間、2時間、4時間および7時間の時点で血液サンプルを採取し、LC-MS/MSによって血漿サンプルの濃度を分析し、そしてPKSolverのフリーツールおよび非コンパートメントモデル(NCA)ソフトによって化合物の薬物動態学のパラメーターを分析した。
Pharmacokinetic Evaluation The bioavailability and pharmacokinetic behavior of deuterated Example 8 and non-deuterated Control 2 were compared in a mouse model. For each group, six male ICR mice of similar body weight were selected, in which three mice received a single oral dose of 3 mg/kg and three mice received a single dose of 1 mg/kg. It was administered intravenously in multiple doses. Blood samples were collected at 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, and 7 hours post-dose, and the concentration of plasma samples was analyzed by LC-MS/MS, and using PKSolver's free tool and non-compartmental The pharmacokinetic parameters of the compounds were analyzed by modeling (NCA) software.

実験プラン:
実験化合物:対照品2および実施例8
Experimental plan:
Experimental compounds: Control 2 and Example 8

実験動物:
12匹の健康の雄ICRマウスで、Charles Riverから購入され、動物生産許可証番号:20211231Abzz0619000376で、3匹ずつ、4群に分けた。
剤形の調製:所定の量の化合物を秤量し、2% DMSO+15% Solutol+83%生理食塩水に入れ、清澄な溶液を調製した。
投与量:ICRマウスを一晩断食させ、そして3 mg/kgの経口投与量または1 mg/kgの静脈内投与の投与量で各化合物を投与した。経口投与および静脈内投与の投与体積はそれぞれ10 mL/kgおよび5 mL/kgであった。投与後2時間まで断食させた。
Experimental animals:
Twelve healthy male ICR mice were purchased from Charles River with Animal Production Permit Number: 20211231Abzz0619000376 and divided into 4 groups of 3 mice each.
Preparation of dosage form: A predetermined amount of compound was weighed and placed in 2% DMSO+15% Solutol+83% saline to prepare a clear solution.
Dosage: ICR mice were fasted overnight and each compound was administered at a dose of 3 mg/kg orally or 1 mg/kg intravenously. The administration volumes for oral and intravenous administration were 10 mL/kg and 5 mL/kg, respectively. The animals were fasted for up to 2 hours after administration.

サンプルの採取:投与後15分間、30分間、1時間、2時間、4時間および7時間で大伏在静脈から約30μLの血液を採取した。血液をK2-EDTAを含有する市販の試験管に入れた後、約4℃、4600 rpmで血液サンプルを5分間遠心して血漿サンプルを得た後、すべての血漿サンプルをドライアイスの上に置いて快速に凍結し、LC-MS/MS分析まで-70℃に維持した。 Sample collection: Approximately 30 μL of blood was collected from the greater saphenous vein at 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, and 7 hours after administration. After placing the blood into a commercially available test tube containing K2 -EDTA, centrifuge the blood sample for 5 min at 4600 rpm at approximately 4 °C to obtain the plasma sample, then place all plasma samples on dry ice. The samples were quickly frozen and kept at -70°C until LC-MS/MS analysis.

サンプルの調製:50 nmol/Lのドライアイスナフトフラボンを含有するメタノールを内部標準とし、10μLの血漿サンプルを沈殿させ、混合物を十分に混合して4℃、14000 rpmで5分間遠心した後、75 μLの上清液を取って75 μLのメタノールと混合し、LC-MS/MS分析に用いた。
薬物動態学のパラメーターの結果を表1に示す。
Sample preparation: 10 μL of plasma sample was precipitated using methanol containing 50 nmol/L dry ice naphthoflavone as an internal standard, and the mixture was thoroughly mixed and centrifuged at 14000 rpm for 5 min at 4 °C, followed by 75 min. μL of supernatant was taken and mixed with 75 μL of methanol and used for LC-MS/MS analysis.
The results of pharmacokinetic parameters are shown in Table 1.

結論:実施例8の化合物は対照品2の化合物よりも優れた吸収性および高い生物利用能を有し、さらなる研究に提供することができる。
各文献がそれぞれ単独に引用されるように、本発明に係るすべての文献は本出願で参考として引用する。また、本発明の上記の内容を読み終わった後、当業者が本発明を各種の変動や修正をすることができるが、それらの等価の形態のものは本発明の請求の範囲に含まれることが理解されるはずである。
Conclusion: The compound of Example 8 has better absorption and higher bioavailability than the compound of Control 2 and can be submitted for further studies.
All documents relating to the present invention are incorporated by reference in this application, as if each document were individually cited. Further, after reading the above contents of the present invention, those skilled in the art may make various changes and modifications to the present invention, but equivalent forms thereof shall be included within the scope of the claims of the present invention. should be understood.

Claims (10)

一般式Iで表される化合物、またはそのエナンチオマー、ジアステレオマー、互変異性体、ラセミ体、水和物、溶媒和物、あるいはこれらの薬学的に許容される塩
(ただし、
Arは、置換または無置換のC6-C10アリール基、置換または無置換の5-9員ヘテロ芳香環(単環または縮合環を含み、1-3個の酸素、硫黄および窒素から選ばれるヘテロ原子を含有する)からなる群から選ばれる。
Aは、置換または無置換のC6-C10アリール基、置換または無置換の5-9員ヘテロ芳香環(単環または縮合環を含み、1-3個の酸素、硫黄および窒素から選ばれるヘテロ原子を含有する)からなる群から選ばれる。
R1は、置換または無置換のC1-C6アルキル基、置換または無置換のC3-C6シクロアルキル基、置換または無置換の5-9員複素環(1-3個の酸素、硫黄および窒素から選ばれるヘテロ原子を含有する)からなる群から選ばれる。
Xは、水素および重水素からなる群から選ばれる。
ここで、前記の置換とは、基における1個または複数の水素原子がそれぞれ独立にハロゲン、C1-C6ハロアルキル基、C1-C6ハロアルコキシ基、C1-C6アルキル基、C1-C6アルコキシ基、C3-C6シクロアルキル基、C3-C6シクロアルキルオキシ基、シアノ基およびニトロ基からなる群から選ばれる置換基で置換されることである。)。
Compounds represented by general formula I, or enantiomers, diastereomers, tautomers, racemates, hydrates, solvates , or pharmaceutically acceptable salts thereof
(however,
Ar is a substituted or unsubstituted C 6 -C 10 aryl group, a substituted or unsubstituted 5-9 membered heteroaromatic ring (including a single ring or a fused ring, and is selected from 1-3 oxygen, sulfur and nitrogen) containing heteroatoms).
A is a substituted or unsubstituted C 6 -C 10 aryl group, a substituted or unsubstituted 5-9 membered heteroaromatic ring (including a single ring or fused rings, and 1-3 atoms selected from oxygen, sulfur and nitrogen) containing heteroatoms).
R 1 is a substituted or unsubstituted C 1 -C 6 alkyl group, a substituted or unsubstituted C 3 -C 6 cycloalkyl group, a substituted or unsubstituted 5-9 membered heterocycle (1-3 oxygen atoms, containing a heteroatom selected from sulfur and nitrogen).
X is selected from the group consisting of hydrogen and deuterium.
Here, the above substitution means that one or more hydrogen atoms in the group are each independently halogen, C 1 -C 6 haloalkyl group, C 1 -C 6 haloalkoxy group, C 1 -C 6 alkyl group, C It is substituted with a substituent selected from the group consisting of 1 -C 6 alkoxy group, C 3 -C 6 cycloalkyl group, C 3 -C 6 cycloalkyloxy group, cyano group and nitro group. ).
前記のR1は、置換または無置換のC1-C6アルキル基、置換または無置換のC3-C6シクロアルキル基からなる群から選ばれ、ここで、前記の置換とは、基における1個または複数の水素原子がそれぞれ独立にハロゲン、C1-C6ハロアルキル基、C1-C6ハロアルコキシ基、C1-C6アルキル基、C1-C6アルコキシ基、C3-C6シクロアルキル基、C3-C6シクロアルキルオキシ基、シアノ基およびニトロ基からなる群から選ばれる置換基で置換されることであることを特徴とする請求項1に記載の化合物。 The above R 1 is selected from the group consisting of a substituted or unsubstituted C 1 -C 6 alkyl group and a substituted or unsubstituted C 3 -C 6 cycloalkyl group, where the above substitution refers to a substitution in the group. One or more hydrogen atoms each independently represent a halogen, a C 1 -C 6 haloalkyl group, a C 1 -C 6 haloalkoxy group, a C 1 -C 6 alkyl group, a C 1 -C 6 alkoxy group, a C 3 -C 6. The compound according to claim 1, wherein the compound is substituted with a substituent selected from the group consisting of a 6-cycloalkyl group, a C3 - C6 cycloalkyloxy group, a cyano group, and a nitro group. 前記のArは、置換または無置換のC6-C10アリール基、置換または無置換の5-9員ヘテロ芳香環からなる群から選ばれ、かつ前記の置換基は、水素、フッ素、塩素、臭素、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、トリフルオロメチル基、およびトリフルオロメトキシ基からなる群から選ばれることを特徴とする請求項1に記載の化合物。 The above Ar is selected from the group consisting of a substituted or unsubstituted C 6 -C 10 aryl group, a substituted or unsubstituted 5-9 membered heteroaromatic ring, and the above substituent is hydrogen, fluorine, chlorine, Claim 1, characterized in that it is selected from the group consisting of bromine, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, trifluoromethyl group, and trifluoromethoxy group. compound. 前記のAは、置換または無置換のC6-C10アリール基、置換または無置換の5-9員ヘテロ芳香環からなる群から選ばれ、ここで、前記のアリール基またはヘテロアリール基の置換基は、水素、フッ素、塩素、臭素、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、トリフルオロメチル基、およびトリフルオロメトキシ基からなる群から選ばれることを特徴とする請求項1に記載の化合物。 The above A is selected from the group consisting of a substituted or unsubstituted C 6 -C 10 aryl group, a substituted or unsubstituted 5-9 membered heteroaromatic ring, where the substitution of the above aryl group or heteroaryl group The group is selected from the group consisting of hydrogen, fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, trifluoromethyl, and trifluoromethoxy. 2. The compound according to claim 1, characterized in that 前記のR1は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル、シクロプロピル基、シクロブチル基およびシクロペンチル基からなる群から選ばれることを特徴とする請求項1に記載の化合物。 Claim 1, wherein R 1 is selected from the group consisting of methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl, cyclopropyl group, cyclobutyl group, and cyclopentyl group. Compounds described in. 前記の化合物は以下の群から選ばれることを特徴とする請求項1に記載の化合物。
Compound according to claim 1, characterized in that said compound is selected from the group:
請求項1に記載の化合物の製造方法であって、以下のスキーム1またはスキーム2に記載の方法によって式I化合物を製造する工程を含むことを特徴とする方法:
(a) 一般式IIで表される化合物を開始原料として塩基の作用下で塩酸ヒドロキシアミンと反応させて中間体を得た後、N-クロロスクシンイミド(NCS)で塩化させて一般式IIIで表される化合物になる;
(b) その後、一般式IIIで表される化合物を塩基の作用下で相応する3-オキソプロピオン酸エステルと反応させて一般式IVで表される化合物を得る;
(c) 一般式IVで表されるエステル化合物を重水素化還元剤の作用下で相応するアルコール、すなわち、一般式Vで表される化合物に還元させる;
(d) 一般式Vで表される化合物を臭素試薬で臭化し、一般式VIで表される化合物を生成させる;
(e) 一般式VIで表される化合物と一般式VIIで表される化合物を塩基の作用下で反応させ、一般式VIIIで表される化合物になる;
(f) 一般式VIIIで表される化合物を塩基の作用下で塩酸ヒドロキシアミンと反応させ、一般式IXで表される化合物を生成させる;
(g) 一般式IXで表される化合物をホスゲン、トリホスゲンまたはカルボニルジイミダゾールの作用下で反応させ、一般式Iで表される化合物を生成させる;
(ただし、Xは重水素で、R1、Ar、Aの定義は請求項1に記載の通りである。)
(a) 一般式IVで表されるエステル化合物を還元剤の作用下で相応するアルコール、すなわち、一般式Xで表される化合物に還元させる;
(b) 一般式Xで表される化合物を酸化剤の作用下で相応するアルデヒド、すなわち、一般式XIで表される化合物に酸化させる;
(c) 一般式XIで表されるエステル化合物を重水素化還元剤の作用下で一般式Vで表される化合物に還元させる;
(d) 一般式Vで表される化合物を臭素試薬で臭化し、一般式VIで表される化合物を生成させる;
(e) 一般式VIで表される化合物と一般式VIIで表される化合物を塩基の作用下で反応させ、一般式VIIIで表される化合物になる;
(f) 一般式VIIIで表される化合物を塩基の作用下で塩酸ヒドロキシアミンと反応させ、一般式IXで表される化合物を生成させる;
(g) 一般式IXで表される化合物をホスゲン、トリホスゲンまたはカルボニルジイミダゾールの作用下で反応させ、一般式Iで表される化合物を生成させる
(各式において、Xは水素で、R1、Ar、Aの定義は請求項1に記載の通りである。)。
A method for producing a compound according to claim 1, characterized in that it comprises the step of producing a compound of formula I by the method according to scheme 1 or scheme 2 below:
(a ) Using the compound represented by general formula II as a starting material, it is reacted with hydroxyamine hydrochloride under the action of a base to obtain an intermediate, which is then salified with N-chlorosuccinimide (NCS) to form general formula III. become the represented compound;
(b) then reacting the compound of general formula III with the corresponding 3-oxopropionic ester under the action of a base to obtain a compound of general formula IV;
(c) reducing the ester compound of the general formula IV to the corresponding alcohol, i.e. the compound of the general formula V, under the action of a deuterated reducing agent;
(d) brominating the compound represented by general formula V with a bromine reagent to produce a compound represented by general formula VI;
(e) reacting a compound represented by general formula VI and a compound represented by general formula VII under the action of a base to form a compound represented by general formula VIII;
(f) reacting a compound of general formula VIII with hydroxyamine hydrochloride under the action of a base to produce a compound of general formula IX;
(g) reacting a compound of general formula IX under the action of phosgene, triphosgene or carbonyldiimidazole to produce a compound of general formula I;
(However, X is deuterium, and the definitions of R 1 , Ar, and A are as described in claim 1.)
(a) reducing the ester compound of the general formula IV to the corresponding alcohol, i.e. the compound of the general formula X, under the action of a reducing agent;
(b) oxidizing the compound of general formula X to the corresponding aldehyde, i.e. the compound of general formula XI, under the action of an oxidizing agent;
(c) reducing the ester compound of general formula XI to the compound of general formula V under the action of a deuterated reducing agent;
(d) brominating the compound represented by general formula V with a bromine reagent to produce a compound represented by general formula VI;
(e) reacting a compound represented by general formula VI and a compound represented by general formula VII under the action of a base to form a compound represented by general formula VIII;
(f) reacting a compound of general formula VIII with hydroxyamine hydrochloride under the action of a base to produce a compound of general formula IX;
(g) reacting a compound represented by general formula IX under the action of phosgene, triphosgene or carbonyldiimidazole to produce a compound represented by general formula I (in each formula, X is hydrogen, R 1 , The definitions of Ar and A are as described in claim 1).
請求項1に記載の一般式Iで表される化合物、またはそのエナンチオマー、ジアステレオマー、互変異性体、ラセミ体、水和物、溶媒和物、または薬学的に許容される塩と、薬学的に許容される担体とを含む医薬組成物。 A compound represented by the general formula I according to claim 1, or an enantiomer, diastereomer, tautomer, racemate, hydrate, solvate , or pharmaceutically acceptable salt thereof; , and a pharmaceutically acceptable carrier. 請求項1に記載の一般式Iで表される化合物、またはそのエナンチオマー、ジアステレオマー、互変異性体、ラセミ体、水和物、溶媒和物あるいはこれらの薬学的に許容される塩の使用であって、FXRの活性または発現量に関連する疾患または病症を治療する医薬組成物の製造に用いられることを特徴とする使用。 The compound represented by the general formula I according to claim 1, or its enantiomer, diastereomer, tautomer, racemate, hydrate, solvate, or a pharmaceutically acceptable salt thereof The use is characterized in that it is used in the manufacture of a pharmaceutical composition for treating a disease or disease related to the activity or expression level of FXR. 前記のFXR関連疾患は、胆汁酸代謝、糖質代謝、脂質代謝、炎症、および/または肝臓線維化の過程に関連する疾患からなる群から選ばれることを特徴とする請求項9に記載の使用。 Use according to claim 9, characterized in that said FXR-related disease is selected from the group consisting of diseases associated with processes of bile acid metabolism, carbohydrate metabolism, lipid metabolism, inflammation and/or liver fibrosis. .
JP2022023294A 2022-02-17 2022-02-17 Production of new FXR small molecule agonists and their use Active JP7450951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022023294A JP7450951B2 (en) 2022-02-17 2022-02-17 Production of new FXR small molecule agonists and their use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022023294A JP7450951B2 (en) 2022-02-17 2022-02-17 Production of new FXR small molecule agonists and their use

Publications (2)

Publication Number Publication Date
JP2023120086A JP2023120086A (en) 2023-08-29
JP7450951B2 true JP7450951B2 (en) 2024-03-18

Family

ID=87778068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022023294A Active JP7450951B2 (en) 2022-02-17 2022-02-17 Production of new FXR small molecule agonists and their use

Country Status (1)

Country Link
JP (1) JP7450951B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020211872A1 (en) 2019-04-19 2020-10-22 中国科学院上海药物研究所 Fxr small molecule agonist and preparation method therefor and use thereof
CN114195776A (en) 2020-09-18 2022-03-18 凯思凯迪(上海)医药科技有限公司 Preparation and application of novel FXR (FXR) small molecule agonist
CN114195777A (en) 2020-09-18 2022-03-18 凯思凯迪(上海)医药科技有限公司 Preparation and application of novel FXR (FXR) small molecule agonist
WO2022057672A1 (en) 2020-09-18 2022-03-24 凯思凯迪(上海)医药科技有限公司 Preparation of novel fxr small molecule agonist and use thereof
WO2022068815A1 (en) 2020-09-30 2022-04-07 中国科学院上海药物研究所 Fxr small-molecule agonist, and preparation method therefor and use thereof
WO2022147448A1 (en) 2020-12-30 2022-07-07 Terns Pharmaceuticals, Inc. Compounds and methods for modulating fxr

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020211872A1 (en) 2019-04-19 2020-10-22 中国科学院上海药物研究所 Fxr small molecule agonist and preparation method therefor and use thereof
CN114195776A (en) 2020-09-18 2022-03-18 凯思凯迪(上海)医药科技有限公司 Preparation and application of novel FXR (FXR) small molecule agonist
CN114195777A (en) 2020-09-18 2022-03-18 凯思凯迪(上海)医药科技有限公司 Preparation and application of novel FXR (FXR) small molecule agonist
WO2022057672A1 (en) 2020-09-18 2022-03-24 凯思凯迪(上海)医药科技有限公司 Preparation of novel fxr small molecule agonist and use thereof
WO2022068815A1 (en) 2020-09-30 2022-04-07 中国科学院上海药物研究所 Fxr small-molecule agonist, and preparation method therefor and use thereof
WO2022147448A1 (en) 2020-12-30 2022-07-07 Terns Pharmaceuticals, Inc. Compounds and methods for modulating fxr

Also Published As

Publication number Publication date
JP2023120086A (en) 2023-08-29

Similar Documents

Publication Publication Date Title
JP7398605B2 (en) FXR small molecule agonists and their preparation methods and uses
JPWO2006059744A1 (en) Activator of peroxisome proliferator activated receptor δ
JP2020528924A (en) 1,3-Disubstituted ketene compounds and their use
CN106432229A (en) Compounds for treating or preventing hyperuricemia or gout
BR112017009012B1 (en) BENZO RING DERIVATIVES OF SIX LIMBS AS A DPP-4 INHIBITOR AND USE THEREOF
JP2016515101A (en) Novel sulfonamide TRPA1 receptor antagonist
JP5852269B2 (en) Novel morpholinyl derivatives useful as MOGAT-2 inhibitors
IL293497A (en) Compounds for modulating activity of fxr and uses thereof
JP6143877B2 (en) 2-Arylselenazole compounds and pharmaceutical compositions thereof
JP2023103364A (en) Compound, pharmaceutically acceptable salt or stereoisomer thereof, and use thereof
JP2000063363A (en) New triazole derivative
CN114195777B (en) Preparation and application of novel FXR small molecule agonist
CN114195776B (en) Preparation and application of novel FXR small molecule agonist
JP7450951B2 (en) Production of new FXR small molecule agonists and their use
CN114195786B (en) Preparation and application of novel FXR small molecule agonist
JPH02229168A (en) Pyrazolone derivative
JP2023545677A (en) FXR small molecule agonists and their preparation methods and uses
CN109705133A (en) The selective estrogen receptor modulators class compound and its application in anti-breast cancer medicines that one kind is rolled into a ball containing phenylseleno
TWI785351B (en) Thiazolidinedione derivatives and pharmaceutical compositions containing them
US20230295141A1 (en) Fxr small molecule agonist, the preparation and use thereof
EP4245365A1 (en) A fxr small molecule agonist, the preparation and use thereof
CN115872930A (en) N-substituted 3,4-dihydroisoquinoline-1 (2H) -ketone derivative, composition thereof and application thereof in medicines
JP2022542613A (en) Inhibitors of human ATGL
CN112824394B (en) PPARs-FXR multi-target small molecule agonist and preparation method and application thereof
CN109748914A (en) Pyrido-pyrimidines and its application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230728

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240228

R150 Certificate of patent or registration of utility model

Ref document number: 7450951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150