JP7449605B2 - GH10 family high temperature resistant xylanase mutants and their use - Google Patents

GH10 family high temperature resistant xylanase mutants and their use Download PDF

Info

Publication number
JP7449605B2
JP7449605B2 JP2022575276A JP2022575276A JP7449605B2 JP 7449605 B2 JP7449605 B2 JP 7449605B2 JP 2022575276 A JP2022575276 A JP 2022575276A JP 2022575276 A JP2022575276 A JP 2022575276A JP 7449605 B2 JP7449605 B2 JP 7449605B2
Authority
JP
Japan
Prior art keywords
high temperature
temperature resistant
mutant protein
hwxyl10a
wild type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022575276A
Other languages
Japanese (ja)
Other versions
JP2023538176A (en
Inventor
帥 遊
忠立 陳
愉 庄
呈平 儲
研 葛
俊 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Publication of JP2023538176A publication Critical patent/JP2023538176A/en
Application granted granted Critical
Publication of JP7449605B2 publication Critical patent/JP7449605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/189Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/102Plasmid DNA for yeast

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Animal Husbandry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

本発明は、生物工学の分野に属し、具体的には、GH10ファミリーの耐高温キシラナーゼ突然変異体群及びその構築方法並びに使用に関する。 The present invention belongs to the field of biotechnology, and specifically relates to a group of high temperature resistant xylanase mutants of the GH10 family and methods for their construction and uses.

従来の飼料は、一般的に、トウモロコシ、ふすま、コムギ又はもみなどを主原料としており、セルロース、ヘミセルロース、ペクチンなどが含まれる非澱粉性多糖(non-starch polysaccharides)が多く含まれている。セルロースは、D-グルコピラノスをβ-1,4グリコシド結合で連結して得られた大分子ポリマーであり、植物細胞壁の主成分でもある。ヘミセルロースは、一般的に、自然界で、植物細胞壁においてペクチン及びセルロース類成分以外の他の糖鎖類物質を意味し、主に、キシラン、ガラクトマンナン及びガラクトグルコマンナンを含む。キシランの構造は、非常に複雑であり、主鎖は、キシロピラノースをβ-1,4-D-キシロシド結合で連結してなるものであり、重合度が150~200の間であり、側鎖は、複数の形式の置換基又は置換基グループを含み、一般的な置換基は、アラビノース、グルコン酸、ガラクトース、フェルラ酸、酢酸及びクマリン酸など(Kulkarni et al., 1999、Liab et al., 2000、Squina et al., 2009)を含む。しかし、非反芻動物は、非澱粉性多糖を分解する酵素が欠けるため、それ自体は、ヘミセルロースを消化することが非常に困難であり、粥状の食いもたれを容易に形成し、動物の腸管の内部環境に影響を与える。一方では、動物の腸内微生物集団の種類の変化を招く。他方では、粥状の食いもたれが動物の飼料吸収に影響を与え、飼料利用率を大幅に低下させ、飼料の給餌コストを増加させる。 Conventional feeds are generally made from corn, bran, wheat, rice, or the like as main raw materials, and contain large amounts of non-starch polysaccharides, including cellulose, hemicellulose, and pectin. Cellulose is a large polymer obtained by linking D-glucopyranos with β-1,4 glycosidic bonds, and is also the main component of plant cell walls. Hemicellulose generally refers to other sugar chain substances other than pectin and cellulose components in plant cell walls in nature, and mainly includes xylan, galactomannan and galactoglucomannan. The structure of xylan is very complex; the main chain consists of xylopyranose linked by β-1,4-D-xyloside bonds, the degree of polymerization is between 150 and 200, and the side chains contains multiple types of substituents or groups of substituents, common substituents include arabinose, gluconic acid, galactose, ferulic acid, acetic acid and coumaric acid (Kulkarni et al., 1999, Liab et al., 2000, Squina et al., 2009). However, non-ruminants lack the enzymes that break down non-starch polysaccharides, so it is very difficult for them to digest hemicellulose by itself, easily forming a gruel-like lump that can cause problems in the animal's intestinal tract. Affect the internal environment. On the one hand, it leads to a change in the type of intestinal microbial population of the animal. On the other hand, the gruel-like texture affects the animal's feed absorption, significantly reducing the feed utilization rate and increasing the cost of feed feeding.

飼料に適切なキシラナーゼを添加することで、植物細胞の細胞壁を破砕でき、ヘミセルロースの加水分解を引き起こし、細胞の内容物を放出して、粥状の食いもたれの粘度を低下させる目的を実現し、飼料利用率を大幅に高め、飼料コストを低減させる。キシランの加水分解生成物は、オリゴ糖であり、そのうちのキシロビオースは、1)虫歯を予防し、2)血中脂肪、血圧、血糖を下げ、3)ミネラル吸収を促進し、4)細菌を抑制し、免疫力を高め、ビタミン代謝を改善する効果を有するビフィドバクテリウムを増殖させるような、優れたヘルスケア機能がある。 By adding appropriate xylanase to the feed, the cell walls of plant cells can be crushed, causing the hydrolysis of hemicellulose, releasing the cell contents, and realizing the purpose of reducing the viscosity of the gruel-like meal. Significantly increases feed utilization and reduces feed costs. Hydrolysis products of xylan are oligosaccharides, of which xylobiose 1) prevents tooth decay, 2) lowers blood fat, blood pressure, and blood sugar, 3) promotes mineral absorption, and 4) suppresses bacteria. It also has excellent health care functions, such as growing bifidobacteria, which has the effect of increasing immunity and improving vitamin metabolism.

しかしながら、飼料の工業生産調製では、その作業環境温度が比較的高いとともに、飼料の高圧ペレット化工程では、瞬間的な高温を伴うため、キシラナーゼが、優れた熱安定性を具備し、極端の高温の環境でも優れた熱安定性を具備することが求められる。キシラナーゼは、自然界に広く分布しているが、耐高温性を有するキシラナーゼは、多くない。そのうち微生物由来のキシラナーゼは、現在の実際の使用及び研究に最も多く利用されている材料である。しかし、それらの多くは、熱安定性や触媒活性を両立できず、そして、それらは、天然微生物の特性により、キシラナーゼを大量に発現できないことが多い。 However, in the industrial preparation of feed, the working environment temperature is relatively high, and the high-pressure pelletizing process of feed is accompanied by instantaneous high temperatures. It is required to have excellent thermal stability even in environments such as Although xylanases are widely distributed in nature, there are not many xylanases that are resistant to high temperatures. Among them, xylanase derived from microorganisms is the material most commonly used in current practical use and research. However, many of them are incompatible with thermostability and catalytic activity, and they are often unable to express xylanase in large amounts due to the characteristics of natural microorganisms.

天然由来のキシラナーゼをスクリーニングすることの難しさとそれらの悪い特性を考慮して、自然界の酵素について、理性的、半理性的又はランダムな標的進化、突然変異、セグメント組換え、ハイブリッド体の構築及び活性サイト突然変異技術などの方法を用いて研究するとともに、高発現工程菌株を構築することは、現在、改造して優れたキシラナーゼを取得する主な方法である。 Considering the difficulty of screening xylanases of natural origin and their adverse properties, rational, semi-rational or random targeted evolution, mutation, segmental recombination, hybrid construction and activity of natural enzymes. Research using methods such as site mutation technology and constructing high expression process strains are currently the main methods to obtain superior xylanases through modification.

本発明は、GH10ファミリーの耐高温キシラナーゼ突然変異体群及びその使用を提供する。この突然変異体群は、真菌Hortaea werneckiiのキシラナーゼHwXyl10aから由来するものであり、産業生産に使用するように、相同配列の比較と構造分析により、キシラナーゼHwXyl10Aの熱安定性に対して理性的な設計及び標的改良を行う。 The present invention provides a group of high temperature resistant xylanase mutants of the GH10 family and uses thereof. This group of mutants is derived from the xylanase HwXyl10a of the fungus Hortaea werneckii, and through homologous sequence comparison and structural analysis, a rational design for the thermal stability of xylanase HwXyl10A was developed for use in industrial production. and target improvement.

GH10ファミリーの耐高温キシラナーゼ突然変異体群であって、前記突然変異体は、HwXyl10A-G363R、HwXyl10A-T324V、HwXyl10A-N318W及びHwXyl10A-N318W/G363R/T324V突然変異体であり、前記HwXyl10A-G363Rのヌクレオチド配列は、SEQ ID NO.1に示され、HwXyl10A-T324Vのヌクレオチド配列は、SEQ ID NO.2に示され、HwXyl10A-N318Wのヌクレオチド配列は、SEQ ID NO.3に示され、HwXyl10A-N318W/G363R/T324Vのヌクレオチド配列は、SEQ ID NO.4に示される。 A group of high temperature resistant xylanase mutants of the GH10 family, the mutants being HwXyl10A-G363R, HwXyl10A-T324V, HwXyl10A-N318W and HwXyl10A-N318W/G363R/T324V mutants, The nucleotide sequence is SEQ ID NO. The nucleotide sequence of HwXyl10A-T324V is shown in SEQ ID NO. The nucleotide sequence of HwXyl10A-N318W is shown in SEQ ID NO. The nucleotide sequence of HwXyl10A-N318W/G363R/T324V is shown in SEQ ID NO. 4.

上記HwXyl10A-G363Rのアミノ酸配列は、SEQ ID NO.5に示され、HwXyl10A-T324Vのアミノ酸配列は、SEQ ID NO.6に示され、HwXyl10A-N318Wのアミノ酸配列は、SEQ ID NO.7に示され、HwXyl10A-N318W/G363R/T324Vのアミノ酸配列は、SEQ ID NO.8に示される。 The amino acid sequence of HwXyl10A-G363R is shown in SEQ ID NO. The amino acid sequence of HwXyl10A-T324V is shown in SEQ ID NO. The amino acid sequence of HwXyl10A-N318W is shown in SEQ ID NO. The amino acid sequence of HwXyl10A-N318W/G363R/T324V is shown in SEQ ID NO. 8.

上記いずれか一つのヌクレオチド配列を含む、組換えベクター。 A recombinant vector comprising any one of the above nucleotide sequences.

上記の組換えベクターを含む、組換え菌株。 A recombinant strain containing the above recombinant vector.

上記GH10ファミリーの耐高温キシラナーゼ突然変異体の、飼料添加剤の調製における使用。 Use of the above-mentioned high temperature resistant xylanase mutants of the GH10 family in the preparation of feed additives.

上記組換え菌株の、飼料添加剤の調製における使用。 Use of the above recombinant strain in the preparation of feed additives.

耐高温キシラナーゼ突然変異体の構築方法は、HwXyl10Aを出発材料として選択し、マルチ配列の比較及び構造分析により単一サイト突然変異を設計し、その熱安定性に影響を与える可能性のあるキーアミノ酸サイトを仮スクリーニングするステップと、スクリーニングによって得られたキーサイトに対して、標的突然変異プライマーを設計するステップと、over-lap PCRの方法を採用して各突然変異サイトを組み合わせるステップと、キシラナーゼ突然変異体の配列断片を、発現ベクターpPIC9rのEcoR IとNot I制限酵素認識サイトの間にクローンし、組換えプラスミドを取得するステップと、突然変異体の組換えプラスミドをピキア・パストリス(pichia pastoris)GS115の受容体状態に形質転換し、発現を誘導して、組換え菌を取得するステップと、組換え菌を培養し、キシラナーゼ突然変異体を発現させるように誘導し、キシラナーゼ突然変異体を回収して精製するステップとを含む。 The method for constructing high temperature resistant xylanase mutants is to select HwXyl10A as a starting material, design single site mutations through multi-sequence comparison and structural analysis, and identify key amino acids that may affect its thermostability. a step of preliminary screening of sites, a step of designing target mutation primers for the key sites obtained by screening, a step of combining each mutation site by employing an over-lap PCR method, and a step of combining each mutation site with xylanase mutation. Cloning the sequence fragment of the mutant between the EcoR I and Not I restriction enzyme recognition sites of the expression vector pPIC9r to obtain a recombinant plasmid; Transforming into a GS115 receptor state and inducing expression to obtain recombinant bacteria, culturing the recombinant bacteria, inducing them to express xylanase mutants, and recovering xylanase mutants. and purification.

本発明は、熱安定性に優れ、飼料添加に適するキシラナーゼ突然変異体群を提供する。このキシラナーゼ突然変異体群の最適なpH値は、3.5~5.5であり、野生型に比べて変化が大きくなく、pH安定性も野生型と類似しており、pHが2~9である範囲内においていずれも高い酵素活性を維持する。このキシラナーゼ突然変異体群の最適な温度は、75℃であり、75℃での熱安定性は、いずれも野生酵素に比べて、異なる程度の向上があり、主に、突然変異体HwXyl10A-G363Rの半衰期が野生型に比べて12min延長し、HwXyl10A-T324Vの半衰期が野生型に比べて20min延長し、HwXyl10A-N318Wの半衰期が野生型に比べて24min延長し、HwXyl10A-N318W/G363R/T324Vの半衰期が野生型に比べて38min延長する点に反映されている。飼料のペレット化には、瞬間的な高温工程(80~90℃、3~5s)があり、酵素の熱安定性が高まられたから、酵素耐性の高温ペレット化工程により有利となり、最後に非活性化を回避する。このような、酸性pH環境及び動物体温条件で比較的高い酵素活性を有し且つ高温条件で安定したキシラナーゼは、飼料産業において性質に優れた飼料添加用酵素であると考えられており、適用の見通しが非常に広い。 The present invention provides a group of xylanase mutants with excellent thermostability and suitable for feed addition. The optimal pH value of this group of xylanase mutants is 3.5 to 5.5, which does not change much compared to the wild type, and the pH stability is similar to that of the wild type, with a pH of 2 to 9. Both maintain high enzyme activity within a certain range. The optimal temperature for this group of xylanase mutants is 75°C, and the thermostability at 75°C is improved to different extents compared to the wild enzyme, mainly for the mutant HwXyl10A-G363R. The half-life of HwXyl10A-T324V was extended by 20 min compared to the wild type, the half-life of HwXyl10A-N318W was extended by 24 min compared to the wild type, and the half-life of HwXyl10A-N318W/G363R/T324V was extended by 24 min compared to the wild type. This is reflected in the fact that the half-life period is extended by 38 min compared to the wild type. Feed pelleting involves an instantaneous high-temperature process (80-90℃, 3-5s), which increases the thermal stability of the enzyme, making it more advantageous for the enzyme-resistant high-temperature pelleting process, and finally Avoid activation. Xylanase, which has relatively high enzyme activity under acidic pH environment and animal body temperature conditions and is stable under high temperature conditions, is considered to be a feed additive enzyme with excellent properties in the feed industry, and is suitable for applications. The prospects are very wide.

耐高温キシラナーゼ突然変異体及び野生型のタンパク質精製である。Protein purification of high temperature resistant xylanase mutants and wild type. 耐高温キシラナーゼ突然変異体及び野生型の最適なpHである。Optimal pH of high temperature xylanase mutants and wild type. 耐高温キシラナーゼ突然変異体及び野生型のpH安定性である。pH stability of high temperature xylanase mutants and wild type. 耐高温キシラナーゼ突然変異体及び野生型の最適な温度である。Optimal temperature for high temperature tolerant xylanase mutants and wild type. 75℃での耐高温キシラナーゼ酵素突然変異体及び野生型の熱安定性である。Thermostability of high temperature xylanase enzyme mutants and wild type at 75°C. 耐高温キシラナーゼ酵素突然変異体及び野生型のT50値である。 T50 values of high temperature resistant xylanase enzyme mutants and wild type.

以下、添付図面及び具体的な実施例を結び付けながら本発明について記述する。 Hereinafter, the present invention will be described in conjunction with the accompanying drawings and specific examples.

1、菌株及びベクター:発現宿主Pichia pastoris GS115、発現プラスミドベクターpPIC9rは、実験室で調製されたものである。 1. Strain and vector: Expression host Pichia pastoris GS115, expression plasmid vector pPIC9r were prepared in the laboratory.

2、酵素類及び他の生化学試薬:Pfu酵素は、全式金会社(TransGen Biotech)から購入され、エンドヌクレアーゼは、Fermentas会社から購入され、リガーゼは、Promaga会社から購入され、ビーチウッドキシランは、Sigma会社から購入され、他は、いずれも、中国産分析用試薬から購入される(いずれも国薬集団から購入される)。 2. Enzymes and other biochemical reagents: Pfu enzyme was purchased from TransGen Biotech, endonuclease was purchased from Fermentas company, ligase was purchased from Promaga company, Beechwood xylan was purchased from , are purchased from Sigma company, and all others are purchased from Analytical Reagents Made in China (all are purchased from Guo Pharmaceutical Group).

3、培地:
(1)LB培地:0.5%の酵母抽出物、1%のペプトン、1%のNaCl、pH 7.0。
(2)YPD培地:1%の酵母抽出物、2%のペプトン、2%のグルコース
(3)MD固体培地:2%のグルコース、1.5%のアガロース、1.34%のYNB、0.00004%のBiotin。
(4)MM固体培地:1.5%のアガロース、1.34%のYNB、0.00004%のBiotin、0.5%のメタノール。
(5)BMGY培地:1%の酵母抽出物、2%のペプトン、1%のグリセリン(V/V)、1.34%のYNB、0.00004%のBiotin。
(6)BMMY培地:1%の酵母抽出物、2%のペプトン、1.34%YNB、0.00004%のBiotin、0.5%メタノール(V/V)。
3. Medium:
(1) LB medium: 0.5% yeast extract, 1% peptone, 1% NaCl, pH 7.0.
(2) YPD medium: 1% yeast extract, 2% peptone, 2% glucose (3) MD solid medium: 2% glucose, 1.5% agarose, 1.34% YNB, 0. 00004% Biotin.
(4) MM solid medium: 1.5% agarose, 1.34% YNB, 0.00004% Biotin, 0.5% methanol.
(5) BMGY medium: 1% yeast extract, 2% peptone, 1% glycerin (V/V), 1.34% YNB, 0.00004% Biotin.
(6) BMMY medium: 1% yeast extract, 2% peptone, 1.34% YNB, 0.00004% Biotin, 0.5% methanol (V/V).

実施例1 耐高温キシラナーゼ突然変異体をコードする遺伝子のクローン
GH10ファミリーから由来する耐高温キシラナーゼ遺伝子HwXyl10Aを親として、キシラナーゼのloop領域で突然変異プライマーを設計し、over-lap PCRの方法を採用して高い触媒効率のキシラナーゼ突然変異体をコードする遺伝子SEQ ID NO.1(HwXyl10a-G363R)、SEQ ID NO.2(HwXyl10a-T324V)、SEQ ID NO.3(HwXyl10a-N318W)、SEQ ID NO.4(HwXyl10a-N318W/G363R/T324V)を増幅し、突然変異方法及びクローン方法について文献(You、et al., 2016)を参照した。
Example 1 Cloning of a gene encoding a high temperature resistant xylanase mutant Using the high temperature resistant xylanase gene HwXyl10A derived from the GH10 family as a parent, mutation primers were designed in the loop region of xylanase, and an over-lap PCR method was employed. Gene encoding a xylanase mutant with high catalytic efficiency SEQ ID NO. 1 (HwXyl10a-G363R), SEQ ID NO. 2 (HwXyl10a-T324V), SEQ ID NO. 3 (HwXyl10a-N318W), SEQ ID NO. 4 (HwXyl10a-N318W/G363R/T324V) and referred to the literature (You, et al., 2016) for mutation and cloning methods.

用いられたプライマー配列は、表1に示した。 The primer sequences used are shown in Table 1.

Figure 0007449605000001
Figure 0007449605000001

実施例2 耐高温キシラナーゼ突然変異体の調製
発現ベクターpPIC9rを二重消化(EcoR I+Not I)するとともに、耐高温キシラナーゼ突然変異体をコードする遺伝子を二重消化(EcoR I+Not I)し、そして消化後に成熟した耐高温キシラナーゼ突然変異体をコードする遺伝子断片を発現ベクターpPIC9rに連結し、耐高温キシラナーゼ突然変異体遺伝子を含む組換えプラスミドを取得し、ピキア・パストリスGS115に形質転換して、組換え酵母菌株を取得した。
Example 2 Preparation of high temperature resistant xylanase mutants The expression vector pPIC9r was double digested (EcoR I+Not I), and the gene encoding the high temperature resistant xylanase mutant was double digested (EcoR I+Not I), and after digestion The gene fragment encoding the mature high temperature resistant xylanase mutant was ligated to the expression vector pPIC9r to obtain a recombinant plasmid containing the high temperature resistant xylanase mutant gene, which was transformed into Pichia pastoris GS115 to produce a recombinant yeast. The bacterial strain was obtained.

組換えプラスミドを含むGS115菌株をBMGY培地が300mLの1L三角フラスコに接種し、30℃且つ220rpmのシェーカーに置いて48h培養し、その後、3000gの培養液を5min遠心し、上清を捨て、沈殿物を0.5%のメタノールを含む100mLのBMMY培地で再懸濁し、再び30℃且つ220rpmの条件で培養を誘導した。菌液中のメタノール濃度を0.5%に維持するように、12hおきに0.5mLのメタノールを補充するとともに、上清を取って酵素活性検出に使用した。 The GS115 strain containing the recombinant plasmid was inoculated into a 1L Erlenmeyer flask containing 300mL of BMGY medium, placed in a shaker at 30°C and 220rpm, and cultured for 48h.Then, the 3000g culture solution was centrifuged for 5min, the supernatant was discarded, and the precipitate was precipitated. The cells were resuspended in 100 mL of BMMY medium containing 0.5% methanol, and culture was induced again at 30° C. and 220 rpm. To maintain the methanol concentration in the bacterial solution at 0.5%, 0.5 mL of methanol was replenished every 12 hours, and the supernatant was collected and used for enzyme activity detection.

実施例3 耐高温キシラナーゼ突然変異体及び野生型の活性分析
一、DNS法:具体的な方法は次のとおりであった。特定のpH及び温度の条件で、1mLの反応系は、100μLの酵素液、及び900μLの基質を含み、10min反応させ、1.5mLのDNSを加えて反応を停止させ、沸騰水で5min茹でた。冷却後、540nmでOD値を測定した。酵素活性の1単位(U)は、所定の条件で、1分あたりにキシランを分解させて1μmolの還元糖を生成するに必要な酵素量と定義された。
Example 3 Activity analysis of high temperature resistant xylanase mutant and wild type 1. DNS method: The specific method was as follows. Under specific pH and temperature conditions, 1 mL of reaction system contained 100 μL of enzyme solution and 900 μL of substrate, reacted for 10 min, added 1.5 mL of DNS to stop the reaction, and boiled in boiling water for 5 min. . After cooling, the OD value was measured at 540 nm. One unit (U) of enzyme activity was defined as the amount of enzyme required to decompose xylan and produce 1 μmol of reducing sugar per minute under predetermined conditions.

二、組換え耐高温キシラナーゼ突然変異体及び野生型の性質測定
1、組換え耐高温キシラナーゼ突然変異体及び野生型の最適なpHの測定は、以下のとおりであった。
2. Measurement of properties of recombinant high temperature resistant xylanase mutant and wild type 1. Measurement of optimal pH of recombinant high temperature resistant xylanase mutant and wild type was as follows.

実施例2で精製された組換え耐高温キシラナーゼ突然変異体及び野生型を異なるpHで酵素反応させてその最適なpHを測定した。異なるpHの0.1mol/Lのクエン酸-リン酸水素二ナトリウムの緩衝液で基質(ビーチウッドキシラン)を希釈し、75℃でキシラナーゼの活性を測定した。 The recombinant high-temperature-resistant xylanase mutant purified in Example 2 and the wild type were subjected to enzymatic reactions at different pHs, and their optimal pHs were determined. The substrate (Beachwood xylan) was diluted with 0.1 mol/L citric acid-disodium hydrogen phosphate buffer solutions of different pH, and the xylanase activity was measured at 75°C.

その結果(図2)として、組換え耐高温キシラナーゼ突然変異体及び野生型の最適な反応pH値は、3.5~5.5であり、pH2.0~9.0の範囲内において同様な作用傾向を有した(図3)。最適なpHを変えずに酵素の熱安定性を高める目的を満たした。 As a result (Fig. 2), the optimal reaction pH values for the recombinant high temperature resistant xylanase mutant and the wild type are 3.5 to 5.5, and similar within the range of pH 2.0 to 9.0. It had a tendency of action (Fig. 3). The objective of increasing the thermostability of the enzyme without changing the optimum pH was met.

2、組換え耐高温キシラナーゼ突然変異体及び野生型の最適な温度の測定は、以下のとおりであった。 2. Determination of the optimal temperature of the recombinant high temperature resistant xylanase mutant and the wild type was as follows.

組換え耐高温キシラナーゼ突然変異体及び野生型の最適な温度の測定は、0.1mol/Lのクエン酸-リン酸水素二ナトリウム緩衝液(pHは3.5)の緩衝液系及び異なる温度で酵素反応を行うことであった。酵素反応の最適な温度の測定結果(図4)として、組換え耐高温キシラナーゼ突然変異体と野生型の最適な温度は、70~80℃であり、それらの差は、明らかではなかった。 Determination of the optimal temperature of recombinant high-temperature resistant xylanase mutants and the wild type was performed using a buffer system of 0.1 mol/L citric acid-disodium hydrogen phosphate buffer (pH 3.5) and at different temperatures. The purpose was to perform an enzymatic reaction. As a result of measuring the optimal temperature for enzyme reaction (FIG. 4), the optimal temperature of the recombinant high temperature resistant xylanase mutant and the wild type was 70 to 80°C, and the difference between them was not clear.

3、組換え耐高温キシラナーゼ突然変異体及び野生型の75℃での熱安定性の測定は、以下のとおりであった。 3. Measurement of thermostability at 75°C of the recombinant high temperature resistant xylanase mutant and the wild type was as follows.

耐高温キシラナーゼ突然変異体及び野生型を75℃でそれぞれ一定時間処理し、また処理時の全ての突然変異体及び野生型の濃度が100μg/mLで、体積が100μLであることを確保し、異なる時点にサンプリングした後、すばやく氷に置き、75℃且つpH 4.0の条件で酵素活性を測定し、突然変異体及び野生型の熱安定性状況を評価した。 The high-temperature-tolerant xylanase mutants and wild type were treated at 75°C for a certain period of time, respectively, and the concentrations of all mutants and wild type at the time of treatment were 100 μg/mL and the volumes were 100 μL, and different After sampling at the time point, the cells were immediately placed on ice, and the enzyme activity was measured at 75° C. and pH 4.0 to evaluate the thermostability of the mutant and wild type.

全ての突然変異体の熱安定性は、いずれも野生型よりも優れ、70℃で26min処理した後、野生型キシラナーゼの残留酵素活性は、50%に低減し(図5)、38minまで処理を継続したとき、突然変異体G363Rの残留酵素活性は、50%に低減するが、同じ条件で、突然変異体T324Vの半衰期は、野生型よりも20min延長し、46minになった。全ての突然変異体のうち、熱安定性の点で最高のパフォーマンスを示したのは、組み合わせ突然変異N318W/G363R/T324Vであり、64分間に達した。 The thermostability of all mutants was better than that of the wild type, and after treatment at 70°C for 26 min, the residual enzymatic activity of wild type xylanase was reduced to 50% (Figure 5), and after treatment for 38 min. When continued, the residual enzyme activity of mutant G363R was reduced to 50%, but under the same conditions, the half-life of mutant T324V was 46 min, which was 20 min longer than that of the wild type. Among all the mutants, the combination mutant N318W/G363R/T324V showed the best performance in terms of thermostability, reaching 64 minutes.

4、組換え耐高温キシラナーゼ突然変異体及び野生型のT50値の測定は、以下のとおりであった。 4. Measurement of T50 values of the recombinant high temperature resistant xylanase mutant and the wild type was as follows.

75℃での熱安定性は、酵素の耐熱性を示すことができるほか、T50値も、酵素の耐熱性を反映することができた。4種の突然変異体及び野生型を異なる温度(60℃~85℃)で30min処理した後、フィッティングした結果、野生型酵素のT50値は、74℃であるが、G363RのT50値は、76℃であり、T324VのT50値は、77.5℃に達し、N318WのT50値は、さらに高くなり、78.5℃になった。T50値が最も高いのは、組み合わせ突然変異体N318W/G363R/T324Vであり、80℃になった。 The thermostability at 75°C could indicate the thermostability of the enzyme, and the T50 value could also reflect the thermostability of the enzyme. After treating four mutants and the wild type at different temperatures (60°C to 85°C) for 30 min, fitting results showed that the T50 value of the wild type enzyme was 74°C, but that of G363R was 76. The T50 value of T324V reached 77.5°C, and the T50 value of N318W was even higher, reaching 78.5°C. The highest T50 value was for the combination mutant N318W/G363R/T324V at 80°C.

実施例4 耐高温キシラナーゼ突然変異体及び野生型の動力学分析
最適な条件で、ビーチウッドキシラン基質を用いて4種のキシラナーゼ突然変異体と野生型の動力学パラメータと比活性を測定し、結果は、それぞれ表2に示された。
Example 4 Kinetic analysis of high temperature resistant xylanase mutants and wild type The kinetic parameters and specific activities of four xylanase mutants and wild type were measured using Beachwood xylan substrate under optimal conditions, and the results were are shown in Table 2, respectively.

Figure 0007449605000002
Figure 0007449605000002

4種のキシラナーゼ突然変異体及び野生型のKm値は、それぞれ0.88mg/mL、1.03mg/mL、0.96mg/mL、1.27mg/mL及び1.04mg/mLであるが、4種のキシラナーゼ突然変異体及び野生型のkcat値は、それぞれ2100s-1、2300s-1、1900s-1、2700s-1及び2400s-1であり、4種のキシラナーゼ突然変異体及び野生型の触媒効率(kcat/Km)は、それぞれ2400mL/s・mg、2200mL/s・mg、2000mL/s・mg、2100mL/s・mg及び1700mL/s・mgであった。4種のキシラナーゼ突然変異体の比活性は、野生型酵素に比べて、異なる程度の向上があり、G363Rは、野生型に比べて1.32倍まで高まり、T324Vは、野生型に比べて1.06倍まで高まり、N318Wは、野生型に比べて1.5倍まで高まり、比活性の高まりは、最も明らかであるが、組み合わせ突然変異は、野生型に比べて1.21倍まで高まった。 The Km values of the four xylanase mutants and the wild type are 0.88 mg/mL, 1.03 mg/mL, 0.96 mg/mL, 1.27 mg/mL and 1.04 mg/mL, respectively, but 4 The kcat values of the xylanase mutants and the wild type of the species are 2100s-1, 2300s-1, 1900s-1, 2700s-1 and 2400s-1, respectively, and the catalytic efficiency of the four xylanase mutants and the wild type (kcat/Km) were 2400 mL/s·mg, 2200 mL/s·mg, 2000 mL/s·mg, 2100 mL/s·mg, and 1700 mL/s·mg, respectively. The specific activities of the four xylanase mutants have different degrees of improvement compared to the wild-type enzyme, with G363R increasing by 1.32 times compared to the wild type, and T324V increasing by 1 times compared to the wild type. The increase in specific activity was the most obvious, with N318W increasing by 1.5 times compared to the wild type, while the combination mutation increased by 1.21 times compared to the wild type. .

全体として、突然変異後に4種の突然変異体の酵素活性が失われることはなく、熱安定性は、野生型に比べて大幅に高まり、飼料ペレット化時の瞬間的な高温に耐えることができる。加えて、酵素活性が失われず、安定性が高められた場合、この耐高温キシラナーゼ突然変異体群がより長い時間活性を維持し、ヘミセルロースの加水分解を触媒することができることを意味し、産業用途の良好な材料であった。 Overall, the enzyme activity of the four mutants is not lost after mutation, and their thermostability is significantly increased compared to the wild type, allowing them to withstand the instantaneous high temperatures during feed pelleting. . In addition, if the enzymatic activity is not lost and the stability is increased, it means that this group of high temperature resistant xylanase mutants can remain active for a longer time and be able to catalyze the hydrolysis of hemicellulose, making it suitable for industrial applications. It was a good material.

Claims (6)

GH10ファミリーの耐高温キシラナーゼ突然変異体タンパク質をコードする核酸であって
前記突然変異体タンパク質、HwXyl10A-N318WまたはHwXyl10A-N318W/G363R/T324V突然変異体タンパク質であり
前記HwXyl10A-N318W突然変異体タンパク質をコードする核酸のヌクレオチド配列は、SEQ ID NO.3に示され、前記HwXyl10A-N318W/G363R/T324V突然変異体タンパク質をコードする核酸のヌクレオチド配列は、SEQ ID NO.4に示される、ことを特徴とするGH10ファミリーの耐高温キシラナーゼ突然変異体タンパク質をコードする核酸
A nucleic acid encoding a high temperature resistant xylanase mutant protein of the GH10 family, said mutant protein being H wXyl10A-N318W or HwXyl10A-N318W/G363R/T324V mutant protein ,
The nucleotide sequence of the nucleic acid encoding the H wXyl10A-N318W mutant protein is SEQ ID NO. The nucleotide sequence of the nucleic acid shown in SEQ ID NO.3 and encoding said HwXyl10A-N318W/G363R/T324V mutant protein is SEQ ID NO. 4. A nucleic acid encoding a high temperature resistant xylanase mutant protein of the GH10 family characterized by the following.
GH10ファミリーの耐高温キシラナーゼ突然変異体タンパク質であって
前記突然変異体タンパク質は、HwXyl10A-N318WまたはHwXyl10A-N318W/G363R/T324V突然変異体タンパク質であり、
前記HwXyl10A-N318W突然変異体タンパク質のアミノ酸配列は、SEQ ID NO.7に示され、前記HwXyl10A-N318W/G363R/T324V突然変異体タンパク質のアミノ酸配列は、SEQ ID NO.8に示される、ことを特徴とする、GH10ファミリーの耐高温キシラナーゼ突然変異体タンパク質。
A high temperature resistant xylanase mutant protein of the GH10 family,
The mutant protein is HwXyl10A-N318W or HwXyl10A-N318W/G363R/T324V mutant protein,
The amino acid sequence of the H wXyl10A-N318W mutant protein is SEQ ID NO. The amino acid sequence of the HwXyl10A-N318W/G363R/T324V mutant protein is shown in SEQ ID NO. 8. A high temperature resistant xylanase mutant protein of the GH10 family characterized by the following:
請求項1に示すいずれか一つのヌクレオチド配列を含む、組換えベクター。 A recombinant vector comprising any one of the nucleotide sequences shown in claim 1. 請求項3に記載の組換えベクターを含む、組換え菌株。 A recombinant strain comprising the recombinant vector according to claim 3. 請求項1に記載のGH10ファミリーの耐高温キシラナーゼ突然変異体タンパク質をコードする核酸、または請求項2に記載のGH10ファミリーの耐高温キシラナーゼ突然変異体タンパク質の、飼料添加剤の調製における使用。 Use of a nucleic acid encoding a high temperature resistant xylanase mutant protein of the GH10 family according to claim 1 or a high temperature resistant xylanase mutant protein of the GH10 family according to claim 2 in the preparation of a feed additive. 請求項4に記載の組換え菌株の、飼料添加剤の調製における使用。 Use of the recombinant strain according to claim 4 in the preparation of feed additives.
JP2022575276A 2021-07-28 2021-08-20 GH10 family high temperature resistant xylanase mutants and their use Active JP7449605B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110854745.4 2021-07-28
CN202110854745.4A CN113444707B (en) 2021-07-28 2021-07-28 GH10 family high-temperature-resistant xylanase mutant and application thereof
PCT/CN2021/113743 WO2023004901A1 (en) 2021-07-28 2021-08-20 A group of gh10 family high-temperature-resistant xylanase mutants and use thereof

Publications (2)

Publication Number Publication Date
JP2023538176A JP2023538176A (en) 2023-09-07
JP7449605B2 true JP7449605B2 (en) 2024-03-14

Family

ID=77817536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022575276A Active JP7449605B2 (en) 2021-07-28 2021-08-20 GH10 family high temperature resistant xylanase mutants and their use

Country Status (3)

Country Link
JP (1) JP7449605B2 (en)
CN (1) CN113444707B (en)
WO (1) WO2023004901A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444707B (en) * 2021-07-28 2022-07-22 江苏科技大学 GH10 family high-temperature-resistant xylanase mutant and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708608A (en) 2021-02-07 2021-04-27 江苏科技大学 Xylanase mutant and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169473B2 (en) * 2011-09-06 2015-10-27 Novozymes, Inc. Polypeptides having xylanase activity and polynucleotides encoding same
CN107142253B (en) * 2017-03-23 2020-01-21 中国农业科学院饲料研究所 Xylanase mutant and preparation method and application thereof
EP3502242A1 (en) * 2017-12-20 2019-06-26 Technische Universität München New xylanase with improved thermostability and increased enzyme activity on arabinoxylan
CN110564710B (en) * 2019-07-22 2022-02-08 江苏科技大学 Xylanase mutant with high catalytic efficiency and construction method and application thereof
CN112725311B (en) * 2021-03-04 2022-07-22 江苏科技大学 Xylanase mutant with high specific activity and heat resistance at animal body temperature and application thereof
CN113444707B (en) * 2021-07-28 2022-07-22 江苏科技大学 GH10 family high-temperature-resistant xylanase mutant and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708608A (en) 2021-02-07 2021-04-27 江苏科技大学 Xylanase mutant and preparation method and application thereof

Also Published As

Publication number Publication date
JP2023538176A (en) 2023-09-07
CN113444707B (en) 2022-07-22
CN113444707A (en) 2021-09-28
WO2023004901A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
CN112481240B (en) GH16 family heat-resistant glucanase mutant and construction method and application thereof
CA2677643C (en) Starch hydrolysis using phytase with an alpha amylase
CN108291213A (en) The yeast strain of expression and heterologous protein secretion at high temperature
WO2017197546A1 (en) Β-mannanase mrmman5a and encoding gene and application thereof
CN102471780A (en) Compositions and methods for improved saccharification of biomass
EP2197893A2 (en) Novel fungal enzymes
CN113373131B (en) GH16 family heat-resistant beta-1, 3-1, 4-glucanase mutant and application thereof
CN113416721B (en) N-glycosylation mutants of GH16 family glucanase and application thereof
JP7449605B2 (en) GH10 family high temperature resistant xylanase mutants and their use
CN112725311A (en) High-specific-activity heat-resistant xylanase mutant at animal body temperature and application thereof
CN110699339A (en) Low-temperature beta-xylosidase mutant with improved thermal stability and specific activity and coding gene and application thereof
CN116179517A (en) Glucanase mutant and application thereof
CN114621987A (en) Method for preparing arabinoxylan with different molecular weight distribution characteristics
Antranikian et al. Biodegradation of polymers at temperatures up to 130 C
KR101276755B1 (en) abfB-2 gene of Penicillium funiculosum
CN102399768B (en) Low temperature xylanase BA-XYL11a as well as gene and application
EP3262164B1 (en) Hemicellulose-degrading compositions and uses thereof
CN117384891B (en) Acidic xylanase with improved thermal stability, and gene and application thereof
CN113699136B (en) Animal body beta-1, 3-1, 4-glucanase mutant with high catalytic activity at room temperature and application thereof
CN114517191B (en) Acidic glucanase mutant with improved thermal stability and application thereof
CN114836402B (en) Glucanase mutant with enhanced GH16 family thermal stability, construction method and application thereof
KR101276752B1 (en) abfB-1 gene of Penicillium funiculosum
CN107043759A (en) A kind of high catalytic efficiency cellulase variants and its encoding gene and application
CN117467645A (en) Xylanase mutant and preparation method and application thereof
CN104004734B (en) A kind of neutral β-Mannannase Man26DW1 and gene and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240226

R150 Certificate of patent or registration of utility model

Ref document number: 7449605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150