JP7446127B2 - Resin composition and molded product made from the resin composition - Google Patents

Resin composition and molded product made from the resin composition Download PDF

Info

Publication number
JP7446127B2
JP7446127B2 JP2020028083A JP2020028083A JP7446127B2 JP 7446127 B2 JP7446127 B2 JP 7446127B2 JP 2020028083 A JP2020028083 A JP 2020028083A JP 2020028083 A JP2020028083 A JP 2020028083A JP 7446127 B2 JP7446127 B2 JP 7446127B2
Authority
JP
Japan
Prior art keywords
resin composition
parts
resin
mass
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020028083A
Other languages
Japanese (ja)
Other versions
JP2021130795A (en
Inventor
容史 藤田
洋二 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2020028083A priority Critical patent/JP7446127B2/en
Priority to PCT/JP2020/042711 priority patent/WO2021166343A1/en
Publication of JP2021130795A publication Critical patent/JP2021130795A/en
Application granted granted Critical
Publication of JP7446127B2 publication Critical patent/JP7446127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、樹脂組成物であって、電磁波シールド性を有する樹脂組成物及び該樹脂組成物からなる成形品に関する。特にギガヘルツ帯域において優れた電磁波シールド性を有する樹脂組成物に関する。 The present invention relates to a resin composition having electromagnetic shielding properties and a molded article made of the resin composition. The present invention relates to a resin composition having excellent electromagnetic shielding properties, particularly in the gigahertz band.

近年電子機器はあらゆる分野で使用されている。特に通信機器はラジオなどの比較的長波長の電波を利用しているものから、携帯電話や衛星放送、無線LANといった短波長の電波を利用している機器が増えており、電磁波シールドは重要な技術となっている。 In recent years, electronic devices have been used in all fields. In particular, communication devices such as radios that use relatively long wavelength radio waves are increasing, and devices such as mobile phones, satellite broadcasting, and wireless LAN that use short wavelength radio waves are increasing, so electromagnetic shielding is important. It has become a technology.

電磁波による誤動作を防ぐために電磁波を遮蔽する技術としては、金属などの筐体を使用する、樹脂製の筐体に金属繊維や炭素繊維、金属コーティングした炭素繊維、カーボンナノチューブといった導電性のフィラーを樹脂に添加する、導電フィルムや塗装、メッキといった処理を施すことが知られている。(特許文献1) Techniques for shielding electromagnetic waves to prevent malfunctions caused by electromagnetic waves include using a housing made of metal or the like, or using conductive fillers such as metal fibers, carbon fibers, metal-coated carbon fibers, or carbon nanotubes in resin housings. It is known to apply treatments such as adding conductive films, painting, and plating. (Patent Document 1)

金属の筐体は性能が良いものの重量増や設計の自由度が低く、樹脂の筐体にフィルムや塗装、メッキを施すといった手法は剥がれる恐れがあるためライフサイクルの長いものに使用することは適していないとされている。 Although metal casings have good performance, they are heavier and have less freedom in design, and methods such as applying film, painting, or plating to resin casings may peel off, so they are not suitable for use in products with long life cycles. It is said that it is not.

金属を使用せずに電磁波シールド性を有するものとしてカーボンブラックと炭素繊維の併用が知られている(特許文献2、3)。これらの文献では1GHz程度のシールド性が示されており炭素繊維量が少ないと十分な電磁波シールド性が得られず、導電性を付与することで高い電磁波シールド性が得られると記載されている。 The combined use of carbon black and carbon fiber is known as a material that provides electromagnetic shielding properties without using metal (Patent Documents 2 and 3). These documents indicate shielding properties of about 1 GHz, and state that if the amount of carbon fiber is small, sufficient electromagnetic shielding properties cannot be obtained, and that high electromagnetic shielding properties can be obtained by imparting conductivity.

特開2012-229345号公報Japanese Patent Application Publication No. 2012-229345 特開2010-31257号公報Japanese Patent Application Publication No. 2010-31257 特開2006-45385号公報Japanese Patent Application Publication No. 2006-45385

電子機器の発達により10GHz以上の高周波電磁波に対する電磁波シールド性が求められており従来の導電性の電磁波シールド材は、電気絶縁性も必要となる電気機器部品に使用する際、電気絶縁材などを複合して使用する必要があった。 Due to the development of electronic equipment, electromagnetic shielding properties against high frequency electromagnetic waves of 10 GHz or higher are required. Conventional conductive electromagnetic shielding materials are often combined with electrical insulating materials when used in electrical equipment parts that also require electrical insulation properties. It was necessary to use it.

本発明の目的は、10GHz以上の高周波電磁波に対してシールド性を有し、かつ電気絶縁性に優れた樹脂組成物を提供することにある。 An object of the present invention is to provide a resin composition that has shielding properties against high frequency electromagnetic waves of 10 GHz or higher and has excellent electrical insulation properties.

本発明の目的は、下記によって達成された。
1. 少なくとも、熱可塑性樹脂Aを100質量部、カーボンブラックBを2~6質量部および炭素繊維Cを0.3~4質量部含有し、かつ該カーボンブラックBと該炭素繊維Cの合計が7質量部以下である樹脂組成物であって、体積抵抗率が1×1010~1×1017Ω・cmであり、透過損失が75~110GHzの帯域で-30dB以下で、かつ電磁波吸収率が30%以上である樹脂組成物。
2. 前記カーボンブラックBがケッチェンブラックである前記1記載の樹脂組成物。
3. 前記1又は2記載の樹脂組成物からなる成形品。
The objects of the invention were achieved by the following.
1. Contains at least 100 parts by mass of thermoplastic resin A, 2 to 6 parts by mass of carbon black B, and 0.3 to 4 parts by mass of carbon fiber C, and the total of the carbon black B and the carbon fiber C is 7 parts by mass. A resin composition having a volume resistivity of 1×10 10 to 1×10 17 Ω·cm, a transmission loss of -30 dB or less in a band of 75 to 110 GHz, and an electromagnetic wave absorption rate of 30 Ω/cm or less. % or more.
2. 1. The resin composition according to 1 above, wherein the carbon black B is Ketjenblack.
3. A molded article made of the resin composition described in 1 or 2 above.

本発明によれば、高周波電磁波に対してシールド性を有し、かつ電気絶縁性に優れた樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a resin composition that has shielding properties against high-frequency electromagnetic waves and has excellent electrical insulation properties.

本発明の樹脂組成物は、少なくとも、熱可塑性樹脂Aを100質量部、カーボンブラックBを2~6質量部および炭素繊維Cを0.3~4質量部含有し、かつBとCの合計が7質量部以下である樹脂組成物であって、体積抵抗率が1×1010~1×1017Ω・cmであり、透過損失が75~110GHzの帯域で-30dB以下で、かつ電磁波吸収率が30%以上であることを特徴とする。 The resin composition of the present invention contains at least 100 parts by mass of thermoplastic resin A, 2 to 6 parts by mass of carbon black B, and 0.3 to 4 parts by mass of carbon fiber C, and the total of B and C is 7 parts by mass or less, a volume resistivity of 1 x 10 10 to 1 x 10 17 Ωcm, a transmission loss of -30 dB or less in a band of 75 to 110 GHz, and an electromagnetic wave absorption rate. is 30% or more.

<熱可塑性樹脂A>
本発明の熱可塑性樹脂Aとして、結晶性熱可塑性樹脂や非晶性熱可塑性樹脂が好適に用いられる。結晶性熱可塑性樹脂としては、ポリアセタール樹脂(POM)、ポリブチレンテレフタレート樹脂(PBT)、ポリエチレンテレフタレート樹脂(PET)、ポリフェニレンサルファイド樹脂(PPS)、ポリアミド樹脂(PA)等が挙げられる。
<Thermoplastic resin A>
As the thermoplastic resin A of the present invention, a crystalline thermoplastic resin or an amorphous thermoplastic resin is suitably used. Examples of the crystalline thermoplastic resin include polyacetal resin (POM), polybutylene terephthalate resin (PBT), polyethylene terephthalate resin (PET), polyphenylene sulfide resin (PPS), polyamide resin (PA), and the like.

非晶性熱可塑性樹脂としては、ポリカーボネート樹脂(PC)、アクリル系樹脂、スチレン系樹脂、環状オレフィン(共)重合体(COP、COC)等が挙げられるが、耐熱性面で特にポリカーボネート樹脂、環状オレフィン(共)重合体が好適に用いられる。本発明の熱可塑性樹脂Aは、慣用の方法により製造できる。 Examples of amorphous thermoplastic resins include polycarbonate resin (PC), acrylic resin, styrene resin, cyclic olefin (co)polymer (COP, COC), etc., but polycarbonate resin, cyclic Olefin (co)polymers are preferably used. Thermoplastic resin A of the present invention can be produced by a conventional method.

<カーボンブラックB>
本発明のカーボンブラックBは、1次粒子径が5~40nmであり、かつ窒素吸着比表面積が100m/g以上のカーボンブラックである。そして、当該カーボンブラックを、熱可塑性樹脂A100質量部に対して2~6質量部含有することができる。
<Carbon black B>
Carbon black B of the present invention is a carbon black having a primary particle size of 5 to 40 nm and a nitrogen adsorption specific surface area of 100 m 2 /g or more. The carbon black can be contained in an amount of 2 to 6 parts by mass based on 100 parts by mass of the thermoplastic resin A.

なお、本発明における1次粒子径は、カーボンブラックを溶媒中投入し超音波振動にて分散させた後、分散試料を支持膜に固定し、これを透過型電子顕微鏡(TEM)で写真撮影し、直径より粒子径を計測した。(1000個以上)それらの値の算術平均により1次粒子径を求めることができる。 The primary particle diameter in the present invention is determined by adding carbon black into a solvent, dispersing it with ultrasonic vibration, fixing the dispersed sample on a support membrane, and photographing it with a transmission electron microscope (TEM). The particle size was measured from the diameter. (1000 or more) The primary particle diameter can be determined by the arithmetic average of these values.

カーボンブラックBは、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどを使用することができ、透過損失と電磁波吸収率のバランスからケッチェンブラックが好ましい。 As the carbon black B, furnace black, acetylene black, Ketjen black, etc. can be used, and Ketjen black is preferable from the viewpoint of the balance between transmission loss and electromagnetic wave absorption rate.

<炭素繊維C>
本発明の炭素繊維Cは、PAN系、ピッチ系、レーヨン系などの炭素繊維である。また、炭素繊維にニッケルや銅などの金属を被覆した金属被覆炭素繊維なども本発明で使用できる。炭素繊維は電磁波を反射する効果が高いが、反射した電磁波が電子機器を誤作動させることがあるため、添加量は熱可塑性樹脂A100質量部に対して炭素繊維Cは0.3~4質量部、好ましくは0.5~3質量部、更に好ましくは1~2質量部である。
<Carbon fiber C>
The carbon fiber C of the present invention is a PAN-based, pitch-based, rayon-based carbon fiber, or the like. Further, metal-coated carbon fibers, which are carbon fibers coated with metals such as nickel and copper, can also be used in the present invention. Carbon fiber has a high effect of reflecting electromagnetic waves, but the reflected electromagnetic waves can cause electronic devices to malfunction, so the amount of carbon fiber C added is 0.3 to 4 parts by mass per 100 parts by mass of thermoplastic resin A. , preferably 0.5 to 3 parts by weight, more preferably 1 to 2 parts by weight.

本発明の炭素繊維としては、引張破断伸度は少なくとも1.5%以上の炭素繊維が好ましい。高い力学的特性を付与するためには、引張破断伸度が1.5%以上、より望ましくは引張破断伸度が1.7%以上、更に望ましくは引張破断伸度が1.9%以上の炭素繊維を用いるのがよい。本発明で使用する炭素繊維の引張破断伸度に上限はないが、一般的には5%未満である。炭素繊維の直径は4~20μmが好ましく、5~10μmがより好ましい。 The carbon fiber of the present invention preferably has a tensile elongation at break of at least 1.5%. In order to impart high mechanical properties, the tensile elongation at break is 1.5% or more, more preferably the tensile elongation at break is 1.7% or more, and even more preferably the tensile elongation at break is 1.9% or more. It is better to use carbon fiber. There is no upper limit to the tensile elongation at break of the carbon fibers used in the present invention, but it is generally less than 5%. The diameter of the carbon fiber is preferably 4 to 20 μm, more preferably 5 to 10 μm.

炭素繊維として更に望ましくは、強度と弾性率とのバランスに優れるPAN系炭素繊維がよい。引張弾性率は、100~600GPaであることが好ましく、より好ましくは200~500GPaであり、230~450GPaであることが特に好ましい。また、引張強度は2000MPa~10000MPa、好ましくは3000~8000MPaである。 More preferably, the carbon fiber is a PAN-based carbon fiber, which has an excellent balance between strength and elastic modulus. The tensile modulus is preferably 100 to 600 GPa, more preferably 200 to 500 GPa, and particularly preferably 230 to 450 GPa. Further, the tensile strength is 2000 MPa to 10000 MPa, preferably 3000 to 8000 MPa.

また、これらの炭素繊維は、シランカップリング剤、アルミネートカップリング剤、チタネートカップリング剤などで表面処理されたり、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、スチレン系樹脂、オレフィン系樹脂、アミド系樹脂、アクリル系樹脂、フェノール系重合体、液晶性樹脂、アルコールまたは水可溶性樹脂などで集束処理されたりしていてもよい。 In addition, these carbon fibers may be surface-treated with silane coupling agents, aluminate coupling agents, titanate coupling agents, etc., or treated with urethane resins, epoxy resins, polyester resins, styrene resins, olefin resins, etc. It may be subjected to a focusing treatment with an amide resin, an acrylic resin, a phenolic polymer, a liquid crystal resin, an alcohol, a water-soluble resin, or the like.

<無機充填材>
本発明の成形品において、耐熱性及び機械強度を向上させるために無機充填材を含有することが好ましい。無機充填材の種類は、本願の効果を阻害しない限り特に限定されないが、金属繊維やカーボンナノチューブ等の導電性の物質は絶縁性を低下させるため避けた方がよく、例えばガラス繊維、ガラスフレーク、ガラスビーズ、シリカ、タルク、マイカ等が好ましく、ガラス繊維が特に好ましい。ガラス繊維の繊維長(溶融混練などにより組成物に調製する前の状態)は1~10mmのものが好ましく、ガラス繊維の直径は5~20μmのものが好ましい。
<Inorganic filler>
The molded article of the present invention preferably contains an inorganic filler in order to improve heat resistance and mechanical strength. The type of inorganic filler is not particularly limited as long as it does not impede the effects of the present application, but it is better to avoid conductive substances such as metal fibers and carbon nanotubes as they reduce insulation.For example, glass fibers, glass flakes, Glass beads, silica, talc, mica, etc. are preferred, and glass fiber is particularly preferred. The length of the glass fiber (before being prepared into a composition by melt-kneading or the like) is preferably 1 to 10 mm, and the diameter of the glass fiber is preferably 5 to 20 μm.

本発明において、無機充填材は、耐熱性及び機械強度を向上させる観点から、熱可塑性樹脂A100質量部に対して20~150質量部含むことが好ましく、30~100質量部含むことがより好ましい。 In the present invention, the inorganic filler preferably contains 20 to 150 parts by mass, more preferably 30 to 100 parts by mass, based on 100 parts by mass of thermoplastic resin A, from the viewpoint of improving heat resistance and mechanical strength.

<他の成分>
本発明においては、本発明の効果を害さない範囲で、上記各成分の他、一般に熱可塑性樹脂及び熱硬化性樹脂に添加される公知の添加剤、即ち、バリ抑制剤、離型剤、潤滑剤、可塑剤、難燃剤、染料や顔料等の着色剤、結晶化促進剤、結晶核剤、各種酸化防止剤、熱安定剤、耐候性安定剤、腐食防止剤等を配合してもよい。
<Other ingredients>
In the present invention, in addition to the above-mentioned components, known additives generally added to thermoplastic resins and thermosetting resins, such as burr inhibitors, mold release agents, lubricants, etc. Agents, plasticizers, flame retardants, coloring agents such as dyes and pigments, crystallization promoters, crystal nucleating agents, various antioxidants, heat stabilizers, weathering stabilizers, corrosion inhibitors, etc. may be added.

<樹脂組成物の性質>
本発明の樹脂組成物は、体積抵抗率が1×1010~1×1017Ω・cmであり、透過損失が75~110GHzの帯域で-30dB以下で、かつ電磁波吸収率が30%以上である。これらの性質は、カーボンブラックBと炭素繊維Cの添加量を調整することによって達成することができる。
<Properties of resin composition>
The resin composition of the present invention has a volume resistivity of 1×10 10 to 1×10 17 Ω·cm, a transmission loss of -30 dB or less in the band of 75 to 110 GHz, and an electromagnetic wave absorption rate of 30% or more. be. These properties can be achieved by adjusting the amounts of carbon black B and carbon fiber C added.

体積抵抗率を1×1010~1×1017Ω・cmにすることにより、電子機器に使用した場合の絶縁性を得ることができる。透過損失が75~110GHzの帯域で-30dB以下で、かつ電磁波吸収率が30%以上であるにより、優れた電磁波シールド性を得ることができる。 By setting the volume resistivity to 1×10 10 to 1×10 17 Ω·cm, insulation properties when used in electronic equipment can be obtained. Since the transmission loss is −30 dB or less in the band of 75 to 110 GHz and the electromagnetic wave absorption rate is 30% or more, excellent electromagnetic shielding properties can be obtained.

<成形品>
本発明の樹脂組成物から、成形品を作製することができ、その方法としては特に限定はなく、公知の方法を採用することができる。例えば、樹脂組成物を押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで作製することができる。本発明の成形品は、電子機器等に有用である。
<Molded product>
A molded article can be produced from the resin composition of the present invention, and the method thereof is not particularly limited, and any known method can be employed. For example, it can be produced by charging a resin composition into an extruder, melting and kneading it into pellets, charging the pellets into an injection molding machine equipped with a predetermined mold, and performing injection molding. The molded article of the present invention is useful for electronic devices and the like.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

<材料>
A 熱可塑性樹脂ポリプブチレンテレフタレート樹脂(PBT)ポリプラスチックス社製
B1 カーボンブラック(ケッチェンブラック):ライオン・スペシャリティ・ケミカルズ社製 ECX
B2 カーボンブラック(ファーネスブラック):三菱ケミカル社製#750B
B3 カーボンブラック(アセチレンブラック):デンカ社製デンカブラック粒状
C 炭素繊維:東邦テナックス社製 HTC432
酸化防止剤:BASFジャパン社製 イルガノックス1010
ガラス繊維:日本電気硝子製 ECS03T―187
<Materials>
A Thermoplastic resin polybutylene terephthalate resin (PBT) manufactured by Polyplastics B1 Carbon black (Ketjen black): ECX manufactured by Lion Specialty Chemicals
B2 Carbon black (furnace black): Mitsubishi Chemical #750B
B3 Carbon black (acetylene black): Denka black granular C manufactured by Denka Corporation Carbon fiber: HTC432 manufactured by Toho Tenax Corporation
Antioxidant: Irganox 1010 manufactured by BASF Japan
Glass fiber: Nippon Electric Glass ECS03T-187

<樹脂組成物試験片の作製>
上記の材料を以下の表1に示す割合(単位は質量部)でドライブレンドし、30mmφのスクリューを有する2軸押出機((株)日本製鋼所製)にホッパーから供給して250℃で溶融混練し、ペレット状の熱可塑性樹脂組成物を得、射出成形により試験片を作製した。
<Preparation of resin composition test piece>
The above materials were dry-blended in the proportions shown in Table 1 below (unit: parts by mass), fed from a hopper to a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) with a 30 mmφ screw, and melted at 250°C. A thermoplastic resin composition in the form of pellets was obtained by kneading, and a test piece was produced by injection molding.

<評価>
評価は以下の通り行った。結果を表1に示す。なお特に断りの無い限り、測定は23℃50%RH雰囲気下で行った。
≪体積抵抗率(Ω・cm)≫
IEC60093に準拠し、測定装置超高抵抗計R8340(アドバンテスト社製)を用い、印加電圧500Vにて測定した。試験片は、100mm×100mm×3mmtとした。
<Evaluation>
The evaluation was performed as follows. The results are shown in Table 1. Note that unless otherwise specified, measurements were performed at 23° C. and in a 50% RH atmosphere.
≪Volume resistivity (Ω・cm)≫
The measurement was carried out in accordance with IEC60093 using an ultra-high resistance meter R8340 (manufactured by Advantest) at an applied voltage of 500V. The test piece was 100 mm x 100 mm x 3 mm.

≪透過損失(dB)≫
以下の装置、測定方法、周波数で測定した。試験片は、100mm×100mm×3mmtとした。
・測定装置:
ホーンアンテナ:FSS-05(HVS社製)
誘電体レンズ:FSS-06(HVS社製)
ネットワークアナライザー:N5227A(キーサイトテクノロジー社製)
ミリ波コントローラー:N5261A(キーサイトテクノロジー社製)
・測定方法:自由空間法
・周波数:75~110GHz
≪Transmission loss (dB)≫
Measurements were made using the following equipment, measurement method, and frequency. The test piece was 100 mm x 100 mm x 3 mm.
·measuring device:
Horn antenna: FSS-05 (manufactured by HVS)
Dielectric lens: FSS-06 (manufactured by HVS)
Network analyzer: N5227A (manufactured by Keysight Technologies)
Millimeter wave controller: N5261A (manufactured by Keysight Technologies)
・Measurement method: Free space method ・Frequency: 75-110GHz

≪電磁波吸収率≫
以下の式で算出した。
反射損失|S11|=反射波電磁波強度/入射波電磁波強度(入射波と反射波の振幅比)
S11(dB)=20log|S11|
透過損失|S21|=透過電磁波強度/入射波電磁波強度(入射波と透過波の振幅比)
S21(dB)=20log|S21|
電磁波吸収率(%)=(1-(|S11|^+|S21|^))×100
<評価結果>
≪Electromagnetic wave absorption rate≫
It was calculated using the following formula.
Reflection loss | S11 | = reflected wave electromagnetic wave intensity / incident wave electromagnetic wave intensity (amplitude ratio of incident wave and reflected wave)
S11 (dB) = 20log | S11 |
Transmission loss | S21 | = transmitted electromagnetic wave intensity / incident wave electromagnetic wave intensity (amplitude ratio of incident wave and transmitted wave)
S21 (dB) = 20log | S21 |
Electromagnetic wave absorption rate (%) = (1-(|S11|^ 2 + |S21|^ 2 ))×100
<Evaluation results>

Figure 0007446127000001
Figure 0007446127000001

表1に示すように、本発明では、高周波において優れた電磁波シールド性を有し、体積抵抗率の高いことが分かる。

As shown in Table 1, it can be seen that the present invention has excellent electromagnetic shielding properties at high frequencies and high volume resistivity.

Claims (3)

少なくとも、熱可塑性樹脂Aを100質量部、カーボンブラックBを2~6質量部および炭素繊維Cを0.3~4質量部含有し、かつ前記カーボンブラックBと前記炭素繊維Cの合計が3.6~7質量部である樹脂組成物であって、
前記熱可塑性樹脂Aはポリブチレンテレフタレート樹脂であり、
体積抵抗率が1×1010~1×1017Ω・cmであり、透過損失が75~110GHzの帯域で-30dB以下で、かつ電磁波吸収率が30%以上である樹脂組成物。
It contains at least 100 parts by mass of thermoplastic resin A, 2 to 6 parts by mass of carbon black B, and 0.3 to 4 parts by mass of carbon fiber C, and the total of the carbon black B and the carbon fiber C is 3. 6 to 7 parts by mass of a resin composition,
The thermoplastic resin A is polybutylene terephthalate resin,
A resin composition having a volume resistivity of 1×10 10 to 1×10 17 Ω·cm, a transmission loss of -30 dB or less in a band of 75 to 110 GHz, and an electromagnetic wave absorption rate of 30% or more.
前記カーボンブラックBがケッチェンブラックである請求項1記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the carbon black B is Ketjen black. 請求項1又は2記載の樹脂組成物からなる成形品。 A molded article comprising the resin composition according to claim 1 or 2.
JP2020028083A 2020-02-21 2020-02-21 Resin composition and molded product made from the resin composition Active JP7446127B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020028083A JP7446127B2 (en) 2020-02-21 2020-02-21 Resin composition and molded product made from the resin composition
PCT/JP2020/042711 WO2021166343A1 (en) 2020-02-21 2020-11-17 Resin composition and molded article comprising said resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020028083A JP7446127B2 (en) 2020-02-21 2020-02-21 Resin composition and molded product made from the resin composition

Publications (2)

Publication Number Publication Date
JP2021130795A JP2021130795A (en) 2021-09-09
JP7446127B2 true JP7446127B2 (en) 2024-03-08

Family

ID=77390620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020028083A Active JP7446127B2 (en) 2020-02-21 2020-02-21 Resin composition and molded product made from the resin composition

Country Status (2)

Country Link
JP (1) JP7446127B2 (en)
WO (1) WO2021166343A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022210013A1 (en) * 2021-04-02 2022-10-06
WO2023100923A1 (en) * 2021-12-01 2023-06-08 京セラ株式会社 Electromagnetic interference suppressing material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223494A (en) 2000-02-10 2001-08-17 Yazaki Corp Microwave absorber
JP2006045385A (en) 2004-08-05 2006-02-16 Teijin Chem Ltd Electromagnetic wave-shielding thermoplastic resin composition
JP2010031257A (en) 2008-06-27 2010-02-12 Toray Ind Inc Filament-reinforced thermoplastic resin composition and molded product thereof
JP2012229345A (en) 2011-04-27 2012-11-22 Toray Ind Inc Molded article
JP2018059087A (en) 2016-09-29 2018-04-12 東レ株式会社 Fiber-reinforced thermoplastic resin molded product and fiber-reinforced thermoplastic resin molding material
JP2018104680A (en) 2016-12-26 2018-07-05 キヤノン株式会社 Resin composition and resin mold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223494A (en) 2000-02-10 2001-08-17 Yazaki Corp Microwave absorber
JP2006045385A (en) 2004-08-05 2006-02-16 Teijin Chem Ltd Electromagnetic wave-shielding thermoplastic resin composition
JP2010031257A (en) 2008-06-27 2010-02-12 Toray Ind Inc Filament-reinforced thermoplastic resin composition and molded product thereof
JP2012229345A (en) 2011-04-27 2012-11-22 Toray Ind Inc Molded article
JP2018059087A (en) 2016-09-29 2018-04-12 東レ株式会社 Fiber-reinforced thermoplastic resin molded product and fiber-reinforced thermoplastic resin molding material
JP2018104680A (en) 2016-12-26 2018-07-05 キヤノン株式会社 Resin composition and resin mold

Also Published As

Publication number Publication date
WO2021166343A1 (en) 2021-08-26
JP2021130795A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
Gahlout et al. EMI shielding response of polypyrrole-MWCNT/polyurethane composites
Gargama et al. Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications
Aal et al. New antistatic charge and electromagnetic shielding effectiveness from conductive epoxy resin/plasticized carbon black composites
CN110198989B (en) Resin molded body
KR100570634B1 (en) Electromagnetic shielding materials manufactured by filling carbon tube and metallic powder as electrical conductor
JP5205947B2 (en) Resin carbon composite material
Al‐Saleh et al. Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black
Sadeghi et al. Highly conductive PP/PET polymer blends with high electromagnetic interference shielding performances in the presence of thermally reduced graphene nanosheets prepared through melt compounding
Jeddi et al. Investigation of microstructure, electrical behavior, and EMI shielding effectiveness of silicone rubber/carbon black/nanographite hybrid composites
JP7446127B2 (en) Resin composition and molded product made from the resin composition
Lin et al. Improvement in mechanical properties and electromagnetic interference shielding effectiveness of PVA‐based composites: synergistic effect between graphene nano‐sheets and multi‐walled carbon nanotubes
Wang et al. Electromagnetic wave absorption of multi-walled carbon nanotube–epoxy composites in the R band
CN101050307A (en) Current conducting silicon rubber with capability of electromagnetic shielding, and fabricating method
Pan et al. Epoxy composite foams with excellent electromagnetic interference shielding and heat‐resistance performance
Kim et al. Microwave absorption and shielding property of Fe–Si–Al alloy/MWCNT/polymer nanocomposites
JP2956875B2 (en) Molding material for electromagnetic shielding
Katheria et al. A journey of thermoplastic elastomer nanocomposites for electromagnetic shielding applications: from bench to transitional research
Mohanty et al. Electromagnetic interference shielding effectiveness of MWCNT filled poly (ether sulfone) and poly (ether imide) nanocomposites
Varshney et al. Improved electromagnetic shielding performance of lightweight compression molded polypyrrole/ferrite composite sheets
Yim et al. EMI shielding effectiveness and mechanical properties of MWCNTs-reinforced biodegradable epoxy matrix composites
Kaushal et al. Excellent electromagnetic interference shielding performance of polypropylene/carbon fiber/multiwalled carbon nanotube nanocomposites
Abdelal et al. Electromagnetic interference shielding and dielectric properties of graphene nanoplatelets/epoxy composites in the x-band frequency range
JPH10195311A (en) Thermoplastic resin molding, material for molding and production of molding
Kruželák et al. Cross‐linking, mechanical, dynamical, and EMI absorption shielding effectiveness of NBR based composites filled with combination on ferrite and carbon based fillers
Oliveira et al. Tunable electromagnetic interference shielding properties of binary thermoplastic composites prepared by reactive microencapsulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240227

R150 Certificate of patent or registration of utility model

Ref document number: 7446127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150