JP7445130B2 - Shear deformation characteristics evaluation method - Google Patents

Shear deformation characteristics evaluation method Download PDF

Info

Publication number
JP7445130B2
JP7445130B2 JP2020103673A JP2020103673A JP7445130B2 JP 7445130 B2 JP7445130 B2 JP 7445130B2 JP 2020103673 A JP2020103673 A JP 2020103673A JP 2020103673 A JP2020103673 A JP 2020103673A JP 7445130 B2 JP7445130 B2 JP 7445130B2
Authority
JP
Japan
Prior art keywords
shear deformation
test piece
range
shear
restraining surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020103673A
Other languages
Japanese (ja)
Other versions
JP2021196289A (en
Inventor
亮 黒田
康治 田中
操 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020103673A priority Critical patent/JP7445130B2/en
Publication of JP2021196289A publication Critical patent/JP2021196289A/en
Application granted granted Critical
Publication of JP7445130B2 publication Critical patent/JP7445130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、せん断変形特性評価方法関する。 The present invention relates to a method for evaluating shear deformation characteristics.

従来のせん断変形の評価方法では、平板状の試験片を2箇所で把持し、これらの箇所を試験片の板面に平行な面内において互いに異なる方向へ移動させることで、試験片全体またはその一部にせん断変形を生じさせていた。 In the conventional evaluation method for shear deformation, a flat test piece is held at two places, and these places are moved in different directions in a plane parallel to the plate surface of the test piece. Shear deformation occurred in some parts.

しかし、単純な矩形等の試験片をその端部を把持して変形させる従来の手法では、試験片を形成する材料の適切なせん断変形評価ができていなかった。このような従来の試験方法では、試験片を形成する材料がせん断変形の限界に達する前に、せん断変形が生じるせん断変形の評価範囲外(例えば前記把持部や試験片端部)で試験片に負荷が集中して、板厚が局所的に減少し、これに起因する材料の割れや破断が発生することがあった。そのため、せん断変形が実際の限界に達する前に測定不能となり、この時点で測定された歪み量を試験片のせん断歪み量としていた。 However, with the conventional method of deforming a simple rectangular test piece by grasping its ends, it has not been possible to appropriately evaluate the shear deformation of the material forming the test piece. In such conventional testing methods, before the material forming the test piece reaches the limit of shear deformation, a load is applied to the test piece outside the evaluation range of shear deformation (for example, at the gripping part or the end of the test piece) where shear deformation occurs. In some cases, the thickness of the plate is locally reduced due to the concentration of the metal, which may cause cracks or breaks in the material. Therefore, measurement became impossible before the shear deformation reached its actual limit, and the amount of strain measured at this point was taken as the amount of shear strain of the test piece.

従来、このような問題を解消するための種々の試みがある。例えば、特許文献1には、切込みを入れた試験片に、切込み部以外が変形しないように拘束した状態で力を加えてせん断特性を測定する測定方法が開示されている。 Conventionally, there have been various attempts to solve such problems. For example, Patent Document 1 discloses a measurement method in which shear characteristics are measured by applying force to a test piece in which a cut has been made, while the test piece is restrained so as not to deform other than the cut portion.

特開昭59-193336号公報Japanese Unexamined Patent Publication No. 59-193336

本発明者らが検討したところ、特許文献1の手法を高強度かつ板厚の小さい試験片に適用した場合、試験片端部の切込みが変形し、応力集中による破断を起こしやすいことを見出した。そして、試験片に複雑な加工をせずとも、より簡易な方法で、精度の高いせん断変形特性の評価が行える方法が必要であるとの考えに至った。 The present inventors investigated and found that when the method of Patent Document 1 is applied to a test piece with high strength and small plate thickness, the cut at the end of the test piece is deformed and easily breaks due to stress concentration. Then, we came to the idea that there was a need for a method that could more easily evaluate shear deformation characteristics with high accuracy without requiring complicated processing of test pieces.

本発明は、以上のような状況に鑑みてなされたものであり、精度の高いせん断変形評価特性が得られるせん断変形特性評価方法、評価装置及びせん断変形特性評価用試験片を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a shear deformation characteristic evaluation method, an evaluation device, and a shear deformation characteristic evaluation test piece that can obtain highly accurate shear deformation evaluation characteristics. shall be.

(1)本発明の一態様に係るせん断変形特性評価方法は、
試験片にせん断変形を生じさせて、試験片を形成する材料のせん断変形特性を評価する方法であって、
前記試験片に、平面部と、前記平面部を介して接続され、前記平面部に対して傾斜する第一拘束面及び第二拘束面とを形成し、
前記平面部、前記第一拘束面及び前記第二拘束面に跨る第一範囲と、前記平面部、前記第一拘束面及び前記第二拘束面に跨り前記第一範囲と隣り合う第二範囲とを、前記平面部に対して傾斜した変位方向に相対的に平行移動させることで前記第一範囲と前記第二範囲との間に壁部を形成するとともに、
前記第一範囲と前記第二範囲とを前記変位方向に平行移動する際に、前記第二範囲から前記壁部に向けて材料を流動させることで、前記壁部をせん断変形させ、
前記壁部のせん断変形部のせん断変形特性を評価する
ことを特徴とする。
(2)上記(1)に記載のせん断変形特性評価方法では、
前記平面部と、前記第一拘束面とがなす角度を変化させて評価してもよい。
(3)上記(1)又は(2)に記載のせん断変形特性評価方法では、
前記平面部と、前記変位方向に平行な基準線とがなす角度を変化させて評価してもよい。
(4)上記(1)に記載のせん断変形特性評価方法では、
前記第一拘束面と前記第二拘束面とが並ぶ方向において、前記平面部が複数形成され、隣り合う前記平面部同士は互いに傾斜していてもよい。
(5)上記(4)に記載のせん断変形特性評価方法では、
前記第一拘束面と前記第一拘束面と隣り合う前記平面部とがなす角度と、前記第二拘束面と前記第二拘束面と隣り合う前記平面部とがなす角度とが異なってもよい。
(1) The shear deformation characteristic evaluation method according to one aspect of the present invention includes:
A method for evaluating shear deformation characteristics of a material forming a test piece by causing shear deformation in a test piece, the method comprising:
forming on the test piece a flat part, and a first restraining surface and a second restraining surface connected via the flat part and inclined with respect to the flat part;
a first range spanning the flat portion, the first restraining surface, and the second restraining surface; a second range spanning the flat portion, the first restraining surface, and the second restraining surface and adjacent to the first range; A wall is formed between the first range and the second range by relatively moving in parallel in a direction of displacement inclined with respect to the plane part, and
When moving the first range and the second range in parallel in the displacement direction, shearing and deforming the wall by flowing material from the second range toward the wall;
The present invention is characterized in that the shear deformation characteristics of the shear deformed portion of the wall portion are evaluated.
(2) In the shear deformation characteristic evaluation method described in (1) above,
The evaluation may be performed by changing the angle formed between the flat portion and the first restraining surface.
(3) In the shear deformation characteristic evaluation method described in (1) or (2) above,
The evaluation may be performed by changing the angle between the plane portion and a reference line parallel to the displacement direction.
(4) In the shear deformation characteristic evaluation method described in (1) above,
In the direction in which the first restraint surface and the second restraint surface are lined up, a plurality of the flat parts may be formed, and adjacent flat parts may be inclined to each other.
(5) In the shear deformation characteristic evaluation method described in (4) above,
The angle formed by the first restraining surface and the flat part adjacent to the first restraining surface may be different from the angle formed by the second restraining surface and the flat part adjacent to the second restraining surface. .

本発明は、精度の高いせん断変形評価特性が得られるせん断変形特性評価方法、評価装置及びせん断変形特性評価用試験片を提供できる。 The present invention can provide a shear deformation characteristic evaluation method, an evaluation device, and a shear deformation characteristic evaluation test piece that allow highly accurate shear deformation evaluation characteristics to be obtained.

本発明の第一実施形態に係る試験片を変形させて平面、第一拘束面および第二拘束面を形成した一例を示す概略的な斜視図である。FIG. 2 is a schematic perspective view showing an example in which a plane, a first restraint surface, and a second restraint surface are formed by deforming the test piece according to the first embodiment of the present invention. 第一範囲と第二範囲の一例を示す概略的な斜視図である。It is a schematic perspective view showing an example of a first range and a second range. 壁部を形成する途中の状態を説明するための概略的な斜視図である。It is a schematic perspective view for demonstrating the state in the middle of forming a wall part. 所定の位置まで第一範囲と第二範囲とを平行移動させて壁部を形成した状態の試験片の概略的な斜視図である。FIG. 2 is a schematic perspective view of a test piece in which a wall portion is formed by moving the first range and the second range in parallel to a predetermined position. 試験片を平面部、第一拘束面及び第二拘束面の板面に平行な方向から見た概略的な図であり、角度θを説明するための側面図である。FIG. 3 is a schematic view of the test piece viewed from a direction parallel to the plate surfaces of the flat portion, the first restraining surface, and the second restraining surface, and is a side view for explaining the angle θ. 試験片を平面部、第一拘束面及び第二拘束面の板面に平行な方向から見た概略的な図であり、角度αを説明するための側面図である。FIG. 3 is a schematic view of the test piece viewed from a direction parallel to the plate surfaces of the flat portion, the first restraining surface, and the second restraining surface, and is a side view for explaining the angle α. 第一範囲と第二範囲とを平行移動させて2つの壁部を形成した状態の試験片の概略的な斜視図である。FIG. 2 is a schematic perspective view of a test piece in which two wall portions are formed by moving a first range and a second range in parallel. 本発明の第三実施形態に係る評価装置の一部である上ユニットの構成を説明するための概略的な斜視図である。It is a schematic perspective view for demonstrating the structure of the upper unit which is a part of evaluation apparatus based on 3rd embodiment of this invention. 本発明の第三実施形態に係る評価装置の一部である下ユニットの構成を説明するための概略的な斜視図である。It is a schematic perspective view for demonstrating the structure of the lower unit which is a part of evaluation apparatus based on 3rd embodiment of this invention. 本発明の第三実施形態に係る評価装置を説明するための概略的な斜視図であり、試験片を載置した状態を示す評価装置の断面図である。It is a schematic perspective view for explaining the evaluation device concerning a third embodiment of the present invention, and is a sectional view of the evaluation device showing a state in which a test piece is placed. 図10に示す状態の評価装置1000を、A-A’の位置においてプレス方向に平行な面で見たときの断面図である。11 is a cross-sectional view of the evaluation device 1000 in the state shown in FIG. 10 when viewed from a plane parallel to the press direction at the A-A' position. 本発明の第三実施形態に係る評価装置を説明するための概略的な斜視図であり、試験片を変形させた状態を示す評価装置の断面図である。It is a schematic perspective view for explaining the evaluation device concerning a third embodiment of the present invention, and is a sectional view of the evaluation device showing a state where the test piece is deformed. 図12に示す状態の評価装置1000を、A-A’の位置においてプレス方向に平行な面で見たときの断面図である。FIG. 13 is a cross-sectional view of the evaluation device 1000 in the state shown in FIG. 12 when viewed from a plane parallel to the press direction at the A-A' position. 本発明の第三実施形態に係る評価装置を説明するための概略的な斜視図であり、試験片に壁部を形成してせん断変形を生じさせた状態を示す評価装置の断面図である。It is a schematic perspective view for explaining the evaluation device concerning a third embodiment of the present invention, and is a sectional view of the evaluation device showing a state in which a wall portion is formed on a test piece to cause shear deformation. 図14に示す状態の評価装置1000を、A-A’の位置においてプレス方向に平行な面で見たときの断面図である。FIG. 15 is a cross-sectional view of the evaluation apparatus 1000 in the state shown in FIG. 14 when viewed from a plane parallel to the press direction at the A-A' position. 実施例に係るFLD分布を示すグラフであって、角度αを変更することでせん断歪み領域を調整した例を示すグラフである。It is a graph showing the FLD distribution according to the example, and is a graph showing an example in which the shear strain region is adjusted by changing the angle α. 実施例に係るFLD分布を示すグラフであって、純粋せん断領域に分布するように角度αを調整した例を示すグラフである。It is a graph showing the FLD distribution according to the example, and is a graph showing an example in which the angle α is adjusted so that the distribution is in a pure shear region. 実施例に係るFLD分布を示すグラフであって、角度αを変更することで図16とは異なる方向へせん断歪み領域を調整した例を示すグラフである。17 is a graph showing the FLD distribution according to the example, and is a graph showing an example in which the shear strain region is adjusted in a direction different from that in FIG. 16 by changing the angle α. 最大主歪みε1及び最小主歪みε2を説明するための図である。FIG. 3 is a diagram for explaining maximum principal strain ε1 and minimum principal strain ε2. 実施例に係るFLD分布を示すグラフであって、角度θが93°の金型を用いたときのせん断歪み量を調整した例を示すグラフである。It is a graph showing the FLD distribution according to the example, and is a graph showing an example in which the amount of shear strain is adjusted when a mold with an angle θ of 93° is used. 実施例に係るFLD分布を示すグラフであって、角度θが112.5°の金型を用いたときのせん断歪み量を調整した例を示すグラフである。It is a graph showing the FLD distribution according to the example, and is a graph showing an example in which the amount of shear strain is adjusted when a mold with an angle θ of 112.5° is used. 実施例に係るFLD分布を示すグラフであって、角度θが128°の金型を用いたときのせん断歪み量を調整した例を示すグラフである。It is a graph showing the FLD distribution according to the example, and is a graph showing an example in which the amount of shear strain is adjusted when a mold with an angle θ of 128° is used.

以下、本発明の実施形態について例を挙げて説明するが、本発明は以下で説明する例に限定されないことは自明である。以下の説明では、具体的な数値や材料を例示する場合があるが、本発明の効果が得られる限り、他の数値や材料を適用してもよい。また、以下の実施形態の各構成要素は、互いに組み合わせることができる。 Hereinafter, embodiments of the present invention will be described using examples, but it is obvious that the present invention is not limited to the examples described below. In the following description, specific numerical values and materials may be illustrated, but other numerical values and materials may be applied as long as the effects of the present invention can be obtained. Moreover, each component of the following embodiments can be combined with each other.

[第一実施形態]
本実施形態に係るせん断変形特性評価方法は、試験片にせん断変形を生じさせて、試験片を形成する材料のせん断変形特性を評価する方法であって、試験片に、平面部と、平面部を介して接続され、平面部に対して傾斜する第一拘束面及び第二拘束面とを形成し、平面部、第一拘束面及び第二拘束面に跨る第一範囲と、平面部、第一拘束面及び第二拘束面に跨り第一範囲と隣り合う第二範囲とを、平面部に対して傾斜した変位方向に相対的に平行移動させることで第一範囲と第二範囲との間に壁部を形成するとともに、第一範囲と第二範囲とを変位方向に平行移動する際に、第二範囲から壁部に向けて材料を流動させることで、壁部をせん断変形させ、壁部のせん断変形部のせん断変形特性を評価する。
[First embodiment]
The shear deformation characteristic evaluation method according to the present embodiment is a method for evaluating the shear deformation characteristics of a material forming the test piece by causing shear deformation in a test piece, and the method includes: , and form a first restraining surface and a second restraining surface that are inclined with respect to the flat part, and a first range extending over the flat part, the first restraining surface, and the second restraining surface; The distance between the first range and the second range by relatively moving the first range and the adjacent second range across the first restraint surface and the second restraint surface in parallel in the displacement direction inclined with respect to the plane part. At the same time, when the first range and the second range are moved in parallel in the displacement direction, the material is caused to flow from the second range toward the wall, thereby shearing and deforming the wall. Evaluate the shear deformation characteristics of the shear deformed part of the section.

上記構成からなるせん断変形特性評価方法では、平面部、第一拘束面及び第二拘束面の一部を含む第一範囲と第二範囲とが相対的に平行移動することで壁部が形成され、この壁部にせん断変形が生じる。この時、評価対象外である第一範囲は、後述するように上型および下型で挟みこむことにより変形を抑制されているため、従来の試験方法で割れが生じていたような条件(評価対象外である把持部や試験片端部での割れ)であっても、試験片に割れが生じずに、精度の高いせん断変形特性が得られる。 In the shear deformation characteristic evaluation method having the above configuration, a wall portion is formed by relative translation of the first range and the second range including a part of the plane portion, the first restraint surface, and the second restraint surface. , shear deformation occurs in this wall. At this time, the first range, which is not subject to evaluation, is suppressed from deformation by being sandwiched between the upper and lower molds as described later. Even if cracks occur at the gripping part or the end of the test piece, which are not the target, the test piece does not crack, and highly accurate shear deformation characteristics can be obtained.

試験片の例としては、例えば、鋼板、アルミ合金板、チタン合金板などの金属板が挙げられる。試験片が鋼板である場合、例えば、引張強度590MPa~1900MPaの鋼板に好ましく適用することができる。試験片が鋼板である場合、例えば、厚さが1.2mm~3.0mmの鋼板に好ましく適用することができる。 Examples of test pieces include metal plates such as steel plates, aluminum alloy plates, and titanium alloy plates. When the test piece is a steel plate, for example, a steel plate having a tensile strength of 590 MPa to 1900 MPa can be preferably applied. When the test piece is a steel plate, for example, it can be preferably applied to a steel plate with a thickness of 1.2 mm to 3.0 mm.

試験片の形状は限定されないが、平板状の試験片が好ましく用いられる。 Although the shape of the test piece is not limited, a flat test piece is preferably used.

図1は、本実施形態に係る試験片を変形させた一例を示す概略的な斜視図である。
本実施形態に係るせん断変形特性評価方法では、図1に示すように、試験片100に、平面部101と、平面部101を介して接続され、平面部101に対して傾斜する第一拘束面102及び第二拘束面103とを形成する。平面部101は、第一拘束面102に接続され、平面部101と第一拘束面102とは互いに傾斜している。平面部101は、第二拘束面103に接続され、平面部101と第二拘束面103とは互いに傾斜している。
FIG. 1 is a schematic perspective view showing an example of a deformed test piece according to this embodiment.
In the shear deformation characteristic evaluation method according to the present embodiment, as shown in FIG. 102 and a second restraint surface 103. The plane part 101 is connected to the first restraining surface 102, and the plane part 101 and the first restraining surface 102 are inclined to each other. The plane part 101 is connected to the second restraint surface 103, and the plane part 101 and the second restraint surface 103 are inclined to each other.

本実施形態の例では、第一拘束面102と第二拘束面103とが平行である場合を例として説明するが、これに限られず、第一拘束面102と第二拘束面103とは互いに傾斜していてもよい。 In the example of this embodiment, a case where the first restraint surface 102 and the second restraint surface 103 are parallel will be described as an example, but the first restraint surface 102 and the second restraint surface 103 are mutually parallel. It may be inclined.

このように、平面部101と、平面部101を介して接続され、平面部101に対して傾斜する第一拘束面102及び第二拘束面103とを有するように形成された試験片100を、せん断変形特性評価用試験片と称してもよい。 In this way, a test piece 100 formed to have a flat part 101 and a first restraint surface 102 and a second restraint surface 103 connected through the flat part 101 and inclined with respect to the flat part 101, It may also be referred to as a test piece for evaluating shear deformation characteristics.

次いで、図2に示すように、上記の試験片100について、平面部101、第一拘束面102及び第二拘束面103に跨る第一範囲104と、平面部101、第一拘束面102及び第二拘束面103に跨り第一範囲104と隣り合う第二範囲105とを設定する。 Next, as shown in FIG. 2, regarding the above test piece 100, a first range 104 extending over the flat part 101, the first restraining surface 102, and the second restraining surface 103, and a first range 104 extending over the flat part 101, the first restraining surface 102, and the second restraining surface 103, A first range 104 and an adjacent second range 105 are set across the two restraint surfaces 103.

そして、第一範囲104と第二範囲105とを、平面部101に対して傾斜した変位方向Aに相対的に平行移動させることで第一範囲104と第二範囲105との間に壁部106を形成する。 Then, by relatively moving the first range 104 and the second range 105 in parallel in the displacement direction A inclined with respect to the plane part 101, a wall part 106 is created between the first range 104 and the second range 105. form.

図3は、壁部106を形成する途中の状態を説明するための概略的な斜視図である。図3に示すように、第一範囲104に位置する平面部101、第一拘束面102及び第二拘束面103の一部と、第二範囲105に位置する平面部101、第一拘束面102及び第二拘束面103の一部とをそれぞれ相対的に平行移動させることで、壁部106を形成する。 FIG. 3 is a schematic perspective view for explaining a state in the middle of forming the wall portion 106. As shown in FIG. 3, a part of the plane part 101, the first restraint surface 102 and the second restraint surface 103 located in the first range 104, and a part of the plane part 101 and the first restraint surface 102 located in the second range 105. and a part of the second restraint surface 103 are relatively moved in parallel, thereby forming the wall portion 106.

このとき、第二範囲105から壁部106に向けて、平面部101、第一拘束面102及び第二拘束面103の一部を形成する材料を上下型で保持することで、面外変形を拘束又は抑制しながら流動させる。このような材料の流動に伴い、壁部106が形成されるとともに、壁部106の一部にせん断変形が生じる箇所が形成される。 At this time, out-of-plane deformation is prevented by holding the material forming part of the plane part 101, first restraint surface 102, and second restraint surface 103 with upper and lower molds from the second region 105 toward the wall part 106. Flow with restraint or restraint. With such flow of the material, the wall portion 106 is formed, and a portion where shear deformation occurs is formed in a portion of the wall portion 106.

図4は、所定の位置まで第一範囲104と第二範囲105とを平行移動させて壁部106を所定の高さまで形成した状態の試験片100の概略的な斜視図である。 FIG. 4 is a schematic perspective view of the test piece 100 in which the first range 104 and the second range 105 are moved in parallel to a predetermined position to form the wall portion 106 to a predetermined height.

第一範囲104と第二範囲105とを、平面部101に対して傾斜した変位方向Aに平行移動させることで、壁部106において斜線で示す範囲のせん断変形部107が形成される。せん断変形部107は、主に平面部101の材料の一部が壁部106に向かい流動することで形成される。 By translating the first range 104 and the second range 105 in the displacement direction A inclined with respect to the plane part 101, a shear deformation part 107 in the range indicated by diagonal lines is formed in the wall part 106. The shear deformation portion 107 is mainly formed by a part of the material of the plane portion 101 flowing toward the wall portion 106 .

なお、第一拘束面102又は第二拘束面103の板面と変位方向Aとがなす角度によっては、壁部106のせん断変形部107を除く箇所にもせん断変形が生じる。例えば、図4の例では、壁部106のせん断変形部107を除く箇所にもせん断変形が生じる。 Note that, depending on the angle formed between the plate surface of the first restraining surface 102 or the second restraining surface 103 and the displacement direction A, shear deformation occurs also in the portions of the wall portion 106 other than the shear deformation portion 107. For example, in the example shown in FIG. 4, shear deformation also occurs in portions of the wall portion 106 other than the shear deformation portion 107.

上述のような手法で試験片100を変形させることで、壁部106にせん断変形部107を形成して、試験片100にせん断変形を生じさせることができる。 By deforming the test piece 100 using the method described above, a shear deformation portion 107 can be formed in the wall portion 106, and the test piece 100 can be caused to undergo shear deformation.

本実施形態に係るせん断変形特性評価方法では、壁部106の形成途中では、せん断変形部107とその周辺の壁部106において、試験片100の厚さが減少しないかほとんど減少しないままでせん断変形が生じる。これは、壁部106の形成の前に予め平面部101と隣り合う第一拘束面102及び第二拘束面103を設けたためである。壁部106が形成される際には、平面部101の材料の一部が壁部106に向かい流動することでせん断変形部107が形成されるが、これと同様に、第一拘束面102及び第二拘束面103の一部が壁部106に向かい流動する。これにより、せん断変形部107の周辺にも、せん断変形部107と同一平面を有する壁部106が形成される。平面部101に対して傾斜した第一拘束面102及び第二拘束面103があることで、これら第一拘束面102及び第二拘束面103が変形途中の試験片100の材料を適切な力で把持して材料の流動が適切に行われ、局所的な板厚の減少を抑制することができる。そのため、試験片100のせん断変形が生じる範囲とその周辺において厚さを減少させないかほとんど減少させずに、試験片100にせん断変形を生じさせることができる。 In the shear deformation characteristic evaluation method according to the present embodiment, during the formation of the wall portion 106, the thickness of the test piece 100 does not decrease or hardly decreases in the shear deformation portion 107 and the wall portion 106 around the shear deformation portion 107. occurs. This is because the first restraint surface 102 and the second restraint surface 103 adjacent to the plane part 101 were provided in advance before the wall part 106 was formed. When the wall portion 106 is formed, a part of the material of the flat portion 101 flows toward the wall portion 106 to form a shear deformation portion 107. Similarly, the first restraining surface 102 and the shear deformation portion 107 are formed. A portion of the second restraint surface 103 flows toward the wall portion 106. As a result, a wall portion 106 having the same plane as the shear deformation portion 107 is also formed around the shear deformation portion 107 . By having the first restraint surface 102 and the second restraint surface 103 that are inclined with respect to the flat part 101, these first restraint surface 102 and second restraint surface 103 can apply an appropriate force to the material of the test piece 100 that is in the process of being deformed. When gripped, the material flows appropriately, and local reduction in plate thickness can be suppressed. Therefore, shear deformation can be caused in the test piece 100 without reducing or hardly reducing the thickness in the range where the shear deformation of the test piece 100 occurs and its surroundings.

本実施形態に係るせん断変形特性評価方法によれば、従来の試験方法で割れが生じていたような条件であっても、試験片に割れが生じない。したがって、従来では試験の限界とされていたせん断変形量を超えてせん断変形を生じさせることができ、材料本来の変形歪みを高い精度で評価することができる。 According to the shear deformation characteristic evaluation method according to the present embodiment, no cracks occur in the test piece even under conditions where cracks would occur in conventional testing methods. Therefore, it is possible to generate shear deformation exceeding the amount of shear deformation that was conventionally considered the limit of testing, and the inherent deformation strain of the material can be evaluated with high accuracy.

より具体的には、本実施形態に係るせん断変形特性評価方法では、試験片100のせん断変形特性として、試験片100の割れの有無を検出できる。そのため、所定の試験片に所定の条件のせん断変形を生じさせたときの、試験片の割れの有無に基づいて、試験片のせん断変形限界を精度良く測定することができる。 More specifically, in the shear deformation characteristics evaluation method according to the present embodiment, the presence or absence of cracks in the test piece 100 can be detected as the shear deformation characteristics of the test piece 100. Therefore, the shear deformation limit of a test piece can be accurately measured based on the presence or absence of cracks in the test piece when shear deformation under predetermined conditions is caused in the test piece.

上述したように、従来の試験方法では、試験片を形成する材料がせん断変形の限界に達する前に、せん断変形の評価範囲外で割れが発生していた。しかし、本実施形態に係るせん断変形特性評価方法では、従来の試験方法で割れが発生した歪み量を超えてせん断変形させることができるため、試験片のせん断変形の限界をより精度良く反映できる。
例えば、従来の試験方法では、割れが発生したために純粋せん断域においてある量の歪み限界とされていた材料であっても、本実施形態に係るせん断変形特性評価方法を用いることで、この歪み量においても割れが生じないため、より高い歪みを精度良く測定できる。
As described above, in the conventional testing method, cracks occur outside the evaluation range of shear deformation before the material forming the test piece reaches the limit of shear deformation. However, in the shear deformation characteristic evaluation method according to the present embodiment, it is possible to cause shear deformation to exceed the amount of strain at which cracking occurs in the conventional test method, so that the limit of shear deformation of the test piece can be more accurately reflected.
For example, even if a material is subject to a strain limit of a certain amount in the pure shear region due to the occurrence of cracks in conventional testing methods, the shear deformation characteristic evaluation method according to this embodiment can be used to determine the amount of strain. Since cracks do not occur even in the case of high strain, higher strains can be measured with higher accuracy.

例えば、本実施形態に係るせん断変形特性評価方法では、平面部101と、第一拘束面102とがなす角度θを変化させて評価を実施してもよい。これにより、せん断歪み量を調整できる。せん断歪み量が調整できることで、実際の製品が所望の形状に製造可能であるか否かといった、実製品の判断基準として測定したい所望の歪を評価できるという利点がある。 For example, in the shear deformation characteristic evaluation method according to the present embodiment, evaluation may be performed by changing the angle θ between the plane portion 101 and the first restraining surface 102. This allows the amount of shear strain to be adjusted. Being able to adjust the amount of shear strain has the advantage that it is possible to evaluate the desired strain that is to be measured as a criterion for determining the actual product, such as whether or not the actual product can be manufactured into a desired shape.

図5は、試験片100を平面部101、第一拘束面102及び第二拘束面103の板面に平行な方向から見た概略的な側面図である。図5に示すように、平面部101と第一拘束面102とがなす角のうちで、小さい方の角の角度をθとする。 FIG. 5 is a schematic side view of the test piece 100 viewed from a direction parallel to the plate surfaces of the flat portion 101, the first restraining surface 102, and the second restraining surface 103. As shown in FIG. 5, among the angles formed by the plane portion 101 and the first restraining surface 102, the smaller angle is defined as θ.

また、本実施形態に係るせん断変形特性評価方法では、平面部101と、変位方向Aに平行な基準線とがなす角度αを変化させて評価を実施してもよい。 Furthermore, in the shear deformation characteristic evaluation method according to the present embodiment, evaluation may be performed by changing the angle α between the plane portion 101 and a reference line parallel to the displacement direction A.

これにより、せん断歪み領域を調整できる。せん断歪み領域が調整できることで、実際の製品が所望の形状に製造可能であるか否かといった、実製品の判断基準として測定したい所望の歪を評価できるという利点がある。 This allows the shear strain region to be adjusted. Being able to adjust the shear strain region has the advantage that it is possible to evaluate the desired strain that is to be measured as a criterion for determining the actual product, such as whether or not the actual product can be manufactured into the desired shape.

図6は、試験片100を平面部101、第一拘束面102及び第二拘束面103の板面に平行な方向から見た概略的な図であり、変位方向Aを矢印で示している。図6に示すように、平面部101と変位方向Aに平行な基準線aとがなす角のうちで、小さい方の角の角度をαとする。変位方向Aは、図6の紙面と平行である。 FIG. 6 is a schematic view of the test piece 100 viewed from a direction parallel to the plate surfaces of the flat portion 101, the first restraining surface 102, and the second restraining surface 103, and the displacement direction A is indicated by an arrow. As shown in FIG. 6, among the angles formed by the plane portion 101 and the reference line a parallel to the displacement direction A, the smaller angle is α. The displacement direction A is parallel to the paper plane of FIG.

上述の実施形態では、第一範囲104と第二範囲105との間に壁部106を形成する例を説明した。しかし、図7に示すように、第一範囲104の両側に第二範囲105を2つ設け、2つの壁部106及びせん断変形部107を形成してもよい。 In the above-described embodiment, an example has been described in which the wall portion 106 is formed between the first range 104 and the second range 105. However, as shown in FIG. 7, two second ranges 105 may be provided on both sides of the first range 104, and two wall parts 106 and a shear deformation part 107 may be formed.

(せん断変形限界の測定)
上記実施形態に係るせん断変形特性評価方法を、試験片100の壁部106に生じるせん断変形のせん断変形角を変えて実施することで、試験片を形成する材料のせん断変形の限界条件を評価することができる。
(Measurement of shear deformation limit)
By performing the shear deformation characteristic evaluation method according to the above embodiment while changing the shear deformation angle of the shear deformation occurring in the wall portion 106 of the test piece 100, the limit conditions of shear deformation of the material forming the test piece are evaluated. be able to.

具体的には、平面部101と第一拘束面とがなす角(角度θ)と、平面部101と変位方向Aに平行な基準線とがなす角(角度α)とを変化させて複数回の評価を行うことで、これらの角度と試験片の割れとの関係を評価し、種々の条件におけるせん断歪み量やせん断領域を求めることができる。 Specifically, the angle (angle θ) between the flat part 101 and the first restraining surface and the angle (angle α) between the flat part 101 and the reference line parallel to the displacement direction A are changed multiple times. By evaluating the relationship between these angles and cracking of the test piece, it is possible to determine the amount of shear strain and shear area under various conditions.

せん断変形限界のせん断歪み量を求める手法としては、例えば、以下の手順が好ましい。まず、平面部101と変位方向Aに平行な基準線とがなす角度αを設定し、この角度αを保ったまま、平面部101と第一拘束面102とがなす角度θを、90°以上180°未満の範囲で10°づつ変化させ、最も小さい角度θの角度から角度が大きくなる順に試験を行う。そして、割れが生じた角度θの角度におけるストローク量からせん断歪み量を算出する。ストローク量は、金型の移動量と等しいため、金型の移動量の実測値をストローク量としてもよい。あるいは、コンピュータ・シミュレーションによって、ストローク量を算出してもよい。なお、角度αやθは、本実施形態に係る評価方法に準じたコンピュータ・シミュレーションにて、所望のせん断変形が得られる範囲となるように予め算出してもよい。 As a method for determining the amount of shear strain at the shear deformation limit, for example, the following procedure is preferable. First, set the angle α between the flat part 101 and a reference line parallel to the displacement direction A, and while maintaining this angle α, set the angle θ between the flat part 101 and the first restraint surface 102 to 90° or more. The angle is changed by 10 degrees within a range of less than 180 degrees, and the test is performed in the order of increasing angles, starting from the smallest angle θ. Then, the shear strain amount is calculated from the stroke amount at the angle θ at which the crack occurs. Since the stroke amount is equal to the amount of movement of the mold, the actual value of the amount of movement of the mold may be used as the stroke amount. Alternatively, the stroke amount may be calculated by computer simulation. Incidentally, the angles α and θ may be calculated in advance by computer simulation according to the evaluation method according to the present embodiment so as to fall within a range in which a desired shear deformation can be obtained.

また、先述のように、平面部101と変位方向Aに平行な基準線とがなす角度αを変化させることで、せん断歪み領域を調整できる。そのため、従来の評価方法では測定対象とできなかったせん断歪み領域(単軸圧縮~単軸引張)における様々なせん断変形形態を模擬し、例えば、任意のせん断変形状態でのせん断歪み量を評価することができる。 Further, as described above, by changing the angle α between the plane portion 101 and the reference line parallel to the displacement direction A, the shear strain region can be adjusted. Therefore, we simulate various forms of shear deformation in the shear strain range (uniaxial compression to uniaxial tension), which cannot be measured using conventional evaluation methods, and, for example, evaluate the amount of shear strain in any shear deformation state. be able to.

上述のような手順によって、試験対象とする試験片の材料のせん断変形限界でのせん断歪み量、及び広範囲でのせん断歪み量を精度良く測定できる。 By the above-described procedure, the amount of shear strain at the shear deformation limit of the material of the test piece to be tested and the amount of shear strain over a wide range can be measured with high accuracy.

なお、せん断変形角及びせん断変形歪み量は、壁部106のせん断変形部107について、実際の試験片にエッチング、ターゲット、ドット、スクライブドサークルなどのマーキングをして、その変形を観測する実験的手法、又は上述した評価方法で得られた角度θ、角度αなどの数値に基づいて、CAE(Computer Aided Engineering)解析によって求めてもよい。 Note that the shear deformation angle and the shear deformation strain amount are determined by experimentally measuring the shear deformation portion 107 of the wall portion 106 by marking the actual test piece with etching, targets, dots, scribed circles, etc., and observing the deformation. It may be determined by CAE (Computer Aided Engineering) analysis based on numerical values such as the angle θ and the angle α obtained by the method or the evaluation method described above.

[第二実施形態]
次に、本発明の他の実施形態について説明する。
[Second embodiment]
Next, other embodiments of the present invention will be described.

本実施形態に係るせん断変形特性評価方法は、試験片にせん断変形を生じさせて、試験片を形成する材料のせん断変形特性を評価する方法であって、試験片に、平面部と、平面部を介して接続され、平面部に対して傾斜する第一拘束面及び第二拘束面とを形成し、平面部、第一拘束面及び第二拘束面に跨る第一範囲と、平面部、第一拘束面及び第二拘束面に跨り第一範囲と隣り合う第二範囲とを、平面部に対して傾斜した変位方向に相対的に平行移動させることで第一範囲と第二範囲との間に壁部を形成するとともに、第一範囲と第二範囲とを変位方向に平行移動する際に、第二範囲から壁部に向けて材料を流動させることで、壁部又は第二範囲における面外変形を拘束しながら壁部をせん断変形させ、壁部のせん断変形部のせん断変形特性を評価する。
本実施形態に係るせん断変形特性評価方法では、第一拘束面と第二拘束面とが並ぶ方向において、平面部が複数形成され、隣り合う平面部同士は互いに傾斜している。
The shear deformation characteristic evaluation method according to the present embodiment is a method for evaluating the shear deformation characteristics of a material forming the test piece by causing shear deformation in a test piece, and the method includes: , and form a first restraining surface and a second restraining surface that are inclined with respect to the flat part, and a first range extending over the flat part, the first restraining surface, and the second restraining surface; The distance between the first range and the second range by relatively moving the first range and the adjacent second range across the first restraint surface and the second restraint surface in parallel in the displacement direction inclined with respect to the plane part. By forming a wall part in the wall part and flowing the material from the second range towards the wall part when moving the first range and the second range in parallel in the displacement direction, the surface in the wall part or the second range is The wall is subjected to shear deformation while restraining external deformation, and the shear deformation characteristics of the shear deformed portion of the wall are evaluated.
In the shear deformation characteristic evaluation method according to the present embodiment, a plurality of flat parts are formed in the direction in which the first restraining surface and the second restraining surface are lined up, and adjacent flat parts are inclined to each other.

上記の構成からなるせん断変形特性評価方法では、試験片の平面部は、第一拘束面と第二拘束面とが並ぶ方向において、複数の平面部が形成され、隣り合う平面部同士が互いに傾斜している。そのため、一つの試験片で複数の条件におけるせん断特性を評価することができる。 In the shear deformation characteristic evaluation method having the above configuration, a plurality of flat parts are formed in the plane part of the test piece in the direction in which the first restraining surface and the second restraining surface are lined up, and adjacent flat parts are inclined to each other. are doing. Therefore, shear properties under multiple conditions can be evaluated using one test piece.

本実施形態に係るせん断変形特性評価方法では、第一実施形態で説明した試験片100の材料を用いることができる。 In the shear deformation characteristic evaluation method according to the present embodiment, the material of the test piece 100 described in the first embodiment can be used.

なお、本実施形態に係るせん断変形特性評価方法では、第一拘束面と第二拘束面とが並ぶ方向において、第一拘束面と第二拘束面との間に、2つの平面部(第一平面部及び第二平面部)を有するように変形させた試験片を用いてもよい。 In addition, in the shear deformation characteristic evaluation method according to the present embodiment, two flat parts (the first A test piece deformed to have a flat part and a second flat part may also be used.

第二実施形態に係る試験片では、一つの方向に、第一拘束面、第一平面部、第二平面部、第二拘束面をこの順に有している。第一平面部と第二平面部とは互いに傾斜し、第一拘束面と第一平面部とは互いに傾斜し、第二平面部と第二拘束面とは互いに傾斜している。 The test piece according to the second embodiment has a first restraining surface, a first plane part, a second flat part, and a second restraining surface in this order in one direction. The first plane part and the second plane part are inclined to each other, the first restraining surface and the first plane part are inclined to each other, and the second plane part and the second restraining surface are tilted to each other.

本実施形態に係るせん断変形特性評価方法では、第一実施形態と同様にして、試験片について、第一平面部、第二平面部、第一拘束面及び第二拘束面に跨る第一範囲と、第一平面部、第二平面部、第一拘束面及び第二拘束面に跨り第一範囲と隣り合う第二範囲とを設定する。 In the shear deformation characteristic evaluation method according to the present embodiment, in the same manner as in the first embodiment, for a test piece, a first range extending over a first plane part, a second plane part, a first restraining surface, and a second restraining surface. , a second range adjacent to the first range is set across the first plane part, the second plane part, the first restraining surface, and the second restraining surface.

そして、第一実施形態と同様に、第一範囲と第二範囲とを、第一平面部又は第二平面部に対して傾斜した変位方向Bに相対的に平行移動させることで第一範囲と第二範囲との間に壁部を形成する。 Similarly to the first embodiment, the first range and the second range are moved in parallel relative to each other in the displacement direction B inclined with respect to the first plane part or the second plane part. A wall is formed between the second range and the second range.

第二実施形態に係る試験片において、第一平面部は第一拘束面と第二平面部とに接続されている。そのため、第一拘束面と第二平面部が、第一実施形態で説明した第一拘束面と第二拘束面の役割を果たす。また同様に、第二平面部は第一平面部と第二拘束面とに接続されているため、第一平面と第二拘束面が、第一実施形態で説明した第一拘束面と第二拘束面の役割を果たす。 In the test piece according to the second embodiment, the first plane part is connected to the first restraining surface and the second plane part. Therefore, the first restraint surface and the second plane part play the roles of the first restraint surface and the second restraint surface described in the first embodiment. Similarly, since the second plane part is connected to the first plane part and the second restraining surface, the first plane and the second restraining surface are connected to the first restraining surface and the second restraining surface explained in the first embodiment. It plays the role of a restraining surface.

すなわち、壁部の形成の際に、第一平面部の一部が壁部に向かい流動することで第一せん断変形部が形成され、同時に第二平面部の一部が壁部に向かい流動することで第二せん断変形部が形成される。壁部の形成途中では、第一せん断変形部及び第二せん断変形部とその周辺の壁部において、試験片の厚さが減少しないかほとんど減少しないままでせん断変形が生じる。 That is, when forming the wall, a part of the first plane part flows toward the wall to form the first shear deformation part, and at the same time, a part of the second plane part flows towards the wall. As a result, a second shear deformation portion is formed. During the formation of the wall portion, shear deformation occurs in the first shear deformation portion, the second shear deformation portion, and the surrounding wall portions, with the thickness of the test piece not decreasing or almost not decreasing.

このとき、第一平面部と変位方向Bとがなす角と第二平面部と変位方向Bとがなす角が異なることで、一つの試験片で、2つの条件のせん断変形を生じさせることができる。 At this time, since the angle between the first plane part and the displacement direction B is different from the angle between the second plane part and the displacement direction B, it is possible to cause shear deformation under two conditions in one test piece. can.

そのため、本実施形態に係るせん断変形特性評価では、一つの試験片で複数の条件を測定できるため、より少ない試験片で、第一実施形態で説明した、せん断変形限界の測定を実施することができる。 Therefore, in the shear deformation characteristic evaluation according to this embodiment, multiple conditions can be measured with one test piece, so it is possible to measure the shear deformation limit described in the first embodiment with fewer test pieces. can.

第一拘束面と第一拘束面と隣り合う平面部とがなす角と、第二拘束面と第二拘束面と隣り合う平面部とがなす角とが異なってもよい。これにより、一つの試験片で、2つ以上のせん断歪み量の情報を得ることができる。 The angle formed by the first restraint surface and the plane portion adjacent to the first restraint surface may be different from the angle formed by the second restraint surface and the plane portion adjacent to the second restraint surface. Thereby, information on two or more shear strain amounts can be obtained with one test piece.

[第三実施形態]
次に、本発明に係る評価装置について説明する。
[Third embodiment]
Next, an evaluation device according to the present invention will be explained.

本実施形態に係る評価装置は、試験片にせん断変形を生じさせて、試験片を形成する材料のせん断変形特性を評価するための評価装置であって、互いに平行な第一プレス面をそれぞれ有する第一上型及び第二上型と、第一上型と第一上型との間で試験片を挟み込む第一下型と、第二上型と第二上型との間で試験片を挟み込む第二下型と、第一上型及び第一下型を、第二上型及び第二下型に対して、第一プレス面に対して傾斜し、かつ第一上型から第二上型へ向かう方向と交差する変位方向に、平行移動可能とする駆動機構とを備える。 The evaluation device according to the present embodiment is an evaluation device for causing shear deformation in a test piece to evaluate the shear deformation characteristics of a material forming the test piece, and has first pressing surfaces parallel to each other. A first upper mold and a second upper mold, a first lower mold that holds the test piece between the first upper mold and the first upper mold, and a second upper mold that holds the test piece between the second upper mold and the second upper mold. The second lower die to be sandwiched, the first upper die, and the first lower die are inclined with respect to the first press surface with respect to the second upper die and the second lower die, and It includes a drive mechanism that allows translation in a displacement direction that intersects the direction toward the mold.

上記構成からなる評価装置を用いて試験片にせん断変形を生じさせることで、試験片に割れを生じさせずに、精度の高いせん断変形特性を評価することができる。 By causing shear deformation in a test piece using the evaluation device having the above configuration, it is possible to evaluate shear deformation characteristics with high accuracy without causing cracks in the test piece.

図8及び図9に、本実施形態に係る評価装置1000を構成する上下金型の概略的な斜視図を示す。 8 and 9 show schematic perspective views of upper and lower molds that constitute the evaluation device 1000 according to this embodiment.

図8は、評価装置1000の一部である上ユニット1100を説明するための斜視図である。図8の例では、上ユニット1100は、第一上型1110と、第一上型1110のプレス面と交差する方向に沿ってみた場合に第一上型1110に隣り合うように配される2つの第二上型1120とを備えている。 FIG. 8 is a perspective view for explaining the upper unit 1100 that is a part of the evaluation apparatus 1000. In the example of FIG. 8, the upper unit 1100 includes a first upper die 1110 and two units arranged adjacent to the first upper die 1110 when viewed along the direction intersecting the press surface of the first upper die 1110. two second upper molds 1120.

また、図9は、評価装置1000の一部である下ユニット1200を説明するための斜視図である。図9の例では、下ユニット1200は、第一下型1210と、第一下型1210のプレス面と交差する方向に沿ってみた場合に第一下型1210に隣り合うように配される2つの第二下型1220とを備えている。 Further, FIG. 9 is a perspective view for explaining a lower unit 1200 that is a part of the evaluation apparatus 1000. In the example of FIG. 9, the lower unit 1200 includes a first lower die 1210 and two units arranged adjacent to the first lower die 1210 when viewed along the direction intersecting the press surface of the first lower die 1210. two second lower molds 1220.

第一上型1110は、第一プレス面1111、第二プレス面1112及び第三プレス面1113を備えている。
第二プレス面1112及び第三プレス面1113は第一プレス面1111を介して接続され、第一プレス面1111と第二プレス面1112とは互いに傾斜している。また、第一プレス面1111と第三プレス面1113とは互いに傾斜している。
The first upper die 1110 includes a first press surface 1111, a second press surface 1112, and a third press surface 1113.
The second press surface 1112 and the third press surface 1113 are connected via the first press surface 1111, and the first press surface 1111 and the second press surface 1112 are inclined to each other. Moreover, the first press surface 1111 and the third press surface 1113 are inclined to each other.

また、第一上型1110は、第一プレス面1111、第二プレス面1112及び第三プレス面1113とそれぞれ交差する第一側面1114及び第二側面1115(図8の例では図示せず)を備えている。 In addition, the first upper mold 1110 has a first side surface 1114 and a second side surface 1115 (not shown in the example of FIG. 8) that intersect with the first press surface 1111, the second press surface 1112, and the third press surface 1113, respectively. We are prepared.

第二上型1120は、第一プレス面1121、第二プレス面1122及び第三プレス面1123を備えている。
第二プレス面1122及び第三プレス面1123は第一プレス面1121を介して接続され、第一プレス面1121と第二プレス面1122とは互いに傾斜している。また、第一プレス面1121と第三プレス面1123とは互いに傾斜している。
The second upper mold 1120 includes a first press surface 1121, a second press surface 1122, and a third press surface 1123.
The second press surface 1122 and the third press surface 1123 are connected via the first press surface 1121, and the first press surface 1121 and the second press surface 1122 are inclined to each other. Moreover, the first press surface 1121 and the third press surface 1123 are inclined to each other.

第一上型1110の第一プレス面1111と第二上型1120の第一プレス面1121とは互いに平行となるように配される。また、第一上型1110の第二プレス面1112と第二上型1120の第二プレス面1122も互いに平行となり、第一上型1110の第三プレス面1113と第二上型1120の第三プレス面1123も互いに平行となるように配される。 The first press surface 1111 of the first upper mold 1110 and the first press surface 1121 of the second upper mold 1120 are arranged parallel to each other. Further, the second press surface 1112 of the first upper mold 1110 and the second press surface 1122 of the second upper mold 1120 are also parallel to each other, and the third press surface 1113 of the first upper mold 1110 and the third press surface 1113 of the second upper mold 1120 are parallel to each other. The press surfaces 1123 are also arranged parallel to each other.

第二上型1120は側面1124を備え、側面1124は、隣接する第一上型1110の第一側面1114及び第二側面1115のいずれかと互いに平行となるように配される。また、第一側面1114及び第二側面1115と、側面1124との間には所定のクリアランスが設けられる。 The second upper mold 1120 includes a side surface 1124, and the side surface 1124 is arranged parallel to either the first side surface 1114 or the second side surface 1115 of the adjacent first upper mold 1110. Further, a predetermined clearance is provided between the first side surface 1114 and the second side surface 1115 and the side surface 1124.

第一下型1210は、第一上型1110の、第一プレス面1111、第二プレス面1112及び第三プレス面1113とそれぞれ対応する形状の第一プレス面1211、第二プレス面1212及び第三プレス面1213を備えている。第二プレス面1212及び第三プレス面1213は第一プレス面1211を介して接続され、第一プレス面1211と第二プレス面1212とは互いに傾斜している。また、第一プレス面1211と第三プレス面1213とは互いに傾斜している。第一上型1110と第一下型1210との間で試験片を挟み込むことができる。 The first lower die 1210 has a first press surface 1211, a second press surface 1212, and a second press surface 1212, which have shapes corresponding to the first press surface 1111, second press surface 1112, and third press surface 1113, respectively, of the first upper die 1110. Three press surfaces 1213 are provided. The second press surface 1212 and the third press surface 1213 are connected via the first press surface 1211, and the first press surface 1211 and the second press surface 1212 are inclined to each other. Moreover, the first press surface 1211 and the third press surface 1213 are inclined to each other. A test piece can be sandwiched between the first upper mold 1110 and the first lower mold 1210.

同様に、第二下型1220は、第二上型1120の、第一プレス面1121、第二プレス面1122及び第三プレス面1123とそれぞれ対応する形状の第一プレス面1221、第二プレス面1222及び第三プレス面1223を備えている。第二プレス面1222及び第三プレス面1223は第一プレス面1221を介して接続され、第一プレス面1221と第二プレス面1222とは互いに傾斜している。また、第一プレス面1221と第三プレス面1223とは互いに傾斜している。第二上型1120と第二下型1220との間で試験片を挟み込むことができる。 Similarly, the second lower die 1220 has a first press surface 1221 and a second press surface that correspond to the first press surface 1121, second press surface 1122, and third press surface 1123 of the second upper die 1120, respectively. 1222 and a third press surface 1223. The second press surface 1222 and the third press surface 1223 are connected via the first press surface 1221, and the first press surface 1221 and the second press surface 1222 are inclined to each other. Moreover, the first press surface 1221 and the third press surface 1223 are inclined to each other. A test piece can be sandwiched between the second upper mold 1120 and the second lower mold 1220.

すなわち、第一下型1210の第一プレス面1211と第二下型1220の第一プレス面1221とは互いに平行となるように配される。また、第一下型1210の第二プレス面1212と第二下型1220の第二プレス面1222も互いに平行となり、第一下型1210の第三プレス面1213と第二下型1220の第三プレス面1223も互いに平行となるように配される。 That is, the first press surface 1211 of the first lower mold 1210 and the first press surface 1221 of the second lower mold 1220 are arranged to be parallel to each other. Further, the second press surface 1212 of the first lower mold 1210 and the second press surface 1222 of the second lower mold 1220 are also parallel to each other, and the third press surface 1213 of the first lower mold 1210 and the third press surface 1213 of the second lower mold 1220 are parallel to each other. The press surfaces 1223 are also arranged parallel to each other.

また、第一下型1210は、第一プレス面1211、第二プレス面1212及び第三プレス面1213とそれぞれ交差する第一側面1214及び第二側面1215(図9の例では図示せず)を備えている。第二下型1220は側面1224を備え、側面1224は、隣接する第一下型1210の第一側面1214及び第二側面1215のいずれかと互いに平行となるように配される。また、第一側面1214及び第二側面1215と、側面1224との間には所定のクリアランスが設けられる。 The first lower die 1210 also has a first side surface 1214 and a second side surface 1215 (not shown in the example of FIG. 9) that intersect with the first press surface 1211, the second press surface 1212, and the third press surface 1213, respectively. We are prepared. The second lower mold 1220 includes a side surface 1224, and the side surface 1224 is arranged to be parallel to either the first side surface 1214 or the second side surface 1215 of the adjacent first lower mold 1210. Further, a predetermined clearance is provided between the first side surface 1214 and the second side surface 1215 and the side surface 1224.

評価装置1000は、図8及び図9に示すような第一上型1110及び第二上型1120を保持する上ユニット1100(図8)と第一下型1210及び第二下型1220を保持する下ユニット1200(図9)を備え、上ユニット1100と下ユニット1200とを相対的に移動させるユニット駆動機構(図示せず)を備えていてもよい。このユニット駆動機構により、第一上型1110及び第二上型1120を、第一下型1210及び第二下型1220に対して移動させることができる。 The evaluation device 1000 holds an upper unit 1100 (FIG. 8) that holds a first upper mold 1110 and a second upper mold 1120 as shown in FIGS. 8 and 9, and a first lower mold 1210 and a second lower mold 1220. A lower unit 1200 (FIG. 9) may be provided, and a unit drive mechanism (not shown) for relatively moving the upper unit 1100 and the lower unit 1200 may be provided. This unit drive mechanism allows the first upper mold 1110 and the second upper mold 1120 to be moved relative to the first lower mold 1210 and the second lower mold 1220.

評価装置1000は、金型同士を相対的に平行移動させるための駆動機構(図示せず)を備える。この駆動機構により、第一上型1110及び第一下型1210を、第二上型1120及び第二下型1220に対して、第一上型1110の第一プレス面1111に対して傾斜し、かつ第一上型1110から第二上型1120へ向かう方向と交差する変位方向に、平行移動可能となる。この駆動機構は、例えば、上ユニット1100又は下ユニット1200によって保持され、第一上型1110又は第一下型1210を第二上型1120又は第二下型1220に対して相対的に移動可能としてもよい。又はこの駆動機構は、第二上型1120又は第二下型1220を第一上型1110又は第一下型1210に対して相対的に移動可能としてもよい。 The evaluation device 1000 includes a drive mechanism (not shown) for relatively moving the molds in parallel. With this drive mechanism, the first upper mold 1110 and the first lower mold 1210 are tilted with respect to the first press surface 1111 of the first upper mold 1110 with respect to the second upper mold 1120 and the second lower mold 1220, Moreover, it becomes possible to move in parallel in a displacement direction that intersects the direction from the first upper mold 1110 to the second upper mold 1120. This drive mechanism is, for example, held by the upper unit 1100 or the lower unit 1200, and allows the first upper mold 1110 or the first lower mold 1210 to be moved relative to the second upper mold 1120 or the second lower mold 1220. Good too. Alternatively, this drive mechanism may be able to move the second upper mold 1120 or the second lower mold 1220 relative to the first upper mold 1110 or the first lower mold 1210.

上記の各駆動機構は、試験片に十分な荷重を与えて変形を生じさせられるものであれば、油圧ポンプや電動アクチュエータなどであってよい。 Each of the above drive mechanisms may be a hydraulic pump, an electric actuator, or the like, as long as it can apply a sufficient load to the test piece to cause deformation.

上記の説明では、便宜上、上型、下型、上ユニット、下ユニットと称しているが、これらの構成はその位置関係が上下方向に限られない。また、第一上型1110、第二上型1120、第一下型1210および第二下型1220は、それぞれ上ユニット1100および下ユニット1200から着脱可能であり、異なる形状を有する金型へ容易に交換できる。 In the above description, for convenience, they are referred to as an upper mold, a lower mold, an upper unit, and a lower unit, but the positional relationship of these structures is not limited to the vertical direction. Further, the first upper mold 1110, the second upper mold 1120, the first lower mold 1210, and the second lower mold 1220 are removable from the upper unit 1100 and the lower unit 1200, respectively, and can be easily attached to molds having different shapes. Can be exchanged.

次に本実施形態に係る評価装置を用いて、試験片にせん断変形を生じさせる試験方法を説明する。以下の説明で用いる図10、図12及び図14は、評価装置1000を、第一上型1110の第一プレス面1111、第二プレス面1112及び第三プレス面1113を通る平面で切断した斜視図である。すなわち、実際の評価装置では、これらの図の断面を対称面として、これらの図で示される構造と同様かつ面対称の構造を有している。 Next, a test method for causing shear deformation in a test piece using the evaluation device according to this embodiment will be described. 10, 12, and 14 used in the following description are perspective views of the evaluation device 1000 cut along a plane passing through the first press surface 1111, second press surface 1112, and third press surface 1113 of the first upper die 1110. It is a diagram. That is, the actual evaluation device has a structure similar to and symmetrical to the structure shown in these figures, with the cross sections of these figures serving as planes of symmetry.

まず、図10に示すように、第一実施形態で説明した平板上の試験片300を、第一下型1210及び第二下型1220のプレス面上に載置する。この時、第一下型1210の各プレス面と第二下型1220の各プレス面は、同一平面上に配されている。 First, as shown in FIG. 10, the flat test piece 300 described in the first embodiment is placed on the pressing surfaces of the first lower mold 1210 and the second lower mold 1220. At this time, each press surface of the first lower mold 1210 and each press surface of the second lower mold 1220 are arranged on the same plane.

ここで、図11、図13及び図15は、それぞれ図10、図12及び図14に示す状態の評価装置1000を、A-A’の位置においてプレス方向に平行な面で見たときの断面図である。 Here, FIGS. 11, 13, and 15 are cross sections of the evaluation apparatus 1000 in the states shown in FIGS. 10, 12, and 14, respectively, when viewed from a plane parallel to the press direction at the AA' position. It is a diagram.

次いで、図12及び図13に示すように、上ユニット1100を下ユニット1200側へ移動させ、第一上型1110と第一下型1210、第二上型1120と第二下型1220とによって試験片300を挟み込み、試験片300を変形させる。このとき、第一上型1110、第一下型1210、第二上型1120及び第二下型1220の各プレス面が傾斜していることによって、試験片300には、平面部301と、平面部301を介して接続され平面部301に対して傾斜する第一拘束面302及び第二拘束面303が形成される。 Next, as shown in FIGS. 12 and 13, the upper unit 1100 is moved to the lower unit 1200 side, and a test is performed using the first upper mold 1110 and the first lower mold 1210, and the second upper mold 1120 and the second lower mold 1220. The test piece 300 is deformed by sandwiching the piece 300. At this time, since the pressing surfaces of the first upper mold 1110, the first lower mold 1210, the second upper mold 1120, and the second lower mold 1220 are inclined, the test piece 300 has a flat part 301 and a flat part 301. A first restraint surface 302 and a second restraint surface 303 are formed which are connected via the portion 301 and are inclined with respect to the plane portion 301.

次いで、図14に示すように、上ユニット1100と下ユニット1200の位置を保持したまま、第一上型1110及び第一下型1210を、第二上型1120及び第二下型1220に対して、第一上型1110の第一プレス面1111に対して傾斜し、かつ第一上型1110から第二上型1120へ向かう方向と交差する変位方向に平行移動させて壁部306を形成する。 Next, as shown in FIG. 14, while maintaining the positions of the upper unit 1100 and the lower unit 1200, the first upper mold 1110 and the first lower mold 1210 are placed against the second upper mold 1120 and the second lower mold 1220. , the wall portion 306 is formed by moving in parallel in a displacement direction that is inclined with respect to the first press surface 1111 of the first upper mold 1110 and intersects with the direction from the first upper mold 1110 to the second upper mold 1120.

この平行移動に際し、試験片300において第一上型1110及び第一下型1210に挟まれている箇所は、試験片300が面外変形しない力で挟まれている。また、試験片300において第二上型1120及び第二下型1220に挟まれている箇所は、試験片300の当該箇所の面内方向において移動可能な程度の力で挟まれている。 During this parallel movement, the portion of the test piece 300 that is sandwiched between the first upper die 1110 and the first lower die 1210 is sandwiched with a force that prevents the test piece 300 from being deformed out of plane. Further, the portion of the test piece 300 that is sandwiched between the second upper die 1120 and the second lower die 1220 is sandwiched with such force that the portion of the test piece 300 can be moved in the in-plane direction.

このような、第一上型1110及び第一下型1210の、第二上型1120及び第二下型1220に対する平行移動により、第一上型1110の第一側面1114と第二下型1220の側面1224との間に、試験片300の壁部306が形成される。 Due to such parallel movement of the first upper mold 1110 and the first lower mold 1210 with respect to the second upper mold 1120 and the second lower mold 1220, the first side surface 1114 of the first upper mold 1110 and the second lower mold 1220 are moved. A wall portion 306 of the test piece 300 is formed between the side surface 1224 and the side surface 1224.

ここで、試験片300において第一上型1110及び第一下型1210に挟まれている箇所が、第一実施形態で説明した第一範囲に相当し、第二上型1120及び第二下型1220に挟まれている箇所が、第一実施形態で説明した第二範囲に相当する。すなわち、試験片300において第二上型1120及び第二下型1220に挟まれている箇所は、試験片300の当該箇所の面内方向において移動可能な程度の力で挟まれているため、金型の平行移動に伴い、壁部306に向けて流動する。 Here, a portion of the test piece 300 that is sandwiched between the first upper mold 1110 and the first lower mold 1210 corresponds to the first range described in the first embodiment, and the second upper mold 1120 and the second lower mold The area between 1220 and 1220 corresponds to the second range described in the first embodiment. In other words, the portion of the test piece 300 that is sandwiched between the second upper die 1120 and the second lower die 1220 is sandwiched with such force that the portion of the test piece 300 can be moved in the in-plane direction. As the mold moves in parallel, it flows toward the wall portion 306.

以上のような金型の動きによって、図14又は図15に例示するように、試験片300に壁部306が形成され、第一実施形態で説明したような壁部306の一部にせん断変形部307が形成される。そのため、この評価装置1000を用いて、試験片300にせん断変形を生じさせ、試験片300の割れの発生を検出することができる。 Due to the movement of the mold as described above, a wall portion 306 is formed in the test piece 300 as illustrated in FIG. 14 or 15, and a portion of the wall portion 306 is subjected to shear deformation as described in the first embodiment. A section 307 is formed. Therefore, using this evaluation device 1000, it is possible to cause shear deformation in the test piece 300 and detect the occurrence of cracks in the test piece 300.

なお、上述した駆動機構に検出器(図示せず)が接続され、第一上型1110、第一下型1210の、第二上型1120及び第二下型1220のいずれかの金型に生じる荷重を検出することで、試験片300に割れが生じたときのストローク量を測定できるようにしてもよい。ここでストローク量とは、第一上型1110又は第一下型1210の第二上型1120又は第二下型1220に対する、上述した平行移動方向の移動量である。 Note that a detector (not shown) is connected to the above-mentioned drive mechanism, and a detector (not shown) is connected to the drive mechanism described above, and the detection occurs in any of the molds of the first upper mold 1110, the first lower mold 1210, the second upper mold 1120, and the second lower mold 1220. By detecting the load, it may be possible to measure the stroke amount when a crack occurs in the test piece 300. Here, the stroke amount is the amount of movement of the first upper mold 1110 or the first lower mold 1210 with respect to the second upper mold 1120 or the second lower mold 1220 in the above-mentioned parallel movement direction.

なお、試験片300に割れが生じない場合には、試験片300において第二上型1120及び第二下型1220に挟まれている箇所が全て、第一上型1110の第一側面1114と第二下型1220の側面1224との間に流動する。 Note that if no cracks occur in the test piece 300, all the parts of the test piece 300 that are sandwiched between the second upper mold 1120 and the second lower mold 1220 are connected to the first side surface 1114 of the first upper mold 1110 and the second lower mold 1220. It flows between the side surface 1224 of the second lower mold 1220.

なお、第一上型1110、第二上型1120、第一下型1210及び第二下型1220の各側面は、駆動機構によって、側面同士が変位方向と平行かつ、試験片300の厚みと等しい距離を保ったまま平行移動可能されてもよい。このような構成とすることで、第一上型1110、第二上型1120、第一下型1210及び第二下型1220の各側面の間で試験片300の厚さが減少しないかほとんど減少しないままでせん断変形を生じさせることができる。 Note that the side surfaces of the first upper mold 1110, the second upper mold 1120, the first lower mold 1210, and the second lower mold 1220 are driven by a drive mechanism so that the side surfaces are parallel to the displacement direction and have the same thickness as the test piece 300. It may be possible to move in parallel while maintaining the distance. With this configuration, the thickness of the test piece 300 does not decrease or almost decreases between each side of the first upper mold 1110, the second upper mold 1120, the first lower mold 1210, and the second lower mold 1220. It is possible to generate shear deformation without causing any deformation.

なお、側面同士が変位方向と平行かつ、試験片300の厚みと等しい距離を保った状態であれば、壁部306と平面部301が垂直な場合に限られず、これらの面が互いに傾斜するようにせん断変形されてもよい。 Note that as long as the side surfaces are parallel to the displacement direction and maintain a distance equal to the thickness of the test piece 300, the wall portion 306 and the flat portion 301 are not limited to being perpendicular, but may be such that these surfaces are inclined to each other. It may be sheared and deformed.

本実施形態に係る評価装置1000において、第一プレス面(1111,1121,1211,1221)と第二プレス面(1112,1122,1212,1222)とがなす角度が異なる金型を用いることで、平面部301と、第一拘束面302とがなす角度、すなわち上述した角度θを変化させて評価を実施することができる。これにより、せん断歪み量を調整できる。 In the evaluation device 1000 according to the present embodiment, by using a mold in which the first press surface (1111, 1121, 1211, 1221) and the second press surface (1112, 1122, 1212, 1222) have different angles, Evaluation can be performed by changing the angle formed by the plane portion 301 and the first restraint surface 302, that is, the angle θ mentioned above. This allows the amount of shear strain to be adjusted.

また、本実施形態に係る評価装置1000において、金型を傾けることで、変位方向と第一上型1110、第二上型1120、第一下型1210及び第二下型1220の各第一プレス面(1111,1121,1211,1221)とがなす角度、すなわち上述した角度αを変化させることができる。これにより、平面部301と、変位方向に平行な基準線とがなす角度を変化させて評価を実施することができる。これにより、せん断歪み領域を調整できる。 In the evaluation device 1000 according to the present embodiment, by tilting the mold, the displacement direction and each first press of the first upper mold 1110, the second upper mold 1120, the first lower mold 1210, and the second lower mold 1220 can be adjusted. The angle formed by the surface (1111, 1121, 1211, 1221), that is, the angle α mentioned above, can be changed. Thereby, evaluation can be performed by changing the angle between the plane portion 301 and the reference line parallel to the displacement direction. This allows the shear strain region to be adjusted.

また、本実施形態に係る評価装置1000において、各金型における、第二プレス面と第三プレス面とが並ぶ方向において、第一プレス面が複数設けられ、隣り合う第一プレス面同士が互いに傾斜していてもよい。
このような金型を用いて試験片の形成及びせん断変形をすることで、第二実施形態で説明したような一つの試験片に異なる条件のせん断変形部を複数形成することができる。
Furthermore, in the evaluation device 1000 according to the present embodiment, a plurality of first press surfaces are provided in the direction in which the second press surface and the third press surface are lined up in each mold, and adjacent first press surfaces are mutually adjacent to each other. It may be inclined.
By forming and shearing a test piece using such a mold, it is possible to form a plurality of shear deformation parts under different conditions in one test piece as described in the second embodiment.

このような評価装置1000を用いることで、平板状の試験片を単一の金型内でせん断変形させることができ、極めて簡易かつ精度良くせん断変形の評価を実施することができる。本実施形態に係る評価装置は、例えば、第一実施形態又は第二実施形態で説明したせん断変形特性評価方法に好ましく用いることができる。また、上述の評価装置1000を用いることで、各金型間のクリアランスを所定の値に確保しながら試験片をせん断変形させることができる。 By using such an evaluation apparatus 1000, a flat test piece can be shear-deformed within a single mold, and shear deformation can be evaluated very easily and accurately. The evaluation device according to this embodiment can be preferably used, for example, in the shear deformation characteristic evaluation method described in the first embodiment or the second embodiment. Moreover, by using the above-described evaluation apparatus 1000, the test piece can be sheared and deformed while ensuring the clearance between the respective molds at a predetermined value.

なお、上述した、第一上型1110、第二上型1120、第一下型1210及び第二下型1220は、上ユニット1100、下ユニット1200から取り外し可能であり、適宜所望の金型に交換できる。 Note that the first upper mold 1110, second upper mold 1120, first lower mold 1210, and second lower mold 1220 described above can be removed from the upper unit 1100 and the lower unit 1200, and can be replaced with desired molds as appropriate. can.

[第四実施形態]
次に、本発明に係るせん断変形特性評価用試験片について説明する。
[Fourth embodiment]
Next, a test piece for evaluating shear deformation characteristics according to the present invention will be explained.

本実施形態に係るせん断変形特性評価用試験片は、試験片にせん断変形を生じさせて、試験片を形成する材料のせん断変形特性を評価するために用いられる試験片であって、平面部と、平面部を介して接続され、平面部に対して傾斜する第一拘束面及び第二拘束面と、を有する。このせん断変形特性評価用試験片を所定形状の金型、例えば第三実施形態で説明した評価装置1000の第一下型1210及び第二下型1220のプレス面上に載置して、せん断変形を生じさせてもよい。 The test piece for evaluating shear deformation characteristics according to the present embodiment is a test piece used for causing shear deformation in the test piece and evaluating the shear deformation characteristics of the material forming the test piece, and is used for evaluating the shear deformation characteristics of the material forming the test piece. , a first restraint surface and a second restraint surface that are connected via a plane part and are inclined with respect to the plane part. This test piece for evaluating shear deformation characteristics is placed on the press surfaces of a mold of a predetermined shape, for example, the first lower mold 1210 and the second lower mold 1220 of the evaluation apparatus 1000 described in the third embodiment, and the shear deformation is performed. may be caused.

上記構成からなるせん断変形特性評価用試験片では、平面部、第一拘束面及び第二拘束面が設けられていることで、これらの平面の一部を平行移動させてせん断変形部を含む壁部を形成させることができる。そのため、従来の試験方法で割れが生じていたような条件であっても、試験片に割れが生じずに、材料本来の変形歪みを高い精度で得ることができる。 The test piece for evaluating shear deformation characteristics having the above configuration is provided with a flat surface, a first restraint surface, and a second restraint surface, so that a part of these planes can be translated in parallel to form a wall containing a shear deformation part. A section can be formed. Therefore, even under conditions that would have caused cracks in conventional testing methods, the test piece does not crack, and the original deformation strain of the material can be obtained with high accuracy.

以下に、本発明の実施例を説明する。 Examples of the present invention will be described below.

せん断変形試験に用いるため、以下の表1に示す引張強度及び板厚の鋼板を準備した。鋼板は平板状である。 Steel plates having the tensile strength and thickness shown in Table 1 below were prepared for use in the shear deformation test. The steel plate is flat.

Figure 0007445130000001
Figure 0007445130000001

(実施例A)
本実施例では、表1の鋼板を矩形状に設定した。
(Example A)
In this example, the steel plates in Table 1 were set to have a rectangular shape.

Figure 0007445130000002
Figure 0007445130000002

そして、加工後の各鋼板を試験片の面内方向に変形させ、せん断変形を生じさせる試験を行った。すなわち、実施例Aでは、従来の手法によって試験片にせん断変形を生じさせた。せん断変形の途中で割れが生じた場合、その条件におけるせん断歪み量(主歪み量)とせん断変形角を、CAE解析によって算出した。その結果を表3に示す。 Then, a test was conducted in which each processed steel plate was deformed in the in-plane direction of the test piece to cause shear deformation. That is, in Example A, the test piece was subjected to shear deformation using a conventional method. When cracking occurred during shear deformation, the shear strain amount (principal strain amount) and shear deformation angle under that condition were calculated by CAE analysis. The results are shown in Table 3.

Figure 0007445130000003
Figure 0007445130000003

(実施例B)
本実施例では、上述した第三実施形態の評価装置を用いて、本発明の評価方法によって表1の各鋼板を変形及びせん断変形させた。各鋼板について、表4に示す条件の金型で変形及びせん断変形を実施した。各鋼板のサイズは幅165mm、長さ190mmとした。各試験片において、各鋼板の長さ方向に壁部が延在するようにした。
(Example B)
In this example, each steel plate in Table 1 was deformed and sheared by the evaluation method of the present invention using the evaluation apparatus of the third embodiment described above. Each steel plate was subjected to deformation and shear deformation using a mold under the conditions shown in Table 4. The size of each steel plate was 165 mm in width and 190 mm in length. In each test piece, the wall portion extended in the length direction of each steel plate.

Figure 0007445130000004
Figure 0007445130000004

実施例Aと同様に、せん断変形の途中で試験片に割れが生じた場合、その条件におけるせん断歪み量とせん断変形角とを、CAE解析によって算出した。その結果を表5に示す。 As in Example A, when a crack occurred in the test piece during shear deformation, the shear strain amount and shear deformation angle under that condition were calculated by CAE analysis. The results are shown in Table 5.

Figure 0007445130000005
Figure 0007445130000005

実施例Aの表3と実施例Bの表5との比較からわかるように、いずれの鋼板においても、本発明に係る評価方法によってせん断歪み量を測定した場合、従来の試験方法により高いせん断歪み量を測定することができた。 As can be seen from the comparison between Table 3 of Example A and Table 5 of Example B, when the amount of shear strain was measured using the evaluation method according to the present invention in any of the steel plates, the amount of shear strain was higher than that measured by the conventional test method. I was able to measure the amount.

(実施例C)
本実施例では、上述した第三実施形態の評価装置を用いて、表1の鋼板Cを変形及びせん断変形させた。本実施例では、金型の第一プレス面と第二プレス面とがなす角度が異なる3種類の金型を用意して、各金型での割れの発生を評価した。純粋せん断軸周辺にFLDが分布する変形領域(条件)にて実施した。
(Example C)
In this example, the steel plate C in Table 1 was deformed and sheared using the evaluation apparatus of the third embodiment described above. In this example, three types of molds with different angles between the first press surface and the second press surface of the molds were prepared, and the occurrence of cracks in each mold was evaluated. The test was carried out under a deformation region (condition) in which FLD is distributed around the pure shear axis.

表6に、θの値と、これに対応する割れの発生状況、並びに、CAE解析によって算出したせん断歪み量とせん断変形角とを記載する。 Table 6 lists the value of θ, the corresponding crack occurrence status, and the shear strain amount and shear deformation angle calculated by CAE analysis.

Figure 0007445130000006
Figure 0007445130000006

表6の結果から、鋼板Cでは、θが112.5°で試験片に割れが発生したため、このときのせん断歪み量とせん断変形角を、鋼板Cの評価値とした。 From the results in Table 6, in steel plate C, cracking occurred in the test piece when θ was 112.5°, so the shear strain amount and shear deformation angle at this time were taken as the evaluation values for steel plate C.

(実施例D)
本実施例では、上述した第三実施形態の評価装置を用いて、表1の鋼板Cを変形及びせん断変形させた。本実施例では、θが93°である金型を用いて、この金型の第一プレス面(図8の第一上型1110の第一プレス面1111および図9の第一下型1210の第一プレス面1211)のプレス方向に対する傾斜角(角度α)を変化させて、それぞれの傾斜角における、FLD(Forming Limit Diagram)分布のグラフを得た。これを図16~図18に示す。
(Example D)
In this example, the steel plate C in Table 1 was deformed and sheared using the evaluation apparatus of the third embodiment described above. In this example, a mold in which θ is 93° is used, and the first press surface of this mold (the first press surface 1111 of the first upper mold 1110 in FIG. 8 and the first lower mold 1210 in FIG. 9) is used. The inclination angle (angle α) of the first press surface 1211) with respect to the pressing direction was changed to obtain a graph of FLD (Forming Limit Diagram) distribution at each inclination angle. This is shown in FIGS. 16 to 18.

図16~図18の縦軸は最大主歪みε1を示し、横軸は最小主歪みε2を示す。図16~図18の直線aは純粋せん断変形軸を示し、直線bは単軸引張軸、直線cは単軸圧縮軸をそれぞれ示す。すなわち、直線bと直線cで囲まれた範囲がせん断歪み領域である。
また、物理的意味は以下の通りである。
最大主歪み(ε1):図19に例示するように、材料が変形した時に発生する引張方向の最大歪みを示す。
最小主歪み(ε2):図19に例示するように、材料が変形した時に発生する圧縮方向の最大歪みを示す。
純粋せん断変形軸:引張/圧縮の歪み比(ε1=-ε2)
単軸引張軸:引張/圧縮の歪み比(ε1=-2*ε2)
単軸圧縮軸:引張/圧縮の歪み比(ε1=-1/2*ε2)
The vertical axis in FIGS. 16 to 18 indicates the maximum principal strain ε1, and the horizontal axis indicates the minimum principal strain ε2. The straight line a in FIGS. 16 to 18 represents the pure shear deformation axis, the straight line b represents the uniaxial tension axis, and the straight line c represents the uniaxial compression axis. That is, the range surrounded by straight lines b and c is a shear strain region.
Moreover, the physical meaning is as follows.
Maximum principal strain (ε1): As illustrated in FIG. 19, this indicates the maximum strain in the tensile direction that occurs when the material is deformed.
Minimum principal strain (ε2): As illustrated in FIG. 19, this indicates the maximum strain in the compressive direction that occurs when the material is deformed.
Pure shear deformation axis: tensile/compressive strain ratio (ε1=-ε2)
Uniaxial tensile axis: tensile/compressive strain ratio (ε1=-2*ε2)
Uniaxial compression axis: tension/compression strain ratio (ε1=-1/2*ε2)

つまり、図16~図18のグラフは、試験片の各部位においてどのような引張/圧縮歪みのバランスで変形しているかを示しており、歪み比=-1(純粋せん断軸)に近い程、体積一定の観点から、変形時の板厚増減が少なくなる。純粋せん断変形軸上に分布するのが変形の理想状態であり、また純粋せん断軸から単軸引張側の領域は引張方向の歪みが大きいため板厚が若干減少し、単軸圧縮側の領域は板厚が増加する。 In other words, the graphs in Figures 16 to 18 show the balance of tensile/compressive strain in each part of the test piece, and the closer the strain ratio is to -1 (pure shear axis), the more From the viewpoint of constant volume, the change in plate thickness during deformation is reduced. The ideal state of deformation is distribution on the pure shear deformation axis, and the area on the uniaxial tension side from the pure shear axis has a large strain in the tensile direction, so the plate thickness decreases slightly, and the area on the uniaxial compression side The plate thickness increases.

図16~図18において、黒色のプロットはせん断変形評価部の歪みを示し、グレーのプロットはその他部位の歪みを示す。黒色のプロットは、図4のせん断変形部に対応する。 In FIGS. 16 to 18, black plots indicate distortions in the shear deformation evaluation section, and gray plots indicate distortions in other parts. The black plot corresponds to the shear deformation section in FIG.

図16又は図18の例では、直線b側又は直線c側に分布するように角度αを調整し、b側分布の場合はやや引張歪みの大きい変形を、c側分布の場合はやや圧縮歪みの大きい変形を模擬している。図17の例では、分布が直線a上に載るように角度αを調整しており、板厚減少の極めて少ない変形状態を模擬している。 In the example of FIG. 16 or 18, the angle α is adjusted so that the distribution is on the straight line b side or the straight line c side, and in the case of the distribution on the b side, the deformation is caused by a slightly large tensile strain, and in the case of the distribution on the c side, the deformation is caused by a slightly compressive strain. It simulates a large deformation of . In the example shown in FIG. 17, the angle α is adjusted so that the distribution lies on the straight line a, simulating a deformed state in which the decrease in plate thickness is extremely small.

図16~図18に示すように、金型のプレス方向に対する傾斜角αを変化させることで、せん断歪み領域(歪み比)を調整することができる。このように、本発明に係るせん断変形特性評価方法によって、実製品における様々な箇所の様々な変形状態における限界せん断歪み量を、簡易な試験形状及び装置で、精度良く評価することができる。 As shown in FIGS. 16 to 18, the shear strain region (strain ratio) can be adjusted by changing the inclination angle α of the mold with respect to the pressing direction. As described above, by the shear deformation characteristic evaluation method according to the present invention, it is possible to accurately evaluate the critical shear strain amount in various deformation states at various locations in an actual product using a simple test shape and apparatus.

(実施例E)
本実施例では、上述した第三実施形態の評価装置を用いて、鋼板Cを変形及びせん断変形させた。本実施例では、θがそれぞれ、93°、112.5°、128°である3種の金型を用いて、上述したFLD分布が純粋せん断軸(a)上又はその近傍に分布するように、これらの金型の第一プレス面のプレス方向に対する傾斜角(角度α)を変化させた。それぞれの金型における、FLD分布のグラフを図20~図22に示す。図20はθが93°、図21はθが112.5°、図22はθが128°である。図20~図22の表記は、図16~図18と同様である。
(Example E)
In this example, the steel plate C was deformed and sheared using the evaluation apparatus of the third embodiment described above. In this example, three types of molds in which θ is 93°, 112.5°, and 128° are used so that the above-mentioned FLD distribution is distributed on or near the pure shear axis (a). , the inclination angle (angle α) of the first press surface of these molds with respect to the press direction was changed. Graphs of FLD distribution in each mold are shown in FIGS. 20 to 22. In FIG. 20, θ is 93°, in FIG. 21, θ is 112.5°, and in FIG. 22, θ is 128°. The notations in FIGS. 20 to 22 are the same as those in FIGS. 16 to 18.

図20~図22に示すように、本発明を用いることで、任意の変形軸(例えば純粋せん断)における歪み量を調整できるため、評価したい歪み量での特性試験ができるという利点がある。 As shown in FIGS. 20 to 22, by using the present invention, the amount of strain in any deformation axis (for example, pure shear) can be adjusted, so there is an advantage that characteristic tests can be performed at the amount of strain that is desired to be evaluated.

本発明によれば、精度の高いせん断変形評価特性が得られるせん断変形特性評価方法、評価装置及びせん断変形特性評価用試験片を提供し、割れなどの成形不良の事前予測及び工期短縮/工数削減に活用できるため、産業上極めて有用である。 According to the present invention, there are provided a shear deformation characteristic evaluation method, an evaluation device, and a test piece for shear deformation characteristic evaluation that allow highly accurate shear deformation evaluation characteristics to be obtained, thereby allowing advance prediction of molding defects such as cracks and shortening of construction period/man-hour reduction. It is extremely useful industrially as it can be used for many purposes.

100、300 試験片
101、301 平面部
102、302 第一拘束面
103、303 第二拘束面
104 第一範囲
105 第二範囲
106、306 壁部
107、307 せん断変形部
100, 300 Test piece 101, 301 Plane section 102, 302 First restraining surface 103, 303 Second restraining surface 104 First range 105 Second range 106, 306 Wall section 107, 307 Shear deformation section

Claims (5)

試験片にせん断変形を生じさせて、試験片を形成する材料のせん断変形特性を評価する方法であって、
前記試験片に、平面部と、前記平面部を介して接続され、前記平面部に対して傾斜する第一拘束面及び第二拘束面とを形成し、
前記平面部、前記第一拘束面及び前記第二拘束面に跨る第一範囲と、前記平面部、前記第一拘束面及び前記第二拘束面に跨り前記第一範囲と隣り合う第二範囲とを、前記平面部に対して傾斜した変位方向に相対的に平行移動させることで前記第一範囲と前記第二範囲との間に壁部を形成するとともに、
前記第一範囲と前記第二範囲とを前記変位方向に平行移動する際に、前記第二範囲から前記壁部に向けて材料を流動させることで、前記壁部をせん断変形させ、
前記壁部のせん断変形部のせん断変形特性を評価する
ことを特徴とするせん断変形特性評価方法。
A method for evaluating shear deformation characteristics of a material forming a test piece by causing shear deformation in a test piece, the method comprising:
forming on the test piece a flat part, and a first restraining surface and a second restraining surface connected via the flat part and inclined with respect to the flat part;
a first range spanning the flat portion, the first restraining surface, and the second restraining surface; a second range spanning the flat portion, the first restraining surface, and the second restraining surface and adjacent to the first range; A wall is formed between the first range and the second range by relatively moving in parallel in a direction of displacement inclined with respect to the plane part, and
When moving the first range and the second range in parallel in the displacement direction, shearing and deforming the wall by flowing material from the second range toward the wall;
A method for evaluating shear deformation characteristics, comprising evaluating shear deformation characteristics of a shear deformation portion of the wall portion.
前記平面部と、前記第一拘束面とがなす角度を変化させて評価する
ことを特徴とする請求項1に記載のせん断変形特性評価方法。
2. The shear deformation characteristic evaluation method according to claim 1, wherein the evaluation is performed by changing the angle formed by the flat portion and the first restraining surface.
前記平面部と、前記変位方向に平行な基準線とがなす角度を変化させて評価する
ことを特徴とする請求項1又は2に記載のせん断変形特性評価方法。
3. The shear deformation characteristic evaluation method according to claim 1, wherein the evaluation is performed by changing an angle formed between the plane portion and a reference line parallel to the displacement direction.
前記第一拘束面と前記第二拘束面とが並ぶ方向において、前記平面部が複数形成され、隣り合う前記平面部同士は互いに傾斜している
ことを特徴とする請求項1に記載のせん断変形特性評価方法。
Shear deformation according to claim 1, characterized in that a plurality of the flat parts are formed in the direction in which the first restraining surface and the second restraining surface are lined up, and the adjacent flat parts are inclined to each other. Characterization methods.
前記第一拘束面と前記第一拘束面と隣り合う前記平面部とがなす角度と、前記第二拘束面と前記第二拘束面と隣り合う前記平面部とがなす角度とが異なる
ことを特徴とする請求項4に記載のせん断変形特性評価方法。
The angle formed by the first restraining surface and the flat part adjacent to the first restraining surface is different from the angle formed by the second restraining surface and the flat part adjacent to the second restraining surface. The shear deformation characteristic evaluation method according to claim 4.
JP2020103673A 2020-06-16 2020-06-16 Shear deformation characteristics evaluation method Active JP7445130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020103673A JP7445130B2 (en) 2020-06-16 2020-06-16 Shear deformation characteristics evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020103673A JP7445130B2 (en) 2020-06-16 2020-06-16 Shear deformation characteristics evaluation method

Publications (2)

Publication Number Publication Date
JP2021196289A JP2021196289A (en) 2021-12-27
JP7445130B2 true JP7445130B2 (en) 2024-03-07

Family

ID=79197789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020103673A Active JP7445130B2 (en) 2020-06-16 2020-06-16 Shear deformation characteristics evaluation method

Country Status (1)

Country Link
JP (1) JP7445130B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042067A1 (en) 2012-09-12 2014-03-20 新日鐵住金株式会社 Method for producing curved article and skeleton structure member for automobile body shell
WO2017170533A1 (en) 2016-03-28 2017-10-05 新日鐵住金株式会社 Method for manufacturing press-formed article
JP2017200708A (en) 2016-04-04 2017-11-09 新日鐵住金株式会社 Manufacturing line of press molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042067A1 (en) 2012-09-12 2014-03-20 新日鐵住金株式会社 Method for producing curved article and skeleton structure member for automobile body shell
WO2017170533A1 (en) 2016-03-28 2017-10-05 新日鐵住金株式会社 Method for manufacturing press-formed article
JP2017200708A (en) 2016-04-04 2017-11-09 新日鐵住金株式会社 Manufacturing line of press molded article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
株式会社メタルエンジニア,ブレーキ加工,メタルエンジニア社HP,日本,株式会社メタルエンジニア,2019年12月31日

Also Published As

Publication number Publication date
JP2021196289A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
Yin et al. An experimental and numerical investigation of different shear test configurations for sheet metal characterization
Borrego et al. Mixed-mode fatigue crack growth behaviour in aluminium alloy
CA1325895C (en) Determining plane strain fracture toughness and the j-integral for solid materials using stress field modified miniature specimens
Defaisse et al. Ductile fracture of an ultra-high strength steel under low to moderate stress triaxiality
JP6856632B2 (en) Methods and computer program products for characterizing the bending response of materials
Geiger et al. Determination of forming limit diagrams–a new analysis method for characterization of materials' formability
US9513200B1 (en) Determination of a threshold crack length
KR20180097599A (en) Measurement of material properties under local tensile stress through contact dynamics
Cruces et al. Study of the biaxial fatigue behaviour and overloads on S355 low carbon steel
Gawryluk et al. Experimental-numerical studies on the first-ply failure analysis of real, thin walled laminated angle columns subjected to uniform shortening
JP2019035603A (en) Biaxial in-plane compression test method
Shahri et al. Critical distance method to estimate the fatigue life time of friction stir welded profiles
Xu et al. Study on the similarity methods for the assessment of ultimate strength of stiffened panels under axial load based on tests and numerical simulations
JP6197391B2 (en) Fatigue life evaluation method for structures
JP7445130B2 (en) Shear deformation characteristics evaluation method
Alves et al. Impact failure of beams using damage mechanics: Part II—Application
Conrad et al. GPU-based digital image correlation system for uniaxial and biaxial crack growth investigations
Casavola et al. Discussion on local approaches for the fatigue design of welded joints
KR101337954B1 (en) Method and apparatus for measuring extensity of metallic meterial
Wang et al. A review of selected small specimen test techniques for identifying deformation and failure properties of metallic materials
KR101035401B1 (en) Evaluation method for contact depth, contact area and hardness, and calibration method for indenter using instrumented indentation technique with sharp indenter
Dizajyekan et al. Fracture investigation in single point incremental forming of the Al/Cu laminated sheets using coupled damage plasticity model
Samadian et al. Elastic-plastic defect interaction in (a) symmetrical double edge notched tension specimens
Glaser et al. Comparison between Stereo Optical Strain Measurements and Finite Element Results in Stress Concentration Zones
Ruoppa et al. Bendability tests for ultra-high-strength steels with optical strain analysis and prediction of bending force

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R151 Written notification of patent or utility model registration

Ref document number: 7445130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151