JP7444230B1 - Air conditioning equipment - Google Patents

Air conditioning equipment Download PDF

Info

Publication number
JP7444230B1
JP7444230B1 JP2022191534A JP2022191534A JP7444230B1 JP 7444230 B1 JP7444230 B1 JP 7444230B1 JP 2022191534 A JP2022191534 A JP 2022191534A JP 2022191534 A JP2022191534 A JP 2022191534A JP 7444230 B1 JP7444230 B1 JP 7444230B1
Authority
JP
Japan
Prior art keywords
flow rate
heat exchanger
indoor
temperature
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022191534A
Other languages
Japanese (ja)
Other versions
JP2024078915A (en
Inventor
将弘 近藤
太貴 島野
和樹 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2022191534A priority Critical patent/JP7444230B1/en
Priority to PCT/JP2023/042885 priority patent/WO2024117217A1/en
Application granted granted Critical
Publication of JP7444230B1 publication Critical patent/JP7444230B1/en
Publication of JP2024078915A publication Critical patent/JP2024078915A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】快適性を向上させる。【解決手段】冷暖房装置は、水回路4に水を循環させるポンプ8と、水回路4に設けられる複数の室内熱交換器7-1~7-3と、複数の室内熱交換器7-1~7-3毎に設けられる複数の流量調整弁6-1~6-3と、複数の室内熱交換器7-1~7-3毎に設けられる複数の水温センサ26-1~26-3と、水の温度を調節する水冷媒熱交換器5と、所定の流量の水が水回路4を循環するようにポンプ8を制御し、複数の室内熱交換器7-1~7-3の熱負荷の最大値に基づいて算出された第1目標流量に最大負荷の室内熱交換器を流れる水の流量が等しくなるように、かつ、最大負荷でないある室内熱交換器の熱負荷と最大負荷の室内熱交換器に流入する水の温度とに基づいて算出された第2目標流量にその室内熱交換器を流れる水の流量が等しくなるように複数の流量調整弁6-1~6-3を制御する室外機制御装置28とを備えている。【選択図】図1[Problem] Improve comfort. [Solution] The air conditioning system includes a pump 8 that circulates water in a water circuit 4, a plurality of indoor heat exchangers 7-1 to 7-3 provided in the water circuit 4, and a plurality of indoor heat exchangers 7-1. A plurality of flow rate adjustment valves 6-1 to 6-3 provided for each of ~7-3 and a plurality of water temperature sensors 26-1 to 26-3 provided for each of a plurality of indoor heat exchangers 7-1 to 7-3. , a water-refrigerant heat exchanger 5 that adjusts the water temperature, and a pump 8 so that a predetermined flow rate of water circulates through the water circuit 4, and a plurality of indoor heat exchangers 7-1 to 7-3. The heat load and the maximum load of an indoor heat exchanger that is not at the maximum load so that the flow rate of water flowing through the indoor heat exchanger with the maximum load is equal to the first target flow rate calculated based on the maximum value of the heat load. A plurality of flow rate adjustment valves 6-1 to 6-3 are arranged so that the flow rate of water flowing through the indoor heat exchanger is equal to the second target flow rate calculated based on the temperature of the water flowing into the indoor heat exchanger. and an outdoor unit control device 28 for controlling the outdoor unit. [Selection diagram] Figure 1

Description

本開示の技術は、冷暖房装置に関する。 The technology of the present disclosure relates to a heating and cooling device.

圧縮機の動作によって冷媒が循環する冷媒回路と、水ポンプの動作によって水が循環する水回路とを備え、冷媒と水とを熱交換して水を加熱または冷却する熱交換器が設けられ、水回路に設けられた室内放熱器が、熱交換器で加熱された水により加熱した空気を室内に噴き出して室内を暖房する温水暖房装置が知られている(特許文献1)。具体的には、室内放熱器に流入する水の温度である往き温度が目標値となるように圧縮機の回転数を制御し、室内放熱器から流出する水の温度である戻り温度と往き温度との差が所定の範囲内となるように、水ポンプの回転数を制御する。この技術では、室内放熱器の放熱負荷の大きさに応じて適切な流量の水を室内放熱器に供給できる。また、このような温水暖房装置は、熱交換器で冷却された水により冷却した空気を室内放熱器が室内に噴き出すことにより、室内を冷房することができる。 It is equipped with a refrigerant circuit in which refrigerant is circulated by the operation of a compressor, and a water circuit in which water is circulated by the operation of a water pump, and a heat exchanger which heats or cools the water by exchanging heat between the refrigerant and water. A hot water heating device is known in which an indoor radiator provided in a water circuit blows air heated by water heated by a heat exchanger into the room to heat the room (Patent Document 1). Specifically, the rotation speed of the compressor is controlled so that the outgoing temperature, which is the temperature of the water flowing into the indoor radiator, is the target value, and the return temperature, which is the temperature of the water flowing out from the indoor radiator, and the outgoing temperature are controlled. The rotation speed of the water pump is controlled so that the difference between the With this technology, water can be supplied to the indoor radiator at an appropriate flow rate depending on the magnitude of the heat radiation load on the indoor radiator. Moreover, such a hot water heating device can cool a room by having an indoor radiator blow out air cooled by water cooled by a heat exchanger into the room.

特開2007-287895号公報Japanese Patent Application Publication No. 2007-287895

しかしながら、このような温水暖房装置の水回路に複数の室内放熱器が並列に設けられている場合、複数の室内放熱器ごとに放熱負荷の大きさに合わせた往き温度の調節ができないため、複数の室内放熱器ごとに要求される吹出空気温度が得られず、それぞれの室内放熱器が配置された部屋の快適性が低下するという問題がある。 However, when multiple indoor radiators are installed in parallel in the water circuit of such a hot water heating system, it is not possible to adjust the temperature of each indoor radiator according to the size of the heat radiation load. There is a problem in that the blowing air temperature required for each indoor radiator cannot be obtained, and the comfort of the room in which each indoor radiator is placed deteriorates.

開示の技術は、かかる点に鑑みてなされたものであって、快適性を向上させる冷暖房装置を提供することを目的とする。 The disclosed technology has been made in view of this point, and aims to provide a heating and cooling device that improves comfort.

本開示の一態様による冷暖房装置は、熱媒体回路の内部に熱媒体を循環させるポンプと、熱媒体回路に設けられ、互いに並列に設けられた複数の室内熱交換器と、複数の室内熱交換器毎に設けられる複数の流量調整弁と、複数の室内熱交換器毎に設けられる複数の熱媒体温度検出部と、熱媒体の温度を調節する熱源機と、複数の室内熱交換器に熱媒体が流れる複数台運転のときに、所定の流量の熱媒体が熱媒体回路を循環するように、ポンプを制御し、複数の室内熱交換器のうち熱負荷が最大である室内熱交換器を最大熱負荷室内熱交換器とし、最大熱負荷室内熱交換器の熱負荷に基づいて最大熱負荷目標流量を算出し、最大熱負荷室内熱交換器を流れる熱媒体の流量が最大熱負荷目標流量に等しくなるように、複数の流量調整弁のうちの最大熱負荷室内熱交換器に対応する流量調整弁を制御し、複数の室内熱交換器のうちの最大熱負荷室内熱交換器と異なる他の室内熱交換器を余熱負荷室内熱交換器とし、余熱負荷室内熱交換器の熱負荷と、最大熱負荷室内熱交換器に対応する熱媒体温度検出部により計測された最大熱負荷室内熱交換器に流入する熱媒体の温度とに基づいて算出された余熱負荷目標流量に、余熱負荷室内熱交換器を流れる熱媒体の流量が等しくなるように、複数の流量調整弁のうちの余熱負荷室内熱交換器に対応する流量調整弁を制御する制御部とを備えている。 A heating and cooling device according to one aspect of the present disclosure includes a pump that circulates a heat medium inside a heat medium circuit, a plurality of indoor heat exchangers provided in the heat medium circuit and provided in parallel with each other, and a plurality of indoor heat exchangers. A plurality of flow rate adjustment valves provided for each heat exchanger, a plurality of heat medium temperature detection units provided for each plurality of indoor heat exchangers, a heat source device that adjusts the temperature of the heat medium, and a heat source device for controlling the heat medium temperature of the plurality of indoor heat exchangers. When operating multiple units in which medium flows, the pump is controlled so that a predetermined flow rate of heat medium circulates through the heat medium circuit, and the indoor heat exchanger with the largest heat load is selected among the multiple indoor heat exchangers. The maximum heat load indoor heat exchanger is assumed to be the maximum heat load indoor heat exchanger, and the maximum heat load target flow rate is calculated based on the heat load of the maximum heat load indoor heat exchanger, and the flow rate of the heat medium flowing through the maximum heat load indoor heat exchanger is the maximum heat load target flow rate. The flow rate adjustment valve corresponding to the maximum heat load indoor heat exchanger among the plurality of indoor heat exchangers is controlled so that the maximum heat load is equal to The indoor heat exchanger is the residual heat load indoor heat exchanger, and the heat load of the residual heat load indoor heat exchanger and the maximum heat load indoor heat exchange measured by the heat medium temperature detection unit corresponding to the maximum heat load indoor heat exchanger. In order to make the flow rate of the heat medium flowing through the heat exchanger in the residual heat load room equal to the residual heat load target flow rate calculated based on the temperature of the heat medium flowing into the heat exchanger, and a control section that controls a flow rate adjustment valve corresponding to the heat exchanger.

開示の冷暖房装置は、快適性を向上させることができる。 The disclosed heating and cooling device can improve comfort.

図1は、実施例1の冷暖房装置が設けられている空気調和機を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram showing an air conditioner equipped with a heating and cooling device according to a first embodiment. 図2は、室外機制御装置を示すブロック図である。FIG. 2 is a block diagram showing the outdoor unit control device. 図3は、ポンプ目標流量テーブルを示す図である。FIG. 3 is a diagram showing a pump target flow rate table. 図4は、流量調整弁目標流量テーブルを示す図である。FIG. 4 is a diagram showing a flow rate adjustment valve target flow rate table. 図5は、制御動作を示すフローチャートである。FIG. 5 is a flowchart showing the control operation. 図6は、室内熱交換器における水温と暖房能力と流量との関係を示すグラフである。FIG. 6 is a graph showing the relationship between water temperature, heating capacity, and flow rate in the indoor heat exchanger.

以下に、本願が開示する実施形態にかかる冷暖房装置について、図面を参照して詳細に説明する。なお、以下の記載により本開示の技術が限定されるものではない。また、以下の記載においては、同一の構成要素に同一の符号を付与し、重複する説明を省略する。 EMBODIMENT OF THE INVENTION Below, the air conditioning apparatus concerning embodiment which this application discloses is demonstrated in detail with reference to drawings. Note that the technology of the present disclosure is not limited by the following description. In addition, in the following description, the same components are given the same reference numerals and redundant explanations will be omitted.

実施例1の冷暖房装置は、図1に示されているように、空気調和機1に設けられている。図1は、実施例1の冷暖房装置が設けられている空気調和機1を示す冷媒回路図である。空気調和機1は、室外機2と複数の室内機3-1~3-3とを備えている。室外機2は、屋外に設置されている。複数の室内機3-1~3-3のうちの第1室内機3-1は、空気調和機1により冷暖房される複数の部屋のうちの第1室に設置され、第2室内機3-2は、第2室に配置され、第3室内機3-3は、第3室に配置されている。 The heating and cooling device of Example 1 is provided in an air conditioner 1, as shown in FIG. FIG. 1 is a refrigerant circuit diagram showing an air conditioner 1 equipped with a heating and cooling device according to a first embodiment. The air conditioner 1 includes an outdoor unit 2 and a plurality of indoor units 3-1 to 3-3. The outdoor unit 2 is installed outdoors. The first indoor unit 3-1 of the plurality of indoor units 3-1 to 3-3 is installed in the first room of the plurality of rooms cooled and heated by the air conditioner 1, and the second indoor unit 3-1 is installed in the first room of the plurality of rooms cooled and heated by the air conditioner 1. 2 is placed in the second room, and the third indoor unit 3-3 is placed in the third room.

空気調和機1は、水回路4(熱媒体回路)をさらに備えている。水回路4は、水冷媒熱交換器5(熱源機)と複数の流量調整弁6-1~6-3と複数の室内熱交換器7-1~7-3とポンプ8とが接続されており、ポンプ8を駆動させることで水が循環する。複数の室内熱交換器7-1~7-3のうちの第1室内熱交換器7-1は、第1室内機3-1の内部に配置され、第2室内熱交換器7-2は、第2室内機3-2の内部に配置され、第3室内熱交換器7-3は、第3室内機3-3の内部に配置されている。 The air conditioner 1 further includes a water circuit 4 (heat medium circuit). The water circuit 4 is connected to a water refrigerant heat exchanger 5 (heat source device), a plurality of flow rate adjustment valves 6-1 to 6-3, a plurality of indoor heat exchangers 7-1 to 7-3, and a pump 8. The water is circulated by driving the pump 8. The first indoor heat exchanger 7-1 among the plurality of indoor heat exchangers 7-1 to 7-3 is arranged inside the first indoor unit 3-1, and the second indoor heat exchanger 7-2 is arranged inside the first indoor unit 3-1. , are arranged inside the second indoor unit 3-2, and the third indoor heat exchanger 7-3 is arranged inside the third indoor unit 3-3.

複数の流量調整弁6-1~6-3のうち第1流量調整弁6-1は、第1室内熱交換器7-1の上流側に設けられている。第2流量調整弁6-2は、第2室内熱交換器7-2の上流側に設けられている。第3流量調整弁6-3は、第3室内熱交換器7-3の上流側に設けられている。第1室内熱交換器7-1の上流側に設けられる第1流量調整弁6-1は、第1室内機3-1の内部に配置され、第1室内熱交換器7-1に接続されている。第2室内熱交換器7-2の上流側に設けられる第2流量調整弁6-2は、第2室内機3-2の内部に配置され、第2室内熱交換器7-2に接続されている。第3室内熱交換器7-3の上流側に設けられる第3流量調整弁6-3は、第3室内機3-3の内部に配置され、第3室内熱交換器7-3に接続されている。複数の流量調整弁6-1~6-3は、分岐管11を介して水冷媒熱交換器19の下流側において互いに並列に接続されている。 Among the plurality of flow rate adjustment valves 6-1 to 6-3, the first flow rate adjustment valve 6-1 is provided upstream of the first indoor heat exchanger 7-1. The second flow rate regulating valve 6-2 is provided upstream of the second indoor heat exchanger 7-2. The third flow rate regulating valve 6-3 is provided upstream of the third indoor heat exchanger 7-3. The first flow rate regulating valve 6-1 provided upstream of the first indoor heat exchanger 7-1 is arranged inside the first indoor unit 3-1 and connected to the first indoor heat exchanger 7-1. ing. The second flow rate regulating valve 6-2 provided on the upstream side of the second indoor heat exchanger 7-2 is arranged inside the second indoor unit 3-2 and connected to the second indoor heat exchanger 7-2. ing. The third flow regulating valve 6-3 provided upstream of the third indoor heat exchanger 7-3 is arranged inside the third indoor unit 3-3 and is connected to the third indoor heat exchanger 7-3. ing. The plurality of flow rate regulating valves 6-1 to 6-3 are connected in parallel to each other on the downstream side of the water-refrigerant heat exchanger 19 via the branch pipe 11.

ポンプ8は、室外機2の内部に配置されている。ポンプ8は、合流管12を介して複数の室内熱交換器7-1~7-3に接続されている。水冷媒熱交換器19は、室外機2の内部に配置され、配管を介してポンプ8に接続されている。 The pump 8 is arranged inside the outdoor unit 2. The pump 8 is connected to a plurality of indoor heat exchangers 7-1 to 7-3 via a confluence pipe 12. The water-refrigerant heat exchanger 19 is arranged inside the outdoor unit 2 and connected to the pump 8 via piping.

ポンプ8は、合流管12を介して複数の室内熱交換器7-1~7-3から供給される水を水冷媒熱交換器19に供給し、水回路4に水を循環させる。水冷媒熱交換器19は、ポンプ8から供給される水と冷媒とを熱交換する。分岐管11は、水冷媒熱交換器19により熱交換された水を複数の流量調整弁6-1~6-3に分配する。第1流量調整弁6-1は、第1室内熱交換器7-1を流れる水の流量を調整する。第2流量調整弁6-2は、第2室内熱交換器7-2を流れる水の流量を調整する。第3流量調整弁6-3は、第3室内熱交換器7-3を流れる水の流量を調整する。 The pump 8 supplies water supplied from the plurality of indoor heat exchangers 7-1 to 7-3 to the water-refrigerant heat exchanger 19 via the confluence pipe 12, and circulates the water in the water circuit 4. The water-refrigerant heat exchanger 19 exchanges heat between the water supplied from the pump 8 and the refrigerant. The branch pipe 11 distributes the water heat-exchanged by the water-refrigerant heat exchanger 19 to the plurality of flow rate regulating valves 6-1 to 6-3. The first flow rate adjustment valve 6-1 adjusts the flow rate of water flowing through the first indoor heat exchanger 7-1. The second flow rate adjustment valve 6-2 adjusts the flow rate of water flowing through the second indoor heat exchanger 7-2. The third flow rate adjustment valve 6-3 adjusts the flow rate of water flowing through the third indoor heat exchanger 7-3.

水冷媒熱交換器19は、冷媒回路14に接続されている。冷媒回路14は、圧縮機15と四方弁16と室外熱交換器17と膨張弁18と水冷媒熱交換器19(熱媒体冷媒熱交換器)とを備えている。冷媒回路14は、吸入管21と吐出管22とをさらに備えている。圧縮機15は、回転体を備え、回転体が回転することにより、吸入管21を介して圧縮機15に供給される気相冷媒を圧縮し、圧縮された気相冷媒を吐出管22に吐出する。圧縮機15が単位時間あたりに冷媒を吐出する量は、回転体が単位時間あたりに回転する回転数が大きいほど大きい。 Water/refrigerant heat exchanger 19 is connected to refrigerant circuit 14 . The refrigerant circuit 14 includes a compressor 15, a four-way valve 16, an outdoor heat exchanger 17, an expansion valve 18, and a water/refrigerant heat exchanger 19 (heat medium/refrigerant heat exchanger). The refrigerant circuit 14 further includes a suction pipe 21 and a discharge pipe 22. The compressor 15 includes a rotating body, and as the rotating body rotates, it compresses the gaseous refrigerant supplied to the compressor 15 through the suction pipe 21 and discharges the compressed gaseous refrigerant to the discharge pipe 22. do. The amount of refrigerant discharged by the compressor 15 per unit time increases as the number of rotations of the rotating body per unit time increases.

四方弁16は、吸入管21と吐出管22とに接続され、吸入管21と吐出管22とを介して圧縮機15に接続されている。四方弁16は、さらに、冷媒管を介して室外熱交換器17に接続され、冷媒管を介して水冷媒熱交換器19に接続されている。四方弁16は、弁体を備え、弁体が暖房位置に配置されることにより冷媒回路14は暖房サイクルに切り替えられ、弁体が冷房位置に配置されることにより冷媒回路14は冷房サイクルに切り替えられる。冷媒回路14が暖房サイクルに切り替えられているときに、吐出管22は、四方弁16を介して水冷媒熱交換器19に接続され、室外熱交換器17は、四方弁16を介して吸入管21に接続される。冷媒回路14が冷房サイクルに切り替えられているときに、吐出管22は、四方弁16を介して室外熱交換器17に接続され、水冷媒熱交換器19は、四方弁16を介して吸入管21に接続される。 The four-way valve 16 is connected to a suction pipe 21 and a discharge pipe 22, and is connected to the compressor 15 via the suction pipe 21 and the discharge pipe 22. The four-way valve 16 is further connected to an outdoor heat exchanger 17 via a refrigerant pipe, and to a water-refrigerant heat exchanger 19 via a refrigerant pipe. The four-way valve 16 includes a valve body, and when the valve body is placed in the heating position, the refrigerant circuit 14 is switched to the heating cycle, and when the valve body is placed in the cooling position, the refrigerant circuit 14 is switched to the cooling cycle. It will be done. When the refrigerant circuit 14 is switched to the heating cycle, the discharge pipe 22 is connected to the water-refrigerant heat exchanger 19 through the four-way valve 16, and the outdoor heat exchanger 17 is connected to the suction pipe through the four-way valve 16. 21. When the refrigerant circuit 14 is switched to the cooling cycle, the discharge pipe 22 is connected to the outdoor heat exchanger 17 through the four-way valve 16, and the water-refrigerant heat exchanger 19 is connected to the suction pipe through the four-way valve 16. 21.

膨張弁18は、冷媒管を介して室外熱交換器17に接続されている。水冷媒熱交換器19は、冷媒管を介して膨張弁18に接続されている。 The expansion valve 18 is connected to the outdoor heat exchanger 17 via a refrigerant pipe. The water-refrigerant heat exchanger 19 is connected to the expansion valve 18 via a refrigerant pipe.

空気調和機1は、往き温度センサ23と戻り温度センサ24と複数の室温センサ25-1~25-3と複数の水温センサ26-1~26-3(複数の熱媒体温度検出部)とをさらに備えている。往き温度センサ23は、室外機2の内部に配置され、水冷媒熱交換器19から分岐管11に流れる水の温度を計測する。戻り温度センサ24は、室外機2の内部に配置され、ポンプ8から水冷媒熱交換器19に供給される水の温度を計測する。 The air conditioner 1 includes an outflow temperature sensor 23, a return temperature sensor 24, a plurality of room temperature sensors 25-1 to 25-3, and a plurality of water temperature sensors 26-1 to 26-3 (a plurality of heat medium temperature detection units). It also has more. The outgoing temperature sensor 23 is disposed inside the outdoor unit 2 and measures the temperature of water flowing from the water-refrigerant heat exchanger 19 to the branch pipe 11. The return temperature sensor 24 is arranged inside the outdoor unit 2 and measures the temperature of the water supplied from the pump 8 to the water-refrigerant heat exchanger 19.

複数の室温センサ25-1~25-3のうちの第1室温センサ25-1は、第1室内機3-1の内部に配置され、第2室温センサ25-2は、第2室内機3-2の内部に配置され、第3室温センサ25-3は、第3室内機3-3の内部に配置されている。第1室温センサ25-1は、第1室内機3-1が設置される第1室の温度を計測する。第2室温センサ25-2は、第2室内機3-2が設置される第2室の温度を計測する。第3室温センサ25-3は、第3室内機3-3が設置される第3室の温度を計測する。 Among the plurality of room temperature sensors 25-1 to 25-3, the first room temperature sensor 25-1 is arranged inside the first indoor unit 3-1, and the second room temperature sensor 25-2 is arranged inside the second indoor unit 3. -2, and the third room temperature sensor 25-3 is arranged inside the third indoor unit 3-3. The first room temperature sensor 25-1 measures the temperature of the first room in which the first indoor unit 3-1 is installed. The second room temperature sensor 25-2 measures the temperature of the second room in which the second indoor unit 3-2 is installed. The third room temperature sensor 25-3 measures the temperature of the third room in which the third indoor unit 3-3 is installed.

複数の水温センサ26-1~26-3のうちの第1水温センサ26-1は、第1室内機3-1の内部に配置され、第2水温センサ26-2は、第2室内機3-2の内部に配置され、第3水温センサ26-3は、第3室内機3-3の内部に配置されている。第1水温センサ26-1は、第1室内熱交換器7-1に供給される水の温度を計測する。第2水温センサ26-2は、第2室内熱交換器7-2に供給される水の温度を計測する。第3水温センサ26-3は、第3室内熱交換器7-3に供給される水の温度を計測する。 The first water temperature sensor 26-1 of the plurality of water temperature sensors 26-1 to 26-3 is arranged inside the first indoor unit 3-1, and the second water temperature sensor 26-2 is arranged inside the second indoor unit 3. -2, and the third water temperature sensor 26-3 is arranged inside the third indoor unit 3-3. The first water temperature sensor 26-1 measures the temperature of water supplied to the first indoor heat exchanger 7-1. The second water temperature sensor 26-2 measures the temperature of water supplied to the second indoor heat exchanger 7-2. The third water temperature sensor 26-3 measures the temperature of water supplied to the third indoor heat exchanger 7-3.

空気調和機1は、複数の室内機制御装置27-1~27-3と室外機制御装置28(制御部)とをさらに備えている。複数の室内機制御装置27-1~27-3のうちの第1室内機制御装置27-1は、第1室内機3-1の内部に配置され、第2室内機制御装置27-2は、第2室内機3-2の内部に配置され、第3室内機制御装置27-3は、第3室内機3-3の内部に配置されている。第1室内機制御装置27-1は、第1室内機3-1を制御し、第2室内機制御装置27-2は、第2室内機3-2を制御し、第3室内機制御装置27-3は、第3室内機3-3を制御する。複数の室内機制御装置27-1~27-3の各々は、室外機制御装置28に電気的に接続され空気調和機1を制御するための情報を相互に伝達する。 The air conditioner 1 further includes a plurality of indoor unit control devices 27-1 to 27-3 and an outdoor unit control device 28 (control unit). The first indoor unit control device 27-1 of the plurality of indoor unit control devices 27-1 to 27-3 is arranged inside the first indoor unit 3-1, and the second indoor unit control device 27-2 is arranged inside the first indoor unit 3-1. , are arranged inside the second indoor unit 3-2, and the third indoor unit control device 27-3 is arranged inside the third indoor unit 3-3. The first indoor unit control device 27-1 controls the first indoor unit 3-1, the second indoor unit control device 27-2 controls the second indoor unit 3-2, and the third indoor unit control device 27-3 controls the third indoor unit 3-3. Each of the plurality of indoor unit control devices 27-1 to 27-3 is electrically connected to the outdoor unit control device 28 and mutually transmits information for controlling the air conditioner 1.

室外機制御装置28は、室外機2の内部に配置されている。図2は、室外機制御装置28を示すブロック図である。室外機制御装置28は、記憶装置31とCPU32(Central Processing Unit)とを備えている。記憶装置31は、室外機制御装置28にインストールされるコンピュータプログラムを記憶し、CPU32により利用される情報を記憶する。CPU32は、室外機制御装置28にインストールされるコンピュータプログラムを実行することにより、往き温度センサ23と戻り温度センサ24と複数の室内機制御装置27-1~27-3とから情報を取得し、複数の流量調整弁6-1~6-3とポンプ8と圧縮機15と四方弁16とを制御する。 The outdoor unit control device 28 is arranged inside the outdoor unit 2. FIG. 2 is a block diagram showing the outdoor unit control device 28. As shown in FIG. The outdoor unit control device 28 includes a storage device 31 and a CPU 32 (Central Processing Unit). The storage device 31 stores a computer program installed in the outdoor unit control device 28, and stores information used by the CPU 32. The CPU 32 acquires information from the outgoing temperature sensor 23, the return temperature sensor 24, and the plurality of indoor unit control devices 27-1 to 27-3 by executing a computer program installed in the outdoor unit control device 28, A plurality of flow rate adjustment valves 6-1 to 6-3, a pump 8, a compressor 15, and a four-way valve 16 are controlled.

室外機制御装置28にインストールされるコンピュータプログラムに従って、室外機制御装置28は複数の機能をそれぞれ実行する。室外機制御装置28は複数の機能として、四方弁制御部33と圧縮機制御部34とポンプ制御部35と流量調整弁制御部36とを備えている。四方弁制御部33は、空気調和機1がユーザに操作されることに応じて冷媒回路14が暖房サイクルまたは冷房サイクルに切り替わるように、四方弁16を制御する。圧縮機制御部34は、適切な流量の冷媒が冷媒回路14に循環するように、圧縮機15を制御する。ポンプ制御部35は、適切な流量の水が水回路4に循環するように、ポンプ8を制御する。流量調整弁制御部36は、複数の流量調整弁6-1~6-3の各々に適切な流量の水が流れるように、複数の流量調整弁6-1~6-3を制御する。 According to the computer program installed in the outdoor unit control device 28, the outdoor unit control device 28 executes each of a plurality of functions. The outdoor unit control device 28 includes a four-way valve control section 33, a compressor control section 34, a pump control section 35, and a flow rate adjustment valve control section 36 as a plurality of functions. The four-way valve control unit 33 controls the four-way valve 16 so that the refrigerant circuit 14 is switched to a heating cycle or a cooling cycle in response to a user's operation of the air conditioner 1. The compressor control unit 34 controls the compressor 15 so that an appropriate flow rate of refrigerant circulates through the refrigerant circuit 14. The pump control unit 35 controls the pump 8 so that water at an appropriate flow rate circulates in the water circuit 4. The flow rate adjustment valve control unit 36 controls the plurality of flow rate adjustment valves 6-1 to 6-3 so that an appropriate flow rate of water flows through each of the plurality of flow rate adjustment valves 6-1 to 6-3.

記憶装置31は、さらに、ポンプ目標流量テーブル37と流量調整弁目標流量テーブル38とを記憶している。図3は、ポンプ目標流量テーブル37を示す図である。ポンプ目標流量テーブル37は、複数の温度差41のいずれかと複数の往き温度42のいずれかとからなる複数の組み合わせを複数の単独運転時目標流量43に対応付けている。具体的には、温度差41が大きい値であるほど単独運転時目標流量43は大きい値が設定され、往き温度42が小さい値であるほど単独運転時目標流量43は大きい値が設定される。図4は、流量調整弁目標流量テーブル38を示す図である。流量調整弁目標流量テーブル38は、水温45に対応付けられた能力46と水流量47の組合せを複数備えたものである。 The storage device 31 further stores a pump target flow rate table 37 and a flow rate adjustment valve target flow rate table 38. FIG. 3 is a diagram showing the pump target flow rate table 37. The pump target flow rate table 37 associates a plurality of combinations of one of the plurality of temperature differences 41 and one of the plurality of outgoing temperatures 42 with a plurality of individual operation target flow rates 43 . Specifically, the larger the temperature difference 41 is, the larger the individual operation target flow rate 43 is set, and the smaller the outgoing temperature 42 is, the larger the individual operation target flow rate 43 is set. FIG. 4 is a diagram showing the flow rate adjustment valve target flow rate table 38. The flow rate adjustment valve target flow rate table 38 includes a plurality of combinations of capacity 46 and water flow rate 47 that are associated with water temperature 45 .

空気調和機1が実行する動作は、冷房運転と暖房運転と制御動作とを含んでいる。
[冷房運転]
冷房運転は、たとえば、空気調和機1がユーザにより冷房運転を実行するように操作されたときに実行される。室外機制御装置28は、空気調和機1が冷房運転を実行するときに、四方弁16を制御し、冷媒回路14を冷房サイクルに切り替える。室外機制御装置28は、圧縮機15を制御し、吸入管21を介して圧縮機15に供給された低圧気相冷媒を圧縮する。低圧気相冷媒は、圧縮機15により圧縮され、高圧気相冷媒になる。圧縮機15は、さらに、高圧気相冷媒を吐出管22に吐出する。吐出管22に吐出された高圧気相冷媒は、冷媒回路14が冷房サイクルに切り替えられていることにより、室外熱交換器17に供給される。
The operations performed by the air conditioner 1 include cooling operation, heating operation, and control operation.
[Cooling operation]
The cooling operation is performed, for example, when the air conditioner 1 is operated by the user to perform the cooling operation. The outdoor unit control device 28 controls the four-way valve 16 and switches the refrigerant circuit 14 to the cooling cycle when the air conditioner 1 performs cooling operation. The outdoor unit control device 28 controls the compressor 15 and compresses the low-pressure gas phase refrigerant supplied to the compressor 15 via the suction pipe 21. The low pressure gas phase refrigerant is compressed by the compressor 15 and becomes high pressure gas phase refrigerant. Compressor 15 further discharges high-pressure vapor phase refrigerant into discharge pipe 22 . The high-pressure gas phase refrigerant discharged into the discharge pipe 22 is supplied to the outdoor heat exchanger 17 because the refrigerant circuit 14 is switched to the cooling cycle.

室外熱交換器17は、四方弁16から供給された高圧気相冷媒と外気とを熱交換する。高圧気相冷媒は、室外熱交換器17で外気に放熱して凝縮し、過冷却状態の高圧液相冷媒になる。すなわち、室外熱交換器17は、空気調和機1が冷房運転を実行するときに、凝縮器として機能する。室外熱交換器17から流出した高圧液相冷媒は、膨張弁18に供給される。 The outdoor heat exchanger 17 exchanges heat between the high-pressure gas phase refrigerant supplied from the four-way valve 16 and outside air. The high-pressure gas-phase refrigerant radiates heat to the outside air in the outdoor heat exchanger 17 and condenses, becoming a supercooled high-pressure liquid-phase refrigerant. That is, the outdoor heat exchanger 17 functions as a condenser when the air conditioner 1 performs cooling operation. The high-pressure liquid phase refrigerant flowing out from the outdoor heat exchanger 17 is supplied to the expansion valve 18 .

膨張弁18は、室外熱交換器17から水冷媒熱交換器19に流れる冷媒の流量を調節し、室外熱交換器17から供給された高圧液相冷媒を減圧する。高圧液相冷媒は、膨張弁18により減圧され、低圧気液二相冷媒になる。膨張弁18から流出した低圧気液二相冷媒は、水冷媒熱交換器19に供給される。 The expansion valve 18 adjusts the flow rate of the refrigerant flowing from the outdoor heat exchanger 17 to the water-refrigerant heat exchanger 19, and reduces the pressure of the high-pressure liquid phase refrigerant supplied from the outdoor heat exchanger 17. The high-pressure liquid phase refrigerant is reduced in pressure by the expansion valve 18 and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant flowing out from the expansion valve 18 is supplied to the water-refrigerant heat exchanger 19 .

水冷媒熱交換器19は、膨張弁18から供給された低圧気液二相冷媒と、水回路4を循環する水とを熱交換する。低圧気液二相冷媒は、水冷媒熱交換器19で加熱されて蒸発し、低圧気相冷媒になる。すなわち、水冷媒熱交換器19は、空気調和機1が冷房運転を実行するときに、蒸発器として機能する。水冷媒熱交換器19から流出した低圧気相冷媒は、四方弁16に供給される。四方弁16に供給された低圧気相冷媒は、冷媒回路14が冷房サイクルに切り替えられていることにより、吸入管21に供給され、吸入管21を介して圧縮機15に吸入される。 The water-refrigerant heat exchanger 19 exchanges heat between the low-pressure gas-liquid two-phase refrigerant supplied from the expansion valve 18 and the water circulating in the water circuit 4 . The low-pressure gas-liquid two-phase refrigerant is heated and evaporated in the water-refrigerant heat exchanger 19, and becomes a low-pressure gas-phase refrigerant. That is, the water-refrigerant heat exchanger 19 functions as an evaporator when the air conditioner 1 performs cooling operation. The low-pressure gas phase refrigerant flowing out from the water-refrigerant heat exchanger 19 is supplied to the four-way valve 16 . The low-pressure gas phase refrigerant supplied to the four-way valve 16 is supplied to the suction pipe 21 and sucked into the compressor 15 via the suction pipe 21 because the refrigerant circuit 14 is switched to the cooling cycle.

[暖房運転]
暖房運転は、たとえば、空気調和機1がユーザにより暖房運転を実行するように操作されたときに実行される。室外機制御装置28は、空気調和機1が暖房運転を実行するときに、四方弁16を制御し、冷媒回路14を暖房サイクルに切り替える。室外機制御装置28は、圧縮機15を制御し、吸入管21を介して圧縮機15に供給された低圧気相冷媒を圧縮する。低圧気相冷媒は、圧縮機15により圧縮され、高圧気相冷媒になる。圧縮機15は、さらに、高圧気相冷媒を吐出管22に吐出する。吐出管22に吐出された高圧気相冷媒は、冷媒回路14が暖房サイクルに切り替えられていることにより、水冷媒熱交換器19に供給される。
[Heating operation]
The heating operation is performed, for example, when the air conditioner 1 is operated by the user to perform the heating operation. The outdoor unit control device 28 controls the four-way valve 16 and switches the refrigerant circuit 14 to a heating cycle when the air conditioner 1 performs heating operation. The outdoor unit control device 28 controls the compressor 15 and compresses the low-pressure gas phase refrigerant supplied to the compressor 15 via the suction pipe 21. The low pressure gas phase refrigerant is compressed by the compressor 15 and becomes high pressure gas phase refrigerant. Compressor 15 further discharges high-pressure vapor phase refrigerant into discharge pipe 22 . The high-pressure gas phase refrigerant discharged into the discharge pipe 22 is supplied to the water-refrigerant heat exchanger 19 because the refrigerant circuit 14 is switched to the heating cycle.

水冷媒熱交換器19は、四方弁16から供給された高圧気相冷媒と、水回路4を循環する水とを熱交換する。高圧気相冷媒は、水冷媒熱交換器19で水に放熱して、過冷却状態の高圧液相冷媒になる。すなわち、水冷媒熱交換器19は、空気調和機1が暖房運転を実行するときに、凝縮器として機能する。水冷媒熱交換器19から流出した高圧液相冷媒は、膨張弁18に供給される。 The water-refrigerant heat exchanger 19 exchanges heat between the high-pressure gas-phase refrigerant supplied from the four-way valve 16 and the water circulating in the water circuit 4 . The high-pressure gas-phase refrigerant radiates heat to water in the water-refrigerant heat exchanger 19, and becomes a supercooled high-pressure liquid-phase refrigerant. That is, the water-refrigerant heat exchanger 19 functions as a condenser when the air conditioner 1 performs heating operation. The high-pressure liquid phase refrigerant flowing out from the water-refrigerant heat exchanger 19 is supplied to the expansion valve 18 .

膨張弁18は、水冷媒熱交換器19から室外熱交換器17に流れる冷媒の流量を調節し、水冷媒熱交換器19から供給された高圧液相冷媒を減圧する。高圧液相冷媒は、膨張弁18により減圧され、低圧気液二相冷媒になる。膨張弁18から流出した低圧気液二相冷媒は、室外熱交換器17に供給される。 The expansion valve 18 adjusts the flow rate of the refrigerant flowing from the water-refrigerant heat exchanger 19 to the outdoor heat exchanger 17, and reduces the pressure of the high-pressure liquid phase refrigerant supplied from the water-refrigerant heat exchanger 19. The high-pressure liquid phase refrigerant is reduced in pressure by the expansion valve 18 and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant flowing out from the expansion valve 18 is supplied to the outdoor heat exchanger 17.

室外熱交換器17は、膨張弁18から供給された低圧気液二相冷媒と外気とを熱交換する。低圧気液二相冷媒は、室外熱交換器17で加熱され、低圧気相冷媒になる。すなわち、室外熱交換器17は、空気調和機1が暖房運転を実行するときに、蒸発器として機能する。室外熱交換器17から流出した低圧気相冷媒は、四方弁16に供給される。四方弁16に供給された低圧気相冷媒は、冷媒回路14が暖房サイクルに切り替えられていることにより、吸入管21に供給され、吸入管21を介して圧縮機15に吸入される。 The outdoor heat exchanger 17 exchanges heat between the low-pressure gas-liquid two-phase refrigerant supplied from the expansion valve 18 and the outside air. The low-pressure gas-liquid two-phase refrigerant is heated in the outdoor heat exchanger 17 and becomes a low-pressure gas-phase refrigerant. That is, the outdoor heat exchanger 17 functions as an evaporator when the air conditioner 1 performs heating operation. The low-pressure gas phase refrigerant flowing out from the outdoor heat exchanger 17 is supplied to the four-way valve 16. The low-pressure gas phase refrigerant supplied to the four-way valve 16 is supplied to the suction pipe 21 and sucked into the compressor 15 via the suction pipe 21 because the refrigerant circuit 14 is switched to the heating cycle.

室外機制御装置28は、空気調和機1が冷房運転または暖房運転を実行するときに、さらに、ポンプ26を制御し、合流管12から供給される水を水冷媒熱交換器19に供給し、水を水回路4に循環させる。水冷媒熱交換器19で冷媒と熱交換された水は、分岐管11を介して複数の流量調整弁6-1~6-3に供給される。第1流量調整弁6-1は、分岐管11から第1室内熱交換器7-1に流入する冷媒の流量を調節し、第1室内熱交換器7-1を流れる水の流量を調節する。第2流量調整弁6-2は、分岐管11から第2室内熱交換器7-2に流入する冷媒の流量を調節し、第2室内熱交換器7-2を流れる水の流量を調節する。第3流量調整弁6-3は、分岐管11から第3室内熱交換器7-3に流入する冷媒の流量を調節し、第3室内熱交換器7-3を流れる水の流量を調節する。 When the air conditioner 1 performs a cooling operation or a heating operation, the outdoor unit control device 28 further controls the pump 26 and supplies water supplied from the merging pipe 12 to the water-refrigerant heat exchanger 19, Water is circulated through the water circuit 4. The water heat exchanged with the refrigerant in the water-refrigerant heat exchanger 19 is supplied to the plurality of flow rate regulating valves 6-1 to 6-3 via the branch pipe 11. The first flow rate adjustment valve 6-1 adjusts the flow rate of refrigerant flowing into the first indoor heat exchanger 7-1 from the branch pipe 11, and adjusts the flow rate of water flowing through the first indoor heat exchanger 7-1. . The second flow rate adjustment valve 6-2 adjusts the flow rate of refrigerant flowing into the second indoor heat exchanger 7-2 from the branch pipe 11, and adjusts the flow rate of water flowing through the second indoor heat exchanger 7-2. . The third flow rate adjustment valve 6-3 adjusts the flow rate of refrigerant flowing into the third indoor heat exchanger 7-3 from the branch pipe 11, and adjusts the flow rate of water flowing through the third indoor heat exchanger 7-3. .

第1室内熱交換器7-1は、第1室内熱交換器7-1を流れる水と第1室の空気とを熱交換する。第1室内機制御装置27-1は、第1室内機3-1を制御し、第1室内熱交換器7-1で水と熱交換された空気をユーザの操作に基づいて決定された風量で第1室に吹き出し、第1室を冷暖房する。第2室内熱交換器7-2は、第2室内熱交換器7-2を流れる水と第2室の空気とを熱交換する。第2室内機制御装置27-2は、第2室内機3-2を制御し、第2室内熱交換器7-2で水と熱交換された空気をユーザの操作に基づいて決定された風量で第2室に吹き出し、第2室を冷暖房する。第3室内熱交換器7-3は、第3室内熱交換器7-3を流れる水と第3室の空気とを熱交換する。第3室内機制御装置27-3は、第3室内機3-3を制御し、第3室内熱交換器7-3で水と熱交換された空気をユーザの操作に基づいて決定された風量で第3室に吹き出し、第3室を冷暖房する。複数の室内熱交換器7-1~7-3を流れた水は、合流管12を介してポンプ8に供給される。 The first indoor heat exchanger 7-1 exchanges heat between the water flowing through the first indoor heat exchanger 7-1 and the air in the first chamber. The first indoor unit control device 27-1 controls the first indoor unit 3-1 and converts the air heat-exchanged with water in the first indoor heat exchanger 7-1 into an air volume determined based on the user's operation. The air is blown into the first room, heating and cooling the first room. The second indoor heat exchanger 7-2 exchanges heat between the water flowing through the second indoor heat exchanger 7-2 and the air in the second chamber. The second indoor unit control device 27-2 controls the second indoor unit 3-2 and converts the air heat-exchanged with water in the second indoor heat exchanger 7-2 into an air volume determined based on the user's operation. The air is blown into the second room, heating and cooling the second room. The third indoor heat exchanger 7-3 exchanges heat between the water flowing through the third indoor heat exchanger 7-3 and the air in the third chamber. The third indoor unit control device 27-3 controls the third indoor unit 3-3 and converts the air heat-exchanged with water in the third indoor heat exchanger 7-3 into an air volume determined based on the user's operation. The air is blown into the third room, heating and cooling the third room. The water flowing through the plurality of indoor heat exchangers 7-1 to 7-3 is supplied to the pump 8 via the confluence pipe 12.

[制御動作]
制御動作は、暖房運転または冷房運転が実行されているときに、常に実行される。図5は、制御動作を示すフローチャートである。ユーザは、第1室を冷暖房したくないときに、第1室内機3-1を操作し、第1室内機3-1を停止させる。ユーザは、第1室を冷暖房したいときに、第1室内機3-1を操作し、第1室内機3-1に第1設定温度を設定する。ユーザは、第2室内機3-2に関しても、第1室内機3-1と同様に操作し、第2室内機3-2を停止させたり、第2室内機3-2に第2設定温度を設定したりする。ユーザは、第3室内機3-3に関しても、第1室内機3-1と同様に操作し、第3室内機3-3を停止させたり、第3室内機3-3に第3設定温度を設定したりする。
[Control operation]
The control operation is always performed when heating or cooling operation is being performed. FIG. 5 is a flowchart showing the control operation. When the user does not want to cool or heat the first room, the user operates the first indoor unit 3-1 to stop the first indoor unit 3-1. When the user wants to cool or heat the first room, the user operates the first indoor unit 3-1 and sets the first set temperature in the first indoor unit 3-1. The user operates the second indoor unit 3-2 in the same manner as the first indoor unit 3-1, such as stopping the second indoor unit 3-2 or setting the second indoor unit 3-2 to the second set temperature. or set. The user operates the third indoor unit 3-3 in the same manner as the first indoor unit 3-1, such as stopping the third indoor unit 3-3 or setting the third indoor unit 3-3 to the third set temperature. or set.

第1室内機制御装置27-1は、第1室温センサ25-1により計測された第1室温を第1室温センサ25-1から取得し、第1水温センサ26-1により計測された第1水温を第1水温センサ26-1から取得する。第1室内機制御装置27-1は、第1設定温度と第1室温とに基づいて第1要求温度範囲を算出する。第1要求温度範囲は、第1室内機3-1が第1室を第1設定温度まで冷暖房するときに第1室内熱交換器7-1に供給されるべき水の温度の範囲を示している。さらに、第1要求温度範囲は、第1室内熱交換器7-1に固有の温度範囲に含まれている。固有の温度範囲は、第1室内熱交換器7-1に供給されうる水の温度の範囲を示し、すなわち、第1要求温度範囲の上限は、第1室内熱交換器7-1に供給されてもよい水の温度範囲の上限より低く、第1要求温度範囲の下限は、温度範囲の下限より高い。第1要求温度範囲は室内熱交換器の容積や伝熱性能等によって複数の室内機3-1~3-3それぞれ固有の範囲を持つ。第2室内機制御装置27-2も、第1室内機制御装置27-1と同様に、第2室温を第2室温センサ25-2から取得し、第2水温を第2水温センサ26-2から取得し、第2要求温度範囲を算出する。第3室内機制御装置27-3も、第1室内機制御装置27-1と同様に、第3室温を第3室温センサ25-3から取得し、第3水温を第3水温センサ26-3から取得し、第3要求温度範囲を算出する。 The first indoor unit control device 27-1 acquires the first room temperature measured by the first room temperature sensor 25-1 from the first room temperature sensor 25-1, and obtains the first room temperature measured by the first water temperature sensor 26-1. The water temperature is obtained from the first water temperature sensor 26-1. The first indoor unit control device 27-1 calculates a first required temperature range based on the first set temperature and the first room temperature. The first required temperature range indicates the temperature range of water that should be supplied to the first indoor heat exchanger 7-1 when the first indoor unit 3-1 cools or heats the first room to the first set temperature. There is. Furthermore, the first required temperature range is included in the temperature range specific to the first indoor heat exchanger 7-1. The unique temperature range indicates the temperature range of water that can be supplied to the first indoor heat exchanger 7-1, that is, the upper limit of the first required temperature range is the temperature range of water that can be supplied to the first indoor heat exchanger 7-1. The lower limit of the first required temperature range is higher than the lower limit of the temperature range. The first required temperature range has a specific range for each of the indoor units 3-1 to 3-3 depending on the capacity of the indoor heat exchanger, heat transfer performance, etc. Similarly to the first indoor unit control device 27-1, the second indoor unit control device 27-2 also obtains the second room temperature from the second room temperature sensor 25-2, and obtains the second water temperature from the second water temperature sensor 26-2. , and calculate the second required temperature range. Similarly to the first indoor unit control device 27-1, the third indoor unit control device 27-3 also obtains the third room temperature from the third room temperature sensor 25-3, and obtains the third water temperature from the third water temperature sensor 26-3. , and calculate the third required temperature range.

室外機制御装置28は、冷房運転または暖房運転が実行されているときに、複数の室内機3-1~3-3が停止しているか否かの情報を複数の室内機制御装置27-1~27-3から取得し、複数台運転が実行されているか、単独運転が実行されているかを判定する(ステップS1)。複数台運転では、複数の室内機3-1~3-3のうちの2つ以上が運転しており、複数の室内熱交換器7-1~7-3のうちの2つ以上の運転している室内機に対応する室内熱交換器(以下、運転室内熱交換器と呼ぶ)に水が流れている。単独運転では、複数の室内機3-1~3-3のうちの1つの単独運転室内機のみが停止しておらず、複数の室内機3-1~3-3のうちの単独運転室内機と異なる他の室内機が停止している。すなわち、単独運転では、複数の室内熱交換器7-1~7-3のうちの単独運転室内機に設けられている単独運転室内熱交換器のみに水が流れており、複数の室内熱交換器7-1~7-3のうちの単独運転室内熱交換器と異なる他の室内熱交換器に水が流れていない。室外機制御装置28は、複数の室内機3-1~3-3のうちの2つ以上の運転室内機が停止していないときに、空気調和機1に複数台運転が実行されていると判定する(ステップS1、Yes)。室外機制御装置28は、複数の室内機3-1~3-3のうちの1つのみが運転しているときに、空気調和機1に単独運転が実行されていると判定する(ステップS1、No)。 The outdoor unit control device 28 transmits information on whether or not the plurality of indoor units 3-1 to 3-3 are stopped when the cooling operation or the heating operation is performed to the plurality of indoor unit control devices 27-1. ~27-3, and determines whether multiple unit operation or individual operation is being executed (step S1). In multiple unit operation, two or more of the indoor units 3-1 to 3-3 are operating, and two or more of the indoor heat exchangers 7-1 to 7-3 are not operating. Water is flowing through the indoor heat exchanger (hereinafter referred to as the operation indoor heat exchanger) corresponding to the indoor unit being installed. In standalone operation, only one of the indoor units 3-1 to 3-3 is not stopped, and only one of the indoor units 3-1 to 3-3 is in standalone operation. Another indoor unit that is different from the above has stopped. That is, in the individual operation, water flows only to the individually operated indoor heat exchanger installed in the individually operated indoor unit among the plurality of indoor heat exchangers 7-1 to 7-3, and Water is not flowing to other indoor heat exchangers different from the independently operated indoor heat exchanger among the containers 7-1 to 7-3. The outdoor unit control device 28 detects that the air conditioner 1 is operating multiple units when two or more of the indoor units 3-1 to 3-3 are not stopped. Determine (step S1, Yes). The outdoor unit control device 28 determines that the air conditioner 1 is operating independently when only one of the plurality of indoor units 3-1 to 3-3 is operating (step S1 , No).

室外機制御装置28は、空気調和機1が複数台運転を実行していると判定されたときに(ステップS1、Yes)、ポンプ8を制御し、水回路4を循環する水の流量が変化しないように、接続された室内機の台数に応じて予め定められた所定の流量の水を水回路4に循環させる(ステップS2)。この時の所定の流量とは、複数の室内機3-1~3-3の全てで定格能力が要求される場合であっても能力が不足しない程度の流量が設定される。 When it is determined that a plurality of air conditioners 1 are operating (Step S1, Yes), the outdoor unit control device 28 controls the pump 8 to change the flow rate of water circulating through the water circuit 4. Water is circulated through the water circuit 4 at a predetermined flow rate determined in advance according to the number of connected indoor units so as to prevent the water from leaking (step S2). The predetermined flow rate at this time is set to such a flow rate that the capacity will not be insufficient even if the rated capacity is required for all of the plurality of indoor units 3-1 to 3-3.

次に、室外機制御装置28は、運転を実行している室内機の温度差を算出し、温度差に基づいて運転を実行している室内機それぞれの目標流量を算出し、目標流量に応じて複数の流量調整弁6-1~6-3を制御する(ステップ3)。具体的には、まず、室外機制御装置28は、目標流量運転を実行している室内機の熱負荷を算出する。例として、複数の室内機3-1~3-3がいずれも運転を実行している場合について説明する。複数の室温のうちの第1室内機制御装置27-1から取得した第1室温と、複数の設定温度のうちの第1室内機制御装置27-1から取得した第1設定温度とに基づいて複数の熱負荷のうちの第1熱負荷を算出する。第1熱負荷は、第1室内熱交換器7-1の熱負荷を示し、第1室内機3-1が第1室を第1設定温度まで冷暖房するときに必要である能力に対応し、第1室温から第1設定温度を減算した第1温度差の絶対値が大きいほど大きい。室外機制御装置28は、第1熱負荷と同様に、例えば、室内機3-2、3-3がいずれも複数の熱負荷のうちの第2熱負荷と第3熱負荷とを算出する。第2熱負荷は、第2室内熱交換器7-2の熱負荷を示し、第3熱負荷は、第3室内熱交換器7-3の熱負荷を示している。 Next, the outdoor unit control device 28 calculates the temperature difference between the indoor units that are running, calculates the target flow rate of each indoor unit that is running based on the temperature difference, and adjusts the target flow rate to the indoor unit that is running. to control the plurality of flow rate regulating valves 6-1 to 6-3 (step 3). Specifically, first, the outdoor unit control device 28 calculates the heat load of the indoor unit that is performing the target flow rate operation. As an example, a case where all of the plurality of indoor units 3-1 to 3-3 are in operation will be described. Based on the first room temperature acquired from the first indoor unit control device 27-1 among the plurality of room temperatures and the first set temperature acquired from the first indoor unit control device 27-1 among the plurality of set temperatures. A first heat load among the plurality of heat loads is calculated. The first heat load indicates the heat load of the first indoor heat exchanger 7-1, and corresponds to the capacity required when the first indoor unit 3-1 cools and heats the first room to the first set temperature, The larger the absolute value of the first temperature difference obtained by subtracting the first set temperature from the first room temperature, the larger the difference. Similarly to the first heat load, the outdoor unit control device 28 calculates, for example, the second heat load and the third heat load of the plurality of heat loads for both the indoor units 3-2 and 3-3. The second heat load indicates the heat load of the second indoor heat exchanger 7-2, and the third heat load indicates the heat load of the third indoor heat exchanger 7-3.

室外機制御装置28は、複数の熱負荷のうち最大値となる熱負荷の室内熱交換器を、最大負荷室内熱交換器とする。室外機制御装置28は、熱負荷の最大値に基づいて第1目標流量(最大熱負荷目標流量)を取得する。第1目標流量は、最大負荷の室内熱交換器において必要とされる水流量であり、熱負荷最大値が大きいほど大きい値が予め記憶装置31に記憶されている。室外機制御装置28は、最大負荷室内熱交換器に流れる水の流量が第1目標流量に等しくなるように、複数の流量調整弁6-1~6-3のうちの最大負荷室内熱交換器に設けられる最大負荷流量調整弁を制御する。 The outdoor unit control device 28 sets the indoor heat exchanger with the maximum heat load among the plurality of heat loads as the maximum load indoor heat exchanger. The outdoor unit control device 28 acquires a first target flow rate (maximum heat load target flow rate) based on the maximum value of the heat load. The first target flow rate is the water flow rate required in the indoor heat exchanger with the maximum load, and a value that increases as the maximum heat load value increases is stored in advance in the storage device 31. The outdoor unit control device 28 controls the maximum load indoor heat exchanger among the plurality of flow rate adjustment valves 6-1 to 6-3 so that the flow rate of water flowing to the maximum load indoor heat exchanger becomes equal to the first target flow rate. Controls the maximum load flow rate adjustment valve provided in the

さらに、室外機制御装置28は、往き温度センサ23により計測された往き温度を往き温度センサ23から取得する。室外機制御装置28は、複数の室内熱交換器7-1~7-3のうちの最大負荷室内熱交換器と異なる運転室内熱交換器(余熱負荷室内熱交換器)について、流量調整弁目標流量テーブル38を参照して、複数の熱負荷のうちの運転室内熱交換器の熱負荷と、往き温度とに基づいて第2目標流量(余熱負荷目標流量)を算出する。詳細には、室外機制御装置28は、複数の水温45から往き温度に最も近い水温を選択(最も近い水温が二つある場合は高い水温を選択)し、複数の能力46のうちのその選択された水温に対応するいくつかの能力から、運転室内熱交換器の熱負荷に最も近い能力を選択し、複数の水流量47からその選択された能力に対応付けられた水流量を選択する。第2目標流量は、その選択された水流量に等しい。第2目標流量は、第1目標流量より小さく、運転室内熱交換器の熱負荷が大きいほど大きい。室外機制御装置28は、運転室内熱交換器に流れる水の流量が第2目標流量に等しくなるように、複数の流量調整弁6-1~6-3のうちの運転室内熱交換器に設けられる運転負荷流量調整弁を制御する。 Furthermore, the outdoor unit control device 28 acquires the outgoing temperature measured by the outgoing temperature sensor 23 from the outgoing temperature sensor 23. The outdoor unit control device 28 controls the flow rate adjustment valve target for the operating indoor heat exchanger (residual heat load indoor heat exchanger) that is different from the maximum load indoor heat exchanger among the plurality of indoor heat exchangers 7-1 to 7-3. With reference to the flow rate table 38, a second target flow rate (residual heat load target flow rate) is calculated based on the heat load of the heat exchanger in the operating room among the plurality of heat loads and the outgoing temperature. Specifically, the outdoor unit control device 28 selects the water temperature closest to the outgoing temperature from the plurality of water temperatures 45 (selects the higher water temperature if there are two closest water temperatures), and selects that water temperature from the plurality of capacities 46. The capacity closest to the heat load of the heat exchanger in the driver's room is selected from several capacities corresponding to the determined water temperature, and the water flow rate corresponding to the selected capacity is selected from the plurality of water flow rates 47. The second target flow rate is equal to the selected water flow rate. The second target flow rate is smaller than the first target flow rate, and increases as the heat load on the heat exchanger in the operating room increases. The outdoor unit control device 28 is provided in the heat exchanger in the operating room of the plurality of flow rate regulating valves 6-1 to 6-3 so that the flow rate of water flowing into the heat exchanger in the operating room is equal to the second target flow rate. Controls the operating load flow rate adjustment valve.

次に室外機制御装置28は、複数の要求温度範囲(第1要求温度範囲~第3要求温度範囲)に基づいて温度制御範囲を算出する。温度制御範囲の上限は、複数の要求温度範囲それぞれの上限のうち最も低い温度を示し、温度制御範囲の下限は、複数の要求温度範囲それぞれの下限のうち最も高い温度最大値を示している。室外機制御装置28は、熱負荷最大値と温度制御範囲とに基づいて複数台運転時目標往き温度を算出する。複数台運転時目標往き温度は、複数の要求温度範囲に含まれ、冷房運転が実行されているときに、熱負荷最大値が大きいほど低く、暖房運転が実行されているときに、熱負荷最大値が大きいほど高い。室外機制御装置28は、複数台運転時目標往き温度に基づいて複数台運転時目標圧縮機回転数を算出する。複数台運転時目標圧縮機回転数は、圧縮機15の回転数が複数台運転時目標圧縮機回転数と等しいときに、水冷媒熱交換器19から分岐管11に流れる水の温度(往き温度)が複数台運転時目標往き温度に等しくなるように、算出される。室外機制御装置28は、圧縮機15の回転数が複数台運転時目標圧縮機回転数と等しくなるように、圧縮機15を制御する(ステップS4)。 Next, the outdoor unit control device 28 calculates a temperature control range based on a plurality of required temperature ranges (first required temperature range to third required temperature range). The upper limit of the temperature control range indicates the lowest temperature among the upper limits of each of the plurality of required temperature ranges, and the lower limit of the temperature control range indicates the highest temperature maximum value among the lower limits of each of the plurality of required temperature ranges. The outdoor unit control device 28 calculates the target outgoing temperature when multiple units are operated based on the maximum heat load value and the temperature control range. When operating multiple units, the target outgoing temperature is included in multiple required temperature ranges, and when cooling operation is being performed, the higher the maximum heat load value is, the lower the target temperature is, and when heating operation is being performed, the higher the maximum heat load value is, the lower the The higher the value, the higher the value. The outdoor unit control device 28 calculates the target compressor rotation speed when multiple units are operated based on the target outgoing temperature when multiple units are operated. The target compressor rotation speed when operating multiple units is defined as the temperature of water flowing from the water-refrigerant heat exchanger 19 to the branch pipe 11 (outgoing temperature ) is calculated so that it is equal to the target outgoing temperature when multiple units are operated. The outdoor unit control device 28 controls the compressor 15 so that the rotation speed of the compressor 15 becomes equal to the target compressor rotation speed when multiple units are operated (step S4).

図6は、室内熱交換器における水温と暖房能力と水流量との関係を示すグラフである。ある水温とある水流量とに対応する暖房能力は、予め定められた条件において、室内熱交換器に流れる水の温度がその水温に等しいときで、かつ、室内熱交換器に単位時間あたりに流れる水の流量がその水流量に等しいときに、発揮される暖房能力を示している。その条件としては、室内熱交換器が設けられる室内機が設置される室内の温度、室内熱交換器により温度が調節された空気を室内に吹き出す風量等が例示される。空気調和機1は、複数台運転が実行されている場合で、複数の室内熱交換器7-1~7-3に流れる水の流量を複数の室内熱交換器7-1~7-3の各々の熱負荷に合わせて調節しないときに、図6のグラフに示される関係に水温と暖房能力と水流量とが合致せずに複数の室内機3-1~3-3で冷暖房能力の過剰や過小が生じ、快適性が低下することがある。 FIG. 6 is a graph showing the relationship between water temperature, heating capacity, and water flow rate in the indoor heat exchanger. The heating capacity corresponding to a certain water temperature and a certain water flow rate is when, under predetermined conditions, the temperature of the water flowing into the indoor heat exchanger is equal to that water temperature, and the heating capacity corresponds to the temperature of the water flowing into the indoor heat exchanger per unit time. It shows the heating capacity achieved when the water flow rate is equal to the water flow rate. Examples of the conditions include the temperature of the room in which the indoor unit in which the indoor heat exchanger is installed, and the volume of air that blows the air whose temperature has been adjusted by the indoor heat exchanger into the room. When multiple units of the air conditioner 1 are being operated, the air conditioner 1 adjusts the flow rate of water flowing to the multiple indoor heat exchangers 7-1 to 7-3 to the multiple indoor heat exchangers 7-1 to 7-3. When adjustments are not made according to each heat load, water temperature, heating capacity, and water flow rate do not match the relationship shown in the graph of Figure 6, resulting in excessive cooling and heating capacity in multiple indoor units 3-1 to 3-3. This may result in under- or under-fitting, resulting in decreased comfort.

空気調和機1は、複数台運転が実行されているときに、複数の室内熱交換器7-1~7-3に流れる水の流量が複数の室内熱交換器7-1~7-3の熱負荷に合わせて調節されることにより、複数の室内熱交換器7-1~7-3の各々の能力が、複数の室内熱交換器7-1~7-3の各々の熱負荷に応じた能力にできる。すなわち、空気調和機1は、複数の室内熱交換器7-1~7-3の各々における水温と流量と熱負荷との関係が、図6のグラフに示される水温と水流量と暖房能力との関係と概ね合致するように、複数の流量調整弁6-1~6-3を制御することができる。このため、空気調和機1は、複数の室内熱交換器7-1~7-3の各々に冷媒が過剰または過小に循環することを防止することができる。この結果、複数の室内機3-1~3-3は、適切に冷暖房することができ、快適性を向上させることができる。 In the air conditioner 1, when a plurality of units are operated, the flow rate of water flowing to the plurality of indoor heat exchangers 7-1 to 7-3 is equal to that of the plurality of indoor heat exchangers 7-1 to 7-3. By adjusting according to the heat load, the capacity of each of the plurality of indoor heat exchangers 7-1 to 7-3 is adjusted according to the heat load of each of the plurality of indoor heat exchangers 7-1 to 7-3. I can develop my abilities. That is, in the air conditioner 1, the relationship between the water temperature, water flow rate, and heat load in each of the plurality of indoor heat exchangers 7-1 to 7-3 is the same as the water temperature, water flow rate, and heating capacity shown in the graph of FIG. The plurality of flow rate regulating valves 6-1 to 6-3 can be controlled so as to approximately match the relationship shown in FIG. Therefore, the air conditioner 1 can prevent the refrigerant from circulating excessively or insufficiently to each of the plurality of indoor heat exchangers 7-1 to 7-3. As a result, the plurality of indoor units 3-1 to 3-3 can be appropriately cooled and heated, and comfort can be improved.

室外機制御装置28は、空気調和機1が単独運転を実行していると判定されたときに(ステップS1、No)、複数の室内熱交換器7-1~7-3のうちの運転している一つの室内機を単独運転室内熱交換器とする。室外機制御装置28は、複数の流量調整弁6-1~6-3のうちの単独運転室内熱交換器に対応する単独運転流量調整弁が全開になるように、かつ、複数の流量調整弁6-1~6-3のうちの単独運転流量調整弁と異なる流量調整弁である停止流量調整弁が全閉になるように、複数の流量調整弁6-1~6-3を制御する(ステップS5)。 When it is determined that the air conditioner 1 is operating independently (Step S1, No), the outdoor unit control device 28 controls the operation of the plurality of indoor heat exchangers 7-1 to 7-3. One of the indoor units is used as an independently operated indoor heat exchanger. The outdoor unit control device 28 controls the flow rate adjustment valves so that the single operation flow rate adjustment valve corresponding to the single operation indoor heat exchanger among the plurality of flow rate adjustment valves 6-1 to 6-3 is fully opened, and the plurality of flow rate adjustment valves Control the plurality of flow rate adjustment valves 6-1 to 6-3 so that the stop flow rate adjustment valve, which is a flow rate adjustment valve different from the single operation flow rate adjustment valve among 6-1 to 6-3, is fully closed ( Step S5).

次に室外機制御装置28は、単独運転室内機の目標流量を算出して、目標流量に応じてポンプ8を制御する(ステップS6)。具体的には、まず、往き温度センサ23から往き温度を取得する。 Next, the outdoor unit control device 28 calculates a target flow rate of the independently operated indoor unit, and controls the pump 8 according to the target flow rate (step S6). Specifically, first, the outgoing temperature is acquired from the outgoing temperature sensor 23.

次に、室外機制御装置28は、戻り温度センサ24により計測された戻り温度を戻り温度センサ24から取得する。室外機制御装置28は、往き温度と戻り温度とに基づいて温度差を算出する。温度差は、往き温度から戻り温度を減算した値に等しい。 Next, the outdoor unit control device 28 acquires the return temperature measured by the return temperature sensor 24 from the return temperature sensor 24 . The outdoor unit control device 28 calculates the temperature difference based on the outgoing temperature and the returning temperature. The temperature difference is equal to the outgoing temperature minus the return temperature.

室外機制御装置28は、ポンプ目標流量テーブル37を参照して、単独運転室内熱交換器の往き温度と温度差とに基づいて単独運転時目標流量を算出する。詳細には、室外機制御装置28は、ポンプ目標流量テーブル37の複数の温度差41から、取得した温度差に最も近い温度差を選択し、複数の往き温度42から、現在の往き温度に最も近い値を選択する。単独運転時目標流量は、複数の単独運転時目標流量43から、その選択された温度差と往き温度とからなる組み合わせに対応付けられた単独運転時目標流量に等しい。室外機制御装置28は、ポンプ8が水回路4に水を循環させる流量が単独運転時目標流量に等しくなるように、ポンプ8を制御する(ステップS6)。 The outdoor unit control device 28 refers to the pump target flow rate table 37 and calculates the target flow rate during independent operation based on the outgoing temperature and temperature difference of the independent operation indoor heat exchanger. Specifically, the outdoor unit control device 28 selects the temperature difference closest to the obtained temperature difference from the plurality of temperature differences 41 in the pump target flow rate table 37, and selects the temperature difference closest to the current outflow temperature from the plurality of outflow temperatures 42. Select values that are close to each other. The individual operation target flow rate is equal to the individual operation target flow rate associated with the combination of the temperature difference and the outgoing temperature selected from the plurality of individual operation target flow rates 43. The outdoor unit control device 28 controls the pump 8 so that the flow rate at which the pump 8 circulates water in the water circuit 4 becomes equal to the target flow rate during independent operation (step S6).

室外機制御装置28は、単独運転室内熱交換器の熱負荷に基づいて単独運転時目標往き温度を算出する。単独運転時目標往き温度は、冷房運転が実行されているときに、単独運転室内熱交換器の熱負荷が大きいほど低く、暖房運転が実行されているときに、単独運転室内熱交換器の熱負荷が大きいほど高い。室外機制御装置28は、単独運転時目標往き温度に基づいて単独運転時目標圧縮機回転数を算出する。単独運転時目標圧縮機回転数は、圧縮機15の回転数が単独運転時目標圧縮機回転数と等しいときに、水冷媒熱交換器19から分岐管11に流れる水の温度(往き温度)が単独運転時目標往き温度に等しくなるように、算出される。室外機制御装置28は、圧縮機15の回転数が単独運転時目標圧縮機回転数と等しくなるように、圧縮機15を制御する(ステップS7)。 The outdoor unit control device 28 calculates the target outgoing temperature during independent operation based on the heat load of the indoor heat exchanger in independent operation. The target outgoing temperature during standalone operation is lower when the heat load of the standalone indoor heat exchanger is higher when the cooling operation is being performed, and when the heat load of the standalone indoor heat exchanger is The higher the load, the higher the value. The outdoor unit control device 28 calculates the target compressor rotation speed during independent operation based on the target outgoing temperature during independent operation. The target compressor rotation speed during independent operation is the temperature (outgoing temperature) of water flowing from the water-refrigerant heat exchanger 19 to the branch pipe 11 when the rotation speed of the compressor 15 is equal to the target compressor rotation speed during independent operation. It is calculated so that it is equal to the target outgoing temperature during independent operation. The outdoor unit control device 28 controls the compressor 15 so that the rotation speed of the compressor 15 becomes equal to the target compressor rotation speed during independent operation (step S7).

空気調和機1は、単独運転が実行されているときに、単独運転室内熱交換器に流れる水の流量が単独運転室内熱交換器の温度差と往き温度とに合わせて調節されることにより、単独運転室内熱交換器における水温と水流量と暖房能力との関係が、図6のグラフに示される水温と水流量と暖房能力との関係に合致するように、ポンプ8を制御することができる。このため、空気調和機1は、単独運転室内熱交換器に冷媒が過剰または過小に循環することを防止することができる。この結果、単独運転室内機は、適切に冷暖房することができ、快適性を向上させることができる。空気調和機1は、さらに、単独運転室内熱交換器の熱負荷が小さいときに、ポンプ8の流量を不要に大きくせずにポンプ8の流量を低減することができ、このとき、消費電力を低減することができる。 In the air conditioner 1, when the individual operation is performed, the flow rate of water flowing into the individual operation indoor heat exchanger is adjusted according to the temperature difference of the individual operation indoor heat exchanger and the incoming temperature. The pump 8 can be controlled so that the relationship between the water temperature, water flow rate, and heating capacity in the individually operated indoor heat exchanger matches the relationship between the water temperature, water flow rate, and heating capacity shown in the graph of FIG. . Therefore, the air conditioner 1 can prevent the refrigerant from circulating excessively or insufficiently to the individually operated indoor heat exchanger. As a result, the individually operated indoor unit can be appropriately cooled and heated, and comfort can be improved. Furthermore, the air conditioner 1 can reduce the flow rate of the pump 8 without unnecessarily increasing the flow rate of the pump 8 when the heat load of the independently operated indoor heat exchanger is small, and at this time, the power consumption can be reduced. can be reduced.

[実施例1の冷暖房装置の効果]
実施例1の冷暖房装置は、ポンプ8と複数の室内熱交換器7-1~7-3と複数の流量調整弁6-1~6-3と複数の水温センサ26-1~26-3と水冷媒熱交換器19と室外機制御装置28とを備えている。ポンプ8は、水回路4に水を循環させる。複数の室内熱交換器7-1~7-3は、水回路4に互いに並列に設けられている。複数の流量調整弁6-1~6-3は、複数の室内熱交換器7-1~7-3毎に設けられている。複数の水温センサ26-1~26-3は、複数の室内熱交換器7-1~7-3毎に設けられている。水冷媒熱交換器19は、水回路4を循環する水の温度を調節する。
[Effects of the heating and cooling device of Example 1]
The air conditioning system of the first embodiment includes a pump 8, a plurality of indoor heat exchangers 7-1 to 7-3, a plurality of flow rate adjustment valves 6-1 to 6-3, and a plurality of water temperature sensors 26-1 to 26-3. It includes a water refrigerant heat exchanger 19 and an outdoor unit control device 28. Pump 8 circulates water through water circuit 4 . The plurality of indoor heat exchangers 7-1 to 7-3 are provided in parallel to each other in the water circuit 4. The plurality of flow rate adjustment valves 6-1 to 6-3 are provided for each of the plurality of indoor heat exchangers 7-1 to 7-3. The plurality of water temperature sensors 26-1 to 26-3 are provided for each of the plurality of indoor heat exchangers 7-1 to 7-3. The water-refrigerant heat exchanger 19 adjusts the temperature of the water circulating in the water circuit 4 .

室外機制御装置28は、複数の室内熱交換器7-1~7-3に水が流れる複数台運転のときに、所定の流量の水が水回路4を循環するように、ポンプ8を制御する。室外機制御装置28は、複数台運転のときに、さらに、複数の室内熱交換器7-1~7-3の熱負荷のうちの最大値に基づいて第1目標流量を算出する。室外機制御装置28は、複数の室内熱交換器7-1~7-3のうちの最大値の熱負荷の最大負荷室内熱交換器を流れる水の流量が第1目標流量に等しくなるように、複数の流量調整弁6-1~6-3のうちの最大負荷室内熱交換器に設けられた最大負荷流量調整弁を制御する。室外機制御装置28は、複数台運転のときに、さらに、複数の室内熱交換器7-1~7-3のうちの最大負荷室内熱交換器と異なる他の室内熱交換器の熱負荷と、複数の水温センサ26-1~26-3のうちの最大負荷室内熱交換器に設けられた最大負荷水温センサにより計測された最大負荷室内熱交換器に流入する水の温度とに基づいて第2目標流量を算出する。室外機制御装置28は、他の室内熱交換器を流れる水の流量が第2目標流量に等しくなるように、複数の流量調整弁6-1~6-3のうちの他の室内熱交換器に設けられた他の流量調整弁を制御する。 The outdoor unit control device 28 controls the pump 8 so that a predetermined flow rate of water circulates through the water circuit 4 during a multi-unit operation in which water flows to the plurality of indoor heat exchangers 7-1 to 7-3. do. When operating a plurality of indoor heat exchangers 7-1 to 7-3, the outdoor unit control device 28 further calculates the first target flow rate based on the maximum value of the heat loads of the plurality of indoor heat exchangers 7-1 to 7-3. The outdoor unit control device 28 controls the flow rate of water flowing through the maximum load indoor heat exchanger having the maximum heat load among the plurality of indoor heat exchangers 7-1 to 7-3 to be equal to the first target flow rate. , controls the maximum load flow rate adjustment valve provided in the maximum load indoor heat exchanger among the plurality of flow rate adjustment valves 6-1 to 6-3. When operating a plurality of indoor heat exchangers, the outdoor unit control device 28 further controls the heat load of another indoor heat exchanger that is different from the maximum load indoor heat exchanger among the plurality of indoor heat exchangers 7-1 to 7-3. , the temperature of the water flowing into the maximum load indoor heat exchanger measured by the maximum load water temperature sensor installed in the maximum load indoor heat exchanger among the plurality of water temperature sensors 26-1 to 26-3. 2 Calculate the target flow rate. The outdoor unit control device 28 controls other indoor heat exchangers among the plurality of flow rate adjustment valves 6-1 to 6-3 so that the flow rate of water flowing through the other indoor heat exchangers becomes equal to the second target flow rate. Controls other flow rate regulating valves installed in the

冷暖房装置は、複数の室内機3-1~3-3が運転している場合で、複数の室内熱交換器7-1~7-3に流れる水の流量を複数の室内熱交換器7-1~7-3の各々の熱負荷に合わせて調節しないときに、冷暖房能力の過剰や過小が生じ、快適性が低下することがある。実施例1の冷暖房装置は、複数の室内熱交換器7-1~7-3に流れる水の流量を複数の室内熱交換器7-1~7-3の熱負荷に合わせて調節することができ、複数の室内機3-1~3-3の各々が過剰または過小に冷暖房することを防止し、快適性を向上させることができる。 In the case where a plurality of indoor units 3-1 to 3-3 are in operation, the air-conditioning device controls the flow rate of water flowing to the plurality of indoor heat exchangers 7-1 to 7-3. If adjustments are not made in accordance with each of the heat loads 1 to 7-3, excessive or insufficient cooling and heating capacity may occur, resulting in decreased comfort. The air conditioning system of the first embodiment can adjust the flow rate of water flowing into the plurality of indoor heat exchangers 7-1 to 7-3 according to the heat load of the plurality of indoor heat exchangers 7-1 to 7-3. This can prevent each of the plurality of indoor units 3-1 to 3-3 from heating or cooling excessively or insufficiently, thereby improving comfort.

また、実施例1の冷暖房装置の水冷媒熱交換器19は、圧縮機15と、水と冷媒とを熱交換する水冷媒熱交換器19とを備えた冷媒回路14を有し、冷媒が循環するものである。室外機制御装置28は、複数の室内熱交換器7-1~7-3のうち一つの単独運転室内熱交換器にのみ水が流れる単独運転のときに、単独運転室内熱交換器における熱負荷に基づいて単独運転時目標流量を算出する。室外機制御装置28は、単独運転室内熱交換器に流れる水の流量が単独運転時目標流量に等しくなるように、ポンプ8を制御する。室外機制御装置28は、単独運転のときに、さらに、単独運転室内熱交換器における熱負荷に基づいて算出された単独運転時目標圧縮機回転数に、圧縮機15の圧縮機回転数が等しくなるように、圧縮機15を制御する。室外機制御装置28は、複数台運転のときに、熱負荷の最大値に基づいて算出された複数台運転時目標圧縮機回転数に、圧縮機回転数が等しくなるように、圧縮機15を制御する。実施例1の冷暖房装置は、冷媒が過剰または過小に冷媒回路14に循環しないように、水冷媒熱交換器19の圧縮機15を制御することができ、複数の室内機3-1~3-3が過剰または過小に冷暖房することを防止し、快適性を向上させることができる。 Further, the water-refrigerant heat exchanger 19 of the air-conditioning device of the first embodiment has a refrigerant circuit 14 including a compressor 15 and a water-refrigerant heat exchanger 19 that exchanges heat between water and refrigerant, and the refrigerant circulates. It is something to do. The outdoor unit control device 28 controls the heat load on the individually operated indoor heat exchanger during an individual operation in which water flows only to one of the plurality of indoor heat exchangers 7-1 to 7-3. Calculate the target flow rate during standalone operation based on. The outdoor unit control device 28 controls the pump 8 so that the flow rate of water flowing into the independent operation indoor heat exchanger becomes equal to the target flow rate during independent operation. During the individual operation, the outdoor unit control device 28 further controls the compressor rotation speed of the compressor 15 to be equal to the target compressor rotation speed during the individual operation, which is calculated based on the heat load in the individual operation indoor heat exchanger. The compressor 15 is controlled so that the When operating multiple units, the outdoor unit control device 28 controls the compressor 15 so that the compressor rotation speed becomes equal to the target compressor rotation speed for multiple unit operation, which is calculated based on the maximum value of the heat load. Control. The air conditioning system of the first embodiment can control the compressor 15 of the water/refrigerant heat exchanger 19 so that the refrigerant does not circulate in the refrigerant circuit 14 in an excessive or insufficient amount, and can control the compressor 15 of the water/refrigerant heat exchanger 19, and 3 can prevent excessive or insufficient heating and cooling and improve comfort.

また、実施例1の冷暖房装置は、記憶装置31と往き温度センサ23と戻り温度センサ24とをさらに備えている。記憶装置31は、ポンプ目標流量テーブル37と流量調整弁目標流量テーブル38とを記憶している。ポンプ目標流量テーブル37は、温度差と熱負荷とからなる複数の組み合わせを複数の単独運転時目標流量に対応付けている。流量調整弁目標流量テーブル38は、熱負荷と温度とからなる複数の組み合わせを複数の水流量47に対応付けている。往き温度センサ23は、水冷媒熱交換器19により温度が調節された水の温度を計測する。戻り温度センサ24は、複数の室内熱交換器7-1~7-3から流出した水の温度を計測する。 Further, the air-conditioning device of the first embodiment further includes a storage device 31, a forward temperature sensor 23, and a return temperature sensor 24. The storage device 31 stores a pump target flow rate table 37 and a flow rate adjustment valve target flow rate table 38. The pump target flow rate table 37 associates a plurality of combinations of temperature difference and thermal load with a plurality of individual operation target flow rates. The flow rate adjustment valve target flow rate table 38 associates a plurality of combinations of heat load and temperature with a plurality of water flow rates 47. The outgoing temperature sensor 23 measures the temperature of water whose temperature has been adjusted by the water-refrigerant heat exchanger 19. The return temperature sensor 24 measures the temperature of water flowing out from the plurality of indoor heat exchangers 7-1 to 7-3.

室外機制御装置28は、単独運転のときに、ポンプ目標流量テーブル37を参照して、複数の単独運転時目標流量43のうちの、往き温度センサ23により計測された往き温度と、往き温度と戻り温度センサ24により計測された戻り温度との温度差との組み合わせに対応する単独運転時目標流量を算出する。室外機制御装置28は、複数台運転のときに、流量調整弁目標流量テーブル38を参照して、複数の水流量47のうちの、他の室内熱交換器における熱負荷と往き温度との組み合わせに対応する第2目標流量を算出する。実施例1の冷暖房装置は、単独運転時目標流量と第2目標流量とを短時間に算出することができ、快適性を向上させることができる。 During individual operation, the outdoor unit control device 28 refers to the pump target flow rate table 37 and determines the outgoing temperature measured by the outgoing temperature sensor 23 and the outgoing temperature among the plurality of individual operation target flow rates 43. A target flow rate during independent operation corresponding to the combination of the return temperature measured by the return temperature sensor 24 and the temperature difference is calculated. When operating multiple units, the outdoor unit control device 28 refers to the flow rate adjustment valve target flow rate table 38 and determines the combination of heat load and outgoing temperature in other indoor heat exchangers among the multiple water flow rates 47. A second target flow rate corresponding to is calculated. The heating and cooling device of the first embodiment can calculate the target flow rate and the second target flow rate during independent operation in a short time, and can improve comfort.

また、実施例1の冷暖房装置は、複数の室内熱交換器7-1~7-3をそれぞれ備える複数の室内機3-1~3-3をさらに備えている。複数の室内機3-1~3-3の第1室内機3-1は、第1室内機3-1が設置された室内の温度を計測する第1室温センサ25-1を備えている。室外機制御装置28は、第1室温センサ25-1により計測された室温と、第1室内機3-1に設定された設定温度とに基づいて複数の室内熱交換器7-1~7-3のうちの第1室内機3-1に設けられた第1室内熱交換器7-1の熱負荷を算出する。室外機制御装置28は、単独運転のときに、単独運転室内熱交換器の熱負荷に基づいて単独運転時目標往き温度を算出し、往き温度が単独運転時目標往き温度に等しくなるように、単独運転時目標圧縮機回転数を算出する。室外機制御装置28は、複数台運転のときに、最大負荷室内熱交換器の熱負荷に基づいて複数台運転時目標往き温度を算出し、往き温度が複数台運転時目標往き温度に等しくなるように、複数台運転時目標圧縮機回転数を算出する。実施例1の冷暖房装置は、単独運転と複数台運転とで往き温度の制御方法が異なり、単独運転が実行されている場合でも複数台運転が実行されている場合でも水冷媒熱交換器19の圧縮機15を制御することができ、複数の室内機3-1~3-3が過剰または過小に冷暖房することを防止し、快適性を向上させることができる。 Further, the heating and cooling apparatus of the first embodiment further includes a plurality of indoor units 3-1 to 3-3 each having a plurality of indoor heat exchangers 7-1 to 7-3. The first indoor unit 3-1 of the plurality of indoor units 3-1 to 3-3 includes a first room temperature sensor 25-1 that measures the temperature inside the room in which the first indoor unit 3-1 is installed. The outdoor unit control device 28 controls the plurality of indoor heat exchangers 7-1 to 7- based on the room temperature measured by the first room temperature sensor 25-1 and the set temperature set in the first indoor unit 3-1. The heat load of the first indoor heat exchanger 7-1 provided in the first indoor unit 3-1 of the three indoor units is calculated. The outdoor unit control device 28 calculates a target outgoing temperature during independent operation based on the heat load of the indoor heat exchanger in independent operation, and so that the outgoing temperature becomes equal to the target outgoing temperature during independent operation. Calculate the target compressor rotation speed during independent operation. When operating multiple units, the outdoor unit control device 28 calculates a target outgoing temperature during multiple unit operation based on the heat load of the maximum load indoor heat exchanger, and the outgoing temperature becomes equal to the target outgoing temperature during multiple unit operation. The target compressor rotation speed when operating multiple units is calculated as follows. In the air-conditioning device of the first embodiment, the method of controlling the outgoing temperature is different between single operation and multiple unit operation, and whether the single operation or multiple unit operation is performed, the water-refrigerant heat exchanger 19 The compressor 15 can be controlled, the plurality of indoor units 3-1 to 3-3 can be prevented from excessively or insufficiently heating and cooling, and comfort can be improved.

ところで、既述の実施例1の冷暖房装置は、流量調整弁目標流量テーブル38を用いて第2目標流量を算出しているが、流量調整弁目標流量テーブル38を用いないで第2目標流量を算出してもよい。また、既述の実施例1の冷暖房装置は、ポンプ目標流量テーブル37を用いて単独運転時目標流量を算出しているが、ポンプ目標流量テーブル37を用いないで単独運転時目標流量を算出してもよい。 By the way, the air conditioning system of the first embodiment described above calculates the second target flow rate using the flow rate adjustment valve target flow rate table 38, but the second target flow rate is calculated without using the flow rate adjustment valve target flow rate table 38. It may be calculated. In addition, although the air conditioning system of the first embodiment described above uses the pump target flow rate table 37 to calculate the target flow rate during individual operation, the target flow rate during individual operation is calculated without using the pump target flow rate table 37. It's okay.

実施例2の冷暖房装置は、既述の実施例1の冷暖房装置の室外機制御装置28がポンプ目標流量テーブル37と流量調整弁目標流量テーブル38とを用いないで数式を用いて第2目標流量と単独運転時目標流量とを算出し、それ以外は、既述の実施例1の冷暖房装置と同じである。すなわち、複数の室内熱交換器7-1~7-3のうちの各々の対象室内熱交換器の水側能力Qwは、一般的に、水比熱Cpwと入口水温TwLと出口水温TwRと水流量Gwとを用いて次式(1)により表現される。
Qw=Cpw×(TwL-TwR)×Gw…(1)
ここで、入口水温TwLは、対象室内熱交換器に供給される水の温度を示している。出口水温TwRは、対象室内熱交換器から流出する水の温度を示している。水流量Gwは、対象室内熱交換器に単位時間あたりに流れる水の流量を示している。さらに、対象室内熱交換器の空気側能力Qaは、一般的に、空気比熱Cpaと入口水温TwLと室内吸込み温度Taと熱交換器温度効率εと風量Gaとを用いて次式(2)により表現される。
Qa=Cpa×(TwL-Ta)×ε×Ga…(2)
ここで、室内吸込み温度Taは、複数の室内機3-1~3-3のうちの対象室内熱交換器が設けられている対象室内機が設置されている室内の温度を示している。熱交換器温度効率εは、対象室内熱交換器に固有の値を示し、水流量Gwの関数である。風量Gaは、対象室内熱交換器により温度が調節された空気を対象室内機が室内に吹き出す風量を示している。
In the air conditioning system of the second embodiment, the outdoor unit control device 28 of the air conditioning system of the first embodiment described above uses a mathematical formula to determine the second target flow rate without using the pump target flow rate table 37 and the flow rate adjustment valve target flow rate table 38. and the target flow rate during standalone operation are calculated, and the rest is the same as the air-conditioning system of the first embodiment described above. That is, the water side capacity Qw of each target indoor heat exchanger among the plurality of indoor heat exchangers 7-1 to 7-3 is generally determined by water specific heat Cpw, inlet water temperature TwL, outlet water temperature TwR, and water flow rate. It is expressed by the following equation (1) using Gw.
Qw=Cpw×(TwL−TwR)×Gw…(1)
Here, the inlet water temperature TwL indicates the temperature of water supplied to the target indoor heat exchanger. The outlet water temperature TwR indicates the temperature of water flowing out from the target indoor heat exchanger. The water flow rate Gw indicates the flow rate of water flowing into the target indoor heat exchanger per unit time. Furthermore, the air side capacity Qa of the target indoor heat exchanger is generally calculated by the following equation (2) using the air specific heat Cpa, the inlet water temperature TwL, the indoor suction temperature Ta, the heat exchanger temperature efficiency ε, and the air volume Ga. expressed.
Qa=Cpa×(TwL−Ta)×ε×Ga…(2)
Here, the indoor suction temperature Ta indicates the temperature inside the room in which the target indoor unit in which the target indoor heat exchanger is installed among the plurality of indoor units 3-1 to 3-3 is installed. The heat exchanger temperature efficiency ε indicates a value specific to the target indoor heat exchanger, and is a function of the water flow rate Gw. The air volume Ga indicates the air volume at which the target indoor unit blows air whose temperature has been adjusted by the target indoor heat exchanger indoors.

このとき、室外機制御装置28は、複数台運転のときに、水側能力Qwと空気側能力Qaとが対象室内熱交換器の熱負荷に概ね一致するように、式(1)(2)を逆算して、水流量Gwを第2目標流量として算出する。室外機制御装置28は、単独運転のときに、水側能力Qwと空気側能力Qaとが単独運転室内熱交換器の熱負荷に概ね一致するように、式(1)(2)を逆算して、水流量Gwを単独運転時目標流量として算出する。 At this time, the outdoor unit control device 28 uses equations (1) and (2) so that the water side capacity Qw and the air side capacity Qa roughly match the heat load of the target indoor heat exchanger when multiple units are operated. is calculated backwards to calculate the water flow rate Gw as the second target flow rate. The outdoor unit control device 28 back-calculates equations (1) and (2) so that the water side capacity Qw and the air side capacity Qa generally match the heat load of the independently operated indoor heat exchanger during the isolated operation. Then, the water flow rate Gw is calculated as the target flow rate during independent operation.

実施例2の冷暖房装置は、ポンプ目標流量テーブル37と流量調整弁目標流量テーブル38とを用いないで数式を用いて第2目標流量と単独運転時目標流量とが算出される場合でも、既述の実施例1の冷暖房装置と同様に、複数の流量調整弁6-1~6-3とポンプ8とを制御することができる。このため、実施例2の冷暖房装置は、既述の実施例1の冷暖房装置と同様に、快適性を向上させることができる。また、既述の実施例1の冷暖房装置は、ポンプ目標流量テーブル37と流量調整弁目標流量テーブル38とを用いることにより、式(1)(2)を逆算する必要がなく、実施例2の冷暖房装置と比較して、第2目標流量と単独運転時目標流量とをより短時間に算出することができる。 In the air conditioning system of the second embodiment, even when the second target flow rate and the target flow rate during independent operation are calculated using mathematical formulas without using the pump target flow rate table 37 and the flow rate adjustment valve target flow rate table 38, the above-mentioned Similarly to the heating and cooling system of Embodiment 1, a plurality of flow rate regulating valves 6-1 to 6-3 and the pump 8 can be controlled. Therefore, the air-conditioning device of the second embodiment can improve comfort similarly to the air-conditioning device of the first embodiment described above. In addition, the air conditioning system of the first embodiment described above uses the pump target flow rate table 37 and the flow rate adjustment valve target flow rate table 38, so there is no need to back-calculate equations (1) and (2), and the air conditioning system of the second embodiment Compared to the air conditioning system, the second target flow rate and the target flow rate during independent operation can be calculated in a shorter time.

ところで、既述の実施例の冷暖房装置には、複数の水温センサ26-1~26-3が設けられているが、複数の水温センサ26-1~26-3が省略されてもよい。複数の水温センサ26-1~26-3により計測された水温は、往き温度センサ23により計測された往き温度におおむね等しい。このため、冷暖房装置は、複数の水温センサ26-1~26-3が省略されているときに、複数の水温センサ26-1~26-3により計測された水温の代わりに、往き温度センサ23により計測された往き温度を用いることができる。また、既述の実施例の冷暖房装置には、往き温度センサ23が設けられているが、往き温度センサ23が省略されてもよい。冷暖房装置は、往き温度センサ23が省略されているときに、往き温度センサ23により計測された往き温度の代わりに、複数の水温センサ26-1~26-3のいずれかにより計測された水温を用いることができる。このような場合も、冷暖房装置は、既述の実施例の冷暖房装置と同様に、快適性を向上させることができる。 Incidentally, although the air-conditioning apparatus of the embodiment described above is provided with a plurality of water temperature sensors 26-1 to 26-3, the plurality of water temperature sensors 26-1 to 26-3 may be omitted. The water temperatures measured by the plurality of water temperature sensors 26-1 to 26-3 are approximately equal to the outgoing temperature measured by the outgoing temperature sensor 23. Therefore, when the plurality of water temperature sensors 26-1 to 26-3 are omitted, the air conditioning system uses the outgoing temperature sensor 23 instead of the water temperature measured by the plurality of water temperature sensors 26-1 to 26-3. The outgoing temperature measured by can be used. Moreover, although the air conditioning apparatus of the above-mentioned embodiment is provided with the outgoing temperature sensor 23, the outgoing temperature sensor 23 may be omitted. When the outgoing temperature sensor 23 is omitted, the air conditioning system uses the water temperature measured by one of the plurality of water temperature sensors 26-1 to 26-3 instead of the outgoing temperature measured by the outgoing temperature sensor 23. Can be used. Even in such a case, the heating and cooling device can improve comfort in the same way as the heating and cooling device of the previously described embodiments.

ところで、既述の実施例の冷暖房装置の水冷媒熱交換器19は、水回路4を循環する水を加熱したり冷却したりするが、水回路4を循環する水を冷却しないで加熱のみする他の熱源機に置換されてもよい。このような場合も、冷暖房装置は、既述の実施例の冷暖房装置と同様に、快適性を向上させることができる。 By the way, the water-refrigerant heat exchanger 19 of the air-conditioning device of the embodiment described above heats or cools the water circulating in the water circuit 4, but only heats the water circulating in the water circuit 4 without cooling it. It may be replaced with another heat source device. Even in such a case, the heating and cooling device can improve comfort in the same way as the heating and cooling device of the above-mentioned embodiments.

ところで、既述の実施例の冷暖房装置の水回路4には、水が循環しているが、水と異なる熱媒体が循環してもよい。その熱媒体としては、不凍液が例示される。冷暖房装置は、水と異なる熱媒体が水回路4に循環するときでも、既述の実施例の冷暖房装置と同様に、快適性を向上させることができる。 By the way, although water circulates in the water circuit 4 of the air-conditioning apparatus in the embodiment described above, a heat medium other than water may also circulate. An example of the heat medium is antifreeze. Even when a heat medium other than water is circulated through the water circuit 4, the air-conditioning device can improve comfort in the same way as the air-conditioning device of the embodiment described above.

ところで、既述の実施例の冷暖房装置には、室内に空気を吹き出す複数の室内機3-1~3-2が設けられているが、複数の室内機3-1~3-2が他の複数の端末に置換されてもよい。端末としては、床の温度を調節して室内を暖房する床暖房装置が例示される。このような場合も、冷暖房装置は、既述の実施例1の冷暖房装置と同様に、快適性を向上させることができる。 By the way, the air conditioning system of the embodiment described above is provided with a plurality of indoor units 3-1 to 3-2 that blow air indoors, but the plurality of indoor units 3-1 to 3-2 are connected to other indoor units. It may be replaced by multiple terminals. An example of the terminal is a floor heating device that adjusts the temperature of the floor to heat the room. Even in such a case, the air-conditioning device can improve comfort similarly to the air-conditioning device of the first embodiment described above.

以上、実施例を説明したが、前述した内容により実施例が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、実施例の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。 Although the embodiments have been described above, the embodiments are not limited to the contents described above. Furthermore, the above-mentioned components include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are in a so-called equivalent range. Furthermore, the aforementioned components can be combined as appropriate. Furthermore, at least one of various omissions, substitutions, and modifications of the components can be made without departing from the gist of the embodiments.

1 :空気調和機
3-1~3-3:複数の室内機
4 :水回路(熱媒体回路)
5 :水冷媒熱交換器(熱源機)
6-1~6-3:複数の流量調整弁
7-1~7-3:複数の室内熱交換器
8 :ポンプ
14 :冷媒回路
15 :圧縮機
19 :水冷媒熱交換器(熱媒体冷媒熱交換器)
23 :往き温度センサ
24 :戻り温度センサ
25-1~25-3:複数の室温センサ
26 :ポンプ
26-1~26-3:複数の水温センサ(複数の熱媒体温度検出部)
28 :室外機制御装置(制御部)
37 :ポンプ目標流量テーブル
38 :流量調整弁目標流量テーブル
1: Air conditioner 3-1 to 3-3: Multiple indoor units 4: Water circuit (heat medium circuit)
5: Water refrigerant heat exchanger (heat source machine)
6-1 to 6-3: Multiple flow rate adjustment valves 7-1 to 7-3: Multiple indoor heat exchangers 8: Pump 14: Refrigerant circuit 15: Compressor 19: Water-refrigerant heat exchanger (heat medium refrigerant heat exchanger) exchanger)
23: Outgoing temperature sensor 24: Return temperature sensor 25-1 to 25-3: Multiple room temperature sensors 26: Pump 26-1 to 26-3: Multiple water temperature sensors (multiple heat medium temperature detection units)
28: Outdoor unit control device (control unit)
37: Pump target flow rate table 38: Flow rate adjustment valve target flow rate table

Claims (4)

熱媒体回路の内部に熱媒体を循環させるポンプと、
前記熱媒体回路に設けられ、互いに並列に設けられた複数の室内熱交換器と、
前記複数の室内熱交換器毎に設けられる複数の流量調整弁と、
前記複数の室内熱交換器毎に設けられる複数の熱媒体温度検出部と、
前記熱媒体の温度を調節する熱源機と、
前記複数の室内熱交換器に前記熱媒体が流れる複数台運転のときに、所定の流量の熱媒体が前記熱媒体回路を循環するように、前記ポンプを制御し、前記複数の室内熱交換器のうち熱負荷が最大である室内熱交換器を最大熱負荷室内熱交換器とし、前記最大熱負荷室内熱交換器の熱負荷に基づいて最大熱負荷目標流量を算出し、前記最大熱負荷室内熱交換器を流れる熱媒体の流量が前記最大熱負荷目標流量に等しくなるように、前記複数の流量調整弁のうちの前記最大熱負荷室内熱交換器に対応する前記流量調整弁を制御し、前記複数の室内熱交換器のうちの前記最大熱負荷室内熱交換器と異なる他の室内熱交換器を余熱負荷室内熱交換器とし、前記余熱負荷室内熱交換器の熱負荷と、前記最大熱負荷室内熱交換器に対応する前記熱媒体温度検出部により計測された前記最大熱負荷室内熱交換器に流入する熱媒体の温度とに基づいて算出された余熱負荷目標流量に、前記余熱負荷室内熱交換器を流れる熱媒体の流量が等しくなるように、前記複数の流量調整弁のうちの前記余熱負荷室内熱交換器に対応する前記流量調整弁を制御する制御部
とを備える冷暖房装置。
a pump that circulates the heat medium inside the heat medium circuit;
a plurality of indoor heat exchangers provided in the heat medium circuit and provided in parallel with each other;
a plurality of flow rate adjustment valves provided for each of the plurality of indoor heat exchangers;
a plurality of heat medium temperature detection units provided for each of the plurality of indoor heat exchangers;
a heat source device that adjusts the temperature of the heat medium;
controlling the pump so that a predetermined flow rate of the heat medium circulates through the heat medium circuit when the heat medium flows through the plurality of indoor heat exchangers; Among them, the indoor heat exchanger with the maximum heat load is set as the maximum heat load indoor heat exchanger, and the maximum heat load target flow rate is calculated based on the heat load of the maximum heat load indoor heat exchanger. controlling the flow rate adjustment valve corresponding to the maximum heat load indoor heat exchanger among the plurality of flow rate adjustment valves so that the flow rate of the heat medium flowing through the heat exchanger is equal to the maximum heat load target flow rate; Another indoor heat exchanger different from the maximum heat load indoor heat exchanger among the plurality of indoor heat exchangers is a residual heat load indoor heat exchanger, and the heat load of the residual heat load indoor heat exchanger and the maximum heat The residual heat load target flow rate calculated based on the temperature of the heat medium flowing into the maximum heat load indoor heat exchanger measured by the heat medium temperature detection section corresponding to the load indoor heat exchanger, A heating and cooling device comprising: a control unit that controls the flow rate adjustment valve corresponding to the residual heat load indoor heat exchanger among the plurality of flow rate adjustment valves so that the flow rate of the heat medium flowing through the heat exchanger becomes equal.
前記熱源機は、圧縮機と、前記熱媒体と冷媒とを熱交換する熱媒体冷媒熱交換器とを備えた冷媒回路を有し、前記冷媒が循環するものであり、
前記制御部は、
前記複数の室内熱交換器のうち一つの室内熱交換器にのみ前記熱媒体が流れる単独運転のとき、当該室内熱交換器を単独運転室内熱交換器とし、前記単独運転室内熱交換器における熱負荷に基づいて算出された単独運転時目標流量に、前記単独運転室内熱交換器に流れる熱媒体の流量が等しくなるように、前記ポンプを制御し、前記単独運転室内熱交換器における熱負荷に基づいて算出された単独運転時目標圧縮機回転数に、前記圧縮機の圧縮機回転数が等しくなるように、前記圧縮機を制御し、
前記複数台運転のときに、前記最大熱負荷室内熱交換器の熱負荷に基づいて算出された複数台運転時目標圧縮機回転数に、前記圧縮機回転数が等しくなるように、前記圧縮機を制御する
請求項1に記載の冷暖房装置。
The heat source device has a refrigerant circuit including a compressor and a heat medium refrigerant heat exchanger that exchanges heat between the heat medium and the refrigerant, and the refrigerant circulates;
The control unit includes:
When the indoor heat exchanger is in an isolated operation in which the heat medium flows only in one indoor heat exchanger among the plurality of indoor heat exchangers, the indoor heat exchanger is regarded as an independently operated indoor heat exchanger, and the heat in the individually operated indoor heat exchanger is The pump is controlled so that the flow rate of the heat medium flowing through the isolated indoor heat exchanger is equal to the target flow rate during isolated operation calculated based on the load, and the heat load in the isolated indoor heat exchanger is controlled. controlling the compressor so that the compressor rotation speed of the compressor becomes equal to the target compressor rotation speed during independent operation calculated based on the
When operating the plurality of units, the compressor is operated so that the number of rotations of the compressor becomes equal to the target number of rotations of the compressor during operation of the plurality of units, which is calculated based on the heat load of the maximum heat load indoor heat exchanger. The heating and cooling device according to claim 1.
前記熱源機により温度が調節された熱媒体の温度である往き温度を計測する往き温度センサと、
前記室内熱交換器から流出した熱媒体の温度である戻り温度を計測する戻り温度センサとをさらに備え、
前記往き温度と、前記往き温度と前記戻り温度との温度差とからなる複数の組み合わせを複数の単独運転時目標流量に対応付けるポンプ目標流量テーブルと、前記熱媒体の温度に対応付けられた能力と流量の組合せを複数備えた流量調整弁目標流量テーブルとを記憶する記憶部と、
前記制御部は、
前記単独運転のときに、前記ポンプ目標流量テーブルを参照して、前記複数の単独運転時目標流量のうちの、前記往き温度と前記戻り温度との温度差と、前記往き温度との組み合わせに対応する前記単独運転時目標流量を算出し、
前記複数台運転のときに、前記流量調整弁目標流量テーブルを参照して、前記余熱負荷室内熱交換器における熱負荷と前記往き温度との組み合わせに対応する前記余熱負荷目標流量を算出する
請求項2に記載の冷暖房装置。
an outgoing temperature sensor that measures an outgoing temperature that is the temperature of the heat medium whose temperature has been adjusted by the heat source device;
Further comprising a return temperature sensor that measures a return temperature that is the temperature of the heat medium flowing out from the indoor heat exchanger,
a pump target flow rate table that associates a plurality of combinations of the outgoing temperature and a temperature difference between the outgoing temperature and the return temperature with a plurality of target flow rates during independent operation; and a capacity that is associated with the temperature of the heat medium; a storage unit that stores a flow rate adjustment valve target flow rate table including a plurality of flow rate combinations;
The control unit includes:
During the individual operation, by referring to the pump target flow rate table, a combination of the temperature difference between the outgoing temperature and the return temperature and the outgoing temperature among the plurality of individual operation target flow rates is determined. Calculate the target flow rate during independent operation,
When the plural units are operated, the residual heat load target flow rate corresponding to the combination of the heat load in the residual heat load indoor heat exchanger and the outgoing temperature is calculated with reference to the flow rate adjustment valve target flow rate table. 2. The air conditioning device according to 2.
前記複数の室内熱交換器をそれぞれ備える複数の室内機をさらに備え、
前記複数の室内機は、
前記室内機が設置された部屋の温度を計測する室温センサを備え、
前記制御部は、
前記室温センサにより計測された室温と前記室内機に設定された設定温度とに基づいて前記複数の室内熱交換器のうちの前記室内機に設けられた室内熱交換器の熱負荷を算出し、
前記単独運転のときに、前記単独運転室内熱交換器の熱負荷に基づいて単独運転時目標往き温度を算出し、前記往き温度が前記単独運転時目標往き温度に等しくなるように、前記単独運転時目標圧縮機回転数を算出し、
前記複数台運転のときに、前記最大熱負荷室内熱交換器の熱負荷に基づいて複数台運転時目標往き温度を算出し、前記往き温度が前記複数台運転時目標往き温度に等しくなるように、前記複数台運転時目標圧縮機回転数を算出する
請求項3に記載の冷暖房装置。
further comprising a plurality of indoor units each including the plurality of indoor heat exchangers,
The plurality of indoor units are:
comprising a room temperature sensor that measures the temperature of the room in which the indoor unit is installed,
The control unit includes:
Calculating the heat load of an indoor heat exchanger provided in the indoor unit of the plurality of indoor heat exchangers based on the room temperature measured by the room temperature sensor and the set temperature set in the indoor unit;
During the individual operation, a target outgoing temperature during the individual operation is calculated based on the heat load of the indoor heat exchanger in the individual operation, and the individual operation is performed so that the outgoing temperature becomes equal to the target outgoing temperature during the individual operation. Calculate the target compressor rotation speed,
When operating the plural units, calculate a target outgoing temperature when operating the plural units based on the heat load of the maximum heat load indoor heat exchanger, so that the outgoing temperature becomes equal to the target outgoing temperature when operating the plural units. , calculating the target compressor rotation speed when the plurality of units are operated.
JP2022191534A 2022-11-30 2022-11-30 Air conditioning equipment Active JP7444230B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022191534A JP7444230B1 (en) 2022-11-30 2022-11-30 Air conditioning equipment
PCT/JP2023/042885 WO2024117217A1 (en) 2022-11-30 2023-11-30 Cooling and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022191534A JP7444230B1 (en) 2022-11-30 2022-11-30 Air conditioning equipment

Publications (2)

Publication Number Publication Date
JP7444230B1 true JP7444230B1 (en) 2024-03-06
JP2024078915A JP2024078915A (en) 2024-06-11

Family

ID=90096990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022191534A Active JP7444230B1 (en) 2022-11-30 2022-11-30 Air conditioning equipment

Country Status (2)

Country Link
JP (1) JP7444230B1 (en)
WO (1) WO2024117217A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084951A (en) 2008-09-29 2010-04-15 Mitsubishi Electric Corp Air conditioning device
WO2020065766A1 (en) 2018-09-26 2020-04-02 三菱電機株式会社 Air conditioning device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084951A (en) 2008-09-29 2010-04-15 Mitsubishi Electric Corp Air conditioning device
WO2020065766A1 (en) 2018-09-26 2020-04-02 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
WO2024117217A1 (en) 2024-06-06
JP2024078915A (en) 2024-06-11

Similar Documents

Publication Publication Date Title
US9500375B2 (en) Heat pump and method for controlling the same
US9534807B2 (en) Air conditioning apparatus with primary and secondary heat exchange cycles
EP2450637B1 (en) Hot water supply apparatus for combined use of air conditioner
JP5674572B2 (en) Air conditioner
WO2006004046A1 (en) Hot-water supply device
WO2015125863A1 (en) Heat source device
JP6609697B2 (en) Heat source system and control method of heat source system
JP2008064439A (en) Air conditioner
US9810466B2 (en) Heat pump system
JP6681896B2 (en) Refrigeration system
CN102725596A (en) Heat pump system
JP6980089B2 (en) Air conditioner
KR20080073996A (en) A air conditioning system by water source and control method thereof
JP6890727B1 (en) Air conditioning system and control method
JP7444230B1 (en) Air conditioning equipment
JP4104218B2 (en) Air conditioner
WO2019167249A1 (en) Air conditioner
JP5066022B2 (en) Air conditioning system
JP2004044946A (en) Air conditioner
JP2003254588A (en) Multi-type air conditioner
JPH0926186A (en) Refrigerant circulation type air conditioning system
JP3236927B2 (en) Refrigerant circulation type air conditioning system
JP2016102635A (en) Air conditioner system
JP2000039229A (en) Air conditioner
KR20240061047A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R151 Written notification of patent or utility model registration

Ref document number: 7444230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151