JP7441616B2 - Rotary grindstone for cutting - Google Patents
Rotary grindstone for cutting Download PDFInfo
- Publication number
- JP7441616B2 JP7441616B2 JP2019116760A JP2019116760A JP7441616B2 JP 7441616 B2 JP7441616 B2 JP 7441616B2 JP 2019116760 A JP2019116760 A JP 2019116760A JP 2019116760 A JP2019116760 A JP 2019116760A JP 7441616 B2 JP7441616 B2 JP 7441616B2
- Authority
- JP
- Japan
- Prior art keywords
- grindstone
- cutting
- manufacture
- abrasive grains
- rotary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 title claims description 42
- 238000004519 manufacturing process Methods 0.000 claims description 62
- 239000011148 porous material Substances 0.000 claims description 60
- 239000006061 abrasive grain Substances 0.000 claims description 51
- 239000000463 material Substances 0.000 claims description 29
- 238000005452 bending Methods 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 16
- 239000000945 filler Substances 0.000 claims description 15
- 230000001902 propagating effect Effects 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 9
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 4
- 229910001610 cryolite Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 claims description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000292 calcium oxide Substances 0.000 claims description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 229920001225 polyester resin Polymers 0.000 claims description 2
- 239000004645 polyester resin Substances 0.000 claims description 2
- 239000001103 potassium chloride Substances 0.000 claims description 2
- 235000011164 potassium chloride Nutrition 0.000 claims description 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 claims description 2
- 229910052939 potassium sulfate Inorganic materials 0.000 claims description 2
- 235000011151 potassium sulphates Nutrition 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims 1
- -1 and calycriolite Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 229920001568 phenolic resin Polymers 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 37
- 239000000523 sample Substances 0.000 description 19
- 239000011347 resin Substances 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- 238000012423 maintenance Methods 0.000 description 13
- 230000006866 deterioration Effects 0.000 description 9
- 238000001878 scanning electron micrograph Methods 0.000 description 8
- 239000003082 abrasive agent Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 235000012489 doughnuts Nutrition 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Description
本発明は、切断用回転砥石に関するものである。 The present invention relates to a cutting rotary grindstone.
特許文献1には、砥粒の結合材として樹脂が用いられたレジノイド製の回転砥石(切断用回転砥石)が開示されている。
特許文献1のような切断用回転砥石について、従来のものよりも寿命を長くするという要求があった。本発明は斯かる点に鑑みてなされたものであり、その目的は、切断用回転砥石の寿命を長くすることにある。
There has been a demand for a cutting rotary grindstone such as that disclosed in
前記の目的を達成するために、この発明では、砥石本体に対する気孔が占める体積の割合及び気孔径を小さくした。 In order to achieve the above object, in the present invention, the ratio of the volume occupied by the pores to the grinding wheel body and the pore diameter are reduced.
具体的には、第1の発明は、砥石本体が砥粒と結合材とを含有する切断用回転砥石であって、前記砥石本体に対する気孔の占める体積の割合が15%以下であり、前記気孔の平均気孔径が前記砥粒の平均粒径に対して3%以下であることを特徴とする。 Specifically, a first invention is a cutting rotary grindstone in which a grindstone body contains abrasive grains and a binder, wherein a volume ratio of pores to the grindstone body is 15% or less, and the pores The average pore size of the abrasive grains is 3% or less of the average particle size of the abrasive grains.
この第1の発明によれば、砥石本体に対する気孔が占める体積の割合が15%以下と比較的小さいので、気孔内の空気の影響で結合材が劣化するのを抑えることができる。また、平均気孔径が砥粒の平均粒径に対して3%以下と比較的小さいので、砥粒及び結合材のはく離が低減され、長期にわたって、回転砥石を使用できるようになる。以上のことから、回転砥石の寿命が長くなる。 According to the first invention, the ratio of the volume occupied by the pores to the grindstone body is relatively small, 15% or less, so that deterioration of the bonding material due to the influence of air within the pores can be suppressed. Furthermore, since the average pore diameter is relatively small at 3% or less of the average particle diameter of the abrasive grains, peeling of the abrasive grains and the bonding material is reduced, and the rotating grindstone can be used for a long period of time. As a result of the above, the life of the rotary grindstone becomes longer.
第2の発明は、第1の発明において、前記砥粒は、前記砥石本体に対する体積の割合が20%以上60%以下であり、前記結合材は、前記砥石本体に対する体積の割合が20%以上50%以下であることを特徴とする。尚、砥石本体に対する体積の割合とは、砥石本体が気孔を含む場合には、気孔も含めた砥石本体の体積に対する体積の割合を意味する。 A second invention is based on the first invention, wherein the abrasive grains have a volume ratio of 20% or more to the grindstone body and 60% or less, and the binder has a volume ratio of 20% or more to the grindstone body. It is characterized by being 50% or less. Incidentally, the volume ratio to the grindstone main body means, when the grindstone main body includes pores, the volume ratio to the volume of the grindstone main body including the pores.
この第2の発明によれば、結合材の砥石本体に対する体積の割合が20%以上であるので、砥粒の脱落を抑制できる。また、結合材の砥石本体に対する体積の割合が50%以下であるので、気孔の発生を制限できる。従って、気孔内の空気の影響で結合材が劣化するのが抑えられ、結合材が長期にわたって砥粒の脱落を抑制し、回転砥石の寿命が長くなる。 According to the second invention, since the volume ratio of the bonding material to the grindstone body is 20% or more, it is possible to suppress the falling off of the abrasive grains. Furthermore, since the volume ratio of the binder to the grindstone body is 50% or less, the generation of pores can be restricted. Therefore, deterioration of the bonding material due to the influence of air in the pores is suppressed, and the bonding material suppresses the falling off of the abrasive grains over a long period of time, extending the life of the rotating grindstone.
第3の発明は、第1又は第2の発明において、製造直後における前記砥石本体の曲げ強度が製造後3週間経過時において90%以上維持されていることを特徴とする。 A third invention is characterized in that in the first or second invention, the bending strength of the grindstone body immediately after manufacture is maintained at 90% or more three weeks after manufacture.
この第3の発明によれば、製造直後における砥石本体の曲げ強度が製造後3週間経過時において90%以上維持されており、寿命の長い回転砥石が得られる。 According to the third invention, the bending strength of the grindstone body immediately after manufacture is maintained at 90% or more three weeks after manufacture, and a rotary grindstone with a long life can be obtained.
第4の発明は、第1~第3の発明のいずれか1つにおいて、前記砥石本体内を伝播する超音波速度が3.3mm/μs以上であることを特徴とする。 A fourth invention is characterized in that, in any one of the first to third inventions, the ultrasonic velocity propagating within the grindstone body is 3.3 mm/μs or more.
この第4の発明によれば、砥石本体内を伝播する超音波速度が3.3mm/μs以上と比較的速いので、密度が高く、砥石本体に対する気孔が占める体積の割合が小さい砥石が得られる。従って、気孔内の空気の影響で結合材が劣化するのが抑えられ、寿命の長い回転砥石が得られる。 According to the fourth invention, since the ultrasonic velocity propagating within the grinding wheel body is relatively fast at 3.3 mm/μs or more, a grinding wheel with high density and a small volume ratio occupied by pores to the grinding wheel body can be obtained. . Therefore, deterioration of the bonding material due to the influence of air in the pores is suppressed, and a rotating grindstone with a long life can be obtained.
第5の発明は、第1~第4の発明のいずれか1つにおいて、製造直後における前記砥石本体内を伝播する超音波速度が製造後3週間経過時において97.5%以上維持されていることを特徴とする。 In a fifth invention, in any one of the first to fourth inventions, the ultrasonic velocity propagating within the grindstone body immediately after manufacture is maintained at 97.5% or more after three weeks have passed after manufacture. It is characterized by
この第5の発明によれば、製造直後における砥石本体内を伝播する超音波速度が製造後3週間経過時において97.5%以上維持されており、砥石本体に対する気孔が占める体積の割合が小さいという状態を長期にわたって維持できる。従って、気孔内の空気の影響で結合材が劣化するのが抑えられ、寿命の長い回転砥石が得られる。 According to the fifth invention, the ultrasonic velocity propagating within the grindstone body immediately after manufacture is maintained at 97.5% or more three weeks after manufacture, and the proportion of the volume occupied by pores to the grindstone body is small. This state can be maintained for a long period of time. Therefore, deterioration of the bonding material due to the influence of air in the pores is suppressed, and a rotating grindstone with a long life can be obtained.
第6の発明は、第1~第5の発明のいずれか1つにおいて、製造直後における前記砥石本体の切断能力が製造後3週間経過時において80%以上維持されていることを特徴とする。 A sixth invention, in any one of the first to fifth inventions, is characterized in that the cutting ability of the grindstone body immediately after manufacture is maintained at 80% or more three weeks after manufacture.
この第6の発明によれば、製造直後における砥石本体の切断能力が製造後3週間経過時において80%以上維持されており、寿命の長い回転砥石が得られる。 According to the sixth invention, the cutting ability of the whetstone body immediately after manufacture is maintained at 80% or more three weeks after manufacture, and a rotary whetstone with a long life can be obtained.
以上説明したように、本発明によると、切断用回転砥石の寿命が長くなる。 As explained above, according to the present invention, the life of the cutting rotary grindstone is extended.
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. The following description of preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its applications, or its uses.
図1に、本発明の実施形態に係る切断用回転砥石1(以下、「回転砥石」という)を示す。この回転砥石1は、金属切断用である。回転砥石1は、砥石本体11と、この砥石本体11と接着によって一体にしたプラスチック製の座部材12とを備えている。
FIG. 1 shows a cutting rotary whetstone 1 (hereinafter referred to as "rotary whetstone") according to an embodiment of the present invention. This
砥石本体11は、全体にわたって同一厚さで平らに形成され、中央に中心孔11aが設けられた円板状に形成されている。砥石本体11の外径は、例えば50mm以上230mm以下であり、厚さは例えば5mm以下である。中心孔11aの内径は、特に限定されないが、例えば15mmである。
The
座部材12は、砥石本体11の中心孔11aの周りの片面に接着されたドーナツ板状の座部12aと、この座部12aの内周縁より軸方向に延び中心孔11aの内面に嵌め込まれたブッシュ部12bとからなる。
The
砥石本体11は、多数の砥粒と、砥粒を結合する結合材と、無機充填剤(以下、「充填剤」という)とからなる。砥粒は、砥石本体11に対する体積の割合が20%以上60%以下であることが好ましく、30%以上50%以下であることがより好ましく、40%以上50%以下であることが更により好ましい。砥粒の例としては、アルミナ質研削材、アルミナジルコニア研削材、炭化ケイ素質研削材等が挙げられる。
The
結合材は、砥石本体11に対する体積の割合が20%以上50%以下であることが好ましく、28%以上40%以下であることがより好ましい。結合材は、樹脂から形成されており、樹脂の例としては、フェノール樹脂、ポリエステル樹脂、エポキシ樹脂等が挙げられる。
The volume ratio of the binding material to the
充填剤は、砥石本体11に対する体積の割合が0%以上40%以下であることが好ましく、10%以上30%以下であることがより好ましい。無機充填材の例としては、硫化鉄、硫酸カリウム、クリオライト、酸化カルシウム、塩化カリウム、カリクリオライト等が挙げられる。
The volume ratio of the filler to the
回転砥石1は、気孔を含む場合には、砥石本体11の体積に対する気孔が占める体積の割合(以下、「気孔率」という)が15%以下であることが好ましく、12%以下であることがより好ましく、5%以下であることが更により好ましい。また、平均気孔径が砥粒の平均粒径に対して3%以下であることが好ましく、2.5%以下であることがより好ましい。
When the
また、回転砥石1は、製造直後における砥石本体11の曲げ強度が製造後1週間経過時において98%以上維持されていることが好ましく、99%以上維持されていることがより好ましい。また、回転砥石1は、製造直後における砥石本体11の曲げ強度が製造後3週間経過時において90%以上維持されていることが好ましく、99%以上維持されていることがより好ましい。尚、本願において、製造直後とは、製造後26時間以内を意味する。
Further, in the
また、回転砥石1は、砥石本体11内を伝播する超音波速度が3.3mm/μs以上であることが好ましく、3.5mm/μs以上であることがより好ましい。
Further, in the
また、回転砥石1は、製造直後における砥石本体11内を伝播する超音波速度が製造後1週間経過時において99.1%以上維持されていることが好ましく、99.2%以上維持されていることがより好ましい。また、回転砥石1は、製造直後における砥石本体11内を伝播する超音波速度が3週間経過時において97.5%以上維持されていることが好ましく、98.4%以上維持されていることがより好ましい。
Further, in the
また、回転砥石1は、製造直後における砥石本体11の切断能力が製造後1週間経過時において86%以上維持されていることが好ましく、90%以上維持されていることがより好ましい。また、回転砥石1は、製造直後における砥石本体11の切断能力が製造後3週間経過時において80%以上維持されていることが好ましく、87%以上維持されていることがより好ましい。
Further, in the
回転砥石1は、以下のようにして製造する。まず、砥粒、樹脂及び充填剤を、混合し、混合された材料を金型に入れ、金型を、圧力をかけながら加熱することにより砥石本体11を成形する。そして成形された砥石本体11の中心孔11aに座部材12のブッシュ部12bを嵌め込み、回転砥石1を完成させる。
The rotating
ここで、砥石本体11を成形する過程において、樹脂中に気泡が発生するが、この気泡が砥石本体11が成形されたときに気孔を生じさせる原因となる。本願の発明者らによる鋭意検討の結果、材料中の樹脂の含有量及び金型にかける温度によって、気孔率及び気孔径を調整し得ることがわかった。
Here, in the process of molding the
―効果―
ところで、砥石本体11中の気孔は、例えば、樹脂(結合材)と気孔中の空気の水分との加水分解反応により、結合材の劣化を引き起こすことが考えられる。また、気孔が砥粒と結合材との界面に存在すると、砥粒及び結合材が砥石本体11からはく離されやすくなることが考えられる。その結果、回転砥石1の寿命が短くなることが考えられる。
-effect-
By the way, the pores in the
ここで、本実施形態によれば、気孔率が15%以下と比較的低いので、気孔内の空気の影響で結合材が劣化するのを抑えることができる。また、平均気孔径が砥粒の平均粒径に対して3%以下と比較的小さいので、砥粒及び結合材のはく離が低減され、長期にわたって、回転砥石1を使用できるようになる。以上のことから、回転砥石1の寿命が長くなる。
Here, according to the present embodiment, since the porosity is relatively low at 15% or less, deterioration of the bonding material due to the influence of air within the pores can be suppressed. In addition, since the average pore diameter is relatively small at 3% or less with respect to the average particle diameter of the abrasive grains, peeling of the abrasive grains and the binder is reduced, and the
また、本実施形態によれば、結合材の砥石本体11に対する体積の割合が20%以上であるので、砥粒の脱落を抑制できる。また、結合材の砥石本体11に対する体積の割合が50%以下であるので、気孔の発生を制限できる。従って、気孔内の空気の影響で結合材が劣化するのが抑えられ且つ結合材が長期にわたって砥粒の脱落を抑制し、回転砥石の寿命が長くなる。
Further, according to the present embodiment, since the volume ratio of the bonding material to the
また、本実施形態によれば、製造直後における砥石本体11の曲げ強度が製造後3週間経過時において90%以上維持されており、寿命の長い回転砥石1が得られる。
Furthermore, according to the present embodiment, the bending strength of the grindstone
また、本実施形態によれば、砥石本体11内を伝播する超音波速度が3.3mm/μs以上と比較的速いので、密度が高く、気孔率の低い回転砥石1が得られる。従って、気孔内の空気の影響で結合材が劣化するのが抑えられ、寿命の長い回転砥石1が得られる。
Furthermore, according to the present embodiment, the speed of ultrasonic waves propagating within the
また、本実施形態によれば、製造直後における砥石本体11内を伝播する超音波速度が製造後3週間経過時において97.5%以上維持されており、低い気孔率を長期にわたって維持できる。従って、気孔内の空気の影響で結合材が劣化するのが抑えられ、寿命の長い回転砥石1が得られる。
Further, according to the present embodiment, the ultrasonic velocity propagating within the
また、本実施形態によれば、製造直後における砥石本体11の切断能力が製造後3週間経過時において80%以上維持されており、寿命の長い回転砥石1が得られる。
Further, according to the present embodiment, the cutting ability of the grindstone
(実施例1)
まず、回転砥石の材料である砥粒、樹脂及び充填剤を混合した。ここで、砥粒として粒径がF46(JIS R6001準拠)のアルミナ質研削材(昭和電工社製 商品名:シングルモランダム(登録商標))を用い、樹脂としてフェノール樹脂(住友ベークライト社製 商品名:PR-55686)を用い、充填剤としてクリオライト(小野田化学工業社製 商品名:合成氷晶石)を用いた。砥粒、樹脂及び充填剤の含有率は、製造後の砥石本体において、砥粒に対する樹脂の体積の割合が69%、砥粒に対する充填剤の体積の割合が34%となるように調製した。
(Example 1)
First, abrasive grains, resin, and filler, which are materials for a rotary grindstone, were mixed. Here, an alumina abrasive material (product name: Single Morundum (registered trademark), manufactured by Showa Denko Co., Ltd.) with a particle size of F46 (based on JIS R6001) was used as the abrasive grains, and a phenol resin (product name, manufactured by Sumitomo Bakelite Co., Ltd.) was used as the resin. : PR-55686), and cryolite (manufactured by Onoda Chemical Co., Ltd., trade name: synthetic cryolite) was used as a filler. The content of the abrasive grains, resin, and filler was adjusted so that in the produced whetstone body, the volume ratio of the resin to the abrasive grains was 69%, and the volume ratio of the filler to the abrasive grains was 34%.
次いで、混合した材料を開き状態の砥石用金型に流し込み、この金型を閉じて370kg/cm2の圧力をかけた状態で90℃に加熱し、この圧力及び温度を6分間維持した。その後、金型を開き、外径が105mmで中心孔の内径が16mmの砥石本体サンプルを得た。同様の製造方法により複数の砥石本体サンプルを製造した。また、砥石用金型とは異なる形状の金型を用い、寸法が150mm×15mm×15mmの棒状サンプルを同様の製造方法により複数製造した。尚、前記の製造条件は表1にも示す。 The mixed material was then poured into an open grindstone mold, the mold was closed and heated to 90° C. under a pressure of 370 kg/cm 2 , and this pressure and temperature were maintained for 6 minutes. Thereafter, the mold was opened to obtain a grindstone body sample with an outer diameter of 105 mm and a center hole with an inner diameter of 16 mm. A plurality of grindstone body samples were manufactured using the same manufacturing method. In addition, a plurality of rod-shaped samples with dimensions of 150 mm x 15 mm x 15 mm were manufactured by the same manufacturing method using a mold with a shape different from that of the grindstone mold. The above manufacturing conditions are also shown in Table 1.
製造したサンプルは、温度30℃及び湿度70%の恒温槽に保管した。 The manufactured samples were stored in a constant temperature bath at a temperature of 30° C. and a humidity of 70%.
(実施例2)
金型にかけた圧力を185kg/cm2としたことを除いて、実施例1と同様に複数の砥石本体サンプル及び棒状サンプルを製造した。これらのサンプルのうち、経時変化を評価するためのサンプルは、実施例1と同様に保管した。
(Example 2)
A plurality of grindstone body samples and rod-shaped samples were manufactured in the same manner as in Example 1, except that the pressure applied to the mold was 185 kg/cm 2 . Among these samples, the samples for evaluating changes over time were stored in the same manner as in Example 1.
(実施例3)
砥粒を、粒径がF24のものに変えたことを除いて、実施例2と同様に砥石本体サンプルを製造した。
(Example 3)
A grindstone body sample was produced in the same manner as in Example 2, except that the abrasive grains were changed to those having a particle size of F24.
(実施例4)
砥粒を、粒径がF80のものに変えたことを除いて、実施例2と同様に砥石本体サンプルを製造した。
(Example 4)
A grindstone body sample was produced in the same manner as in Example 2, except that the abrasive grains were changed to those having a particle size of F80.
(比較例1)
金型の温度を20℃で維持したことを除いて、実施例1と同様に複数の砥石本体サンプル及び棒状サンプルを製造した。これらのサンプルのうち、経時変化を評価するためのサンプルは、実施例1と同様に保管した。
(Comparative example 1)
A plurality of grindstone body samples and rod-shaped samples were manufactured in the same manner as in Example 1, except that the temperature of the mold was maintained at 20°C. Among these samples, the samples for evaluating changes over time were stored in the same manner as in Example 1.
(比較例2)
金型にかけた圧力を185kg/cm2とし、金型の温度を20℃で維持したことを除いて、実施例1と同様に複数の砥石本体サンプル及び棒状サンプルを製造した。これらのサンプルのうち、経時変化を評価するためのサンプルは、実施例1と同様に保管した。
(Comparative example 2)
A plurality of grindstone body samples and rod-shaped samples were manufactured in the same manner as in Example 1, except that the pressure applied to the mold was 185 kg/cm 2 and the temperature of the mold was maintained at 20°C. Among these samples, the samples for evaluating changes over time were stored in the same manner as in Example 1.
(評価方法)
―気孔率と気孔径―
実施例1の砥石本体サンプルを割った断面のSEM(走査型電子顕微鏡)による拡大画像を図2に、実施例2の砥石本体サンプルを割った断面のSEMによる拡大画像を図3に、比較例1の砥石本体サンプルを割った断面のSEMによる拡大画像を図4に、比較例2の砥石本体サンプルを割った断面のSEMによる拡大画像を図5にそれぞれ示す。図2~5のSEMによる拡大画像の拡大倍率は、いずれも60倍である。いずれの場合も、黒い略円形状又は略楕円形状の気孔が確認できる。
(Evaluation method)
-Porosity and pore diameter-
Figure 2 shows an enlarged SEM (scanning electron microscope) image of the cross section of the grindstone body sample of Example 1, Figure 3 shows an enlarged SEM image of the cross section of the grindstone body sample of Example 2, and Comparative Example. FIG. 4 shows an enlarged SEM image of a cross section of the grindstone body sample of Comparative Example 2, and FIG. 5 shows an enlarged SEM image of a cross section of the grindstone body sample of Comparative Example 2. The enlargement magnification of the SEM enlarged images in FIGS. 2 to 5 is 60 times. In either case, black approximately circular or approximately elliptical pores can be confirmed.
各サンプルの全体の体積から、砥粒の体積、樹脂の体積及び充填剤の体積を引いて、サンプルの体積で割ることにより、製造したサンプルの気孔率を求めた。 The porosity of the manufactured samples was determined by subtracting the volume of the abrasive grains, the volume of the resin, and the volume of the filler from the total volume of each sample and dividing the result by the volume of the sample.
また、図2~5のSEM画像から、気孔と判断される黒い略円形状又は略楕円形状のものを20個ずつ選び、以下のように平均気孔径を算出した。略円形状の気孔は、その直径を気孔径とした。略楕円形状の気孔は、長径と短径との平均値をとり、この平均値を気孔径とした。このようにして決まる前記20個の気孔の気孔径の平均値を平均気孔径とした。 Furthermore, from the SEM images of FIGS. 2 to 5, 20 black approximately circular or approximately elliptical pores that were determined to be pores were selected, and the average pore diameter was calculated as follows. The diameter of the substantially circular pores was defined as the pore diameter. For the substantially elliptical pores, the average value of the major axis and the minor axis was taken, and this average value was defined as the pore diameter. The average value of the pore diameters of the 20 pores determined in this way was defined as the average pore diameter.
―切断能力の経時変化―
砥石本体サンプルの中心孔に座部材のブッシュ部を嵌め込み、回転砥石とした。この回転砥石をグラインダー(日立工機製 XS2000)に取り付け、直径12mmのステンレス丸棒を被切断材とし、砥石周速度72m/sで2.5kgの荷重をかけながら、切断試験を行った。回転砥石が摩耗して、切断できなくなるまで、切断を継続した。このような切断試験を、サンプルの製造後24時間後、製造後1週間後及び製造後3週間後行い、被切断材を切断できた回数(切断可能回数)をそれぞれ記録した。この切断可能回数を回転砥石の切断能力として評価した。
-Change in cutting ability over time-
The bushing part of the seat member was fitted into the center hole of the whetstone body sample to form a rotating whetstone. This rotary whetstone was attached to a grinder (XS2000 manufactured by Hitachi Koki), and a cutting test was conducted using a stainless steel round bar with a diameter of 12 mm as the material to be cut, while applying a load of 2.5 kg at a circumferential speed of the whetstone of 72 m/s. Cutting was continued until the rotary grindstone became worn and could no longer be cut. Such a cutting test was conducted 24 hours after the sample was manufactured, 1 week after the manufacture, and 3 weeks after the manufacture, and the number of times the material to be cut could be cut (number of possible cuts) was recorded. This number of possible cuts was evaluated as the cutting ability of the rotary grindstone.
―曲げ強度の経時変化―
棒状サンプル(150mm×15mm×15mm)を、120mmの間隔を空けた2つの支持部材により、このサンプルの長さ方向の両端部付近(両端部からそれぞれ15mm中心側へ寄った位置)を支持した。この状態で、サンプルの長さ方向中央に上方から荷重をかけてサンプルを破断させ、破断に要した荷重を測定し、この測定値を曲げ強度として記録した。このような曲げ強度の測定を、サンプルの製造後24時間後、製造後1週間後及び製造後3週間後行い、測定された曲げ強度をそれぞれ記録した。
―Change in bending strength over time―
A rod-shaped sample (150 mm x 15 mm x 15 mm) was supported near both ends of the sample in the length direction (positions 15 mm toward the center from both ends) by two support members spaced apart by 120 mm. In this state, a load was applied from above to the center in the length direction of the sample to cause the sample to break, the load required to break was measured, and this measured value was recorded as the bending strength. Such bending strength measurements were performed 24 hours after the sample was manufactured, 1 week after the manufacture, and 3 weeks after the manufacture, and the measured bending strengths were recorded.
―超音波速度の経時変化―
透過式超音波測定機を用いて、2探触子法により、超音波(50kHz)が砥石本体サンプルを伝播する速度を測定した。このような測定を、砥石本体の製造後24時間後、製造後1週間後及び製造後3週間後行い、測定した超音波速度をそれぞれ記録した。
―Change in ultrasonic velocity over time―
Using a transmission type ultrasonic measuring device, the speed at which ultrasonic waves (50 kHz) propagate through the grindstone body sample was measured by a two-probe method. Such measurements were performed 24 hours after the production of the grindstone body, 1 week after production, and 3 weeks after production, and the measured ultrasonic velocities were recorded.
(結果)
表2に、実施例1,2及び比較例1,2各々の製造された砥石本体サンプルの配合比率、比重及び気孔径を示す。
(result)
Table 2 shows the blending ratio, specific gravity, and pore diameter of the produced grindstone body samples of Examples 1 and 2 and Comparative Examples 1 and 2.
表2によれば、気孔率は、比較例1が20.3%及び比較例2が30.0%であるのに対し、実施例1が4.5%及び実施例2が12.0%であり、実施例1,2の気孔率は比較的低いことが分かる。気孔率が異なることにより、砥石本体の体積に対する砥粒、充填剤及び樹脂の体積分率が、実施例1,2及び比較例1,2で異なっていた。すなわち、実施例1が砥粒47.2%、充填剤15.8%及び樹脂32.5%、実施例2が砥粒43.5%、充填剤14.6%及び樹脂29.9%、比較例1が砥粒39.4%、充填剤13.2%及び樹脂27.1%、比較例2が砥粒34.6%、充填剤11.6、樹脂23.8%であった。比重は、実施例1が2.7g/cm3、実施例2が2.5g/cm3、比較例1が2.2g/cm3、比較例2が2.0g/cm3であった。 According to Table 2, the porosity is 20.3% in Comparative Example 1 and 30.0% in Comparative Example 2, whereas the porosity is 4.5% in Example 1 and 12.0% in Example 2. It can be seen that the porosity of Examples 1 and 2 is relatively low. Due to the difference in porosity, the volume fractions of the abrasive grains, filler, and resin with respect to the volume of the grindstone body were different in Examples 1 and 2 and Comparative Examples 1 and 2. That is, Example 1 had 47.2% abrasive grains, 15.8% filler, and 32.5% resin; Example 2 had 43.5% abrasive grains, 14.6% filler, and 29.9% resin; Comparative Example 1 contained 39.4% abrasive grains, 13.2% filler, and 27.1% resin, and Comparative Example 2 contained 34.6% abrasive grains, 11.6% filler, and 23.8% resin. The specific gravity was 2.7 g/cm 3 in Example 1, 2.5 g/cm 3 in Example 2, 2.2 g/cm 3 in Comparative Example 1, and 2.0 g/cm 3 in Comparative Example 2.
また、平均気孔径は、比較例1が7.6μm及び比較例2が13.3μmであるのに対し、実施例1が5.0μm及び実施例2が5.9μmであり、実施例1,2の平均気孔径が比較的小さいことが分かる。また、気孔径の標準偏差は、比較例1で3.8μm及び比較例2で5.9μmであるのに対し、実施例1,2では、いずれも1.6μmと比較的小さいことが分かる。以上のように、実施例1,2は、気孔率が低く且つ平均気孔径が小さい。このことが、実施例1,2の後述する切断可能回数の多さ、曲げ強度の高さ及び超音波速度の速さ、並びに、これらの維持率の高さの要因となっていると考えられる。 In addition, the average pore diameter was 7.6 μm in Comparative Example 1 and 13.3 μm in Comparative Example 2, whereas it was 5.0 μm in Example 1 and 5.9 μm in Example 2. It can be seen that the average pore diameter of No. 2 is relatively small. Further, it can be seen that the standard deviation of the pore diameter is 3.8 μm in Comparative Example 1 and 5.9 μm in Comparative Example 2, whereas it is relatively small at 1.6 μm in both Examples 1 and 2. As described above, Examples 1 and 2 have low porosity and small average pore diameter. This is considered to be the reason for the large number of times of cutting, high bending strength, high ultrasonic velocity, and high retention rate of these, which will be described later in Examples 1 and 2. .
実施例2~4の砥石本体サンプル各々に用いた砥粒の粒径rと、これらサンプル各々の平均気孔径Rと、平均気孔径Rを砥粒の粒径rで割った比とを表3に示す。 Table 3 shows the particle size r of the abrasive grains used for each of the grindstone body samples of Examples 2 to 4, the average pore size R of each of these samples, and the ratio of the average pore size R divided by the particle size r of the abrasive grains. Shown below.
表3によれば、砥粒の平均粒径rが355μmである実施例2の平均気孔径(5.9μm)は、砥粒の平均粒径rが710μmである実施例3の平均気孔径(6.2μm)よりも小さく、砥粒の平均粒径rが180μmである実施例4の平均気孔径(2.7μm)よりも大きい。このことから、気孔径の大きさは、砥粒の平均粒径と相関があり、砥粒の平均粒径が大きいほど気孔径も大きくなる傾向があることが分かる。 According to Table 3, the average pore diameter (5.9 μm) of Example 2, in which the average grain size r of the abrasive grains is 355 μm, is the average pore diameter (5.9 μm) of Example 3, in which the average grain size r of the abrasive grains is 710 μm. 6.2 μm), and larger than the average pore diameter (2.7 μm) of Example 4, in which the average grain size r of the abrasive grains is 180 μm. From this, it can be seen that the size of the pore size has a correlation with the average particle size of the abrasive grains, and the larger the average particle size of the abrasive grains, the larger the pore size tends to be.
また、実施例2~4のうち、最大気孔径Rmaxを砥粒の平均粒径rで割った比が最も大きいのは実施例4のRmax/r(=2.9%)である。実施例2~4は、それぞれ砥粒としてF46(平均粒径r=355μm)、F24(平均粒径r=710μm)及びF80(平均粒径r=180μm)を用い、それ以外は互いに同じ条件で製造されたものである。従って、平均粒径r=180μm~710μmの範囲の砥粒を用い、実施例2~4と同じ製造条件(圧力185℃、温度90℃)で製造すると、砥粒の平均粒径rに対する気孔径の比は概ね2.9%以下になると考えられる。また、平均粒径r=180μm~710μmの範囲の砥粒において、粒径の異なるものを2種類以上(例えばF36とF46又はF46とF60)混合して用いると、混合された砥粒の平均粒径は180μm~710μmの範囲に入るので、この場合も、実施例2~4と同じ製造条件(圧力185℃、温度90℃)で製造すると、砥粒の平均粒径に対する気孔径の比は、概ね2.9%以下になると考えられる。 Further, among Examples 2 to 4, the ratio of the maximum pore diameter Rmax divided by the average particle diameter r of the abrasive grains is the highest in Example 4, Rmax/r (=2.9%). Examples 2 to 4 used F46 (average grain size r = 355 μm), F24 (average grain size r = 710 μm), and F80 (average grain size r = 180 μm) as abrasive grains, and other conditions were the same. It is manufactured. Therefore, if abrasive grains with an average particle size r in the range of 180 μm to 710 μm are used and manufactured under the same manufacturing conditions as in Examples 2 to 4 (pressure 185°C, temperature 90°C), the pore size relative to the average particle size r of the abrasive grains The ratio is considered to be approximately 2.9% or less. In addition, when using a mixture of two or more types of abrasive grains with different diameters (for example, F36 and F46 or F46 and F60) in the range of average grain size r = 180 μm to 710 μm, the average grain size of the mixed abrasive grains Since the diameter falls within the range of 180 μm to 710 μm, in this case as well, if manufactured under the same manufacturing conditions as Examples 2 to 4 (pressure 185°C, temperature 90°C), the ratio of the pore size to the average particle size of the abrasive grains will be: It is thought that it will be approximately 2.9% or less.
実施例1,2及び比較例1,2の切断可能回数、曲げ強度及び超音波速度の経時変化の結果を表4に示す。表4には、切断可能回数、曲げ強度及び超音波速度の製造直後(製造後24時間後)の値が、経時変化によってどの程度維持されているかを示すために、1週間及び3週間経過時の値を製造直後の値で割った比を維持率として表示している(表4中の括弧書き参照)。 Table 4 shows the results of changes in the number of possible cuts, bending strength, and ultrasonic velocity over time for Examples 1 and 2 and Comparative Examples 1 and 2. Table 4 shows the extent to which the values of the number of possible cuts, bending strength, and ultrasonic velocity immediately after manufacture (24 hours after manufacture) are maintained over time, and are shown after one week and three weeks. The ratio obtained by dividing the value by the value immediately after manufacture is displayed as the retention rate (see parentheses in Table 4).
表4によれば、比較例1,2における製造直後の切断可能回数は、71(比較例1)及び34(比較例2)であるのに対し、実施例1,2における製造直後の切断可能回数は、97(実施例1)及び81(実施例2)と比較的多いことが分かる。また、比較例1における切断可能回数の維持率は、1週間後で80%、3週間後で73%となり、比較例2における切断可能回数の維持率は、1週間後で74%、3週間後で53%となった。これに対して、実施例1における切断可能回数の維持率は、1週間後で90%、3週間後で87%となり、実施例2における切断可能回数の維持率は、1週間後で86%、3週間後で80%となった。すなわち、実施例1,2は、製造直後の切断可能回数が多いだけでなく、1週間及び3週間経過時の切断可能回数の維持率が高く、高い切断能力を長期間維持できることが分かる。 According to Table 4, the number of times that can be cut immediately after manufacturing in Comparative Examples 1 and 2 is 71 (Comparative Example 1) and 34 (Comparative Example 2), whereas the number of times that can be cut immediately after manufacturing in Examples 1 and 2 is 71 (Comparative Example 1) and 34 (Comparative Example 2). It can be seen that the number of times is relatively large, 97 (Example 1) and 81 (Example 2). In addition, the maintenance rate of the number of possible cuts in Comparative Example 1 was 80% after one week and 73% after three weeks, and the maintenance rate of the number of possible cuts in Comparative Example 2 was 74% after one week and 73% after three weeks. Later it became 53%. On the other hand, the maintenance rate of the number of possible cuts in Example 1 was 90% after one week and 87% after three weeks, and the maintenance rate of the number of possible cuts in Example 2 was 86% after one week. , it became 80% after 3 weeks. That is, it can be seen that Examples 1 and 2 not only have a large number of cuts that can be made immediately after production, but also have a high maintenance rate of the number of cuts that can be made after one week and three weeks have passed, and can maintain high cutting ability for a long period of time.
また、表4によれば、比較例1,2における製造直後の曲げ強度は、45.8MPa(比較例1)及び28.5MPa(比較例2)であるのに対し、実施例1,2における製造直後の曲げ強度は、58.1MPa(実施例1)及び51.8MPa(実施例2)と比較的高いことが分かる。また、比較例1における曲げ強度の維持率は、1週間後で91.0%、3週間後で88.0%となり、比較例2における曲げ強度の維持率は、1週間後で91.9%、3週間後で87.0%となった。これに対して、実施例1における曲げ強度の維持率は、1週間後で99.8%、3週間後で99.4%となり、実施例2における曲げ強度の維持率は、1週間後で98.3%、3週間後で94.2%となった。すなわち、実施例1,2は、製造直後の曲げ強度が高いだけでなく、1週間及び3週間経過時の曲げ強度が高く、高い曲げ強度を長期間維持できることが分かる。 Furthermore, according to Table 4, the bending strengths of Comparative Examples 1 and 2 immediately after manufacture were 45.8 MPa (Comparative Example 1) and 28.5 MPa (Comparative Example 2), whereas those of Examples 1 and 2 It can be seen that the bending strength immediately after manufacture is relatively high at 58.1 MPa (Example 1) and 51.8 MPa (Example 2). In addition, the bending strength maintenance rate in Comparative Example 1 was 91.0% after one week and 88.0% after three weeks, and the bending strength maintenance rate in Comparative Example 2 was 91.9% after one week. %, it became 87.0% after 3 weeks. On the other hand, the bending strength maintenance rate in Example 1 was 99.8% after one week and 99.4% after three weeks, and the bending strength maintenance rate in Example 2 was 99.8% after one week. 98.3%, and 94.2% after 3 weeks. That is, Examples 1 and 2 not only have high bending strength immediately after manufacture, but also have high bending strength after one week and three weeks, indicating that high bending strength can be maintained for a long period of time.
また、表4によれば、比較例1,2における製造直後の超音波速度は、3.28mm/μs(比較例1)、3.06mm/μs(比較例2)であるのに対し、実施例1,2における製造直後の超音波速度は、3.68mm/μs(実施例1)及び3.43mm/μs(実施例2)であり比較的速いことが分かる。また、比較例1における超音波速度の維持率は、1週間後で98.2%、3週間後で97.0%となり、比較例2における超音波速度の維持率は、1週間後で97.7%、3週間後で96.4%となった。これに対して、実施例1における超音波速度の維持率は、1週間後で99.2%、3週間後で98.4%となり、実施例2における超音波速度の維持率は、1週間後で99.1%、3週間後で97.7%となった。すなわち、実施例1,2は、製造直後の超音波速度が速いだけでなく、1週間及び3週間経過時の超音波速度も比較的速く、超音波速度を長い期間維持できることが分かる。超音波速度は、空気中で遅くなるため、超音波速度が速いことは、サンプル中の気孔率が低いことを意味している。すなわち、実施例1,2は、製造後1週間及び3週間経過時においても、気孔率が低いことが分かる。 Furthermore, according to Table 4, the ultrasonic speeds immediately after manufacture in Comparative Examples 1 and 2 were 3.28 mm/μs (Comparative Example 1) and 3.06 mm/μs (Comparative Example 2), whereas It can be seen that the ultrasonic speeds immediately after production in Examples 1 and 2 are 3.68 mm/μs (Example 1) and 3.43 mm/μs (Example 2), which are relatively fast. Further, the maintenance rate of ultrasonic velocity in Comparative Example 1 was 98.2% after one week and 97.0% after three weeks, and the maintenance rate of ultrasonic velocity in Comparative Example 2 was 97.2% after one week. .7%, and 96.4% after 3 weeks. In contrast, the ultrasonic velocity maintenance rate in Example 1 was 99.2% after one week and 98.4% after three weeks, and the ultrasonic velocity maintenance rate in Example 2 was 99.2% after one week. Later, it was 99.1%, and after 3 weeks it was 97.7%. That is, in Examples 1 and 2, not only the ultrasonic velocity immediately after manufacture is high, but also the ultrasonic velocity after 1 week and 3 weeks is relatively high, indicating that the ultrasonic velocity can be maintained for a long period of time. Ultrasonic velocity is slow in air, so a high ultrasound velocity means low porosity in the sample. That is, it can be seen that Examples 1 and 2 have low porosity even after one week and three weeks have passed after production.
本発明は、切断用回転砥石として有用である。 INDUSTRIAL APPLICATION This invention is useful as a rotary grindstone for cutting.
1 回転砥石
11 砥石本体
1
Claims (7)
前記砥石本体は、前記材料を金型に入れ、該金型を90℃以上に加熱するとともに加圧することにより成形され、
前記砥石本体に対する気孔の占める体積の割合が15%以下であり、
前記気孔の平均気孔径が前記砥粒の平均粒径に対して3%以下であり、
前記結合材は、フェノール樹脂、ポリエステル樹脂及びエポキシ樹脂から選択されるいずれか1つ又はそれらの混合物により構成されており、
前記結合材は、前記砥石本体に対する体積の割合が28%以上である
ことを特徴とする切断用回転砥石。 A rotary cutting wheel whose main body is made of a material containing abrasive grains and a binder,
The grindstone body is formed by putting the material into a mold, heating the mold to 90° C. or higher and applying pressure,
The ratio of the volume occupied by the pores to the grinding wheel body is 15% or less,
The average pore diameter of the pores is 3% or less with respect to the average particle diameter of the abrasive grains,
The binder is made of one selected from phenolic resin, polyester resin, and epoxy resin, or a mixture thereof,
A rotating grindstone for cutting, wherein the binding material has a volume ratio of 28% or more to the grindstone body.
前記砥粒は、前記砥石本体に対する体積の割合が20%以上60%以下であり、
前記結合材は、前記砥石本体に対する体積の割合が28%以上40%以下である
ことを特徴とする切断用回転砥石。 The cutting rotary grindstone according to claim 1,
The abrasive grains have a volume ratio of 20% to 60% with respect to the grindstone body,
A rotating grindstone for cutting, characterized in that the binding material has a volume ratio of 28% or more and 40% or less with respect to the grindstone body.
製造直後における前記砥石本体の曲げ強度が製造後3週間経過時において90%以上維持されている
ことを特徴とする切断用回転砥石。 The cutting rotary grindstone according to claim 1 or 2,
A rotating grindstone for cutting, characterized in that the bending strength of the grindstone body immediately after manufacture is maintained at 90% or more three weeks after manufacture.
前記砥石本体内を伝播する超音波速度が3.3mm/μs以上である
ことを特徴とする切断用回転砥石。 The cutting rotary grindstone according to any one of claims 1 to 3,
A rotating grindstone for cutting, characterized in that an ultrasonic wave propagating within the grindstone body has a speed of 3.3 mm/μs or more.
製造直後における前記砥石本体内を伝播する超音波速度が製造後3週間経過時において97.5%以上維持されている
ことを特徴とする切断用回転砥石。 The cutting rotary grindstone according to any one of claims 1 to 4,
A rotating grindstone for cutting, characterized in that the ultrasonic velocity propagating within the grindstone body immediately after manufacture is maintained at 97.5% or more three weeks after manufacture.
製造直後における前記砥石本体の切断能力が製造後3週間経過時において80%以上維持されている
ことを特徴とする切断用回転砥石。 The cutting rotary grindstone according to any one of claims 1 to 5,
A rotating whetstone for cutting, characterized in that the cutting ability of the whetstone body immediately after manufacture is maintained at 80% or more three weeks after manufacture.
前記砥石本体は、充填材を更に含有し、
前記充填材は、硫化鉄、硫酸カリウム、クリオライト、酸化カルシウム、塩化カリウム及びカリクリオライトから選択されるいずれか1つ又はそれらの混合物により構成されている
ことを特徴とする切断用回転砥石。 The cutting rotary grindstone according to any one of claims 1 to 6,
The grindstone body further contains a filler,
A rotary grindstone for cutting, characterized in that the filler is made of one selected from iron sulfide, potassium sulfate, cryolite, calcium oxide, potassium chloride, and calycriolite, or a mixture thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019116760A JP7441616B2 (en) | 2019-06-24 | 2019-06-24 | Rotary grindstone for cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019116760A JP7441616B2 (en) | 2019-06-24 | 2019-06-24 | Rotary grindstone for cutting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021000714A JP2021000714A (en) | 2021-01-07 |
JP7441616B2 true JP7441616B2 (en) | 2024-03-01 |
Family
ID=73993677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019116760A Active JP7441616B2 (en) | 2019-06-24 | 2019-06-24 | Rotary grindstone for cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7441616B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007223004A (en) | 2006-02-24 | 2007-09-06 | Kurenooton Kk | Resinoid grinding wheel manufacturing method |
JP2010131699A (en) | 2008-12-04 | 2010-06-17 | Jtekt Corp | Vitrified bond grindstone |
US20180085896A1 (en) | 2015-03-21 | 2018-03-29 | Saint-Gobain Abrasives, Inc. | Abrasive tools and methods for forming same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54158790A (en) * | 1978-06-03 | 1979-12-14 | Nippon Rejibon Seito Kk | Resinoid grindstone having weakkproofness with lapse of time |
JPS56152583A (en) * | 1980-04-23 | 1981-11-26 | Daichiku:Kk | Resinoid-bonded cutting wheel |
JPH0623390B2 (en) * | 1985-07-05 | 1994-03-30 | ダイソー株式会社 | Grinding wheel manufacturing method |
JP3539853B2 (en) * | 1997-11-27 | 2004-07-07 | 株式会社ノリタケカンパニーリミテド | Sol-gel sintered alumina-based grinding wheel for high-precision polishing and its manufacturing method |
-
2019
- 2019-06-24 JP JP2019116760A patent/JP7441616B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007223004A (en) | 2006-02-24 | 2007-09-06 | Kurenooton Kk | Resinoid grinding wheel manufacturing method |
JP2010131699A (en) | 2008-12-04 | 2010-06-17 | Jtekt Corp | Vitrified bond grindstone |
US20180085896A1 (en) | 2015-03-21 | 2018-03-29 | Saint-Gobain Abrasives, Inc. | Abrasive tools and methods for forming same |
Also Published As
Publication number | Publication date |
---|---|
JP2021000714A (en) | 2021-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9409279B2 (en) | Bonded abrasive tool and method of forming | |
TWI494193B (en) | Grinding wheel for fine trimming, use of this grinding wheel, and process and device for manufacturing it | |
JP4266969B2 (en) | Resin bond wire saw and method for manufacturing resin bond wire saw | |
JP2008100349A (en) | Grinding method for roll | |
JP7441616B2 (en) | Rotary grindstone for cutting | |
JP2008272835A (en) | Resinoid grinding wheel and its manufacturing method | |
CN110799306A (en) | Abrasive article and method of forming the same | |
KR102309565B1 (en) | Wheel for grinding glass sheet and manufacturing method thereof | |
JP5566189B2 (en) | Thin blade | |
JP2008018479A (en) | Cutting whetstone | |
JP2011115867A (en) | Thin-edged blade | |
TWI669193B (en) | Grinding tool and method of manufacturing same | |
JP3677110B2 (en) | Diamond elastic polishing tool | |
JP5721877B2 (en) | Thin blade | |
KR102291655B1 (en) | Wheel for grinding glass sheet and manufacturing method thereof | |
KR102341351B1 (en) | Wheel for grinding glass sheet and manufacturing method thereof | |
JPS60186376A (en) | Abrasive molded body | |
TW201902628A (en) | A porous abrasive clusters, a grinding tool and method for making the porous abrasive clusters | |
WO2004050306A1 (en) | Gravure platemaking roll polishing grindstone, and polishing method using the grindstone | |
JP5785640B2 (en) | Cutting blade | |
JP2023008118A (en) | Grindstone | |
JP5543273B2 (en) | Cutting blade | |
JP2010105126A (en) | Vitrified grinding wheel, and method for manufacturing the same | |
JP2011251349A (en) | Thin-edged blade | |
WO2012092388A2 (en) | Robust binder bonded grinding wheel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220506 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230912 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7441616 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |