JP7440025B2 - Static elimination mechanism - Google Patents

Static elimination mechanism Download PDF

Info

Publication number
JP7440025B2
JP7440025B2 JP2021163329A JP2021163329A JP7440025B2 JP 7440025 B2 JP7440025 B2 JP 7440025B2 JP 2021163329 A JP2021163329 A JP 2021163329A JP 2021163329 A JP2021163329 A JP 2021163329A JP 7440025 B2 JP7440025 B2 JP 7440025B2
Authority
JP
Japan
Prior art keywords
conductor
stray capacitance
grounding
static elimination
neutralized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021163329A
Other languages
Japanese (ja)
Other versions
JP2021193691A (en
Inventor
裕生 長田
光石 崔
輝夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasuga Denki Inc
Japan Organization of Occupational Health and Safety JOHAS
Original Assignee
Kasuga Denki Inc
Japan Organization of Occupational Health and Safety JOHAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasuga Denki Inc, Japan Organization of Occupational Health and Safety JOHAS filed Critical Kasuga Denki Inc
Priority to JP2021163329A priority Critical patent/JP7440025B2/en
Publication of JP2021193691A publication Critical patent/JP2021193691A/en
Application granted granted Critical
Publication of JP7440025B2 publication Critical patent/JP7440025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)

Description

この発明は、着火放電を発生させない除電機構に関する。 The present invention relates to a static elimination mechanism that does not generate ignition discharge.

可燃性溶剤や粉体などを取り扱う危険な場所での着火事故の多くは、接地不備により、帯電した導体と接地された導体との間で生じる着火性放電が原因となっていた。
このような着火性放電に起因する事故は、静電気対策の基本である対象物の除電もしくは接地を適切に行うことで未然に防止することができる。
Many ignition accidents in hazardous locations where flammable solvents or powders are handled are caused by ignitable discharges that occur between a charged conductor and a grounded conductor due to poor grounding.
Accidents caused by such ignitable discharge can be prevented by properly removing static electricity from objects or grounding them, which is the basis of static electricity countermeasures.

そして、従来の除電機構は、接地電位を保った端子を上記対象物に直接接触させて、当該対象物の静電気を除去するようにしていた。
また、防爆対策では、当該対象物が接地されているかどうかを確認する必要がある。なぜなら、接地が不十分で対象物が帯電していると、それが放電するときの火花放電によって事故を起こすことがあるからである。
In the conventional static elimination mechanism, a terminal maintained at a ground potential is brought into direct contact with the object to remove static electricity from the object.
In addition, for explosion-proof measures, it is necessary to check whether the target object is grounded. This is because if the object is electrically charged due to insufficient grounding, sparks may cause an accident.

そこで従来は、例えば、一対の端子の一方を対象物に接触させ、いずれか他方の端子を接地側に接触させて除電していた。また、対象物が接地されているかどうかの判定は、端子を対象物に接触させ、その端子に電圧を印加して、対象物に電流が流れるかどうかを判定するようにしていた。 Therefore, conventionally, for example, one of a pair of terminals was brought into contact with the object and the other terminal was brought into contact with the ground side to eliminate static electricity. Further, to determine whether or not an object is grounded, a terminal is brought into contact with the object, a voltage is applied to the terminal, and it is determined whether a current flows through the object.

特開2015-204234号公報JP2015-204234A 特開2016-225244号公報Japanese Patent Application Publication No. 2016-225244

上記した従来の除電機構では、接地電位を保った端子を除電対象物に直接接触させていたので、その端子が除電対象物に接触する直前に、除電対象物と上記端子との間で絶縁破壊が発生し、そのときに過大な放電エネルギーが放出される。そのために除電対象物と上記端子との間で着火性の火花放電が発生する。 In the conventional static elimination mechanism described above, a terminal that maintains the ground potential is brought into direct contact with the object to be neutralized, so immediately before the terminal comes into contact with the object to be neutralized, dielectric breakdown occurs between the object to be neutralized and the terminal. occurs, and at that time, excessive discharge energy is released. Therefore, an ignitable spark discharge occurs between the object to be neutralized and the terminal.

上記のように除電対象物と端子との間で火花放電が発生すれば、それが爆発・火災事故の要因になってしまう。
つまり、従来の除電機構では、除電対象物の静電気を除去するものでありながら、除電機構自らが爆発・火災事故の要因を作ってしまうと言う矛盾を抱えていた。
If a spark discharge occurs between the object to be neutralized and the terminal as described above, it may cause an explosion or fire accident.
In other words, the conventional static eliminator mechanism has the contradiction that, although it removes static electricity from the object to be neutralized, the static eliminator itself can cause explosions and fires.

また、従来の接地確認装置では、端子を測定対象物に接触させ、その端子に電圧を印加して電流が流れるかどうかを判定するもので、測定対象物を事前に除電する機能が備わっていなかった。
そのために上記除電機構と同様に、接地確認をする装置でありながら、自らが着火の要因を作ってしまうと言う矛盾を抱えていた。
Furthermore, with conventional grounding confirmation devices, a terminal is brought into contact with the object to be measured, and a voltage is applied to the terminal to determine whether or not a current flows; therefore, it does not have a function to eliminate static electricity from the object to be measured in advance. Ta.
Therefore, like the above-mentioned static eliminator mechanism, although it is a device for checking grounding, it has the contradiction of creating a cause for ignition itself.

この発明の目的は、自らが爆発・火災事故の要因にはならない除電機構を提供することである。 An object of the present invention is to provide a static elimination mechanism that does not cause explosions or fires.

この発明の除電機構における構成上の最大の特徴は、端子などの導体の先端と除電対象物との間に絶縁破壊が発生したとき、高抵抗素子で大電流の流れを阻止するとともに、上記導体側の浮遊容量に蓄電された電荷で除電対象物と導体とが同電位になる構成にした点である。 The most important feature of the static elimination mechanism of the present invention is that when dielectric breakdown occurs between the tip of a conductor such as a terminal and the object to be neutralized, a high-resistance element blocks the flow of a large current, and the conductor The point is that the object to be neutralized and the conductor have the same potential due to the charge stored in the stray capacitance on the side.

上記の構成のもとでは、導体と浮遊容量生成手段となる接地されたケーシングとの対向長さによって浮遊容量が決められる。したがって、その対向長さの設定によって浮遊容量を微小に保つことができる。浮遊容量が微小であれば、上記した絶縁破壊が発生したとしても、瞬間的には、浮遊容量の蓄電量に相当する放電電流しか流れないし、上記導体と除電対象物とが即座に同電位になる。
なお、上記浮遊容量は上記のように導体と浮遊容量生成手段との対向長さによって決まるが、この対向長さも上記導体の断面形状に応じて変化する。例えば、断面が平板状の導体あるいは断面が円形で直径が大きな導体であれば、相対的にその長さを短くできる。
In the above configuration, the stray capacitance is determined by the facing length between the conductor and the grounded casing serving as the stray capacitance generating means. Therefore, by setting the opposing length, stray capacitance can be kept small. If the stray capacitance is minute, even if the dielectric breakdown described above occurs, only a discharge current corresponding to the amount of charge stored in the stray capacitance will flow momentarily, and the conductor and the object to be neutralized will immediately reach the same potential. Become.
The stray capacitance is determined by the opposing length between the conductor and the stray capacitance generating means as described above, and this opposing length also changes depending on the cross-sectional shape of the conductor. For example, if the conductor has a flat cross section or a circular cross section and a large diameter, the length can be relatively shortened.

このように導体と除電対象物とが同電位になれば、導体と対象物との間には放電電流が流れなくなる。
したがって、導体と対象物との間に流れる放電電流は、浮遊容量の微小な蓄電量に相当して非常に小さいものになる。このように放電電流が小さければ、当然のこととして放電エネルギーも小さくなるので着火性放電を防ぐことができる。
If the conductor and the object to be neutralized have the same potential in this way, no discharge current will flow between the conductor and the object.
Therefore, the discharge current flowing between the conductor and the object becomes very small, corresponding to the small amount of electricity stored in the stray capacitance. If the discharge current is small in this way, the discharge energy will also be small, so ignitable discharge can be prevented.

また、上記浮遊容量に蓄電された電荷が放電して対象物と導体の先端との間に再び電位差ができれば、その都度、絶縁破壊による放電が繰り返される。しかし、そのときの放電電流が微小であることは上記したとおりなので、たとえ充放電が繰り返されても、その放電エネルギーは小さく、着火性放電には至らない。 Furthermore, if the charge stored in the stray capacitance is discharged and a potential difference is created again between the object and the tip of the conductor, the discharge due to dielectric breakdown will be repeated each time. However, as described above, the discharge current at that time is minute, so even if charging and discharging are repeated, the discharge energy is small and does not lead to ignitable discharge.

なお、上記導体は、金属やある程度の抵抗を有する導電性樹脂や導電性セラミクス、あるいは金属と導電性樹脂や導電性セラミクスを連続させたものでもよい。ただし、樹脂製やセラミクスの場合には、除電対象物の静電気を接地電位保持手段に逃がせる程度の導電性が求められる。
また、接地電位保持手段は、接地と同電位を保つものであれば構成や材質は問わない。
The conductor may be a metal, a conductive resin or a conductive ceramic having a certain degree of resistance, or a combination of a metal and a conductive resin or a conductive ceramic. However, in the case of resin or ceramics, it is required to have sufficient conductivity to allow static electricity from the object to be neutralized to escape to the ground potential holding means.
Moreover, the structure and material of the ground potential holding means are not limited as long as they maintain the same potential as the ground.

さらに、上記高抵抗素子は、上記導体の先端と除電対象物との間に絶縁破壊が発生したとき、高抵抗素子で大電流の流れを瞬間的に阻止して、上記浮遊容量に上記除電対象物と同電位になるまでの電荷を蓄電させる機能を発揮するものである。したがって、この高抵抗素子は、浮遊容量に電荷を蓄電させるとともに、導体の先端が除電対象物に接触した後は、当該対象物の静電気を接地側に流す機能を備えている。 Furthermore, when dielectric breakdown occurs between the tip of the conductor and the object to be neutralized, the high-resistance element momentarily blocks the flow of a large current, and the stray capacitance is transferred to the object to be neutralized. It performs the function of storing electric charge until it reaches the same potential as the object. Therefore, this high-resistance element has the function of accumulating electric charge in the stray capacitance and, after the tip of the conductor comes into contact with the object to be neutralized, to flow the static electricity of the object to the ground side.

そして、この発明の除電機構は、上記導体と浮遊容量生成手段との対向長さが、上記浮遊容量が0.1pF~5pFになる長さを保ち、かつ、高抵抗素子を100MΩ~500MΩにしたものである。 Further, in the static elimination mechanism of the present invention, the opposing length of the conductor and the stray capacitance generating means is maintained at a length such that the stray capacitance is 0.1 pF to 5 pF, and the high resistance element is set to 100 MΩ to 500 MΩ. It is something.

この発明の除電機構によれば、除電対象物と導体の先端との間で絶縁破壊による放電が発生しても、そのときの放電エネルギーを小さく抑えられるので、着火性放電を防止できる。 According to the static elimination mechanism of the present invention, even if discharge occurs due to dielectric breakdown between the object to be neutralized and the tip of the conductor, the discharge energy at that time can be suppressed to a small level, so that ignitable discharge can be prevented.

除電機構の構造の概略図である。It is a schematic diagram of the structure of a static elimination mechanism. 除電機構を電流測定器に用いた例を示す概略図である。FIG. 2 is a schematic diagram showing an example in which the static elimination mechanism is used in a current measuring device. 接地確認装置の断面図である。FIG. 3 is a sectional view of the grounding confirmation device. 接地確認装置の回路図である。FIG. 3 is a circuit diagram of a grounding confirmation device.

図1に示した実施形態は、除電機構の概略図であり、この除電機構は接地されたケーシングAを備え、このケーシングAの開口部分から導体1の尖った先端を突出させている。この導体1はその先端とは反対側に高抵抗素子2を接続するとともに、この高抵抗素子2はケーブルxを介して接地させている。 The embodiment shown in FIG. 1 is a schematic diagram of a static elimination mechanism, which includes a grounded casing A, and has a pointed end of a conductor 1 protruding from an opening of the casing A. This conductor 1 is connected to a high resistance element 2 on the opposite side from its tip, and this high resistance element 2 is grounded via a cable x.

なお、上記のように接地させたケーブルxがこの発明の接地電位保持手段を構成しているが、この発明においては、接地電位を維持しているものであれば、その構成や材質等は問わない。 Although the cable x grounded as described above constitutes the ground potential holding means of this invention, in this invention, any structure, material, etc. may be used as long as it maintains the ground potential. do not have.

上記のようにした導体1に電圧が作用すると、この導体1と接地されたケーシングAとの間に浮遊容量SCが生成される。なお、この実施形態では、導体1とケーシングAとを対向させて、それらの間で浮遊容量SCが生成されるようにした。
When a voltage is applied to the conductor 1 as described above, a stray capacitance SC is generated between the conductor 1 and the grounded casing A. In this embodiment, the conductor 1 and the casing A are arranged to face each other so that a stray capacitance SC is generated between them .

そして、上記浮遊容量SCは、導体1とケーシングAとの対向長さLに応じてその容量が決まるが、できるだけ小さくすることが望ましい。
このように浮遊容量SCの容量が微小であれば、導体1の先端と除電対象物11との間で絶縁破壊が発生したとしても、上記導体と除電対象物とが瞬時に同電位になり、浮遊容量の蓄電量に相当する電流しか流れない。
また、浮遊容量SCの容量が小さいと、短い時間で充放電を繰り返すが、このように繰り返される充放電によって流れる電流も十分に小さいので、放電エネルギーも小さくなる。
The stray capacitance SC is determined depending on the opposing length L between the conductor 1 and the casing A, but it is desirable to make it as small as possible.
If the capacitance of the stray capacitance SC is minute in this way, even if dielectric breakdown occurs between the tip of the conductor 1 and the object 11 to be neutralized, the conductor and the object 11 to be neutralized will instantly have the same potential. Only the current corresponding to the amount of electricity stored in the stray capacitance flows.
Furthermore, if the stray capacitance SC has a small capacity, charging and discharging will be repeated in a short period of time, but since the current that flows due to such repeated charging and discharging is also sufficiently small, the discharge energy will also be small.

なお、上記浮遊容量SCは上記のように導体1と浮遊容量生成手段であるケーシングAとの対向長さLによって決まるが、この対向長さLも上記導体1の断面形状に応じて変化する。例えば、断面が平板状の導体あるいは大径の導体など、対向面積が大きな導体であれば、その長さを相対的に短くできる。 The stray capacitance SC is determined by the opposing length L between the conductor 1 and the casing A, which is the stray capacitance generating means, as described above, but this opposing length L also changes depending on the cross-sectional shape of the conductor 1. For example, if the conductor has a large opposing area, such as a conductor with a flat cross-section or a large diameter, its length can be relatively shortened.

また、図1においてケーシングAから突出した導体1の先端から高抵抗素子2までの距離を対向長さLとして設定しているが、導体1の突出端がケーシングAに近ければ、浮遊容量SCに影響を及ぼす。そこで図1では導体1の先端から高抵抗素子2までを対向長さLとしている。 Furthermore, in Fig. 1, the distance from the tip of the conductor 1 protruding from the casing A to the high resistance element 2 is set as the facing length L, but if the protruding end of the conductor 1 is close to the casing A, the stray capacitance SC affect. Therefore, in FIG. 1, the opposing length from the tip of the conductor 1 to the high resistance element 2 is set as L.

さらに、上記高抵抗素子2は、上記絶縁破壊時の電流の流れを抑えて、浮遊容量SCに蓄電させるとともに、導体1の先端が除電対象物11に接触した後は、除電対象物11の電荷をケーブルxにスムーズに流せる抵抗値を保てばよい。 Furthermore, the high-resistance element 2 suppresses the flow of current at the time of the dielectric breakdown and stores electricity in the stray capacitance SC. All you have to do is maintain a resistance value that allows the flow to flow smoothly through cable x.

例えば、浮遊容量を微小な3pF程度に設定するとともに、高抵抗素子2の抵抗値を100MΩ程度としたとき、時定数τは0.3msとなるので、3pF及び100MΩは十分に許容できるものである。
ただし、浮遊容量SCは小さければ小さいほどよい。なぜなら、浮遊容量SCが小さければ絶縁破壊時の放電エネルギーを小さくできるからである。しかし、可燃性物質の最小着火エネルギーが大きい場合はそれに応じて浮遊容量SCの容量を大きくしても良い。実際には0.1pF~5pFの範囲であれば許容限度内といえる。
For example, when the stray capacitance is set to a minute value of about 3 pF and the resistance value of the high resistance element 2 is set to about 100 MΩ, the time constant τ is 0.3 ms, so 3 pF and 100 MΩ are sufficiently allowable. .
However, the smaller the stray capacitance SC, the better. This is because if the stray capacitance SC is small, the discharge energy at the time of dielectric breakdown can be reduced. However, if the minimum ignition energy of the combustible substance is large, the capacity of the stray capacitance SC may be increased accordingly. In reality, it can be said that a range of 0.1 pF to 5 pF is within the permissible limit.

また、高抵抗素子2の抵抗値は、浮遊容量SCを蓄電させるためには大きければ大きいほど良い。しかし、除電対象物11の除電を考慮すると、その大きさにも限界がある。その上限は、時定数τを考慮すると500MΩ程度である。 Further, the higher the resistance value of the high resistance element 2 is, the better in order to store the stray capacitance SC. However, when considering the static elimination of the static elimination target 11, there is a limit to its size. Its upper limit is about 500 MΩ, considering the time constant τ.

上記のようにした除電機構は、ケーシングAとともに導体1の先端を除電対象物11に接近させる。この接近過程で導体1の先端と除電対象物11との間で絶縁破壊が起こると、両者の間に電流が流れる。このとき高抵抗素子2の抵抗値が大きいので、浮遊容量SCに除電対象物11と同電位になるまで電荷が蓄電されるが、この浮遊容量SCの容量が小さいので、導体1の先端の電位が除電対象物11と瞬時に同電位になる。 The static elimination mechanism configured as described above brings the tip of the conductor 1 together with the casing A close to the object 11 to be neutralized. When dielectric breakdown occurs between the tip of the conductor 1 and the object 11 for static elimination during this approach process, a current flows between the two. At this time, since the resistance value of the high resistance element 2 is large, charge is stored in the stray capacitance SC until it reaches the same potential as the object 11 to be neutralized. However, since the capacitance of this stray capacitance SC is small, the potential at the tip of the conductor 1 instantly becomes the same potential as the object 11 to be neutralized.

導体1の先端と除電対象物11とが瞬時に同電位になるので、流れる放電電流はきわめて小さいものになる。
また、放電によって浮遊容量SCに蓄電された電荷が減少すれば、再び放電破壊が起こり、導体1の先端と除電対象物11との電位差が大きくなるたびに放電破壊が繰り返されるが、繰り返される放電破壊による放電電流も小さいので、着火性放電を起こすことはない。
Since the tip of the conductor 1 and the object 11 to be neutralized instantly become at the same potential, the discharge current that flows becomes extremely small.
In addition, if the charge stored in the stray capacitance SC decreases due to discharge, discharge destruction occurs again, and the discharge destruction is repeated each time the potential difference between the tip of the conductor 1 and the object 11 to be neutralized increases. Since the discharge current due to breakdown is also small, ignitable discharge does not occur.

図2は、上記のようにした除電機構を電流計測器と併用する場合についての概略図である。
すなわち、図2において、上記のようにした除電機構で測定対象物11を除電した後、テスタTで電流を計測するようにしたものである。
なお、このテスタTと除電機構とを一体的に設けてもよいことは当然である。
FIG. 2 is a schematic diagram of the case where the static elimination mechanism as described above is used together with a current measuring device.
That is, in FIG. 2, the electric current is measured by the tester T after the electric charge is removed from the object to be measured 11 by the electric charge removing mechanism as described above.
Note that it goes without saying that the tester T and the static elimination mechanism may be provided integrally.

図3,4に示した接地確認装置は、接地されたケーシングAを備え、このケーシングAの開口部分から導体1の先端を突出させている。この導体1は高抵抗素子2を介して導電棒状体3に接続するとともに、この導電棒状体3を絶縁体4で被覆している。さらに、この導電棒状体3の端部、すなわち導体1とは反対側における端部に板状の切換え素子5を固定している。
上記のようにした導体1、高抵抗素子2及び導電棒状体3のそれぞれは軸線方向に一体的に移動可能である。
The grounding confirmation device shown in FIGS. 3 and 4 includes a grounded casing A, and the tip of the conductor 1 protrudes from the opening of the casing A. The conductor 1 is connected to a conductive rod-shaped body 3 via a high-resistance element 2, and the conductive rod-shaped body 3 is covered with an insulator 4. Further, a plate-shaped switching element 5 is fixed to an end of this conductive rod-shaped body 3, that is, an end on the opposite side from the conductor 1.
The conductor 1, high resistance element 2, and conductive rod-shaped body 3 configured as described above are each movable integrally in the axial direction.

さらに、上記ケーシングAには、板状の接地素子6を固定しているが、この接地素子6はケーシングAを介して常時接地されている。上記した絶縁体4と一体の導電棒状体3はこの接地素子6を貫通して導体1とは反対側に突出させるとともに、その突出端に上記切換え素子5を固定して、導電棒状体3と切換え素子5とを電気的に導通させている。
そして、上記接地素子6と対向して絶縁材料からなるばね受板7をケーシングA内に固定するとともに、このばね受板7と上記切換え素子5との間にばね部材8を介在させている。
Further, a plate-shaped grounding element 6 is fixed to the casing A, and this grounding element 6 is always grounded via the casing A. The conductive rod-like body 3 integrated with the insulator 4 is made to penetrate through this grounding element 6 and protrude to the side opposite to the conductor 1, and the switching element 5 is fixed to the protruding end of the conductive rod-like body 3. It is electrically connected to the switching element 5.
A spring receiving plate 7 made of an insulating material is fixed in the casing A facing the grounding element 6, and a spring member 8 is interposed between the spring receiving plate 7 and the switching element 5.

したがって、上記ばね部材8のばね力で通常は切換え素子5を接地素子6に接触させ、これら切換え素子5及び接地素子6を介して導体1を接地側に導通させている。
また、上記ばね受板7を境にして接地素子6とは反対側に測定電源回路9を設け、この測定電源回路9と電気的に接続された導体連結素子10を設けている。この導体連結素子10の先端は、接地素子6に接触した切換え素子5との間で間隔を保って対向している。
Therefore, the spring force of the spring member 8 normally brings the switching element 5 into contact with the grounding element 6, and the conductor 1 is electrically connected to the grounding side via the switching element 5 and the grounding element 6.
Further, a measurement power supply circuit 9 is provided on the opposite side of the grounding element 6 with the spring receiving plate 7 as a boundary, and a conductor coupling element 10 electrically connected to the measurement power supply circuit 9 is provided. The tip of this conductor connection element 10 is opposed to the switching element 5 which is in contact with the grounding element 6 with a distance maintained therebetween.

上記のように構成したので、切換え素子5は通常はばね部材8のばね力の作用で接地素子6に接触して、導体1を接地側に導通している。したがって、導体1を図示の測定対象物11に接触させれば、この対象物11は接地側に接続されて除電される。 With the above structure, the switching element 5 normally contacts the grounding element 6 under the action of the spring force of the spring member 8, thereby conducting the conductor 1 to the ground side. Therefore, when the conductor 1 is brought into contact with the illustrated measurement object 11, the object 11 is connected to the ground side and static electricity is removed.

上記の状態から、導体1を測定対象物11にさらに強く押し付ければ、導体1と一体的に移動する切換え素子5がばね部材8のばね力に抗して移動し、接地素子6から切り離されるとともに、切換え素子5が導体連結素子10に接触し、導体1を測定電源回路9に接続する。 In the above state, if the conductor 1 is pressed even more strongly against the object to be measured 11, the switching element 5, which moves integrally with the conductor 1, moves against the spring force of the spring member 8, and is separated from the grounding element 6. At the same time, the switching element 5 contacts the conductor coupling element 10 and connects the conductor 1 to the measurement power supply circuit 9 .

したがって、導体1を測定対象物11に接触させて除電するプロセスと、導体1を接地素子6から切り離して測定電源回路9に接続するプロセスとを一連の動作で実現できる。
なお、上記のことからも明らかなように、切換え素子5、接地素子6、ばね部材8及び導体連結素子10のそれぞれが相まって、この発明の切換え機構を構成する。
Therefore, the process of bringing the conductor 1 into contact with the object to be measured 11 to remove static electricity, and the process of separating the conductor 1 from the grounding element 6 and connecting it to the measurement power supply circuit 9 can be realized by a series of operations.
Note that, as is clear from the above, the switching element 5, the grounding element 6, the spring member 8, and the conductor connecting element 10 each constitute the switching mechanism of the present invention.

また、この接地確認装置においても、上記した除電機構とまったく同じ機構が備わっている。すなわち、接地されたケーシングAと、このケーシングAと対向する導体1と、高抵抗素子2と接地電位保持手段としての接地素子6とが備わっている。そして、除電機能を発揮する上では、上記各構成要素の機能も上記した除電機構と同じである。
したがって、この接地確認装置において、接地されたケーシングA、このケーシングAと対向する導体1、高抵抗素子2及び接地電位保持手段としての接地素子6については除電機構の説明を援用する。
Further, this earthing confirmation device is also equipped with exactly the same mechanism as the static elimination mechanism described above. That is, it includes a grounded casing A, a conductor 1 facing the casing A, a high resistance element 2, and a grounding element 6 as a ground potential holding means. In order to perform the static elimination function, the functions of each of the above-mentioned components are also the same as those of the static elimination mechanism described above.
Therefore, in this grounding confirmation device, the description of the static elimination mechanism is used for the grounded casing A, the conductor 1 facing the casing A, the high resistance element 2, and the grounding element 6 as a grounding potential holding means.

一方、上記測定電源回路9は、図4に示すように、測定用電源であるキャパシタC、このキャパシタCの電圧を検出するこの発明の測定手段としての電圧計V、上記キャパシタCに蓄電させるための直流電源12、電源12とキャパシタCとの間で開閉する連動スイッチ13及びこの連動スイッチ13とキャパシタCとの間を開閉する手動スイッチ15を設けている。 On the other hand, as shown in FIG. 4, the measurement power supply circuit 9 includes a capacitor C as a measurement power supply, a voltmeter V as a measuring means of the present invention for detecting the voltage of the capacitor C, and a voltmeter V for storing electricity in the capacitor C. A DC power supply 12, an interlocking switch 13 that opens and closes between the power supply 12 and the capacitor C, and a manual switch 15 that opens and closes between the interlocking switch 13 and the capacitor C are provided.

そして、上記連動スイッチ13は連動手段14を介して切換え素子5と連動するようにしている。つまり、切換え素子5が接地素子6と接触しているときには、当該連動スイッチ13が閉じてキャパシタCが電源12に接続され、キャパシタCはチャージされる。 The interlocking switch 13 is interlocked with the switching element 5 via an interlocking means 14. That is, when the switching element 5 is in contact with the grounding element 6, the interlocking switch 13 is closed, the capacitor C is connected to the power source 12, and the capacitor C is charged.

また、切換え素子5がばね部材8に抗して移動すると、切換え素子5と接地素子6とが切り離されるとともに、切換え素子5と導体連結素子10とが接触状態を保つ。この接触状態では連動スイッチ13が開いて、電源12によるキャパシタCのチャージは中断するとともに、キャパシタCに蓄えられた電荷が導体1を介して測定対象物11に流れることになる。 Further, when the switching element 5 moves against the spring member 8, the switching element 5 and the grounding element 6 are separated, and the switching element 5 and the conductor connecting element 10 maintain a contact state. In this contact state, the interlocking switch 13 opens, the charging of the capacitor C by the power supply 12 is interrupted, and the electric charge stored in the capacitor C flows to the measurement object 11 via the conductor 1.

上記のようにした接地確認装置は、導体1を測定対象物11に接触させている状態、すなわち通常の状態では、切換え素子5がばね部材8のばね力の作用で接地素子6に接触して導体1を接地側に接続するとともに、連動スイッチ13を図4に示すように閉じてキャパシタCをチャージする。 In the above-described grounding confirmation device, in a state where the conductor 1 is in contact with the object to be measured 11, that is, in a normal state, the switching element 5 is in contact with the grounding element 6 due to the spring force of the spring member 8. The conductor 1 is connected to the ground side, and the interlocking switch 13 is closed as shown in FIG. 4 to charge the capacitor C.

上記の状態から導体1を測定対象物11の至近距離まで近づけると、測定対象物11の帯電量によっては絶縁破壊を起こして、測定対象物11から導体1に放電が起こるが、このときの放電エネルギーが小さくなる原理は、除電機構とすべて同じである。 When the conductor 1 is brought close to the object to be measured 11 in the above state, dielectric breakdown may occur depending on the amount of charge on the object to be measured 11, and a discharge occurs from the object to be measured 11 to the conductor 1. The principle of energy reduction is the same as that of the static elimination mechanism.

また、導体1の先端を移動してそれを測定対象物11に接触させると、測定対象物11は接地素子6を介して接地されるので、対象物11は除電される。このように対象物11が事前に除電されるので、その電荷が測定電源回路9に流れてそれを破壊したり、あるいは発火させたりしない。 Furthermore, when the tip of the conductor 1 is moved and brought into contact with the object to be measured 11, the object to be measured 11 is grounded via the grounding element 6, so that the object 11 is neutralized. Since the object 11 is thus neutralized in advance, the charge will not flow into the measurement power supply circuit 9 and destroy it or cause it to catch fire.

特に、上記測定電源回路9の電源電圧は、防爆対策を考慮して非常に低い値に設定され、通常は5V前後の電圧が想定されている。したがって、上記のように測定対象物11を事前に除電して、その電荷が測定電源回路9に流れるのを防止する意義はきわめて大きい。
なお、この実施形態では、上記測定対象物11を事前に除電する機能と、高抵抗素子2の抵抗によって測定電源回路9に電流が逆流するのを防止する機能とを兼ね備えている。
In particular, the power supply voltage of the measurement power supply circuit 9 is set to a very low value in consideration of explosion-proof measures, and is normally assumed to be around 5V. Therefore, it is extremely significant to eliminate the charge from the measurement object 11 in advance to prevent the charge from flowing to the measurement power supply circuit 9 as described above.
Note that this embodiment has both the function of eliminating static electricity from the measurement object 11 in advance and the function of preventing current from flowing back into the measurement power supply circuit 9 due to the resistance of the high-resistance element 2.

上記のように導体1を測定対象物11に接触させてからそれをさらに強く押し付けると、導体1は導電棒状体3を介して切換え素子5をばね部材8のばね力に抗して押し、切換え素子5を接地素子6から切り離すとともに、切換え素子5を導体連結素子10に接触させる。 When the conductor 1 is brought into contact with the object to be measured 11 as described above and then pressed even harder, the conductor 1 pushes the switching element 5 through the conductive rod-shaped body 3 against the spring force of the spring member 8, causing the switching The element 5 is separated from the grounding element 6, and the switching element 5 is brought into contact with the conductor coupling element 10.

また、上記のように切換え素子5が導体連結素子10に接触する過程では、連動手段14が連動スイッチ13を押し開くので、キャパシタCに対するチャージは中断されるとともに、このキャパシタCに蓄えられた電荷が、導体連結素子10、切換え素子5、導電棒状体3及び高抵抗素子2を介して導体1に導かれる。そして、このときのキャパシタCの電荷量を電圧計Vで測定する。 Further, in the process in which the switching element 5 contacts the conductor coupling element 10 as described above, the interlocking means 14 pushes the interlocking switch 13 open, so that charging of the capacitor C is interrupted and the electric charge stored in the capacitor C is is guided to the conductor 1 via the conductor connection element 10, the switching element 5, the conductive rod-shaped body 3, and the high resistance element 2. Then, the amount of charge on the capacitor C at this time is measured with a voltmeter V.

上記キャパシタCの電荷量がゼロになれば、その電荷のすべてが測定対象物11を介して接地側に流れたと推測できるので、この場合には当該測定対象物11が接地されていると判定できる。逆に、電荷量がゼロにならなければ、測定対象物11が接地不良の状態にあると判定できる。 If the amount of charge in the capacitor C becomes zero, it can be inferred that all of the charge has flowed to the ground side via the object to be measured 11, so in this case it can be determined that the object to be measured 11 is grounded. . Conversely, if the amount of charge does not become zero, it can be determined that the measurement target 11 is in a state of poor grounding.

上記のようにして測定を終了したら、導体1を対象物11から離すが、その過程で、切換え素子5が接地素子6に接触した状態をほんの少しの間保つ。このように接触状態を保てば、測定終了後の測定対象物11の残留電荷を接地側に流して除電することができる。 After completing the measurement as described above, the conductor 1 is separated from the object 11, but in the process, the switching element 5 remains in contact with the grounding element 6 for a short time. By maintaining the contact state in this way, the residual charge on the measurement object 11 after the measurement is completed can be discharged by flowing to the ground side.

いずれにしても、導体1を対象物11に接触させて、接地の良・不良を測定するまでと、その測定終了後に対象物11の残留電荷を接地側に流して除電を終了するまでとを、一連の動作で連続的に行うことができ、この動作の一連性も、この実施形態の大きな特徴である。 In any case, the steps are as follows: until the conductor 1 is brought into contact with the object 11 to measure whether the grounding is good or bad, and after the measurement is completed, the residual charge on the object 11 is flowed to the ground side to complete static elimination. , can be performed continuously in a series of operations, and the continuity of this operation is also a major feature of this embodiment.

なお、この実施形態では、測定電源回路9のキャパシタCの電荷量を測定するようにしたが、例えば、測定用電源をキャパシタCに変えてバッテリーを用いても良い。ただし、この場合には、バッテリーから流れる電流の大きさによって、対象物11の接地状況を判定することになる。 In this embodiment, the amount of charge of the capacitor C of the measurement power supply circuit 9 is measured, but for example, a battery may be used instead of the capacitor C as the measurement power supply. However, in this case, the grounding status of the object 11 is determined based on the magnitude of the current flowing from the battery.

しかし、電流の大きさで接地状況を判定するとなると、その電流量の基準設定が難しくなる。
したがって、上記実施形態のようにキャパシタCの電荷量がゼロになったか否かで接地状況を判定する方が、明確な判定が可能になり有利である。
However, when determining the grounding status based on the magnitude of the current, it becomes difficult to set a standard for the amount of current.
Therefore, it is more advantageous to determine the grounding condition based on whether or not the amount of charge in the capacitor C has become zero as in the above embodiment, as it allows for a clearer determination.

可燃性溶剤や粉体などを取り扱う危険な場所での着火事故を防ぐための除電機構あるいは接地確認装置として有効である。 It is effective as a static elimination mechanism or grounding confirmation device to prevent ignition accidents in dangerous locations where flammable solvents and powders are handled.

1…導体、2…高抵抗素子、x…接地電位保持手段、5…切換え素子、6…接地素子、8…ばね部材、9…測定電源回路、10…導体連結素子、11…対象物、L…間隔、SC…浮遊容量、C…キャパシタ、V…電圧計、13…連動スイッチ、14…連動手段
DESCRIPTION OF SYMBOLS 1...Conductor, 2...High resistance element, x...Ground potential holding means, 5...Switching element, 6...Grounding element, 8...Spring member, 9...Measurement power supply circuit, 10...Conductor connection element, 11...Target, L ... Interval, SC... Stray capacitance, C... Capacitor, V... Voltmeter, 13... Interlocking switch, 14... Interlocking means

Claims (1)

対象物に接触させるための尖った先端を有する導体と、
この導体に接続された高抵抗素子と、
上記導体に接続した側とは反対側における上記高抵抗素子に接続された接地電位保持手段と、
上記尖った先端を開口から突出させ、上記導体の周囲を囲って上記導体と対向し、浮遊容量生成手段となる接地されたケーシングと
を備え、
上記導体と上記浮遊容量生成手段との対向長さで浮遊容量が決められる構成にする一方、
上記導体と上記ケーシングとの対向長さが、上記浮遊容量が、0.1pF~5pFになる長さを保ち、かつ、上記高抵抗素子を100MΩ~500MΩにした除電機構。
a conductor having a sharp tip for contacting an object;
A high resistance element connected to this conductor,
Ground potential holding means connected to the high resistance element on the opposite side to the side connected to the conductor;
A grounded casing with the pointed tip protruding from the opening, surrounding the conductor and facing the conductor, and serving as a stray capacitance generating means.
Equipped with
While having a configuration in which the stray capacitance is determined by the opposing length of the conductor and the stray capacitance generating means,
A static elimination mechanism in which the opposing length of the conductor and the casing is such that the stray capacitance is 0.1 pF to 5 pF, and the high resistance element is 100 MΩ to 500 MΩ.
JP2021163329A 2019-09-26 2021-10-04 Static elimination mechanism Active JP7440025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021163329A JP7440025B2 (en) 2019-09-26 2021-10-04 Static elimination mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019175121A JP7057978B2 (en) 2019-09-26 2019-09-26 Grounding confirmation device
JP2021163329A JP7440025B2 (en) 2019-09-26 2021-10-04 Static elimination mechanism

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019175121A Division JP7057978B2 (en) 2019-09-26 2019-09-26 Grounding confirmation device

Publications (2)

Publication Number Publication Date
JP2021193691A JP2021193691A (en) 2021-12-23
JP7440025B2 true JP7440025B2 (en) 2024-02-28

Family

ID=75156331

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019175121A Active JP7057978B2 (en) 2019-09-26 2019-09-26 Grounding confirmation device
JP2021163329A Active JP7440025B2 (en) 2019-09-26 2021-10-04 Static elimination mechanism

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019175121A Active JP7057978B2 (en) 2019-09-26 2019-09-26 Grounding confirmation device

Country Status (1)

Country Link
JP (2) JP7057978B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189199A (en) 1999-10-22 2001-07-10 Takasago Thermal Eng Co Ltd Ion generator and charge neutralizing device
JP2004055317A (en) 2002-07-19 2004-02-19 Natl Inst Of Industrial Safety Independent Administrative Institution Nozzle type static eliminator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654746A (en) * 1984-11-23 1987-03-31 Lewis Jr Robert O Static dissipator for electronic devices
JPH07326487A (en) * 1994-05-31 1995-12-12 Hiramatsu Kazunari Device for discharging electric charge on human body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189199A (en) 1999-10-22 2001-07-10 Takasago Thermal Eng Co Ltd Ion generator and charge neutralizing device
JP2004055317A (en) 2002-07-19 2004-02-19 Natl Inst Of Industrial Safety Independent Administrative Institution Nozzle type static eliminator

Also Published As

Publication number Publication date
JP7057978B2 (en) 2022-04-21
JP2021051959A (en) 2021-04-01
JP2021193691A (en) 2021-12-23

Similar Documents

Publication Publication Date Title
US3657650A (en) Current and voltage monitoring module for electric conductor terminations
US5213517A (en) Separable electrodes with electric arc quenching means
US4261263A (en) RF-insensitive squib
US9132734B2 (en) Connection device comprising a control unit, battery case comprising such a connection device and method for controlling such a battery case
KR101230156B1 (en) The triggering apparatus of nonel detonator using the sparker device and triggering method using thereof
US4210862A (en) Test device for indicating an electric voltage and/or the polarity thereof, and the passage of current through an electric conductor
US3344744A (en) Safetted ordnace device
JP2993933B1 (en) Conductive contact pin with thermal fuse function
JP7440025B2 (en) Static elimination mechanism
CA1101072A (en) Electrical circuit test devices
JPH0831299A (en) Surge absorber
US2323931A (en) Cable testing device
US3343366A (en) Spark discharge monitoring device
ES342635A1 (en) Voltage Testing Arrangement
KR101339081B1 (en) Triggering apparatus of nonelectric detonator using the sparker device and electric blasting machine and triggering method using thereof
US9989577B2 (en) Continuity inspection device
CN111066114B (en) Circuit breaker
CN108475759B (en) Battery cell for an electrical energy store
JP2021089280A (en) Electric characteristic measuring device
CN113035475A (en) Explosion-proof lightning arrester
KR101971693B1 (en) The inspectable Spark ignition device, dedicated tester and blasting method using thereof
US3394334A (en) Fusible load device with indicating means
RU2421687C1 (en) Device for initiation of impact-wave pipe and electric detonators with remote actuating element
US20190064229A1 (en) Voltage Testing System
US3660720A (en) Automatic grounding switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R150 Certificate of patent or registration of utility model

Ref document number: 7440025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150