JP7439856B2 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP7439856B2
JP7439856B2 JP2022075764A JP2022075764A JP7439856B2 JP 7439856 B2 JP7439856 B2 JP 7439856B2 JP 2022075764 A JP2022075764 A JP 2022075764A JP 2022075764 A JP2022075764 A JP 2022075764A JP 7439856 B2 JP7439856 B2 JP 7439856B2
Authority
JP
Japan
Prior art keywords
imaging
imaging condition
pixel
area
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022075764A
Other languages
English (en)
Other versions
JP2022115944A (ja
Inventor
孝 塩野谷
直樹 關口
敏之 神原
昌也 ▲高▼橋
宣孝 平間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2022075764A priority Critical patent/JP7439856B2/ja
Publication of JP2022115944A publication Critical patent/JP2022115944A/ja
Priority to JP2024020973A priority patent/JP2024045553A/ja
Application granted granted Critical
Publication of JP7439856B2 publication Critical patent/JP7439856B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Automatic Focus Adjustment (AREA)

Description

本発明は、撮像装置に関する。
撮像素子からの信号により画像を生成する画像処理技術を搭載した撮像装置が知られている(特許文献1参照)。
従来から画像の画質向上が要求されていた。
特開2006-197192号公報
第1の態様によると、撮像装置は、複数の画素を含むブロックごとに撮像条件が設定可能な撮像素子と、第1被写体からの第1の光が入射した第1領域の前記ブロックに第1撮像条件を設定し、第2被写体からの第2の光が入射した第2領域の前記ブロックに第2撮像条件を設定し、前記第1領域と前記第2領域との間にある第3領域の前記ブロックに前記第1撮像条件および前記第2撮像条件と異なる撮像条件を設定する撮像条件設定部と、を備え、前記撮像条件設定部は、前記第1撮像条件により設定される設定値と前記第2撮像条件により設定される設定値とに基づいて、前記第3領域に設定される撮像条件の数を設定す
第1の実施の形態によるカメラの構成を例示するブロック図である。 積層型の撮像素子の断面図である。 撮像チップの画素配列と単位領域を説明する図である。 単位領域における回路を説明する図である。 カメラの撮像素子に結像される被写体の像を模式的に示す図である。 撮像条件の設定画面を例示する図である。 図7(a)はライブビュー画像における所定範囲を例示する図、図7(b)は所定範囲の拡大図である。 図8は図7(b)に対応する画像データを例示する図である。 図9(a)はライブビュー画像における注目領域を例示する図、図9(b)は注目画素および参照画素Prの拡大図である。 図10(a)は画素から出力された光電変換信号の並びを例示する図、図10(b)はG色成分の画像データの補間を説明する図、図10(c)は補間後のG色成分の画像データを例示する図である。 図11(a)は図10(a)からR色成分の画像データを抽出した図、図11(b)は色差成分Crの補間を説明する図、図11(c)は色差成分Crの画像データの補間を説明する図である。 図12(a)は図10(a)からB色成分の画像データを抽出した図、図12(b)は色差成分Cbの補間を説明する図、図12(c)は色差成分Cbの画像データの補間を説明する図である。 撮像面における焦点検出用画素の位置を例示する図である。 焦点検出画素ラインの一部の領域を拡大した図である。 フォーカスポイントを拡大した図である。 図16(a)は、検出しようとする対象物を表すテンプレート画像を例示する図であり、図16(b)は、ライブビュー画像および探索範囲を例示する図である。 領域ごとに撮像条件を設定して撮像する処理の流れを説明するフローチャートである。 図18(a)~図18(c)は、図7(b)の所定範囲の一部を含む第2の実施の形態の複数のブロックを示す図である。 図19(a)~図19(c)は、撮像素子の撮像面における第1撮像領域および第2撮像領域の配置を例示する図である。 変形例11による撮像システムの構成を例示するブロック図である。 モバイル機器へのプログラムの供給を説明する図である。 第3の実施の形態によるカメラの構成を例示するブロック図である。 第3の実施の形態における各ブロックと、複数の補正部との対応関係を模式的に示した図である。 積層型撮像素子の断面図である。 画像処理に係る、第1画像データと第2画像データとの処理について模式的に表した図である。 焦点検出処理に係る、第1画像データと第2画像データとの処理について模式的に表した図である。 被写体検出処理に係る、第1画像データと第2画像データとの処理について模式的に表した図である。 露出演算処理等の撮像条件の設定に係る、第1画像データと第2画像データとの処理について模式的に表した図である。
---第1の実施の形態---
第1の実施の形態による画像処理装置を搭載する電子機器の一例として、デジタルカメラを例に挙げて説明する。カメラ1(図1)は、撮像素子32aにおける撮像面の領域ごとに異なる条件で撮像を行うことが可能に構成される。画像処理部33は、撮像条件が異なる領域においてそれぞれ適切な処理を行う。このようなカメラ1の詳細について、図面を参照して説明する。
<カメラの説明>
図1は、第1の実施の形態によるカメラ1の構成を例示するブロック図である。図1において、カメラ1は、撮像光学系31と、撮像部32と、画像処理部33と、制御部34と、表示部35と、操作部材36と、記録部37とを有する。
撮像光学系31は、被写界からの光束を撮像部32へ導く。撮像部32は、撮像素子32aおよび駆動部32bを含み、撮像光学系31によって結像された被写体の像を光電変換する。撮像部32は、撮像素子32aにおける撮像面の全域において同じ条件で撮像したり、撮像素子32aにおける撮像面の領域ごとに異なる条件で撮像したりすることができる。撮像部32の詳細については後述する。駆動部32bは、撮像素子32aに蓄積制御を行わせるために必要な駆動信号を生成する。撮像部32に対する電荷蓄積時間などの撮像指示は、制御部34から駆動部32bへ送信される。
画像処理部33は、入力部33aと、補正部33bと、生成部33cとを含む。入力部33aには、撮像部32によって取得された画像データが入力される。補正部33bは、上記入力された画像データに対して補正を行う前処理を行う。前処理の詳細については後述する。生成部33cは、上記入力された画像データと前処理後の画像データとに対して画像処理を行い、画像を生成する。画像処理には、たとえば、色補間処理、画素欠陥補正処理、輪郭強調処理、ノイズ低減(Noise reduction)処理、ホワイトバランス調整処理、ガンマ補正処理、表示輝度調整処理、彩度調整処理等が含まれる。さらに、生成部33cは、表示部35により表示する画像を生成する。
制御部34は、たとえばCPUによって構成され、カメラ1による全体の動作を制御する。たとえば、制御部34は、撮像部32で取得された光電変換信号に基づいて所定の露出演算を行い、適正露出に必要な撮像素子32aの電荷蓄積時間(露光時間)、撮像光学系31の絞り値、ISO感度等の露出条件を決定して駆動部32bへ指示する。また、カメラ1に設定されている撮像シーンモードや、検出した被写体要素の種類に応じて、彩度、コントラスト、シャープネス等を調整する画像処理条件を決定して画像処理部33へ指示する。被写体要素の検出については後述する。
制御部34には、物体検出部34aと、設定部34bと、撮像制御部34cと、レンズ移動制御部34dとが含まれる。これらは、制御部34が不図示の不揮発性メモリに格納されているプログラムを実行することにより、ソフトウェア的に実現されるが、これらをASIC等により構成しても構わない。
物体検出部34aは、公知の物体認識処理を行うことにより、撮像部32によって取得された画像データから、人物(人物の顔)、犬、猫などの動物(動物の顔)、植物、自転車、自動車、電車などの乗物、建造物、静止物、山、雲などの風景、あらかじめ定められた特定の物体などの被写体要素を検出する。設定部34bは、撮像部32により取得した画像データを、上述のように検出した被写体要素を含む複数の領域に分割する。
設定部34bはさらに、複数の領域に対して撮像条件を設定する。撮像条件は、上記露出条件(電荷蓄積時間、ゲイン、ISO感度、フレームレート等)と、上記画像処理条件(たとえば、ホワイトバランス調整用パラメータ、ガンマ補正カーブ、表示輝度調整パラメータ、彩度調整パラメータ等)とを含む。なお、撮像条件は、複数の領域のすべてに同じ撮像条件を設定することも、複数の領域間で異なる撮像条件を設定することも可能である。
撮像制御部34cは、設定部34bによって領域ごとに設定された撮像条件を適用して撮像部32(撮像素子32a)、画像処理部33を制御する。これにより、撮像部32に対しては、複数の領域ごとに異なる露出条件で撮像を行わせることが可能であり、画像処理部33に対しては、複数の領域ごとに異なる画像処理条件で画像処理を行わせることが可能である。領域を構成する画素の数はいくらでもよく、たとえば1000画素でもよいし、1画素でもよい。また、領域間で画素の数が異なっていてもよい。
レンズ移動制御部34dは、撮像画面の所定の位置(フォーカスポイントと呼ぶ)において、対応する被写体に対してフォーカスを合わせる自動焦点調節(オートフォーカス:AF)動作を制御する。フォーカスを合わせると、被写体の像の尖鋭度が高まる。すなわち、撮像光学系31のフォーカスレンズを光軸方向に移動させることによって、撮像光学系31による像を調節する。レンズ移動制御部34dは、演算結果に基づいて、撮像光学系31のフォーカスレンズを合焦位置へ移動させるための駆動信号、たとえば被写体の像を撮像光学系31のフォーカスレンズで調節するための信号を、撮像光学系31のレンズ駆動機構31mに送る。このように、レンズ移動制御部34dは、演算結果に基づいて、撮像光学系31のフォーカスレンズを光軸方向に移動させる移動部として機能する。AF演算部34dがAF動作のために行う処理は、焦点検出処理とも呼ばれる。焦点検出処理の詳細については後述する。
表示部35は、画像処理部33によって生成された画像や画像処理された画像、記録部37によって読み出された画像などを再生表示する。表示部35は、操作メニュー画面や、撮像条件を設定するための設定画面等の表示も行う。
操作部材36は、レリーズボタンやメニューボタン等の種々の操作部材によって構成される。操作部材36は、各操作に対応する操作信号を制御部34へ送出する。操作部材36には、表示部35の表示面に設けられたタッチ操作部材も含まれる。
記録部37は、制御部34からの指示に応じて、不図示のメモリカードなどで構成される記録媒体に画像データなどを記録する。また、記録部37は、制御部34からの指示に応じて記録媒体に記録されている画像データを読み出す。
<積層型の撮像素子の説明>
上述した撮像素子32aの一例として積層型の撮像素子100について説明する。図2は、撮像素子100の断面図である。撮像素子100は、撮像チップ111と、信号処理チップ112と、メモリチップ113とを備える。撮像チップ111は、信号処理チップ112に積層されている。信号処理チップ112は、メモリチップ113に積層されている。撮像チップ111および信号処理チップ112、信号処理チップ112およびメモリチップ113は、それぞれ接続部109により電気的に接続されている。接続部109は、たとえばバンプや電極である。撮像チップ111は、被写体からの光像を撮像して画像データを生成する。撮像チップ111は、画像データを撮像チップ111から信号処理チップ112へ出力する。信号処理チップ112は、撮像チップ111から出力された画像データに対して信号処理を施す。メモリチップ113は、複数のメモリを有し、画像データを記憶する。なお、撮像素子100は、撮像チップおよび信号処理チップで構成されてもよい。撮像素子100が撮像チップおよび信号処理チップで構成されている場合、画像データを記憶するための記憶部は、信号処理チップに設けられてもよいし、撮像素子100とは別に設けていてもよい。
図2に示すように、入射光は、主に白抜き矢印で示すZ軸プラス方向へ向かって入射する。また、座標軸に示すように、Z軸に直交する紙面左方向をX軸プラス方向、Z軸およびX軸に直交する紙面手前方向をY軸プラス方向とする。以降のいくつかの図においては、図2の座標軸を基準として、それぞれの図の向きがわかるように座標軸を表示する。
撮像チップ111は、たとえば、CMOSイメージセンサである。撮像チップ111は、具体的には、裏面照射型のCMOSイメージセンサである。撮像チップ111は、マイクロレンズ層101、カラーフィルタ層102、パッシベーション層103、半導体層106、および配線層108を有する。撮像チップ111は、Z軸プラス方向に向かってマイクロレンズ層101、カラーフィルタ層102、パッシベーション層103、半導体層106、および配線層108の順に配置されている。
マイクロレンズ層101は、複数のマイクロレンズLを有する。マイクロレンズLは、入射した光を後述する光電変換部104に集光する。カラーフィルタ層102は、複数のカラーフィルタFを有する。カラーフィルタ層102は、分光特性の異なる複数種類のカラーフィルタFを有する。カラーフィルタ層102は、具体的には、主に赤色成分の光を透過させる分光特性の第1フィルタ(R)と、主に緑色成分の光を透過させる分光特性の第2フィルタ(Gb、Gr)と、主に青色成分の光を透過させる分光特性の第3フィルタ(B)と、を有する。カラーフィルタ層102は、たとえば、ベイヤー配列により第1フィルタ、第2フィルタおよび第3フィルタが配置されている。パッシベーション層103は、窒化膜や酸化膜で構成され、半導体層106を保護する。
半導体層106は、光電変換部104および読出回路105を有する。半導体層106は、光の入射面である第1面106aと第1面106aの反対側の第2面106bとの間に複数の光電変換部104を有する。半導体層106は、光電変換部104がX軸方向およびY軸方向に複数配列されている。光電変換部104は、光を電荷に変換する光電変換機能を有する。また、光電変換部104は、光電変換信号による電荷を蓄積する。光電変換部104は、たとえば、フォトダイオードである。半導体層106は、光電変換部104よりも第2面106b側に読出回路105を有する。半導体層106は、読出回路105がX軸方向およびY軸方向に複数配列されている。読出回路105は、複数のトランジスタにより構成され、光電変換部104によって光電変換された電荷により生成される画像データを読み出して配線層108へ出力する。
配線層108は、複数の金属層を有する。金属層は、たとえば、Al配線、Cu配線等である。配線層108は、読出回路105により読み出された画像データが出力される。画像データは、接続部109を介して配線層108から信号処理チップ112へ出力される。
なお、接続部109は、光電変換部104ごとに設けられていてもよい。また、接続部109は、複数の光電変換部104ごとに設けられていてもよい。接続部109が複数の光電変換部104ごとに設けられている場合、接続部109のピッチは、光電変換部104のピッチよりも大きくてもよい。また、接続部109は、光電変換部104が配置されている領域の周辺領域に設けられていてもよい。
信号処理チップ112は、複数の信号処理回路を有する。信号処理回路は、撮像チップ111から出力された画像データに対して信号処理を行う。信号処理回路は、たとえば、画像データの信号値を増幅するアンプ回路、画像データのノイズの低減処理を行う相関二重サンプリング回路およびアナログ信号をデジタル信号に変換するアナログ/デジタル(A/D)変換回路等である。信号処理回路は、光電変換部104ごとに設けられていてもよい。
また、信号処理回路は、複数の光電変換部104ごとに設けられていてもよい。信号処理チップ112は、複数の貫通電極110を有する。貫通電極110は、たとえばシリコン貫通電極である。貫通電極110は、信号処理チップ112に設けられた回路を互いに接続する。貫通電極110は、撮像チップ111の周辺領域、メモリチップ113にも設けられてもよい。なお、信号処理回路を構成する一部の素子を撮像チップ111に設けてもよい。たとえば、アナログ/デジタル変換回路の場合、入力電圧と基準電圧の比較を行う比較器を撮像チップ111に設け、カウンター回路やラッチ回路等の回路を、信号処理チップ112に設けてもよい。
メモリチップ113は、複数の記憶部を有する。記憶部は、信号処理チップ112で信号処理が施された画像データを記憶する。記憶部は、たとえば、DRAM等の揮発性メモリである。記憶部は、光電変換部104ごとに設けられていてもよい。また、記憶部は、複数の光電変換部104ごとに設けられていてもよい。記憶部に記憶された画像データは、後段の画像処理部に出力される。
図3は、撮像チップ111の画素配列と単位領域131を説明する図である。特に、撮像チップ111を裏面(撮像面)側から観察した様子を示す。画素領域にはたとえば2000万個以上の画素がマトリックス状に配列されている。図3の例では、隣接する2画素×2画素の4画素が1つの単位領域131を形成する。図の格子線は、隣接する画素がグループ化されて単位領域131を形成する概念を示す。単位領域131を形成する画素の数は、これに限られず1000個程度、たとえば32画素×32画素でもよいし、それ以上でもそれ以下でもよく、1画素であってもよい。
画素領域の部分拡大図に示すように、図3の単位領域131は、緑色画素Gb、Gr、青色画素Bおよび赤色画素Rの4画素から成るいわゆるベイヤー配列を内包する。緑色画素Gb、Grは、カラーフィルタFとして緑色フィルタを有する画素であり、入射光のうち緑色波長帯の光を受光する。同様に、青色画素Bは、カラーフィルタFとして青色フィルタを有する画素であって青色波長帯の光を受光し、赤色画素Rは、カラーフィルタFとして赤色フィルタを有する画素であって赤色波長帯の光を受光する。
本実施の形態において、1ブロックにつき単位領域131を少なくとも1つ含むように複数のブロックが定義される。すなわち、1ブロックの最小単位は1つの単位領域131となる。上述したように、1つの単位領域131を形成する画素の数として取り得る値のうち、最も小さい画素の数は1画素である。したがって、1ブロックを画素単位で定義する場合、1ブロックを定義し得る画素の数のうち最小の画素の数は1画素となる。各ブロックはそれぞれ異なる制御パラメータで各ブロックに含まれる画素を制御できる。各ブロックは、そのブロック内のすべての単位領域131、すなわち、そのブロック内のすべての画素が同一の撮像条件で制御される。つまり、あるブロックに含まれる画素群と、別のブロックに含まれる画素群とで、撮像条件が異なる光電変換信号を取得できる。制御パラメータの例は、フレームレート、ゲイン、間引き率、光電変換信号を加算する加算行数または加算列数、電荷の蓄積時間または蓄積回数、デジタル化のビット数(語長)等である。撮像素子100は、行方向(撮像チップ111のX軸方向)の間引きのみでなく、列方向(撮像チップ111のY軸方向)の間引きも自在に行える。さらに、制御パラメータは、画像処理におけるパラメータであってもよい。
図4は、単位領域131における回路を説明する図である。図4の例では、隣接する2画素×2画素の4画素により1つの単位領域131を形成する。なお、上述したように単位領域131に含まれる画素の数はこれに限られず、1000画素以上でもよいし、最小1画素でもよい。単位領域131の二次元的な位置を符号A~Dにより示す。
単位領域131に含まれる画素のリセットトランジスタ(RST)は、画素ごとに個別にオンオフ可能に構成される。図4において、画素Aのリセットトランジスタをオンオフするリセット配線300が設けられており、画素Bのリセットトランジスタをオンオフするリセット配線310が、上記リセット配線300とは別個に設けられている。同様に、画素Cのリセットトランジスタをオンオフするリセット配線320が、上記リセット配線300、310とは別個に設けられている。他の画素Dに対しても、リセットトランジスタをオンオフするための専用のリセット配線330が設けられている。
単位領域131に含まれる画素の転送トランジスタ(TX)についても、画素ごとに個別にオンオフ可能に構成される。図4において、画素Aの転送トランジスタをオンオフする転送配線302、画素Bの転送トランジスタをオンオフする転送配線312、画素Cの転送トランジスタをオンオフする転送配線322が、別個に設けられている。他の画素Dに対しても、転送トランジスタをオンオフするための専用の転送配線332が設けられている。
さらに、単位領域131に含まれる画素の選択トランジスタ(SEL)についても、画素ごとに個別にオンオフ可能に構成される。図4において、画素Aの選択トランジスタをオンオフする選択配線306、画素Bの選択トランジスタをオンオフする選択配線316、画素Cの選択トランジスタをオンオフする選択配線326が、別個に設けられている。他の画素Dに対しても、選択トランジスタをオンオフするための専用の選択配線336が設けられている。
なお、電源配線304は、単位領域131に含まれる画素Aから画素Dで共通に接続されている。同様に、出力配線308は、単位領域131に含まれる画素Aから画素Dで共通に接続されている。また、電源配線304は複数の単位領域間で共通に接続されるが、出力配線308は単位領域131ごとに個別に設けられる。負荷電流源309は、出力配線308へ電流を供給する。負荷電流源309は、撮像チップ111側に設けられてもよいし、信号処理チップ112側に設けられてもよい。
単位領域131のリセットトランジスタおよび転送トランジスタを個別にオンオフすることにより、単位領域131に含まれる画素Aから画素Dに対して、電荷の蓄積開始時間、蓄積終了時間、転送タイミングを含む電荷蓄積を制御することができる。また、単位領域131の選択トランジスタを個別にオンオフすることにより、各画素Aから画素Dの光電変換信号を共通の出力配線308を介して出力することができる。
ここで、単位領域131に含まれる画素Aから画素Dについて、行および列に対して規則的な順序で電荷蓄積を制御する、いわゆるローリングシャッタ方式が公知である。ローリングシャッタ方式により行ごとに画素を選択してから列を指定すると、図4の例では「ABCD」の順序で光電変換信号が出力される。
このように単位領域131を基準として回路を構成することにより、単位領域131ごとに電荷蓄積時間を制御することができる。換言すると、単位領域131間で異なったフレームレートによる光電変換信号をそれぞれ出力させることができる。また、撮像チップ111において一部のブロックに含まれる単位領域131に電荷蓄積(撮像)を行わせる間に他のブロックに含まれる単位領域131を休ませることにより、撮像チップ111の所定のブロックでのみ撮像を行わせて、その光電変換信号を出力させることができる。さらに、フレーム間で電荷蓄積(撮像)を行わせるブロック(蓄積制御の対象ブロック)を切り替えて、撮像チップ111の異なるブロックで逐次撮像を行わせて、光電変換信号を出力させることもできる。
上記のとおり、単位領域131のそれぞれに対応して出力配線308が設けられている。撮像素子100は撮像チップ111、信号処理チップ112およびメモリチップ113を積層しているので、これら出力配線308に接続部109を用いたチップ間の電気的接続を用いることにより、各チップを面方向に大きくすることなく配線を引き回すことができる。
<撮像素子のブロック制御>
本実施の形態では、撮像素子32aにおける複数のブロックごとに撮像条件を設定可能に構成される。制御部34の撮像制御部34cは、上記複数の領域を上記ブロックに対応させて、領域ごとに設定された撮像条件で撮像を行わせる。
図5は、カメラ1の撮像素子32aに結像される被写体の像を模式的に示す図である。カメラ1は、撮像指示が行われる前に、被写体像を光電変換してライブビュー画像を取得する。ライブビュー画像は、所定のフレームレート(例えば60fps)で繰り返し撮像するモニタ用画像のことをいう。
制御部34は、設定部34bにより領域を分割する前は、撮像チップ111の全域(すなわち撮像画面の全体)に同一の撮像条件を設定する。同一の撮像条件とは、撮像画面の全体に共通の撮像条件を設定することをいい、たとえばアペックス値で0.3段程度に満たないばらつきがあるとしても同じとみなす。撮像チップ111の全域で同一に設定する撮像条件は、被写体輝度の測光値に応じた露出条件、またはユーザーによって手動設定された露出条件に基づいて決定する。
図5において、撮像チップ111の撮像面に、人物61aと、自動車62aと、バッグ63aと、山64aと、雲65a、66aとを含む像が結像されている。人物61aは、バッグ63aを両手で抱えている。人物61aの右後方に、自動車62aが止まっている。
<領域の分割>
制御部34は、ライブビュー画像に基づき、以下のようにライブビュー画像の画面を複数の領域に分割する。先ず、物体検出部34aによってライブビュー画像から被写体要素を検出する。被写体要素の検出は、公知の被写体認識技術を用いる。図5の例では、物体検出部34aが、人物61aと、自動車62aと、バッグ63aと、山64aと、雲65aと、雲66aとを被写体要素として検出する。
次に、設定部34bによって、ライブビュー画像の画面を、上記被写体要素を含む領域に分割する。本実施の形態では、人物61aを含む領域を第1領域61とし、自動車62aを含む領域を第2領域62とし、バッグ63aを含む領域を第3領域63とし、山64aを含む領域を第4領域64とし、雲65aを含む領域を第5領域65とし、雲66aを含む領域を第6領域66として説明する。
なお、上述の説明では、制御部34は、撮像素子32aで撮像して得られたライブビュー画像を用いて被写体要素の検出および領域の分割を行った。しかし、たとえば一眼レフカメラのように、被写体像を撮像可能な測光センサを備えたカメラであれば、制御部34は、測光センサで撮像して得られたライブビュー画像を用いて被写体要素の検出および領域の分割を行ってもよい。
<ブロックごとの撮像条件の設定>
制御部34は、設定部34bによって画面を複数の領域に分割すると、図6に例示するような設定画面を表示部35に表示させる。図6において、ライブビュー画像60aが表示され、ライブビュー画像60aの右側に撮像条件の設定画面70が表示される。
設定画面70には、撮像条件の設定項目の一例として、上から順にフレームレート、シャッタースピード(TV)、ゲイン(ISO)が挙げられている。フレームレートは、1秒間に取得するライブビュー画像やカメラ1により録画される動画像のフレーム数である。ゲインは、ISO感度である。撮像条件の設定項目は、図6に例示した他にも適宜加えて構わない。すべての設定項目が設定画面70の中に収まらない場合は、設定項目を上下にスクロールさせることによって他の設定項目を表示させるようにしてもよい。
本実施の形態において、制御部34は、設定部34bによって分割された領域のうち、ユーザーによって選択された領域を撮像条件の設定(変更)の対象にする。たとえば、タッチ操作が可能なカメラ1において、ユーザーは、ライブビュー画像60aが表示されている表示部35の表示面上で、撮像条件を設定(変更)したい主要被写体の表示位置をタップ操作する。制御部34は、たとえば人物61aの表示位置がタップ操作された場合に、ライブビュー画像60aにおいて人物61aを含む第1領域61を撮像条件の設定(変更)対象領域にするとともに、第1領域61の輪郭を強調して表示させる。
図6において、輪郭を強調して表示(太く表示、明るく表示、色を変えて表示、破線で表示、点滅表示等)する第1領域61は、撮像条件の設定(変更)の対象となる領域を示す。図6の例では、第1領域61の輪郭を強調したライブビュー画像60aが表示されているものとする。この場合は、第1領域61が、撮像条件の設定(変更)の対象である。たとえば、タッチ操作が可能なカメラ1において、ユーザーによってシャッタースピード(TV)の表示71がタップ操作されると、制御部34は、強調して表示されている領域(第1領域61)に対するシャッタースピードの現設定値を画面内に表示させる(符号68)。
以降の説明では、タッチ操作を前提としてカメラ1の説明を行うが、操作部材36を構成するボタン等の操作により、撮像条件の設定(変更)を行うようにしてもよい。
シャッタースピード(TV)の上アイコン71aまたは下アイコン71bがユーザーによってタップ操作されると、設定部34bは、シャッタースピードの表示68を現設定値から上記タップ操作に応じて増減させるとともに、強調して表示されている領域(第1領域61)に対応する撮像素子32aの単位領域131(図3)の撮像条件を、上記タップ操作に応じて変更するように撮像部32(図1)へ指示を送る。決定アイコン72は、設定された撮像条件を確定させるための操作アイコンである。設定部34bは、フレームレートやゲイン(ISO)の設定(変更)についても、シャッタースピード(TV)の設定(変更)の場合と同様に行う。
なお、設定部34bは、ユーザーの操作に基づいて撮像条件を設定するように説明したが、これに限定されない。設定部34bは、ユーザーの操作に基づかずに、制御部34の判断により撮像条件を設定するようにしてもよい。
強調表示されていない領域(第1領域61以外の他の領域)については、後述するように一部のブロックを除いて、設定されている撮像条件が維持される。
制御部34は、撮像条件の設定(変更)の対象となる領域の輪郭を強調表示する代わりに、対象領域全体を明るく表示させたり、対象領域全体のコントラストを高めて表示させたり、対象領域全体を点滅表示させたりしてもよい。また、対象領域を枠で囲ってもよい。対象領域を囲う枠の表示は、二重枠や一重枠でもよく、囲う枠の線種、色や明るさ等の表示態様は、適宜変更して構わない。また、制御部34は、対象領域の近傍に矢印などの撮像条件の設定の対象となる領域を指し示す表示をしてもよい。制御部34は、撮像条件の設定(変更)の対象となる対象領域以外を暗く表示させたり、対象領域以外のコントラストを低く表示させたりしてもよい。
<領域の境界を含むブロックの撮像条件の設定>
設定部34bは、少なくとも一部の領域についての撮像条件が上述のように他の領域の撮像条件と異なるように設定された場合には、領域の境界を含むブロックの撮像条件を次のように設定する。
図7(a)は、ライブビュー画像60aにおける人物に対応する第1領域61と山に対応する第4領域64との境界を含む所定範囲80を例示する図である。図7(b)は、図7(a)の所定範囲80を拡大した図である。図7(b)において、所定範囲80に複数のブロック81~89が含まれている。
図7(b)の白地部は、人物に対応する部分を示す。また、図7(b)の斜線部および網掛け部は、山に対応する部分を示す。ブロック82、ブロック85、およびブロック87には、第1領域61と第4領域64との境界B1が含まれている。すなわち、図7(b)では、山に対応する部分のうち、境界B1が存在するブロック82、85、87内の山に対応する部分が斜線が施されている。
人物に対応する第1領域61を第1撮像条件に設定し、山に対応する第4領域64を第4撮像条件に設定した場合に、第1領域61と第4領域64との境界B1を含むブロック82、85、87を第1撮像条件に設定するべきか、それとも第4撮像条件に設定するべきかという問題が生じる。
ところが、境界B1を含むブロック82、85、87の撮像条件を第1撮像条件に設定すると、第1撮像条件がブロック82、85、87の斜線部の撮像、すなわち、各ブロック82、85、87内の第4領域部分の撮像には適していないおそれがある。たとえば、極端な例では、上記斜線部に相当する画像データに白飛びまたは黒潰れが生じてしまうことも想定される。逆に、ブロック82、85、87の撮像条件を第4撮像条件に設定すると、第4撮像条件がブロック82、85、87の白地部の撮像、すなわち各ブロック82、85、87内の第1領域部分の撮像には適していないおそれがある。極端な例では、上記白地部に相当する画像データに白飛びまたは黒潰れが生じてしまうことも想定される。白飛びは、オーバー露光によって画像の高輝度部分のデータの階調が失われることをいう。また、黒潰れは、アンダー露光によって画像の低輝度部分のデータの階調が失われることをいう。
そこで、本実施の形態では、設定部34bは、領域の境界部分が存在するブロックについての撮像条件を次のように設定する。以下の説明では、同一の被写体(同一の領域)内のブロックのうち、隣接する領域との境界を含むブロックを境界ブロックと呼び、境界を含まないブロックを主ブロックと呼ぶ。すなわち、図7(b)の例では、ブロック82、85、87が境界ブロックであり、残りのブロック81、83、84、86、88、89が主ブロックである。また、説明の便宜上、境界ブロック82、85、87の属する領域を境界領域67と呼ぶ。すなわち、境界領域67は、2つの領域(第1領域61および第4領域64)の境界(境界B1)を含む境界ブロックが存在する領域であり、第1領域61の周縁部分の一部および第4領域64の周縁部分の一部を含む。図7(b)および後述する図8において、太線の破線で囲んだ領域が境界領域67である。
設定部34bは、一方の領域の主ブロックの撮像条件(たとえば撮像条件A)と、他方の領域の主ブロックの撮像条件(たとえば撮像条件B)との間の撮像条件(たとえば撮像条件C)を2つの領域の境界部分が存在するブロックの撮像条件として設定する。すなわち、設定部34bは、境界ブロックの画素からの信号から階調情報が喪失しないように境界ブロックの撮像条件を設定する。
図7を参照して説明すると、設定部34bは、第1領域61内の主ブロック81,84について設定した第1撮像条件と、第4領域64内の主ブロック83、86、88、89について設定した第4撮像条件との間の撮像条件を第7撮像条件として算出する。設定部34bは、算出した第7撮像条件を境界ブロック82、85、87の撮像条件として設定する。すなわち、設定部34bは、境界領域67を除く第1領域61の撮像条件を第1撮像条件に設定し、境界領域67を除く第4領域64の撮像条件を第4撮像条件に設定し、境界領域67の撮像条件を第7撮像条件に設定する。
たとえば、第1撮像条件と第4撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第4撮像条件のISO感度が800の場合、設定部34bは、第7撮像条件のISO感度を100と800との間の値として、たとえば400に設定する。
また、たとえば、第1撮像条件と第4撮像条件との間でシャッター速度のみが異なり、第1撮像条件のシャッター速度が1/1000秒で、第4撮像条件のシャッター速度が1/100秒の場合、設定部34bは、第7撮像条件のシャッター速度を1/1000秒と1/100秒との間の値として、たとえば1/500秒に設定する。
なお、以上のように、第7撮像条件として、ISO感度やシャッター速度を、第1撮像条件と第4撮像条件との間の値に設定する場合に、第1撮像条件と第4撮像条件とのちょうど中間の値に設定してもよい。
また、第1撮像条件と第4撮像条件との間でフレームレートのみが異なり(電荷蓄積時間は同じ)、第1撮像条件のフレームレートが30fpsで、第4撮像条件のフレームレートが60fpsの場合、設定部34bは、第7撮像条件のフレームレートを30fpsと60fpsとの間の値として、たとえば45fpsに設定する。
このように、設定部34bは、他の境界ブロックについても同様に、撮像条件を設定する。なお、設定部34bは、境界ブロックに関わる複数の領域(たとえば第1領域61および第4領域64)のそれぞれの撮像条件(たとえば第1および第4撮像条件)が同一であれば、その撮像条件(たとえば第1撮像条件)を境界ブロックの撮像条件として設定する。
上述したように、たとえば、境界ブロックに関わる二つの領域のそれぞれの撮像条件の差がアペックス値で0.3段程度以下である場合にはその二つの領域の撮像条件を同一の撮像条件とみなす。したがって、境界ブロックに関わる複数の領域のそれぞれの撮像条件が、このようなアペックス値で0.3段程度のばらつきの範囲内で異なっている場合には、境界ブロックの撮像条件は、このばらつきの範囲内のいずれの撮像条件に設定してもよい。
なお、第7撮像条件を設定するにあたって、上述の説明では、設定部34bは、第1撮像条件と第4撮像条件との中間、または略中間の値を第7撮像条件として算出した。しかし、白飛びや黒潰れが生じない範囲で、第7撮像条件を第1撮像条件または第4撮像条件に近づけてもよい。この場合、後述する第1および第2補正処理やその後の画像処理等が良好に行われるように第7撮像条件を設定することが望ましく、たとえば、次の(a)から(d)のいずれかのようにして第7撮像条件を設定してもよい。
(a)被写体としての重要度が高い方の領域についての撮像条件に近づけように第7撮像条件を設定することが望ましい。たとえば、第1領域61が主要被写体である人物61aに対応し、第4領域64が背景である山64aに対応することから、第7撮像条件は、白飛びや黒潰れが生じない範囲で、主要被写体である人物61aに対応する第1領域61についての主ブロックに設定された第1撮像条件に近づけることが望ましい。
たとえば、顔認識によって顔を認識することができた場合、境界ブロックの撮像条件は、認識できた顔が属する領域についての主ブロックに設定された撮像条件に近づけることが望ましい。
(b)たとえば、境界ブロック毎に境界ブロック内の第1領域61に対応する画素の数と第4領域64に対応する画素の数とを比較し、当該境界ブロックの撮像条件を白飛びや黒潰れが生じない範囲で画素の数が多い方の領域の撮像条件に近づけてもよい。
(c)たとえば図5に示すように、画像上において、第1領域61の面積よりも第4領域64の面積が大きい。この場合、第1領域61と第4領域64とについての境界ブロックの撮像条件を、白飛びや黒潰れが生じない範囲で、面積が大きい第4領域についての主ブロックに設定された第4撮像条件に近づけてもよい。
(d)たとえば、画素からの信号の階調数を大きくするために、第1領域61の第1撮像条件の感度と第4領域64の第4撮像条件の感度とを比較して、境界ブロックの撮像条件を、白飛びが生じない範囲内で高感度側に設定してもよい。
なお、第7撮像条件を設定するにあたって、上述の説明では、設定部34bは、第1撮像条件と第4撮像条件との間の値を第7撮像条件として算出した。しかし、領域の境界を含むブロックにおいて、白飛びや黒潰れが生じないのであれば、第7撮像条件を第1撮像条件または第4撮像条件と同一としてもよい。この場合には、次の(e)から(h)のいずれかのようにして第7撮像条件を設定してもよい。
(e)第1領域61が主要被写体である人物61aに対応し、第4領域64が背景である山64aに対応することから、第7撮像条件は、白飛びや黒潰れが生じないのであれば、主要被写体である人物61aに対応する第1領域61についての主ブロックに設定された第1撮像条件と同一としてもよい。
(f)たとえば、境界ブロック毎に境界ブロック内の第1領域61に対応する画素の数と第4領域64に対応する画素の数とを比較し、白飛びや黒潰れが生じないのであれば、当該境界ブロックの撮像条件を画素の数が多い方の領域の撮像条件と同一としてもよい。
(g)たとえば図5に示すように、画像上において、第1領域61の面積よりも第4領域64の面積が大きい。この場合、白飛びや黒潰れが生じないのであれば、第1領域61と第4領域とについての境界ブロックの撮像条件を、面積が大きい第4領域についての主ブロックに設定された第4撮像条件と同一としてもよい。
(h)たとえば、白飛びが生じないのであれば、画素からの信号の階調数を大きくするために、第1領域61の第1撮像条件の感度と第4領域64の第4撮像条件の感度とを比較して、境界ブロックの撮像条件を、第1撮像条件と第4撮像条件のうち、高感度側となる方の撮像条件と同一としてもよい。
なお、白飛びが生じてしまった場合には、その画素からの信号値を参照することができないが、黒潰れが生じてしまった場合であっても、その画素からの信号値を参照することができる場合がある。そこで、第7撮像条件の設定にあたって、第1撮像条件または第4撮像条件または両者の間の撮像条件のいずれに設定したとしても境界ブロックにおいて白飛びまたは黒潰れが生じでしまう場合には、境界ブロックにおいて黒潰れの発生を許容して白飛びが生じないように第7撮像条件を設定することが望ましい。
以上説明したように、領域ごとの撮像条件が設定された後に、操作部材36を構成する不図示のレリーズボタン、または撮像開始を指示する表示(レリーズアイコン)が操作されると、制御部34が撮像部32を制御することにより、上記分割された領域に対してそれぞれ設定されている撮像条件で撮像を行わせる。そして、画像処理部33は、撮像部32によって取得された画像データに対して画像処理を行う。画像処理は、上述したように、領域ごとに異なる画像処理条件で行うことができる。
上記画像処理部33による画像処理の後、制御部34から指示を受けた記録部37が、画像処理後の画像データを不図示のメモリカードなどで構成される記録媒体に記録する。これにより、一連の撮像処理が終了する。
<第1補正処理>
画像処理部33の補正部33bは、画像処理、焦点検出処理、被写体検出(被写体要素の検出)処理、および撮像条件を設定する処理の前に行う前処理の1つとして、第1補正処理を行う。
上述したように、本実施の形態では、設定部34bは、撮像画面の領域を分割し、各領域に対して撮像条件をそれぞれ設定する。また、設定部34bは、境界ブロックに対しては、上述したように撮像条件を設定する。したがって、同一の被写体であっても境界ブロックで撮像された部分と、主ブロックで撮像された部分とでは撮像条件が異なる場合がある。
そこで、本実施の形態では、境界ブロックに属する画素からの信号に対して以下に述べる補正処理を行うことで、主ブロックにおける撮像条件と同じ撮像条件で撮像した場合と同様の信号を得る。この補正処理を第1補正処理と呼ぶ。第1補正処理は、同じ領域内で撮像条件が異なる部分が存在することに起因して、画像処理後の画像に生じる不連続性を緩和するために行う。
図8は図7(b)に対応する画像データを例示する図である。図8において、ブロック81~89は、それぞれ2画素×2画素の4画素によって構成されているものとする。図8に示した各画素のうち、白抜きした画素81a~81d、82a~82c、84a~84d、85a、87aには人物61aからの被写体光が入射し、網掛けを施した画素82d、83a~83d、85b~85d、86a~86d、87b~87d、88a~88d、89a~89dには山64aからの被写体光が入射するものとする。すなわち、ブロック81およびブロック84の各画素には、人物61aからの被写体光が入射し、山64aからの被写体光が入射していない。したがってブロック81およびブロック84は、第1領域についての主ブロックである。同様に、ブロック83、ブロック86、ブロック88およびブロック89の各画素には、山64aからの被写体光が入射し、人物61aからの被写体光が入射していない。したがってブロック83、ブロック86、ブロック88およびブロック89は、第4領域についての主ブロックである。
ブロック82の画素82a、画素82bおよび画素82cには人物61aからの被写体光が入射し、画素82dには山64aからの被写体光が入射する。ブロック85の画素85aには人物61aからの被写体光が入射し、画素85b、画素85cおよび画素85dには山64aからの被写体光が入射する。ブロック87の画素87aには人物61aからの被写体光が入射し、画素87b、画素87cおよび画素87dには山64aからの被写体光が入射する。したがってブロック82、ブロック85およびブロック87は、第1および第4領域についての境界ブロックである。
補正部33bは、境界ブロックに属する各画素に対して、どの被写体領域からの光が入射しているのかを判断する。具体的には、補正部33bは、物体検出部34aによる被写体要素の検出結果から撮像素子32aの撮像面における境界の位置を算出する。そして、補正部33bは、算出した境界の位置に基づいて境界ブロックを抽出するとともに、抽出した境界ブロックに属する各画素に対してどの被写体要素からの被写体光が入射しているかを算出する。
たとえば、図7,8を例に挙げて説明すると、補正部33bは、物体検出部34aによる被写体要素の検出結果から第1領域61と第4領域64との境界B1の位置を算出する。そして補正部33bは、算出した境界B1の位置に基づいてブロック82、ブロック85およびブロック87を境界ブロックとして抽出する。そして補正部33bは、算出した境界B1の位置に基づいて、境界ブロック82の画素82a、画素82bおよび画素82c、境界ブロック85の画素85a、ならびに境界ブロック87の画素87aに対して人物61aからの被写体光が入射していることを算出する。また、補正部33bは、算出した境界B1の位置に基づいて、境界ブロック82の画素82d、境界ブロック85の画素85b、画素85cおよび画素85d、ならびに境界ブロック87の画素87b、画素87cおよび画素87dに対して山64aからの被写体光が入射していることを算出する。
境界ブロック82の画素82a、画素82bおよび画素82cは、第1撮像条件と第4撮像条件との間の撮像条件である第7撮像条件によって人物61aからの被写体光を撮像している。一方、第1領域61についての主ブロックであるブロック81およびブロック84の各画素では、第1撮像条件によって人物61aからの被写体光を撮像している。
そこで、補正部33bは、画素82a、画素82bおよび画素82cからの信号に対して、人物61aからの被写体光を第1撮像条件で撮像した場合と同様の信号を得られるように第1補正処理を行う。
同様に、境界ブロック82の画素82dは、第7撮像条件によって山64aからの被写体光を撮像している。一方、第4領域64についての主ブロックであるブロック83、ブロック86、ブロック88およびブロック89の各画素では、第4撮像条件によって山64aからの被写体光を撮像している。
そこで、補正部33bは、画素82dからの信号に対して、山64aからの被写体光を第4撮像条件で撮像した場合と同様の信号を得られるように第1補正処理を行う。
たとえば、第1撮像条件と第4撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第4撮像条件のISO感度が800で、第7撮像条件のISO感度が400である場合に、第1補正処理は、以下のように行われる。すなわち、補正部33bは、第1補正処理として、画素82a、画素82bおよび画素82cからの信号に対して100/400を掛け、画素82dからの信号に対して800/400を掛ける。
たとえば、第1撮像条件と第4撮像条件との間でシャッター速度のみが異なり、第1撮像条件のシャッター速度が1/1000秒で、第4撮像条件のシャッター速度が1/100秒で、第7撮像条件のシャッター速度が1/500秒である場合、第1補正処理は、以下のように行われる。すなわち、補正部33bは、第1補正処理として、画素82a、画素82bおよび画素82cからの信号に対して(1/1000)/(1/500)=1/2を掛け、画素82dからの信号に対して(1/100)/(1/500)=5を掛ける。
たとえば、第1撮像条件と第4撮像条件との間でフレームレートのみが異なり、第1撮像条件のフレームレートが30fpsで、第4撮像条件のフレームレートが60fpsで、第7撮像条件のフレームレートが45fpsである場合、第1補正処理は、以下のように行われる。すなわち、補正部33bは、第1補正処理として、画素82a、画素82bおよび画素82cからのフレームレートが45fpsのフレーム画像の信号を、一部間引いてフレームレート30fpsのフレーム画像の信号に変換する。このフレームレートの変換は、画素82a~82cからのフレーム画像の信号のうち、第1撮像条件の30fpsのフレーム画像信号の発生タイミングに近いフレーム画像信号を選択することによって行う。また、上記のフレームレートの変換は、第1撮像条件の30fpsのフレーム画像信号の発生タイミングの前後に発生した画素82a~82cからのフレーム画像の信号に基づき、第1撮像条件の30fpsのフレーム画像信号の発生タイミングに同期したフレーム画像信号を、補間算出してもよい。
また、補正部33bは、第1補正処理として、画素82dからのフレームレート45fpsのフレーム画像の信号をフレームレート60fpsのフレーム画像の信号に変換する。このフレームレートの変換は、たとえば画素82dから相前後して読み出されたフレーム画像信号を合成することによって、すなわち、前後のフレーム画像信号に基づき、新たなフレーム画像信号を補間算出することによって、フレーム画像信号の数を増大して行われる。
このようにして、補正部33bは、すべての境界ブロックの各画素からの信号に対して必要に応じて第1補正処理を行う。すなわち、補正部33bは、境界ブロックに属するある画素からの信号に対して、当該画素と同じ被写体要素についての主ブロックに適用された撮像条件と当該境界ブロックに適用された撮像条件とが異なれば第1補正処理を行う。しかし、当該画素と同じ被写体要素についての主ブロックに適用された撮像条件と当該境界ブロックに適用された撮像条件とが同一であれば第1補正処理を行う必要がないので、補正部33bは、第1補正処理を行わない。
上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
なお、境界ブロックや境界ブロックの近隣の主ブロックで撮像して得られた画像データに対してシャープネスやコントラストを下げるような画像処理を行うことで、画像に生じる不連続性を緩和できるのであれば、第1補正処理を行わなくてもよい。
<第2補正処理>
画像処理部33の補正部33bはさらに、画像処理、焦点検出処理、被写体検出(被写体要素を検出)処理、および撮像条件を設定する処理の前に、以下の第2補正処理を必要に応じて行う。なお、補正部33bは、上述したように必要に応じて行われた第1補正処理の後に第2の補正処理を行う。
なお、第2補正処理では、第1補正処理によって補正された境界ブロックの画素からの信号は、境界ブロックに設定された撮像条件ではなく、主ブロックに設定された撮像条件が適用されて撮像されて得られた信号として処理される。たとえば、第2補正処理を行う際には、第1補正処理によって補正された境界ブロック82の画素82a、画素82bおよび画素82cからの信号は、第7撮像条件ではなく第1撮像条件が適用されて撮像されて得られた信号として補正部33bで処理される。同様に、第1補正処理によって補正された境界ブロック82の画素82dからの信号は、第7撮像条件ではなく第4撮像条件が適用されて撮像されて得られた信号として補正部33bで処理される。
1.画像処理を行う場合
画像処理部33の補正部33bは、分割した領域間で異なる撮像条件を適用して取得された画像データに対する画像処理が所定の画像処理である場合において、領域の境界部に位置する画像データに対し、画像処理の前処理として第2補正処理を行う。所定の画像処理は、画像において処理対象とする注目位置の画像データを、注目位置の周囲の複数の参照位置の画像データを参照して算出する処理であり、たとえば、画素欠陥補正処理、色補間処理、輪郭強調処理、ノイズ低減処理などが該当する。
第2補正処理は、分割した領域間で撮像条件が異なることに起因して、画像処理後の画像に生じる不連続性を緩和するために行う。一般に、注目位置が、分割した領域の境界部に位置する場合、注目位置の周囲の複数の参照位置には、注目位置の画像データと同じ撮像条件が適用された画像データと、注目位置の画像データと異なる撮像条件が適用された画像データとが混在する場合がある。本実施の形態では、異なる撮像条件が適用された参照位置の画像データをそのまま参照して注目位置の画像データを算出するよりも、撮像条件の相違による画像データ間の差異を抑えるように第2補正処理を施した参照位置の画像データを参照して注目位置の画像データを算出する方が好ましいという考え方に基づき、以下のように第2補正処理を行う。
図9(a)は、図7(a)のライブビュー画像60aにおける第1領域61と第4領域64との境界部の注目領域90を拡大した図である。第1撮像条件が適用された第1領域61に対応する撮像素子32a上の画素からの画像データを白地で示し、第4撮像条件が適用された第4領域64に対応する撮像素子32a上の画素からの画像データを網掛けで示す。図9(a)では、第1領域61上であって、第1領域61と第4領域64との境界91の近傍部分、すなわち境界部に注目画素Pからの画像データが位置する。注目画素Pを中心とする注目領域90(例えば3×3画素)に含まれる注目画素Pの周囲の画素(本例では8画素)を参照画素Prとする。図9(b)は、注目画素Pおよび参照画素Pr1~Pr8の拡大図である。注目画素Pの位置が注目位置であり、注目画素Pを囲む参照画素Pr1~Pr8の位置が参照位置である。第1領域61に対応する参照画素Pr1~Pr6および注目画素Pに対して第1撮像条件が適用されており、第4領域64に対応する参照画素Pr7およびPr8に対して第4撮像条件が適用されている。
なお、以下の説明では、参照画素Pr1~Pr8を総称する場合に符号Prを付与する。
画像処理部33の生成部33cは、通常、第2補正処理を行わずに参照画素Prの画像データをそのまま参照して画像処理を行う。しかしながら、注目画素Pにおいて適用された撮像条件(第1撮像条件とする)と、注目画素Pの周囲の参照画素Prにおいて適用された撮像条件(第4撮像条件とする)とが異なる場合には、補正部33bが、参照画素Prの画像データのうちの第4撮像条件の画像データに対して以下の(例1)~(例3)のように第2補正処理を行う。そして、生成部33cは、第2補正処理後の参照画素Prの画像データを参照して注目画素Pの画像データを算出する画像処理を行う。
(例1)
画像処理部33の補正部33bは、たとえば、第1撮像条件と第4撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第4撮像条件のISO感度が800の場合、参照画素Prの画像データのうちの第4撮像条件の参照画素Pr7、Pr8の画像データに対し、第2補正処理として100/800を掛ける。これにより、撮像条件の相違による画像データ間の差異を小さくする。
なお、注目画素Pへの入射光量と参照画素Prへの入射光量とが同じ場合には画像データの差異が小さくなるが、もともと注目画素Pへの入射光量と参照画素Prへの入射光量とが異なっている場合などには、画像データの差異が小さくならない場合もある。後述する例も同様である。
(例2)
画像処理部33の補正部33bは、たとえば、第1撮像条件と第4撮像条件との間でシャッター速度のみが異なり、第1撮像条件のシャッター速度が1/1000秒で、第4撮像条件のシャッター速度が1/100秒の場合、参照画素Prの画像データのうちの第4撮像条件の参照画素Pr7、Pr8の画像データに対し、第2補正処理として(1/1000)/(1/100)=1/10を掛ける。これにより、撮像条件の相違による画像データ間の差異を小さくする。
(例3)
画像処理部33の補正部33bは、たとえば、第1撮像条件と第4撮像条件との間でフレームレートのみが異なり(電荷蓄積時間は同じ)、第1撮像条件のフレームレートが30fpsで、第4撮像条件のフレームレートが60fpsの場合、参照画素Prの画像データのうちの第4撮像条件(60fps)の画像データについて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の画像データを採用することを第2補正処理とする。これにより、撮像条件の相違による画像データ間の差異を小さくする。
なお、第4撮像条件(60fps)で取得した前後する複数のフレーム画像に基づいて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の画像データを補間算出することを第2補正処理としてもよい。
一方、画像処理部33の補正部33bは、注目画素Pにおいて適用された撮像条件(第1撮像条件とする)と、注目画素Pの周囲のすべての参照画素Prにおいて適用された撮像条件(第4撮像条件とする)とが同一である場合には、参照画素Prの画像データに対する第2補正処理を行わない。つまり、生成部33cは、参照画素Prの画像データをそのまま参照して注目画素Pの画像データを算出する画像処理を行う。
なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
<画像処理の例示>
第2補正処理を伴う画像処理について例示する。
(1)画素欠陥補正処理
本実施の形態において、画素欠陥補正処理は、撮像時に行う画像処理の1つである。一般に、固体撮像素子である撮像素子32aは、製造過程や製造後において画素欠陥が生じ、異常なレベルの画像データを出力する場合がある。そこで、画像処理部33の生成部33cは、画素欠陥が生じた画素から出力された画像データを補正することにより、画素欠陥が生じた画素位置における画像データを目立たないようにする。
画素欠陥補正処理の一例を説明する。画像処理部33の生成部33cは、たとえば、1フレームの画像においてあらかじめ不図示の不揮発性メモリに記録されている画素欠陥の位置の画素を注目画素P(処理対象画素)とし、注目画素Pを中心とする注目領域90(例えば3×3画素)に含まれる注目画素Pの周囲の画素(本例では8画素)を参照画素Prとする。
画像処理部33の生成部33cは、参照画素Prにおける画像データの最大値、最小値を算出し、注目画素Pから出力された画像データがこれら最大値または最小値を超えるときは注目画素Pから出力された画像データを上記最大値または最小値で置き換えるMax,Minフィルタ処理を行う。このような処理を、不図示の不揮発性メモリに位置情報が記録されているすべての画素欠陥に対して行う。
本実施の形態において、画像処理部33の補正部33bは、注目画素Pに適用された第1撮像条件と異なる第4撮像条件が適用された画素が上記参照画素Prに含まれる場合に、第4撮像条件が適用された画像データに対して第2補正処理を行う。その後、画像処理部33の生成部33cが上述したMax,Minフィルタ処理を行う。
(2)色補間処理
本実施の形態において、色補間処理は、撮像時に行う画像処理の1つである。図3に例示したように、撮像素子100の撮像チップ111は、緑色画素Gb、Gr、青色画素Bおよび赤色画素Rがベイヤー配列されている。画像処理部33の生成部33cは、各画素位置において配置されたカラーフィルタFの色成分と異なる色成分の画像データが不足するので、周辺の画素位置の画像データを参照して不足する色成分の画像データを生成する色補間処理を行う。
色補間処理の一例を説明する。図10(a)は、撮像素子32aから出力された画像データの並びを例示する図である。各画素位置に対応して、ベイヤー配列の規則にしたがってR、G、Bのいずれかの色成分を有する。
<G色補間>
まず、一般的なG色補間について説明する。G色補間を行う画像処理部33の生成部33cは、R色成分およびB色成分の位置を順番に注目位置として、注目位置の周囲の参照位置の4つのG色成分の画像データを参照して注目位置におけるG色成分の画像データを生成する。たとえば、図10(b)の太枠(左上位置から数えて2行目2列目。以降も同様に、左上位置から数えて注目位置を表すものとする)で示す注目位置においてG色成分の画像データを生成する場合、注目位置(2行目2列目)の近傍に位置する4つのG色成分の画像データG1~G4を参照する。画像処理部33の生成部33cは、たとえば(aG1+bG2+cG3+dG4)/4を、注目位置(2行目2列目)におけるG色成分の画像データとする。なお、a~dは参照位置と注目位置との間の距離や画像構造に応じて設けられる重み係数である。
次に、本実施の形態のG色補間について説明する。図10(a)~図10(c)において、太線に対して左および上の領域に第1撮像条件が適用されており、太線に対して右および下の領域に第4撮像条件が適用されているものとする。なお、図10(a)~図10(c)において、第1撮像条件と第4撮像条件は異なる。また、図10(b)中のG色成分の画像データG1~G4が、注目位置(2行目2列目)の画素を画像処理するための参照位置である。図10(b)において、注目位置(2行目2列目)には第1撮像条件が適用されている。参照位置のうち、画像データG1~G3には第1撮像条件が適用されている。また、参照位置のうち、画像データG4には第4撮像条件が適用されている。そのため、画像処理部33の補正部33bは、画像データG4に対して第2補正処理を行う。その後、画像処理部33の生成部33cが注目位置(2行目2列目)におけるG色成分の画像データを算出する。
画像処理部33の生成部33cは、図10(a)におけるB色成分の位置およびR色成分の位置においてそれぞれG色成分の画像データを生成することにより、図10(c)に示すように、各画素位置においてG色成分の画像データを得ることができる。
<R色補間>
図11(a)は、図10(a)からR色成分の画像データを抽出した図である。画像処理部33の生成部33cは、図10(c)に示すG色成分の画像データと図11(a)に示すR色成分の画像データとに基づいて図11(b)に示す色差成分Crの画像データを算出する。
まず、一般的な色差成分Crの補間について説明する。画像処理部33の生成部33cは、たとえば図11(b)の太枠(2行目2列目)で示す注目位置において色差成分Crの画像データを生成する場合、注目位置(2行目2列目)の近傍に位置する4つの色差成分の画像データCr1~Cr4を参照する。画像処理部33の生成部33cは、たとえば(eCr1+fCr2+gCr3+hCr4)/4を、注目位置(2行目2列目)における色差成分Crの画像データとする。なお、e~hは参照位置と注目位置との間の距離や画像構造に応じて設けられる重み係数である。
同様に、画像処理部33の生成部33cは、たとえば図11(c)の太枠(2行目3列目)で示す注目位置において色差成分Crの画像データを生成する場合、注目位置(2行目3列目)の近傍に位置する4つの色差成分の画像データCr2、Cr4~Cr6を参照する。画像処理部33の生成部33cは、たとえば(qCr2+rCr4+sCr5+tCr6)/4を、注目位置(2行目3列目)における色差成分Crの画像データとする。なお、q~tは、参照位置と注目位置との間の距離や画像構造に応じて設けられる重み係数である。こうして、各画素位置について色差成分Crの画像データが生成される。
次に、本実施の形態の色差成分Crの補間について説明する。図11(a)~図11(c)において、たとえば、太線に対して左および上の領域に第1撮像条件が適用されており、太線に対して右および下の領域に第4撮像条件が適用されているものとする。なお、図11(a)~図11(c)において、第1撮像条件と第4撮像条件は異なる。図11(b)において、太枠(2行目2列目)で示す位置が色差成分Crの注目位置である。また、図11(b)中の色差成分の画像データCr1~Cr4が注目位置(2行目2列目)の画素を画像処理するための参照位置である。図11(b)において、注目位置(2行目2列目)には第1撮像条件が適用されている。参照位置のうち、画像データCr1、Cr3、Cr4には第1撮像条件が適用されている。また、参照位置のうち、画像データCr2には第4撮像条件が適用されている。そのため、画像処理部33の補正部33bは、画像データCr2に対して第2補正処理を行う。その後、画像処理部33の生成部33cが注目位置(2行目2列目)における色差成分Crの画像データを算出する。
また、図11(c)において、太枠(2行目3列目)で示す位置が色差成分Crの注目位置である。また、図11(c)中の色差成分の画像データCr2、Cr4、Cr5、Cr6が注目位置(2行目3列目)の画素を画像処理するための参照位置である。図11(c)において、注目位置(2行目3列目)には第4撮像条件が適用されている。参照位置のうち、画像データCr4、Cr5には第1撮像条件が適用されている。また、参照位置のうち、画像データCr2、Cr6には第4撮像条件が適用されている。そのため、画像処理部33の補正部33bは、画像データCr4およびCr5に対してそれぞれ第2補正処理を行う。その後、画像処理部33の生成部33cが注目位置(2行目3列目)における色差成分Crの画像データを算出する。
画像処理部33の生成部33cは、各画素位置において色差成分Crの画像データを得たのち、各画素位置に対応させて図10(c)に示すG色成分の画像データを加算することにより、各画素位置においてR色成分の画像データを得ることができる。
<B色補間>
図12(a)は、図10(a)からB色成分の画像データを抽出した図である。画像処理部33の生成部33cは、図10(c)に示すG色成分の画像データと図12(a)に示すB色成分の画像データとに基づいて図12(b)に示す色差成分Cbの画像データを算出する。
まず、一般的な色差成分Cbの補間について説明する。画像処理部33の生成部33cは、たとえば図12(b)の太枠(3行目3列目)で示す注目位置において色差成分Cbの画像データを生成する場合、注目位置(3行目3列目)の近傍に位置する4つの色差成分の画像データCb1~Cb4を参照する。画像処理部33の生成部33cは、たとえば(uCb1+vCb2+wCb3+xCb4)/4を、注目位置(3行目3列目)における色差成分Cbの画像データとする。なお、u~xは参照位置と注目位置との間の距離や画像構造に応じて設けられる重み係数である。
同様に、画像処理部33の生成部33cは、たとえば図12(c)の太枠(3行目4列目)で示す注目位置において色差成分Cbの画像データを生成する場合、注目位置(3行目4列目)の近傍に位置する4つの色差成分の画像データCb2、Cb4~Cb6を参照する。画像処理部33の生成部33cは、たとえば(yCb2+zCb4+αCb5+βCb6)/4を、注目位置(3行目4列目)における色差成分Cbの画像データとする。なお、y、z、α、βは、参照位置と注目位置との間の距離や画像構造に応じて設けられる重み係数である。こうして、各画素位置について色差成分Cbの画像データが生成される。
次に、本実施の形態の色差成分Cbの補間について説明する。図12(a)~図12(c)において、たとえば、太線に対して左および上の領域に第1撮像条件が適用されており、太線に対して右および下の領域に第4撮像条件が適用されているものとする。なお、図12(a)~図12(c)において、第1撮像条件と第4撮像条件は異なる。図12(b)において、太枠(3行目3列目)で示す位置が色差成分Cbの注目位置である。また、図12(b)中の色差成分の画像データCb1~Cb4が注目位置(3行目3列目)の画素を画像処理するための参照位置である。図12(b)において、注目位置(3行目3列目)には第4撮像条件が適用されている。参照位置のうち、画像データCb1、Cb3には第1撮像条件が適用されている。また、参照位置のうち、画像データCb2、Cb4には第4撮像条件が適用されている。そのため、画像処理部33の補正部33bは、データCb1およびCb3に対してそれぞれ第2補正処理を行う。その後、画像処理部33の生成部33cが注目位置(3行目3列目)における色差成分Cbの画像データを算出する。
また、図12(c)において、太枠(3行目4列目)で示す位置が色差成分Cbの注目位置である。また、図12(c)中の色差成分の画像データCb2、Cb4~Cb6が注目位置(3行目4列目)の画素を画像処理するための参照位置である。図12(c)において、注目位置(3行目4列目)には第4撮像条件が適用されている。また、すべての参照位置の画像データCb2、Cb4~Cb6に第4撮像条件が適用されている。そのため、画像処理部33の生成部33cは、画像処理部33の補正部33bによって第2補正処理が行われていない参照位置の画像データCb2、Cb4~Cb6を参照して、注目位置(3行目4列目)における色差成分Cbの画像データを算出する。
画像処理部33の生成部33cは、各画素位置において色差成分Cbの画像データを得たのち、各画素位置に対応させて図10(c)に示すG色成分の画像データを加算することにより、各画素位置においてB色成分の画像データを得ることができる。
なお、上記「G色補間」では、たとえば、図10(b)の太枠(2行目2列目)で示す注目位置においてG色成分の画像データを生成する場合、注目位置の近傍に位置する4つのG色成分の画像データG1~G4を参照するとしているが、画像構造によって参照するG色成分の画像データの数を変更してもよい。たとえば、注目位置付近の画像が縦方向に類似性を有している(たとえば、縦縞のパターン)場合は、注目位置の上下の画像データ(図10(b)のG1とG2)だけを用いて補間処理を行う。また、たとえば、注目位置付近の画像が横方向に類似性を有している(たとえば、横縞のパターン)場合は、注目位置の左右の画像データ(図10(b)のG3とG4)だけを用いて補間処理を行う。これらの場合、補正部33bにより補正を行う画像データG4を用いる場合と用いない場合がある。
(3)輪郭強調処理
輪郭強調処理の一例を説明する。画像処理部33の生成部33cは、たとえば、1フレームの画像において、注目画素P(処理対象画素)を中心とする所定サイズのカーネルを用いた公知の線形フィルタ(Linear filter)演算を行う。線型フィルタの一例である尖鋭化フィルタのカーネルサイズがN×N画素の場合、注目画素Pの位置が注目位置であり、注目画素Pを囲む(N2-1)個の参照画素Prの位置が参照位置である。
なお、カーネルサイズはN×M画素であってもよい。
画像処理部33の生成部33cは、注目画素Pにおける画像データを線型フィルタ演算結果で置き換えるフィルタ処理を、たとえばフレーム画像の上部の水平ラインから下部の水平ラインへ向けて、各水平ライン上で注目画素を左から右へずらしながら行う。
本実施の形態において、画像処理部33の補正部33bは、注目画素Pに適用された第1撮像条件と異なる第4撮像条件が適用された画素が上記参照画素Prに含まれる場合に、第4撮像条件が適用された画像データに対して第2補正処理を行う。その後、画像処理部33の生成部33cが上述した線型フィルタ処理を行う。
(4)ノイズ低減処理
ノイズ低減処理の一例を説明する。画像処理部33の生成部33cは、たとえば、1フレームの画像において、注目画素P(処理対象画素)を中心とする所定サイズのカーネルを用いた公知の線形フィルタ(Linear filter)演算を行う。線型フィルタの一例である平滑化フィルタのカーネルサイズがN×N画素の場合、注目画素Pの位置が注目位置であり、注目画素Pを囲む(N2-1)個の参照画素Prの位置が参照位置である。
なお、カーネルサイズはN×M画素であってもよい。
画像処理部33の生成部33cは、注目画素Pにおける画像データを線型フィルタ演算結果で置き換えるフィルタ処理を、たとえばフレーム画像の上部の水平ラインから下部の水平ラインへ向けて、各水平ライン上で注目画素を左から右へずらしながら行う。
本実施の形態において、画像処理部33の補正部33bは、注目画素Pに適用された第1撮像条件と異なる第4撮像条件が適用された画素が上記参照画素Prに含まれる場合に、第4撮像条件が適用された画像データに対して第2補正処理を行う。その後、画像処理部33の生成部33cが上述した線型フィルタ処理を行う。
2.焦点検出処理を行う場合
制御部34のレンズ移動制御部34dは、撮像画面の所定の位置(フォーカスポイント)に対応する信号データ(画像データ)を用いて焦点検出処理を行う。制御部34のレンズ移動制御部34dは、分割した領域間で異なる撮像条件が設定されており、AF動作のフォーカスポイントが分割された領域の境界部分に位置する場合、少なくとも1つの領域の焦点検出用の信号データに対し、焦点検出処理の前処理として第2補正処理を行う。
第2補正処理は、設定部34bが分割した撮像画面の領域間で撮像条件が異なることに起因して、焦点検出処理の精度が低下することを抑制するために行う。たとえば、画像において像ズレ量(位相差)を検出するフォーカスポイントの焦点検出用の信号データが、分割した領域の境界部に位置する場合、焦点検出用の信号データの中に異なる撮像条件が適用された信号データが混在する場合がある。本実施の形態では、異なる撮像条件が適用された信号データをそのまま用いて像ズレ量(位相差)の検出を行うよりも、撮像条件の相違による信号データ間の差異を抑えるように第2補正処理を施した信号データを用いて像ズレ量(位相差)の検出を行う方が好ましいという考え方に基づき、以下のように第2補正処理を行う。
<焦点検出処理の例示>
第2補正処理を伴う焦点検出処理について例示する。本実施の形態のAF動作は、たとえば、撮像画面における複数のフォーカスポイントの中からユーザーが選んだフォーカスポイントに対応する被写体にフォーカスを合わせる。制御部34のレンズ移動制御部34d(生成部)は、撮像光学系31の異なる瞳領域を通過した光束による複数の被写体像の像ズレ量(位相差)を検出することにより、撮像光学系31のデフォーカス量を算出する。制御部34のレンズ移動制御部34dは、デフォーカス量をゼロ(許容値以下)にする位置、すなわち合焦位置へ、撮像光学系31のフォーカスレンズを移動させ、撮像光学系31の焦点を調節する。
図13は、撮像素子32aの撮像面における焦点検出用画素の位置を例示する図である。本実施の形態では、撮像チップ111のX軸方向(水平方向)に沿って離散的に焦点検出用画素が並べて設けられている。図13の例では、15本の焦点検出画素ライン160が所定の間隔で設けられる。焦点検出画素ライン160を構成する焦点検出用画素は、焦点検出用の光電変換信号を出力する。撮像チップ111において焦点検出画素ライン160以外の画素位置には通常の撮像用画素が設けられている。撮像用画素は、ライブビュー画像や記録用の光電変換信号を出力する。
図14は、図13に示すフォーカスポイント80Aに対応する上記焦点検出画素ライン160の一部の領域を拡大した図である。図14において、赤色画素R、緑色画素G(Gb、Gr)、および青色画素Bと、焦点検出用画素S1、および焦点検出用画素S2とが例示される。赤色画素R、緑色画素G(Gb、Gr)、および青色画素Bは、上述したベイヤー配列の規則にしたがって配される。
赤色画素R、緑色画素G(Gb、Gr)、および青色画素Bについて例示した正方形状の領域は、撮像用画素の受光領域を示す。各撮像用画素は、撮像光学系31(図1)の射出瞳を通る光束を受光する。すなわち、赤色画素R、緑色画素G(Gb、Gr)、および青色画素Bはそれぞれ正方形状のマスク開口部を有し、これらのマスク開口部を通った光が撮像用画素の受光部に到達する。
なお、赤色画素R、緑色画素G(Gb、Gr)、および青色画素Bの受光領域(マスク開口部)の形状は四角形に限定されず、たとえば円形であってもよい。
焦点検出用画素S1、および焦点検出用画素S2について例示した半円形状の領域は、焦点検出用画素の受光領域を示す。すなわち、焦点検出用画素S1は、図14において画素位置の左側に半円形状のマスク開口部を有し、このマスク開口部を通った光が焦点検出用画素S1の受光部に到達する。一方、焦点検出用画素S2は、図14において画素位置の右側に半円形状のマスク開口部を有し、このマスク開口部を通った光が焦点検出用画素S2の受光部に到達する。このように、焦点検出用画素S1および焦点検出用画素S2は、撮像光学系31(図1)の射出瞳の異なる領域を通る一対の光束をそれぞれ受光する。
なお、撮像チップ111における焦点検出画素ライン160の位置は、図13に例示した位置に限定されない。また、焦点検出画素ライン160の数についても、図13の例に限定されるものではない。さらに、焦点検出用画素S1および焦点検出用画素S2におけるマスク開口部の形状は半円形に限定されず、たとえば撮像用画素R、撮像用画素G、撮像用画素Bにおける四角形状受光領域(マスク開口部)を横方向に分割した長方形状としてもよい。
また、撮像チップ111における焦点検出画素ライン160は、撮像チップ111のY軸方向(鉛直方向)に沿って焦点検出用画素を並べて設けたものであってもよい。図14のように撮像用画素と焦点検出用画素とを二次元状に配列した撮像素子は公知であり、これらの画素の詳細な図示および説明は省略する。
なお、図14の例では、焦点検出用画素S1、S2がそれぞれ焦点検出用の一対の光束のうちの一方を受光する構成、いわゆる1PD構造を説明した。この代わりに、焦点検出用画素がそれぞれ焦点検出用の一対の光束の双方を受光する構成、いわゆる2PD構造にしてもよい。2PD構造にすることにより、焦点検出用画素で得られた光電変換信号を記録用の光電変換信号として用いることが可能になる。
制御部34のレンズ移動制御部34dは、焦点検出用画素S1および焦点検出用画素S2から出力される焦点検出用の光電変換信号に基づいて、撮像光学系31(図1)の異なる領域を通る一対の光束による一対の像の像ズレ量(位相差)を検出する。そして、像ズレ量(位相差)に基づいてデフォーカス量を演算する。このような瞳分割位相差方式によるデフォーカス量演算は、カメラの分野において公知であるので詳細な説明は省略する。
フォーカスポイント80A(図13)は、図7(a)に例示したライブビュー画像60aにおいて、たとえば第1領域61および第4領域64の境界部の注目領域90に対応する位置に、ユーザーによって選ばれているものとする。図15は、フォーカスポイント80Aを拡大した図である。白地の画素は第1撮像条件が適用されていることを示し、網掛けの画素は第4撮像条件が適用されていることを示す。図15において枠170で囲む位置は、焦点検出画素ライン160(図13)に対応する。
制御部34のレンズ移動制御部34dは、通常、第2補正処理を行わずに枠170で示す焦点検出用画素による信号データをそのまま用いて焦点検出処理を行う。しかしながら、枠170で囲む信号データに、第1撮像条件が適用された信号データと第4撮像条件が適用された信号データが混在する場合には、制御部34のレンズ移動制御部34dが、枠170で囲む信号データのうちの第4撮像条件の信号データに対して、以下の(例1)~(例3)のように第2補正処理を行う。そして、制御部34のレンズ移動制御部34dは、第2補正処理後の信号データを用いて焦点検出処理を行う。
(例1)
制御部34のレンズ移動制御部34dは、たとえば、第1撮像条件と第4撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第4撮像条件のISO感度が800の場合、第4撮像条件の信号データに対し、第2補正処理として100/800を掛ける。これにより、撮像条件の相違による信号データ間の差異を小さくする。
なお、第1撮像条件が適用された画素への入射光量と第4撮像条件が適用された画素への入射光量とが同じ場合には信号データの差異が小さくなるが、もともと第1撮像条件が適用された画素への入射光量と第4撮像条件が適用された画素への入射光量とが異なっている場合などには、信号データの差異が小さくならない場合もある。後述する例も同様である。
(例2)
制御部34のレンズ移動制御部34dは、たとえば、第1撮像条件と第4撮像条件との間でシャッター速度のみが異なり、第1撮像条件のシャッター速度が1/1000秒で、第4撮像条件のシャッター速度が1/100秒の場合、第4撮像条件の信号データに対し、第2補正処理として1/1000/1/100=1/10を掛ける。これにより、撮像条件の相違による信号データ間の差異を小さくする。
(例3)
制御部34のレンズ移動制御部34dは、たとえば、第1撮像条件と第4撮像条件との間でフレームレートのみが異なり(電荷蓄積時間は同じ)、第1撮像条件のフレームレートが30fpsで、第4撮像条件のフレームレートが60fpsの場合、第4撮像条件(60fps)の信号データについて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の信号データを採用することを第2補正処理とする。これにより、撮像条件の相違による信号データ間の差異を小さくする。
なお、第4撮像条件(60fps)で取得した前後する複数のフレーム画像に基づいて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の信号データを補間算出することを第2補正処理としてもよい。
一方、制御部34のレンズ移動制御部34dは、枠170で囲む信号データにおいて適用された撮像条件が同一である場合には上記第2補正処理を行わない。つまり、制御部34のレンズ移動制御部34dは、枠170で示す焦点検出用画素による信号データをそのまま用いて焦点検出処理を行う。
なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
また、上記の例では、信号データのうちの第4撮像条件の信号データに対して第1撮像条件により第2補正処理を行う例を説明したが、信号データのうちの第1撮像条件の信号データに対して第4撮像条件により第2補正処理を行ってもよい。
制御部34のレンズ移動制御部34dが、第1撮像条件の信号データに対して第2補正処理を行うか、第4撮像条件の信号データに対して第2補正処理を行うかを、たとえば、ISO感度に基づいて決定するようにしてもよい。第1撮像条件と第4撮像条件とでISO感度が異なる場合、ISO感度が高い方の撮像条件で得られた信号データが飽和していなければ、ISO感度が低い方の撮像条件で得られた信号データに対して第2補正処理を行うことが望ましい。すなわち、第1撮像条件と第4撮像条件とでISO感度が異なる場合、明るい方の信号データとの差を小さくするように暗い方の信号データを第2補正処理することが望ましい。
さらにまた、信号データのうちの第1撮像条件の信号データおよび第4撮像条件の信号データに対してそれぞれ第2補正処理を行うことにより、第2補正処理後の双方の信号データ間の差を小さくするようにしてもよい。
以上の説明では、瞳分割位相差方式を用いた焦点検出処理を例示したが、被写体像のコントラストの大小に基づいて、撮像光学系31のフォーカスレンズを合焦位置へ移動させるコントラスト検出方式の場合も同様に行うことができる。
コントラスト検出方式を用いる場合、制御部34は、撮像光学系31のフォーカスレンズを移動させながら、フォーカスレンズのそれぞれの位置において、フォーカスポイントに対応する撮像素子32aの撮像用画素から出力された信号データに基づいて公知の焦点評価値演算を行う。そして、焦点評価値を最大にするフォーカスレンズの位置を合焦位置として求める。
制御部34は、通常、第2補正処理を行わずにフォーカスポイントに対応する撮像用画素から出力された信号データをそのまま用いて焦点評価値演算を行う。しかしながら、フォーカスポイントに対応する信号データに、第1撮像条件が適用された信号データと第4撮像条件が適用された信号データが混在する場合には、制御部34が、フォーカスポイントに対応する信号データのうちの第4撮像条件の信号データに対して、上述したような第2補正処理を行う。そして、制御部34は、第2補正処理後の信号データを用いて焦点評価値演算を行う。
上記の例では、焦点調節処理を第2補正処理を行った後に行ったが、第2補正処理を行わず、第1補正処理により得られた画像データにより焦点調節を行ってもよい。
3.被写体検出処理を行う場合
図16(a)は、検出しようとする対象物を表すテンプレート画像を例示する図であり、図16(b)は、ライブビュー画像60(a)および探索範囲190を例示する図である。制御部34の物体検出部34aは、ライブビュー画像から対象物(たとえば、図5の被写体要素の1つであるバッグ63a)を検出し、検出した対象物のテンプレート画像180を生成する。制御部34の物体検出部34aは、対象物を検出する範囲をライブビュー画像60aの全範囲としてもよいが、検出処理を軽くするために、ライブビュー画像60aの一部を探索範囲190としてもよい。
制御部34の物体検出部34aは、分割した領域間で異なる撮像条件が適用されており、探索範囲190が分割された領域の境界を含む場合、探索範囲190内の少なくとも1つの領域の画像データに対し、被写体検出処理の前処理として第2補正処理を行う。
第2補正処理は、設定部34bが分割した撮像画面の領域間で撮像条件が異なることに起因して、被写体要素の検出処理の精度低下を抑制するために行う。一般に、被写体要素の検出に用いる探索範囲190に、分割された領域の境界を含む場合、探索範囲190の画像データの中に異なる撮像条件が適用された画像データが混在する場合がある。本実施の形態では、異なる撮像条件が適用された画像データをそのまま用いて被写体要素の検出を行うよりも、撮像条件の相違による画像データ間の差異を抑えるように第2補正処理を施した画像データを用いて被写体要素の検出を行う方が好ましいという考え方に基づき、以下のように第2補正処理を行う。
図5に例示したライブビュー画像60aにおいて、人物61aの持ち物であるバッグ63aを検出する場合を説明する。制御部34の物体検出部34aは、人物61aを含む領域の近傍に探索範囲190を設定する。なお、人物61aを含む領域61を探索範囲に設定してもよい。
制御部34の物体検出部34aは、探索範囲190が撮像条件の異なる2つの領域によって分断されていない場合には、第2補正処理を行わずに探索範囲190を構成する画像データをそのまま用いて被写体検出処理を行う。しかしながら、仮に、探索範囲190の画像データに、第1撮像条件が適用された画像データと第4撮像条件が適用された画像データが混在する場合には、制御部34の物体検出部34aは、探索範囲190の画像データのうちの第4撮像条件の画像データに対して、焦点検出処理を行う場合として上述した(例1)~(例3)のように第2補正処理を行う。そして、制御部34の物体検出部34aは、第2補正処理後の画像データを用いて被写体検出処理を行う。
なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
また、上記の例では、画像データのうちの第4撮像条件の画像データに対して第1撮像条件により第2補正処理を行う例を説明したが、画像データのうちの第1撮像条件の画像データに対して第4撮像条件により第2補正処理を行ってもよい。
上述した探索範囲190の画像データに対する第2補正処理は、人物の顔のような特定被写体を検出するために用いる探索範囲や、撮像シーンの判定に用いる領域に対して適用してもよい。
また、上述した探索範囲190の画像データに対する第2補正処理は、テンプレート画像を用いたパターンマッチング法に用いる探索範囲に限らず、画像の色やエッジなどに基づく特徴量を検出する際の探索範囲においても同様に適用してよい。
また、取得時刻が異なる複数フレームの画像データを用いて公知のテンプレートマッチング処理を施すことにより、先に取得されたフレーム画像における追尾対象物と類似する領域を後から取得されたフレーム画像から探索する移動体の追尾処理に適用してもよい。この場合において、制御部34は、後から取得されたフレーム画像に設定する探索範囲において、第1撮像条件が適用された画像データと第4撮像条件が適用された画像データが混在する場合には、探索範囲の画像データのうちの第4撮像条件の画像データに対して、上述した(例1)~(例3)のように第2補正処理を行う。そして、制御部34は、第2補正処理後の画像データを用いて追尾処理を行う。
さらにまた、取得時刻が異なる複数フレームの画像データを用いて公知の動きベクトルを検出する場合も同様である。制御部34は、動きベクトルの検出に用いる検出領域において、第1撮像条件が適用された画像データと第4撮像条件が適用された画像データが混在する場合には、動きベクトルの検出に用いる検出領域の画像データのうちの第4撮像条件の画像データに対して、上述した(例1)~(例3)のように第2補正処理を行う。そして、制御部34は、第2補正処理後の画像データを用いて動きベクトルを検出する。
上記の例では、被写体検出処理を第2補正処理を行った後に行ったが、第2補正処理を行わず、第1補正処理により得られた画像データにより被写体検出を行ってもよい。
4.撮像条件を設定する場合
制御部34の設定部34bは、撮像画面の領域を分割し、分割した領域間で異なる撮像条件を設定した状態で、新たに測光し直して露出条件を決定する場合、少なくとも1つの領域の画像データに対し、露出条件を設定する前処理として第2補正処理を行う。
第2補正処理は、設定部34bが分割した撮像画面の領域間で撮像条件が異なることに起因して、露出条件を決定する処理の精度低下を抑制するために行う。たとえば、撮像画面の中央部に設定された測光範囲に、分割された領域の境界を含む場合、測光範囲の画像データの中に異なる撮像条件が適用された画像データが混在する場合がある。本実施の形態では、異なる撮像条件が適用された画像データをそのまま用いて露出演算処理を行うよりも、撮像条件の相違による画像データ間の差異を抑えるように第2補正処理を施した画像データを用いて露出演算処理を行う方が好ましいという考え方に基づき、以下のように第2補正処理を行う。
制御部34の設定部34bは、測光範囲が撮像条件の異なる複数の領域によって分断されていない場合には、第2補正処理を行わずに測光範囲を構成する画像データをそのまま用いて露出演算処理を行う。しかしながら、仮に、測光範囲の画像データに、第1撮像条件が適用された画像データと第4撮像条件が適用された画像データが混在する場合には、制御部34の設定部34bは、測光範囲の画像データのうちの第4撮像条件の画像データに対して、焦点検出処理や被写体検出処理を行う場合として上述した(例1)~(例3)のように第2補正処理を行う。そして、制御部34の設定部34bは、第2補正処理後の画像データを用いて露出演算処理を行う。
なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
また、上記の例では、画像データのうちの第4撮像条件の画像データに対して第1撮像条件により第2補正処理を行う例を説明したが、画像データのうちの第1撮像条件の画像データに対して第4撮像条件により第2補正処理を行ってもよい。
上述した露出演算処理を行う際の測光範囲に限らず、ホワイトバランス調整値を決定する際に行う測光(測色)範囲や、撮影補助光を発する光源による撮影補助光の発光要否を決定する際に行う測光範囲、さらには、上記光源による撮影補助光の発光量を決定する際に行う測光範囲においても同様である。
また、撮像画面を分割した領域間で、光電変換信号の読み出し解像度を異ならせる場合において、領域ごとの読み出し解像度を決定する際に行う撮像シーンの判定に用いる領域に対しても同様に扱うことができる。
上記の例では、撮影条件の設定を第2補正処理を行った後に行ったが、第2補正処理を行わず、第1補正処理により得られた画像データにより撮影条件の設定を行ってもよい。
<フローチャートの説明>
図17は、領域ごとに撮像条件を設定して撮像する処理の流れを説明するフローチャートである。カメラ1のメインスイッチがオン操作されると、制御部34は、図17に示す処理を実行するプログラムを起動させる。ステップS10において、制御部34は、表示部35にライブビュー表示を開始させて、ステップS20へ進む。
具体的には、制御部34が撮像部32へライブビュー画像の取得開始を指示し、取得されたライブビュー画像を逐次表示部35に表示させる。上述したように、この時点では撮像チップ111の全域、すなわち画面の全体に同一の撮像条件が設定されている。
なお、ライブビュー表示中にAF動作を行う設定がなされている場合、制御部34のレンズ移動制御部34dは、焦点検出処理を行うことにより、所定のフォーカスポイントに対応する被写体要素にフォーカスを合わせるAF動作を制御する。レンズ移動制御部34dは、必要に応じて、上記第1補正処理および上記第2補正処理、または、上記第1補正処理もしくは上記第2補正処理が行われてから焦点検出処理を行う。
また、ライブビュー表示中にAF動作を行う設定がなされていない場合、制御部34のレンズ移動制御部34dは、後にAF動作が指示された時点でAF動作を行う。
ステップS20において、制御部34の物体検出部34aは、ライブビュー画像から被写体要素を検出してステップS30へ進む。物体検出部34aは、必要に応じて、上記第1補正処理および上記第2補正処理、または、上記第1補正処理もしくは上記第2補正処理が行われてから被写体検出処理を行う。ステップS30において、制御部34の設定部34bは、ライブビュー画像の画面を、被写体要素を含む領域に分割してステップS40へ進む。
ステップS40において、制御部34は表示部35に領域の表示を行う。制御部34は、分割された領域のうちの撮像条件の設定(変更)の対象となる領域を強調表示させる。また、制御部34は、図6に例示したように、撮像条件の設定画面70を表示部35に表示させてステップS50へ進む。
なお、制御部34は、ユーザーの指で表示画面上の他の主要被写体の表示位置がタップ操作された場合は、その主要被写体を含む領域を撮像条件の設定(変更)の対象となる領域に変更して強調表示させる。
ステップS50において、制御部34は、AF動作が必要か否かを判定する。制御部34は、たとえば、被写体が動いたことによって焦点調節状態が変化した場合や、ユーザー操作によってフォーカスポイントの位置が変更された場合、またはユーザー操作によってAF動作の実行が指示された場合に、ステップS50を肯定判定してステップS70へ進む。制御部34は、焦点調節状態が変化せず、ユーザー操作によりフォーカスポイントの位置が変更されず、ユーザー操作によってAF動作の実行も指示されない場合には、ステップS50を否定判定してステップ60へ進む。
ステップS70において、制御部34は、AF動作を行わせてステップS40へ戻る。レンズ移動制御部34dは、必要に応じて、上記第1補正処理および上記第2補正処理、または、上記第1補正処理もしくは上記第2補正処理が行われてからAF動作である焦点検出処理を行う。ステップS40へ戻った制御部34は、AF動作後に取得されるライブビュー画像に基づき、上述した処理と同様の処理を繰り返す。
ステップS60において、制御部34の設定部34bは、ユーザー操作に応じて、強調して表示されている領域に対する撮像条件を設定する。また、制御部34の設定部34bは、他の領域とは異なる撮像条件に設定された領域が生じた場合、境界ブロックの撮像条件を上述したように設定する。なお、ステップS60におけるユーザー操作に応じた表示部35の表示遷移や撮像条件の設定については、上述したとおりである。制御部34の設定部34bは、必要に応じて、上記第1補正処理および上記第2補正処理、または、上記第1補正処理もしくは上記第2補正処理が行われてから露出演算処理を行う。ステップS60が実行されるとステップS80へ進む。
ステップS80において、制御部34は、撮像指示の有無を判定する。制御部34は、操作部材36を構成する不図示のレリーズボタン、または撮像を指示する表示アイコンが操作された場合、ステップS80を肯定判定してステップS90へ進む。制御部34は、撮像指示が行われない場合には、ステップS80を否定判定してステップS20へ戻る。
ステップS90において、制御部34は、所定の撮像処理を行う。すなわち、撮像制御部34cが上記領域ごとに設定された撮像条件で撮像するように撮像素子32aを制御してステップS100へ進む。
ステップS100において、制御部34の撮像制御部34cは画像処理部33へ指示を送り、上記撮像によって得られた画像データに対して所定の画像処理を行わせてステップS110へ進む。画像処理は、上記画素欠陥補正処理、色補間処理、輪郭強調処理、ノイズ低減処理を含む。
なお、画像処理部33の補正部33bは、必要に応じて、領域の境界部に位置する画像データに対して、上記第1補正処理および上記第2補正処理、または、上記第1補正処理もしくは上記第2補正処理を行ってから画像処理を行う。
ステップS110において、制御部34は記録部37へ指示を送り、画像処理後の画像データを不図示の記録媒体に記録させてステップS120へ進む。
ステップS120において、制御部34は、終了操作が行われたか否かを判断する。制御部34は、終了操作が行われた場合にステップS120を肯定判定して図17による処理を終了する。制御部34は、終了操作が行われない場合には、ステップS120を否定判定してステップS20へ戻る。ステップS20へ戻った場合、制御部34は、上述した処理を繰り返す。
以上の説明では、撮像素子32aとして積層型の撮像素子100を例示したが、撮像素子(撮像チップ111)における複数のブロックごとに撮像条件を設定可能であれば、必ずしも積層型の撮像素子として構成する必要はない。
以上説明した第1の実施の形態によれば、次の作用効果が得られる。
(1)カメラ1は、複数の画素を有するブロックごとに撮像条件が設定可能な撮像部32と、人物61aからの第1の光が入射した第1領域61のブロックに第1撮像条件を設定し、山64aからの第2の光が入射した第4領域64のブロックに第4撮像条件を設定し、第1および第2の光が入射した境界領域67のブロックに第7撮像条件を設定する制御部34(設定部34b)と、境界領域67のブロックの画素からの信号を第1および第4撮像条件に基づいて補正する画像処理部33(補正部33b)と、補正部33bにより補正された信号と、第1領域61のブロックの画素からの信号と、第4領域64のブロックの画素からの信号と、により画像を生成する画像処理部33(生成部33c)と、を備える。
これにより、撮像条件が異なる領域で、それぞれ適切に処理を行うことができる。すなわち、各領域でそれぞれ生成された画像データによる画像を適切に生成することができる。たとえば、領域ごとの撮像条件の違いによって、生成される画像に現れる不連続性や違和感を抑制できる。
また、境界ブロックにおける撮像条件を適切に設定できるので、境界ブロックにおける画素からの画像データの白飛びや黒潰れを防止でき、適切に画像データを生成することができる。
(2)境界領域67は、人物61aからの第1の光および山64aからの第2の光が入射する境界ブロック82、85、87を有する。補正部33bは、前記第1および第2の光が入射する境界ブロック82、85、87の複数の画素の一部からの信号を第1撮像条件に基づいて補正し、前記第1および第2の光が入射する境界ブロック82、85、87の複数の画素の他部からの信号を第4撮像条件に基づいて補正する。
これにより、撮像条件が異なる領域で、それぞれ適切に処理を行うことができる。すなわち、各領域でそれぞれ生成された画像データによる画像を適切に生成することができる。たとえば、領域ごとの撮像条件の違いによって、生成される画像に現れる不連続性や違和感を抑制できる。
(3)設定部34bは、第1撮像条件と第4撮像条件とに基づいて第7撮像条件を設定する。これにより、境界ブロックにおける撮像条件を適切に設定できるので、境界ブロックにおける画素からの画像データの白飛びや黒潰れを防止でき、適切に画像データを生成することができる。
(4)設定部34bは、境界領域67の境界ブロック82、85、87の画素からの信号から階調情報が喪失しないように第7撮像条件を設定する。これにより、境界ブロックにおける撮像条件を適切に設定できるので、境界ブロックにおける画素からの画像データの白飛びや黒潰れを防止でき、適切に画像データを生成することができる。
(5)カメラ1は、複数の画素を有するブロックごとに撮像条件が設定可能な撮像部32と、撮像光学系31を介して人物61aからの第1の光が入射した第1領域61のブロックに第1撮像条件を設定し、撮像光学系31を介して山64aからの第2の光が入射した第4領域64のブロックに第4撮像条件を設定し、撮像光学系31を介して第1および第2の光が入射した境界領域67のブロックに第7撮像条件を設定する制御部34(設定部34b)と、境界領域67のブロックの画素からの信号を第1および第4撮像条件に基づいて補正する画像処理部33(補正部33b)と、補正部33bにより補正された信号と、第1領域61のブロックの画素からの信号と、第4領域のブロックの画素からの信号とに基づいて、撮像光学系31を駆動するための信号を生成する制御部34(レンズ移動制御部34d)と、を備える。
これにより、撮像条件が異なる領域で、それぞれ適切に処理を行うことができる。すなわち、各領域でそれぞれ生成された焦点検出用の信号データに基づいて、デフォーカス量を適切に検出することができる。たとえば、領域ごとの撮像条件の違いによって、焦点検出精度が低下することを抑制できる。
(6)カメラ1は、複数の画素を有するブロックごとに撮像条件が設定可能な撮像部32と、人物61aからの第1の光が入射した第1領域61のブロックに第1撮像条件を設定し、山64aからの第2の光が入射した第4領域64のブロックに第4撮像条件を設定し、第1および第2の光が入射した境界領域67のブロックに第7撮像条件を設定する制御部34(設定部34b)と、境界領域67のブロックの画素からの信号を第1および第4撮像条件に基づいて補正する画像処理部33(補正部33b)と、補正部33bにより補正された信号による画像データと、第1領域61のブロックの画素からの信号による画像データと、第4領域64のブロックの画素からの信号による画像データとに基づいて、人物61aおよび山64aの被写体を検出する制御部34(物体検出部34a)と、を備える。
これにより、撮像条件が異なる領域で、それぞれ適切に処理を行うことができる。すなわち、各領域でそれぞれ生成された画像データに基づいて、被写体要素を適切に検出することができる。たとえば、領域ごとの撮像条件の違いによって、検出精度が低下することを抑制できる。
(7)カメラ1は、複数の画素を有するブロックごとに撮像条件が設定可能な撮像部32と、人物61aからの第1の光が入射した第1領域61のブロックに第1撮像条件を設定し、山64aからの第2の光が入射した第4領域64のブロックに第4撮像条件を設定し、第1および第2の光が入射した境界領域67のブロックに第7撮像条件を設定する制御部34(設定部34b)と、境界領域67のブロックの画素からの信号を第1および第4撮像条件に基づいて補正する画像処理部33(補正部33b)と、を備える。
これにより、撮像条件が異なる領域で、それぞれ適切に処理を行うことができる。すなわち、各領域でそれぞれ生成された画像データに基づいて、適切に撮像条件の設定を行うことができる。たとえば、領域ごとの撮像条件の違いによって、露出条件の設定精度が低下することを抑制できる。
(8)設定部34bは、補正部33bにより補正された信号と、第1領域61のブロックの画素からの信号と、第4領域のブロックの画素からの信号とに基づいて、第7撮像条件を設定する。すなわち設定部34bは、上述した第1および第2補正処理を行った後に。新たに測光し直して露出条件を決定する。
これにより、撮像条件が異なる領域で、それぞれ適切に処理を行うことができる。すなわち、各領域でそれぞれ生成された画像データに基づいて、適切に撮像条件の設定を行うことができる。たとえば、領域ごとの撮像条件の違いによって、露出条件の設定精度が低下することを抑制できる。
上述した第2補正処理を前処理として行うモード1と、第2補正処理を前処理として行わないモード2とを切り替え可能に構成してもよい。モード1が選択された場合、制御部34は、上述した前処理を行った上で画像処理などの処理を行う。一方、モード2が選択された場合、制御部34は、上述した前処理を行わずに画像処理などの処理を行う。たとえば、被写体要素として検出されている顔の一部に陰がある場合において、顔の陰の部分の明るさが顔の陰以外の部分の明るさと同程度となるように、顔の陰の部分を含む領域の撮像条件と顔の陰以外の部分を含む領域の撮像条件とを異なる設定で撮像して生成された画像に対して、第2補正処理を行ってから色補間処理をすると、設定されている撮像条件の違いにより陰の部分に対して意図しない色補間が行われる場合がある。第2補正処理をすることなく画像データをそのまま用いて色補間処理を行い得るように、モード1とモード2とを切り替え可能に構成しておくことにより、意図しない色補間を避けることが可能になる。
---第2の実施の形態---
図18を参照して、第2の実施の形態による画像処理装置を搭載する電子機器の一例として、デジタルカメラを例に挙げて説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、領域ブロックに隣接する主ブロックの撮像条件の設定方法が第1の実施の形態と異なる。
図18(a)は、第1の実施の形態における所定範囲80の一部を含む複数のブロックを示す図である。ブロック86の右隣には山64aからの被写体光が入射するブロック92が存在する。なお、図示はしないが、ブロック92の右方には山64aからの被写体光が入射する複数のブロックが存在する。図18(a)では、白地部は、人物61aに対応する部分を模式的に示し、網掛け部は、山64aに対応する部分を模式的に示す。すなわち、白地部は第1領域61に対応し、網掛け部は第4領域64に対応する。なお、図18において、太線の破線で囲んだ領域が境界領域67である。
上述した第1の実施の形態では、設定部34bは、第1領域61の主ブロックであるブロック84の撮像条件を第1撮像条件に設定し、第4領域64の主ブロックであるブロック86の撮像条件を第4撮像条件に設定した。そして、設定部34bは、第1領域61および第4領域64の境界ブロックであるブロック85の撮像条件を、第1撮像条件と第4撮像条件の間である第7撮像条件に設定した。すなわち、第1の実施の形態では、ある領域における撮像条件は、境界ブロックを除いて同一である。
これに対し、第2の実施の形態では、設定部34bは、第1領域61の主ブロックであるブロック84の撮像条件を第1撮像条件に設定し、第4領域64の主ブロックであるブロック92の撮像条件を第4撮像条件に設定する。そして、図18(b)に示すように設定部34bは、境界ブロック85の撮像条件を、第1撮像条件と第4撮像条件の間の第8撮像条件に設定し、境界ブロック85に隣接する主ブロックであるブロック86の撮像条件を第8撮像条件と第4撮像条件との間の第9撮像条件に設定する。図18(b)では、境界ブロック85および主ブロック86に付した斜め線のハッチングの密度が高いほど、設定された撮像条件が第1撮像条件寄りであることを模式的に示している。すなわち、本実施の形態では、ある領域における主ブロックの撮像条件は、他の領域との境界の近傍において当該他の領域における撮像条件との差が少なくなるように段階的に設定される。
たとえば、第1撮像条件と第4撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第4撮像条件のISO感度が800の場合、設定部34bは、第8撮像条件のISO感度を100と800との間の値として、たとえば200に設定する。そして、設定部34bは、第9撮像条件のISO感度を200と800との間の値として、たとえば400に設定する。
このように、設定部34bは、第1領域61および第4領域64についての他の境界ブロック、および、境界ブロックに隣接する第4領域64の主ブロックについても同様に、撮像条件を設定する。
すなわち、本実施の形態では、設定部34bは、異なる撮像条件が設定される2つの領域が接している場合、白飛びや黒潰れが生じない範囲で、一方の撮像条件から他方の撮像条件に徐々に近づくように、境界ブロックおよび境界ブロックに隣接する主ブロックの撮像条件を設定する。
上述の説明では、境界ブロック85に隣接するブロックとして、第1領域61の主ブロック84と第4領域64の主ブロック86とが存在する。本実施の形態では、第1領域61の主ブロック84の撮像条件(第1撮像条件)は、第1領域61の他の主ブロックの撮像条件と同一であり、第4領域64の主ブロック86の撮像条件(第9撮像条件)は、第4領域64の他の主ブロック(ブロック92等)の撮像条件(第4撮像条件)と異なる。すなわち、本実施の形態では、主要被写体である人物61aに対応するブロックについては、境界ブロックを除いて同一の撮像条件に設定することが望ましい。そこで、本実施の形態では、人物61aよりも被写体としての重要度が低い山64aに対応する第4領域64において、境界ブロック85に隣接するブロック86の撮像条件を第4領域64の他の主ブロック(ブロック92等)の撮像条件(第4撮像条件)と異ならせた。
以下の説明では、隣接する2つの領域のうち、一方の領域(第4領域64)の主ブロック(主ブロック86)ではあるが、その領域(第4領域64)の他の主ブロック(主ブロック92)と比較して、他方の領域(第1領域61)の主ブロック84または他方の領域(第1領域61)との境界ブロック(境界ブロック85)に設定された撮像条件(第1または第8撮像条件)に近づくように撮像条件(第9撮像条件)が設定された主ブロック(主ブロック86)を準境界ブロックと呼ぶ。また、本実施の形態では、境界ブロック85と準境界ブロック86とを含む領域を境界領域67Aと呼ぶ。
このように、隣接する2つの領域(第1領域61および第4領域64)のうち、被写体としての重要度が低い方の領域(第4領域64)において準境界ブロックを設けることで、撮像条件を段階的に設定することが望ましい。設定部34bは、境界ブロックを挟んで異なる撮像条件に設定された2つの領域が接する場合、たとえば次の条件に基づいて、どちらの領域に準境界ブロックを設けるか、すなわち、どちらの領域の主ブロックで撮像条件を段階的に設定するのかを判断する。
なお、以下の条件(a)から(c)は、例示であり、これ以外の条件を排除するものではない。(a)たとえば、被写体認識の結果に基づいて一方の領域に顔を含むと判断された場合、設定部34bは、一方の領域が他方の領域よりも重要な被写体領域であると判断して、他方の領域に準境界ブロックを設ける。(b)たとえば、焦点検出の結果に基づいて一方の領域の被写体までの距離が他方の領域の被写体までの距離よりも近いと判断された場合、設定部34bは、一方の領域が他方の領域よりも重要な被写体領域であると判断して、他方の領域に準境界ブロックを設ける。(c)たとえば、被写体要素の検出結果に基づいて一方の領域が他方の領域よりも撮像面の中央に近い位置に存在すると判断された場合、設定部34bは、一方の領域が他方の領域よりも重要な被写体領域であると判断して、他方の領域に準境界ブロックを設ける。
上述の説明では、準境界ブロック86の第9撮像条件を第4領域64の主ブロックについての第4撮像条件よりも第1撮像条件寄りに設定し、準境界ブロック86の右隣の主ブロック92の撮像条件は第4撮像条件に設定した。しかし、図18(c)に示すように、準境界ブロック86に隣接する主ブロック92の撮像条件を第4撮像条件と第9撮像条件との間の第10撮像条件に設定してもよい。すなわち、準境界ブロック86に隣接する主ブロック92も準境界ブロックとして境界領域67Aを構成するようにしてもよい。
図18(c)では、境界ブロック85、準境界ブロック86および準境界ブロック92に付した斜め線のハッチングの密度が高いほど、設定された撮像条件が第1撮像条件寄りであることを模式的に示している。
すなわち、境界領域67A内で、境界ブロック85の右隣の準境界ブロック86、準境界ブロック86の右隣の準境界ブロック92、準境界ブロック92の右隣の主ブロック93の順に、第1撮像条件側から第4撮像条件に徐々に近づくように各ブロック86、92、93の撮像条件を段階的に設定するようにしてもよい。すなわち、互いに隣接する2つの領域(第1領域61および第4領域64)のうち、他方の領域(第4領域64)から一方の領域(第1領域61)に近づくにつれて、他方の領域(第4領域64)の主ブロックの撮像条件が徐々に一方の領域(第1領域61)の撮像条件に近づくようにしてもよい。このように、互いに隣接する2つの領域のうち、他方の領域の主ブロックの撮像条件をグラデーション状に設定するようにしてもよい。
図18(b)に示す例では、第4領域64の主ブロックの撮像条件を主ブロック86において1段階変化させ、図18(c)に示す例では、第4領域64の主ブロックの撮像条件を主ブロック86と主ブロック92との2段階変化させたが、3段階以上変化させてもよい。なお、第4領域64の主ブロックの撮像条件を何段階変化させるかについては、たとえば第4領域64の面積や第1撮像条件と第4撮像条件との差などに基づいて、適宜設定すればよい。たとえば、第4領域64の面積が大きくなるにつれて、段階数を増やしてもよい。また、第1撮像条件と第4撮像条件との差が大きくなるにつれて、段階数を増やしてもよい。
なお、上述したように、主ブロックの撮像条件を段階的に設定した場合には、撮像条件の差異に基づく画像の不連続性が問題とならなければ、第1補正処理や第2補正処理を行わなくてもよい。
以上説明した第2の実施の形態によれば、第1の実施の形態の作用効果に加えて次の作用効果が得られる。(1)境界領域67Aは、人物61aからの第1の光および山64aからの第2の光の一方が入射する準境界ブロック86をさらに有する。設定部34bは、第1および第2の光が入射する境界ブロック85に第8撮像条件を設定し、第1の光および第2の光の一方が入射する準境界ブロック86に第9撮像条件を設定する。これにより、領域の境界の近傍のブロックにおける撮像条件をさらに適切に設定できるので、さらに適切に画像データを生成することができる。
---第1および第2の実施の形態の変形例---
次のような変形も本発明の範囲内であり、変形例の1つ、もしくは複数を上述の実施の形態と組み合わせることも可能である。(変形例1)
図19(a)~図19(c)は、撮像素子32aの撮像面における第1撮像領域および第2撮像領域の配置を例示する図である。図19(a)の例によれば、第1撮像領域は偶数列によって構成され、第2撮像領域は奇数列によって構成される。すなわち、撮像面が偶数列と奇数列とに分割されている。
図19(b)の例によれば、第1撮像領域は奇数行によって構成され、第2撮像領域は偶数行によって構成される。すなわち、撮像面が奇数行と偶数行とに分割されている。
図19(c)の例によれば、第1撮像領域は、奇数列における偶数行のブロックと、偶数列における奇数行のブロックとによって構成される。また、第2撮像領域は、偶数列における偶数行のブロックと、奇数列における奇数行のブロックとによって構成される。すなわち、撮像面が市松模様状に分割されている。
図19(a)~図19(c)のいずれの場合も、1フレームの撮像を行った撮像素子32aから読み出した光電変換信号によって、第1撮像領域から読み出した光電変換信号に基づく第1画像および第2撮像領域から読み出した光電変換信号に基づく第2画像がそれぞれ生成される。変形例1によれば、第1画像および第2画像は同じ画角で撮像され、共通の被写体像を含む。
変形例1において、制御部34は、第1画像を表示用として用いるとともに、第2画像を検出用として用いる。具体的には、制御部34は、第1画像をライブビュー画像として表示部35に表示させる。また、制御部34は、物体検出部34aによって第2画像を用いて被写体検出処理を行わせ、レンズ移動制御部34によって第2画像を用いて焦点検出処理を行わせ、設定部34bによって第2画像を用いて露出演算処理を行わせる。
変形例1においては、第1画像を撮像する第1撮像領域に設定する撮像条件を第1撮像条件と呼び、第2画像を撮像する第2撮像領域に設定する撮像条件を第2撮像条件と呼ぶこととする。制御部34は、第1撮像条件と、第2撮像条件とを異ならせてもよい。
1.一例として、制御部34は、第1撮像条件を、表示部35による表示に適した条件に設定する。たとえば、第1撮像領域に設定される第1撮像条件を撮像画面の第1撮像領域の全体で同一にする。一方、制御部34は、第2撮像領域に設定される第2撮像条件を、焦点検出処理、被写体検出処理、および露出演算処理に適した条件に設定する。第2撮像条件は、撮像画面の第2撮像領域の全体で同一にする。
なお、焦点検出処理、被写体検出処理、および露出演算処理に適した条件がそれぞれ異なる場合は、制御部34は、第2撮像領域に設定する第2撮像条件をフレームごとに異ならせてもよい。たとえば、1フレーム目の第2撮像条件を焦点検出処理に適した条件とし、2フレーム目の第2撮像条件を被写体検出処理に適した条件とし、3フレーム目の第2撮像条件を露出演算処理に適した条件とする。これらの場合において、各フレームにおける第2撮像条件を撮像画面の第2撮像領域の全体で同一にする。
2.他の一例として、制御部34は、第1撮像領域に設定される第1撮像条件を領域により異ならせてもよい。制御部34の設定部34bは、設定部34bが分割した被写体要素を含む領域ごとに異なる第1撮像条件を設定する。一方、制御部34は、第2撮像領域に設定される第2撮像条件を撮像画面の第2撮像領域の全体で同一にする。制御部34は、第2撮像条件を、焦点検出処理、被写体検出処理、および露出演算処理に適した条件に設定するが、焦点検出処理、被写体検出処理、および露出演算処理に適した条件がそれぞれ異なる場合は、第2撮像領域に設定する撮像条件をフレームごとに異ならせてもよい。
3.また、他の一例として、制御部34は、第1撮像領域に設定される第1撮像条件を撮像画面の第1撮像領域の全体で同一とする一方で、第2撮像領域に設定される第2撮像条件を撮像画面において異ならせてもよい。たとえば、設定部34bが分割した被写体要素を含む領域ごとに異なる第2撮像条件を設定する。この場合においても、焦点検出処理、被写体検出処理、および露出演算処理に適した条件がそれぞれ異なる場合は、第2撮像領域に設定する撮像条件をフレームごとに異ならせてもよい。
4.さらにまた、他の一例として、制御部34は、第1撮像領域に設定される第1撮像条件を撮像画面において異ならせるとともに、第2撮像領域に設定される第2撮像条件を撮像画面において異ならせる。たとえば、設定部34bが分割した被写体要素を含む領域ごとに異なる第1撮像条件を設定しつつ、設定部34bが分割した被写体要素を含む領域ごとに異なる第2撮像条件を設定する。
図19(a)~図19(c)において、第1撮像領域と第2撮像領域との面積比を異ならせてもよい。制御部34は、たとえば、ユーザーによる操作または制御部34の判断に基づき、第1撮像領域の比率を第2撮像領域よりも高く設定したり、第1撮像領域と第2撮像領域の比率を図19(a)~図19(c)に例示したように同等に設定したり、第1撮像領域の比率を第2撮像領域よりも低く設定したりする。第1撮像領域と第2撮像領域とで面積比を異ならせることにより、第1画像を第2画像に比べて高精細にしたり、第1画像および第2画像の解像度を同等にしたり、第2画像を第1画像に比べて高精細にしたりすることができる。
(変形例2)
上述した実施の形態では、画像処理を行う場合の第2補正処理は、注目位置において適用された撮像条件(第1撮像条件とする)と、注目位置の周囲の参照位置において適用された撮像条件(第4撮像条件とする)とが異なる場合において、画像処理部33の補正部33bが、第4撮像条件の画像データ(参照位置の画像データのうちの第4撮像条件の画像データ)を第1撮像条件に基づいて補正した。すなわち、参照位置の第4撮像条件の画像データを第2補正処理することによって、第1撮像条件と第4撮像条件との差異に基づく画像の不連続性を緩和するようにした。
この代わりに、変形例2では、画像処理部33の補正部33bが、第1撮像条件の画像データ(注目位置の画像データと参照位置の画像データのうちの第1撮像条件の画像データ)を第4撮像条件に基づいて補正してもよい。この場合にも、第1撮像条件と第4撮像条件との差異に基づく画像の不連続性を緩和できる。
あるいは、画像処理部33の補正部33bが、第1撮像条件の画像データおよび第4撮像条件の画像データの双方を補正してもよい。すなわち、第1撮像条件の注目位置の画像データ、参照位置の画像データのうちの第1撮像条件の画像データ、および参照位置の画像データのうちの第4撮像条件の画像データに対してそれぞれ第2補正処理を施すことにより、第1撮像条件と第4撮像条件との差異に基づく画像の不連続性を緩和するようにしてもよい。
たとえば、上記(例1)において、第1撮像条件(ISO感度が100)である、参照画素Prの画像データに、第2補正処理として400/100を掛け、第4撮像条件(ISO感度が800)である参照画素Prの画像データに、第2補正処理として400/800を掛ける。これにより、撮像条件の相違による画像データ間の差異を小さくする。なお、注目画素の画素データは、色補間処理後に100/400を掛ける第2補正処理を行う。この第2補正処理により色補間処理後の注目画素の画素データを第1撮像条件で撮像した場合と同様の値に変更することができる。さらに、上記(例1)において、第1領域と第4領域との境界からの距離によって第2補正処理の程度を変えても良い。そして上記(例1)の場合に比べて第2補正処理により画像データが増加や減少する割合を少なくすることができ、第2補正処理により生じるノイズを減らすことができる。以上では、上記(例1)について説明したが、上記(例2)にも同様に適用することができる。
変形例2によれば、上述した実施の形態と同様に、撮像条件が異なる領域のそれぞれ生成された画像データに対し、適切に画像処理を行うことができる。
(変形例3)
上述した実施の形態では、画像データに対して第2補正処理を行う際に、第1撮像条件と第4撮像条件との差違に基づく演算を行うことにより、補正後の画像データを求めるようにした。演算の代わりに、補正用テーブルを参照することによって補正後の画像データを求めてもよい。たとえば、引数として第1撮像条件および第4撮像条件を入力することにより、補正後の画像データを読み出す。あるいは、引数として第1撮像条件および第4撮像条件を入力することにより、補正係数を読み出す構成にしてもよい。
(変形例4)
上述した実施の形態の第2補正処理において、補正後の画像データの上限や下限を定めておいてもよい。上限値、下限値を設けることにより、必要以上の補正をしないように制限することができる。上限値、下限値は、あらかじめ決めておいてもよいし、撮像素子32aと別に測光用センサを備える場合には、測光用センサからの出力信号に基づき決定してもよい。
(変形例5)
上記実施形態では、制御部34の設定部34bがライブビュー画像に基づき被写体要素を検出し、ライブビュー画像の画面を、被写体要素を含む領域に分割する例を説明した。変形例5において、制御部34は、撮像素子32aと別に測光用センサを備える場合には、測光用センサからの出力信号に基づき領域を分割してもよい。
制御部34は、測光用センサからの出力信号に基づき、前景と背景とに分割する。具体的には、撮像素子32bによって取得されたライブビュー画像を、測光用センサからの出力信号から前景と判断した領域に対応する前景領域と、測光用センサからの出力信号から背景と判断した領域に対応する背景領域とに分割する。
制御部34はさらに、撮像素子32aの撮像面の前景領域に対応する位置に対して、図19(a)~図19(c)に例示したように、第1撮像領域および第2撮像領域を配置する。一方、制御部34は、撮像素子32aの撮像面の背景領域に対応する位置に対して、撮像素子32aの撮像面に第1撮像領域のみを配置する。制御部34は、第1画像を表示用として用いるとともに、第2画像を検出用として用いる。
変形例5によれば、測光用センサからの出力信号を用いることにより、撮像素子32bによって取得されたライブビュー画像の領域分割を行うことができる。また、前景領域に対しては、表示用の第1画像と検出用の第2画像とを得ることができ、背景領域に対しては、表示用の第1画像のみを得ることができる。
(変形例6)
変形例6では、画像処理部33の生成部33cが、第2補正処理の一例としてコントラスト調整処理を行う。すなわち、生成部33cは、階調カーブ(ガンマカーブ)を異ならせることにより、第1撮像条件と第4撮像条件との間の差異に基づく画像の不連続性を緩和する。
たとえば、第1撮像条件と第4撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第4撮像条件のISO感度が800の場合を想定する。生成部33cは、階調カーブを寝かせることにより、参照位置の画像データのうちの第4撮像条件の画像データの値を1/8に圧縮する。
あるいは、生成部33cが、階調カーブを立たせることにより、注目位置の画像データ、および参照位置の画像データのうちの第1撮像条件の画像データの値を8倍に伸張させてもよい。
変形例6によれば、上述した実施の形態と同様に、撮像条件が異なる領域でそれぞれ生成された画像データに対し、適切に画像処理を行うことができる。たとえば、領域の境界における撮像条件の違いによって、画像処理後の画像に現れる不連続性や違和感を抑制することができる。
(変形例7)
変形例7においては、画像処理部33が、上述した画像処理(例えば、ノイズ低減処理)において、被写体要素の輪郭を損なわないようにする。一般に、ノイズ低減を行う場合は平滑化フィルタ処理が採用される。平滑化フィルタを用いる場合、ノイズ低減効果の一方で被写体要素の境界がぼける場合がある。
そこで、画像処理部33の生成部33cは、たとえば、ノイズ低減処理に加えて、またはノイズ低減処理とともに、コントラスト調整処理を行うことによって上記被写体要素の境界のぼけを補う。変形例7において、画像処理部33の生成部33cは、濃度変換(階調変換)曲線として、Sの字を描くようなカーブを設定する(いわゆるS字変換)。画像処理部33の生成部33cは、S字変換を用いたコントラスト調整を行うことにより、明るいデータと暗いデータの階調部分をそれぞれ引き伸ばして明るいデータ(および暗いデータ)の階調数をそれぞれ増やすとともに、中間階調の画像データを圧縮して階調数を減らす。これにより、画像の明るさが中程度の画像データの数が減り、明るい/暗いのいずれかに分類されるデータが増える結果として、被写体要素の境界のぼけを補うことができる。
変形例7によれば、画像の明暗をくっきりさせることによって、被写体要素の境界のぼけを補うことができる。
(変形例8)
変形例8においては、画像処理部33の生成部33cが、第1撮像条件と第4撮像条件との差異に基づく画像の不連続性を緩和するように、ホワイトバランス調整ゲインを変更する。
たとえば、注目位置において撮像時に適用された撮像条件(第1撮像条件とする)と、注目位置の周囲の参照位置において撮像時に適用された撮像条件(第4撮像条件とする)とが異なる場合において、画像処理部33の生成部33cが、参照位置の画像データのうちの第4撮像条件の画像データのホワイトバランスを、第1撮像条件で取得された画像データのホワイトバランスに近づけるように、ホワイトバランス調整ゲインを変更する。
なお、画像処理部33の生成部33cが、参照位置の画像データのうちの第1撮像条件の画像データと注目位置の画像データのホワイトバランスを、第4撮像条件で取得された画像データのホワイトバランスに近づけるように、ホワイトバランス調整ゲインを変更してもよい。
変形例8によれば、撮像条件が異なる領域でそれぞれ生成された画像データに対し、ホワイトバランス調整ゲインを撮像条件が異なる領域のどちらかの調整ゲインに揃えることによって、第1撮像条件と第4撮像条件との差異に基づく画像の不連続性を緩和することができる。
(変形例9)
画像処理部33を複数備え、画像処理を並列処理してもよい。たとえば、撮像部32の領域Aで撮像された画像データに対して画像処理をしながら、撮像部32の領域Bで撮像された画像データに対して画像処理を行う。複数の画像処理部33は、同じ画像処理を行ってもよいし、異なる画像処理を行ってもよい。すなわち、領域Aおよび領域Bの画像データに対して同じパラメータ等を適用して同様の画像処理をしたり、領域Aおよび領域Bの画像データに対して異なるパラメータ等を適用して異なる画像処理をしたりすることができる。
画像処理部33の数を複数備える場合において、第1撮像条件が適用された画像データに対して1つの画像処理部によって画像処理を行い、第4撮像条件が適用された画像データに対して他の画像処理部によって画像処理を行ってもよい。画像処理部の数は上記2つに限られず、たとえば、設定され得る撮像条件の数と同数を設けるようにしてもよい。すなわち、異なる撮像条件が適用された領域ごとに、それぞれの画像処理部が画像処理を担当する。変形例9によれば、領域ごとの異なる撮像条件による撮像と、上記領域ごとに得られる画像の画像データに対する画像処理とを並行して進行させることができる。
(変形例10)
上述した説明では、カメラ1を例に説明したが、スマートフォンのようにカメラ機能を備えた高機能携帯電話機250(図21)や、タブレット端末などのモバイル機器によって構成してもよい。
(変形例11)
上述した実施の形態では、撮像部32と制御部34とを単一の電子機器として構成したカメラ1を例に説明した。この代わりに、たとえば、撮像部32と制御部34とを分離して設け、制御部34から通信を介して撮像部32を制御する撮像システム1Bを構成してもよい。
以下、図20を参照して撮像部32を備えた撮像装置1001を、制御部34を備えた制御装置1002から制御する例を説明する。
図20は、変形例11に係る撮像システム1Bの構成を例示するブロック図である。図20において、撮像システム1Bは、撮像装置1001と、表示装置1002とによって構成される。撮像装置1001は、上記実施の形態で説明した撮像光学系31と撮像部32とに加えて、第1通信部1003を備える。また、表示装置1002は、上記実施の形態で説明した画像処理部33、制御部34、表示部35、操作部材36、および記録部37に加えて、第2通信部1004を備える。
第1通信部1003および第2通信部1004は、たとえば周知の無線通信技術や光通信技術等により、双方向の画像データ通信を行うことができる。
なお、撮像装置1001と表示装置1002とを有線ケーブルにより有線接続し、第1通信部1003および第2通信部1004が双方向の画像データ通信を行う構成にしてもよい。
撮像システム1Bは、制御部34が、第2通信部1004および第1通信部1003を介したデータ通信を行うことにより、撮像部32に対する制御を行う。たとえば、撮像装置1001と表示装置1002との間で所定の制御データを送受信することにより、表示装置1002は、上述したように画像に基づいて、画面を複数の領域に分割したり、分割した領域ごとに異なる撮像条件を設定したり、各々の領域で光電変換された光電変換信号を読み出したりする。
変形例11によれば、撮像装置1001側で取得され、表示装置1002へ送信されたライブビュー画像が表示装置1002の表示部35に表示されるので、ユーザーは、撮像装置1001から離れた位置にある表示装置1002から、遠隔操作を行うことができる。
表示装置1002は、たとえば、スマートフォンのような高機能携帯電話機250によって構成することができる。また、撮像装置1001は、上述した積層型の撮像素子100を備える電子機器によって構成することができる。
なお、表示装置1002の制御部34に物体検出部34aと、設定部34bと、撮像制御部34cと、レンズ移動制御部34dとを設ける例を説明したが、物体検出部34a、設定部34b、撮像制御部34c、およびレンズ移動制御部34dの一部について、撮像装置1001に設けるようにしてもよい。
(変形例12)
上述したカメラ1、高機能携帯電話機250、またはタブレット端末などのモバイル機器へのプログラムの供給は、たとえば図21に例示するように、プログラムを格納したパーソナルコンピュータ205から赤外線通信や近距離無線通信によってモバイル機器へ送信することができる。
パーソナルコンピュータ205に対するプログラムの供給は、プログラムを格納したCD-ROMなどの記録媒体204をパーソナルコンピュータ205にセットして行ってもよいし、ネットワークなどの通信回線201を経由する方法でパーソナルコンピュータ205へローディングしてもよい。通信回線201を経由する場合は、当該通信回線に接続されたサーバー202のストレージ装置203などにプログラムを格納しておく。
また、通信回線201に接続された無線LANのアクセスポイント(不図示)を経由して、モバイル機器へプログラムを直接送信することもできる。さらに、プログラムを格納したメモリカードなどの記録媒体204Bをモバイル機器にセットしてもよい。このように、プログラムは記録媒体や通信回線を介する提供など、種々の形態のコンピュータプログラム製品として供給できる。
---第3の実施の形態---
図22~28を参照して、第3の実施の形態による画像処理装置を搭載する電子機器の一例として、デジタルカメラを例に挙げて説明する。以下の説明では、第1および第2の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1および第2の実施の形態と同じである。本実施の形態では、主に、第1の実施の形態の画像処理部33を設ける代わりに、撮像部32Aが第1および第2の実施の形態の画像処理部33と同様の機能を有する画像処理部32cをさらに含む点で、第1および第2の実施の形態と異なる。
図22は、第3の実施の形態によるカメラ1Cの構成を例示するブロック図である。図22において、カメラ1Cは、撮像光学系31と、撮像部32Aと、制御部34と、表示部35と、操作部材36と、記録部37とを有する。撮像部32Aは、第1の実施の形態の画像処理部33と同様の機能を有する画像処理部32cをさらに含む。
画像処理部32cは、入力部321と、補正部322と、生成部323とを含む。入力部321には、撮像素子32aからの画像データが入力される。補正部322は、上記入力された画像データに対して補正を行う前処理を行う。補正部322が行う前処理は、第1の実施の形態における補正部33bが行う前処理と同じである。生成部323は、上記入力された画像データと前処理後の画像データとに対して画像処理を行い、画像を生成する。生成部323が行う画像処理は、第1の実施の形態における生成部33cが行う画像処理と同じである。
図23は、本実施の形態における各ブロックと、複数の補正部322との対応関係を模式的に示した図である。図23において、矩形で表した撮像チップ111の1つのマスが1つのブロック111aを表している。同様に、矩形で表した後述する画像処理チップ114の1つのマスが1つの補正部322を表している。
本実施の形態では、補正部322は、ブロック111a毎に対応して設けられている。換言すると、補正部322は、撮像面における撮像条件の変更可能な領域の最小単位であるブロック毎にそれぞれ設けられている。たとえば、図23においてハッチングを施したブロック111aと、ハッチングを施した補正部322とは対応関係にある。図23においてハッチングを施した補正部322は、ハッチングを施したブロック111aに含まれる画素からの画像データに前処理を行う。各補正部322は、それぞれ対応するブロック111aに含まれる画素からの画像データに前処理を行う。
これにより、画像データの前処理を複数の補正部322で並列処理できるので、補正部322における処理負担を軽減でき、撮像条件が異なる領域でそれぞれ生成された画像データから適切な画像を短時間で生成することができる。
なお、以下の説明では、あるブロック111aと、当該ブロック111aに含まれる画素との関係について説明する際に、当該ブロック111aのことを、当該画素が属するブロック111aと呼ぶことがある。また、ブロック111aを単位区分と呼ぶことがあり、ブロック111aが複数集まったもの、すなわち単位区分が複数集まったものを複合区分と呼ぶことがある。
図24は、積層型撮像素子100Aの断面図である。積層型撮像素子100Aは、裏面照射型撮像チップ111と、信号処理チップ112と、メモリチップ113とに加えて、上述した前処理および画像処理を行う画像処理チップ114をさらに備える。すなわち、上述した画像処理部32cは、画像処理チップ114に設けられている。
これら撮像チップ111、信号処理チップ112、メモリチップ113および画像処理チップ114は積層されており、Cu等の導電性を有するバンプ109により互いに電気的に接続される。
メモリチップ113および画像処理チップ114の互いに対向する面には、複数のバンプ109が配される。これらのバンプ109が互いに位置合わせされて、メモリチップ113と画像処理チップ114とが加圧等されることにより、位置合わせされたバンプ109同士が接合されて、電気的に接続される。
<第1補正処理>
第1の実施の形態と同様に、第3の実施の形態では、設定部34bにより撮像画面の領域を分割した後は、ユーザーによって選択された領域、または、制御部34が判断した領域に対して撮像条件を設定(変更)することが可能に構成されている。制御部34は、分割した領域において異なる撮像条件を設定した場合、必要に応じて画像処理部32cの補正部322に前処理の1つとして、第1補正処理を行わせる。
画像処理部32cの補正部322は、境界ブロックに属する各画素に対して、どの被写体領域からの光が入射しているのかを判断する。具体的には、補正部322は、物体検出部34aによる被写体要素の検出結果から撮像素子32aの撮像面における境界の位置を算出する。そして、補正部322は、算出した境界の位置に基づいて境界ブロックを抽出するとともに、抽出した境界ブロックに属する各画素に対してどの被写体要素からの被写体光が入射しているかを算出する。
たとえば、図7,8を例に挙げて説明すると、補正部322は、物体検出部34aによる被写体要素の検出結果から第1領域61と第4領域64との境界B1の位置を算出する。そして補正部322は、算出した境界B1の位置に基づいてブロック82、ブロック85およびブロック87を境界ブロックとして抽出する。そして補正部322は、算出した境界B1の位置に基づいて、境界ブロック82の画素82a、画素82bおよび画素82c、境界ブロック85の画素85a、ならびに境界ブロック87の画素87aに対して人物61aからの被写体光が入射していることを算出する。また、補正部322は、算出した境界B1の位置に基づいて、境界ブロック82の画素82d、境界ブロック85の画素85b、画素85cおよび画素85d、ならびに境界ブロック87の画素87b、画素87cおよび画素87dに対して山64aからの被写体光が入射していることを算出する。
境界ブロック82の画素82a、画素82bおよび画素82cは、第1撮像条件と第4撮像条件との間の撮像条件である第7撮像条件によって人物61aからの被写体光を撮像している。一方、第1領域61についての主ブロックであるブロック81およびブロック84の各画素では、第1撮像条件によって人物61aからの被写体光を撮像している。
そこで、補正部322は、画素82a、画素82bおよび画素82cからの信号に対して、人物61aからの被写体光を第1撮像条件で撮像した場合と同様の信号を得られるように第1補正処理を行う。
同様に、境界ブロック82の画素82dは、第7撮像条件によって山64aからの被写体光を撮像している。一方、第4領域64についての主ブロックであるブロック83、ブロック86、ブロック88およびブロック89の各画素では、第4撮像条件によって山64aからの被写体光を撮像している。
そこで、補正部322は、画素82dからの信号に対して、山64aからの被写体光を第4撮像条件で撮像した場合と同様の信号を得られるように第1補正処理を行う。
たとえば、第1撮像条件と第4撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第4撮像条件のISO感度が800で、第7撮像条件のISO感度が400である場合に、第1補正処理は、以下のように行われる。すなわち、補正部322は、第1補正処理として、画素82a、画素82bおよび画素82cからの信号に対して100/400を掛け、画素82dからの信号に対して800/400を掛ける。
たとえば、第1撮像条件と第4撮像条件との間でシャッター速度のみが異なり、第1撮像条件のシャッター速度が1/1000秒で、第4撮像条件のシャッター速度が1/100秒で、第7撮像条件のシャッター速度が1/500秒である場合、第1補正処理は、以下のように行われる。すなわち、補正部322は、第1補正処理として、画素82a、画素82bおよび画素82cからの信号に対して(1/1000)/(1/500)=1/2を掛け、画素82dからの信号に対して(1/100)/(1/500)=5を掛ける。
たとえば、第1撮像条件と第4撮像条件との間でフレームレートのみが異なり、第1撮像条件のフレームレートが30fpsで、第4撮像条件のフレームレートが60fpsで、第7撮像条件のフレームレートが45fpsである場合、第1補正処理は、以下のように行われる。すなわち、補正部322は、第1補正処理として、画素82a、画素82bおよび画素82cからのフレームレートが45fpsのフレーム画像の信号を、一部間引いてフレームレート30fpsのフレーム画像の信号に変換する。このフレームレートの変換は、画素82a~82cからのフレーム画像の信号のうち、第1撮像条件の30fpsのフレーム画像信号の発生タイミングに近いフレーム画像信号を選択することによって行う。また、上記のフレームレートの変換は、第1撮像条件の30fpsのフレーム画像信号の発生タイミングの前後に発生した画素82a~82cからのフレーム画像の信号に基づき、第1撮像条件の30fpsのフレーム画像信号の発生タイミングに同期したフレーム画像信号を、補間算出してもよい。
また、補正部322は、第1補正処理として、画素82dからのフレームレート45fpsのフレーム画像の信号をフレームレート60fpsのフレーム画像の信号に変換する。このフレームレートの変換は、たとえば画素82dから相前後して読み出されたフレーム画像信号を合成することによって、すなわち、前後のフレーム画像信号に基づき、新たなフレーム画像信号を補間算出することによって、フレーム画像信号の数を増大して行われる。
このようにして、補正部322は、すべての境界ブロックの各画素からの信号に対して必要に応じて第1補正処理を行う。すなわち、補正部322は、境界ブロックに属するある画素からの信号に対して、当該画素と同じ被写体要素についての主ブロックに適用された撮像条件と当該境界ブロックに適用された撮像条件とが異なれば第1補正処理を行う。しかし、当該画素と同じ被写体要素についての主ブロックに適用された撮像条件と当該境界ブロックに適用された撮像条件とが同一であれば第1補正処理を行う必要がないので、補正部322は、第1補正処理を行わない。
上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
<第2補正処理>
制御部34はさらに、画像処理、焦点検出処理、被写体検出(被写体要素を検出)処理、および撮像条件を設定する処理の前に、補正部322に以下の第2補正処理を必要に応じて行わせる。
なお、第2補正処理では、第1補正処理によって補正された境界ブロックの画素からの信号は、境界ブロックに設定された撮像条件ではなく、主ブロックに設定された撮像条件が適用されて撮像されて得られた信号として処理される。
1.画像処理を行う場合
1-1.注目画素Pの撮像条件と注目画素Pの周囲の複数の参照画素Prの撮像条件とが同一である場合
この場合、画像処理部32cでは、補正部322が第2補正処理を行わず、生成部323が第2補正処理されていない複数の参照画素Prの画像データを利用して画像処理を行う。
1-2.注目画素Pの撮像条件と、注目画素Pの周囲の複数の参照画素Prのうちの少なくとも1つの参照画素Prの撮像条件とが異なる場合
注目画素Pにおいて適用された撮像条件を第1撮像条件とし、複数の参照画素Prの一部に適用された撮像条件が第1撮像条件であり、残りの参照画素Prに適用された撮像条件が第2撮像条件であるとする。
この場合には、第2撮像条件が適用された参照画素Prが属するブロック111aに対応する補正部322は、当該第2撮像条件が適用された参照画素Prの画像データに対して以下の(例1)~(例3)のように第2補正処理を行う。そして、生成部323は、第1撮像条件が適用された参照画素Prの画像データと、第2補正処理後の参照画素Prの画像データとを参照して注目画素Pの画像データを算出する画像処理を行う。
(例1)
第2撮像条件が適用された参照画素Prが属するブロック111aに対応する補正部322は、たとえば、第1撮像条件と第2撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第2撮像条件のISO感度が800の場合、当該参照画素Prの画像データに対し、第2補正処理として100/800を掛ける。これにより、撮像条件の相違による画像データ間の差異を小さくする。
(例2)
第2撮像条件が適用された参照画素Prが属するブロック111aに対応する補正部322は、たとえば、第1撮像条件と第2撮像条件との間でシャッター速度のみが異なり、第1撮像条件のシャッター速度が1/1000秒で、第2撮像条件のシャッター速度が1/100秒の場合、当該参照画素Prの画像データに対し、第2補正処理として1/1000/1/100=1/10を掛ける。これにより、撮像条件の相違による画像データ間の差異を小さくする。
(例3)
第2撮像条件が適用された参照画素Prが属するブロック111aに対応する補正部322は、たとえば、第1撮像条件と第2撮像条件との間でフレームレートのみが異なり(電荷蓄積時間は同じ)、第1撮像条件のフレームレートが30fpsで、第2撮像条件のフレームレートが60fpsの場合、当該参照画素Prの画像データ、すなわち第2撮像条件(60fps)の画像データについて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の画像データを採用することを第2補正処理とする。これにより、撮像条件の相違による画像データ間の差異を小さくする。
なお、第2撮像条件(60fps)で取得した前後する複数のフレーム画像に基づいて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の画像データを補間算出することを第2補正処理としてもよい。
なお、注目画素Pにおいて適用された撮像条件を第2撮像条件とし、注目画素Pの周囲の参照画素Prにおいて適用された撮像条件を第1撮像条件とした場合も同様である。すなわち、この場合には、第1撮像条件が適用された参照画素Prが属するブロック111aに対応する補正部322は、当該参照画素Prの画像データに対して上述した(例1)~(例3)のように第2補正処理を行う。
なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件ととみなす。
生成部323は、注目画素Pの撮像条件と同一の撮像条件が適用された参照画素Prの画像データと補正部322で第2補正処理された参照画素Prの画像データとに基づいて、第1の実施の形態における画像処理部33の生成部33cと同様に、画素欠陥補正処理、色補間処理、輪郭強調処理、およびノイズ低減処理等の画像処理を行う。
図25は、第1および第3撮像条件が適用された撮像面の一部領域(以下、第1撮像領域141と呼ぶ)に含まれる各画素からの画像データ(以下、第1画像データと呼ぶ)と、第2および第3撮像条件が適用された撮像面の一部領域(以下、第2撮像領域142と呼ぶ)に含まれる各画素からの画像データ(以下、第2画像データと呼ぶ)との処理について、模式的に表した図である。なお、第1撮像条件は、第1撮像領域141における主ブロックに設定された撮像条件であり、第2撮像条件は、第2撮像領域142における主ブロックに設定された撮像条件である。第3撮像条件は、第1撮像領域141と第2撮像領域142との境界を含む境界ブロックに設定された撮像条件である。
第1撮像領域141の主ブロックの各画素は、第1撮像条件で撮像された、第1画像データの一部を出力し、境界ブロックの各画素のうち第1撮像領域141に属する各画素は、第3撮像条件で撮像された、第1画像データの残部を出力する。第2撮像領域142の主ブロックの各画素は、第2撮像条件で撮像された、第2画像データの一部を出力し、境界ブロックの各画素のうち第2撮像領域142に属する各画素は、第3撮像条件で撮像された、第2画像データの残部を出力する。第1画像データは、処理チップ114に設けられた補正部322のうち、第1画像データを生成した画素が属するブロック111aに対応する補正部322に出力される。以下の説明では、それぞれの第1画像データを生成した画素が属する複数のブロック111aにそれぞれ対応する複数の補正部322を第1処理部151と呼ぶ。
第1処理部151は、必要に応じて、第1画像データに対して上記第1補正処理および上記第2補正処理、または、上記第1補正処理もしくは上記第2補正処理を行う。
同様に、第2画像データは、処理チップ114に設けられた補正部322のうち、第2画像データを生成した画素が属するブロック111aに対応する補正部322に出力される。以下の説明では、それぞれの第2画像データを生成した各画素が属する複数のブロック111aにそれぞれ対応する複数の補正部322を第2処理部152と呼ぶ。
第2処理部152は、必要に応じて、第2画像データに対して上記第1補正処理および上記第2補正処理、または、上記第1補正処理もしくは上記第2補正処理を行う。
なお、第2補正処理を行うにあたり、境界ブロックの各画素から出力される画素からの信号は、第1補正処理によって補正されているものとする。すなわち、第2補正処理を行うにあたり、第1画像データは、すべて第1撮像条件が適用されて撮像して得られたものとして扱われ、第2画像データは、すべて第2撮像条件が適用されて撮像して得られたものとして扱われる。
上述した第2補正処理において、たとえば、注目画素Pが第1撮像領域141に含まれる場合、第2撮像領域142に含まれる参照画素Prからの第2画像データは、図25に示すように第2処理部152によって上述した第2補正処理が行われる。なお、第2処理部152は、撮像条件の相違による画像データ間の差異を小さくするために必要な第1撮像条件についての情報181を、たとえば、第1処理部151から受信する。
同様に、たとえば、注目画素Pが第2撮像領域142に含まれる場合、第1撮像領域141に含まれる参照画素Prからの第1画像データは、第1処理部151で上述した第2補正処理が行われる。なお、第1処理部151は、撮像条件の相違による画像データ間の差異を小さくするために必要な第2撮像条件についての情報を、第2処理部152から受信する。
なお、注目画素Pと参照画素Prとが第1撮像領域141に含まれる場合、第1処理部151は、当該参照画素Prからの第1画像データに第2補正処理を行わない。同様に、注目画素Pと参照画素Prとが第2撮像領域142に含まれる場合、第2処理部152は、当該参照画素Prからの第2画像データに第2補正処理を行わない。
あるいは、第1処理部151と第2処理部152により、それぞれ第1撮像条件の画像データおよび第2撮像条件の画像データの双方を補正してもよい。すなわち、第1撮像条件の注目位置の画像データ、参照位置の画像データのうちの第1撮像条件の画像データ、および参照位置の画像データのうちの第2撮像条件の画像データに対してそれぞれ第2補正処理を施すことにより、第1撮像条件と第2撮像条件との差異に基づく画像の不連続性を緩和するようにしてもよい。
たとえば、上記(例1)において、第1撮像条件(ISO感度が100)である、参照画素Prの画像データに、第2補正処理として400/100を掛け、第2撮像条件(ISO感度が800)である参照画素Prの画像データに、第2補正処理として400/800を掛ける。これにより、撮像条件の相違による画像データ間の差異を小さくする。なお、注目画素の画素データは、色補間処理後に100/400を掛ける第2補正処理を行う。この第2補正処理により色補間処理後の注目画素の画素データを第1撮像条件で撮像した場合と同様の値に変更することができる。さらに、上記(例1)において、第1領域と第2領域との境界からの距離によって第2補正処理の程度を変えても良い。そして上記(例1)の場合に比べて第2補正処理により画像データが増加や減少する割合を少なくすることができ、第2補正処理により生じるノイズを減らすことができる。以上では、上記(例1)について説明したが、上記(例2)にも同様に適用することができる。
生成部323は、第1処理部151および第2処理部152からの画像データに基づいて、画素欠陥補正処理、色補間処理、輪郭強調処理、およびノイズ低減処理等の画像処理を行い、画像処理後の画像データを出力する。
なお、第1処理部151は、注目画素Pが第2撮像領域142に位置する場合に、第1撮像領域141に含まれるすべての画素からの第1画像データを第2補正処理してもよく、第1撮像領域141に含まれる画素のうち、第2撮像領域142の注目画素Pの補間に用いられる可能性がある画素からの第1画像データだけを第2補正処理してもよい。同様に、第2処理部152は、注目画素Pが第1撮像領域141に位置する場合に、第2撮像領域142に含まれるすべての画素からの第2画像データを第2補正処理してもよく、第2撮像領域142に含まれる画素のうち、第1撮像領域141の注目画素Pの補間に用いられる可能性がある画素からの第2画像データだけを第2補正処理してもよい。
2.焦点検出処理を行う場合
第1の実施形態と同様に、制御部34のレンズ移動制御部34dは、撮像画面の所定の位置(フォーカスポイント)に対応する信号データ(画像データ)を用いて焦点検出処理を行う。なお、分割した領域間で異なる撮像条件が設定されており、AF動作のフォーカスポイントが分割された領域の境界部分に位置する場合、すなわちフォーカスポイントが第1領域と第2領域とで2分されている場合、本実施の形態では、以下の2-2.で説明するように、制御部34のレンズ移動制御部34dは、補正部322に対して少なくとも1つの領域の焦点検出用の信号データに対する第2補正処理を行わせる。
なお、第2補正処理を行わせるにあたり、境界ブロックの各画素から出力される画素からの信号は、第1補正処理によって補正されているものとする。すなわち、第2補正処理を行わせるにあたり、第1撮像領域141の各画素からの第1信号データは、すべて第1撮像条件が適用されて撮像して得られたものとして扱われ、第2撮像領域142の各画素からの第2信号データは、すべて第2撮像条件が適用されて撮像して得られたものとして扱われる。
2-1.図15における枠170内の画素からの信号データに、第1撮像条件が適用された信号データと第2撮像条件が適用された信号データが混在しない場合
この場合、補正部322は第2補正処理を行わず、制御部34のレンズ移動制御部34dは枠170で示す焦点検出用画素による信号データをそのまま用いて焦点検出処理を行う。
2-2.図15における枠170内の画素からの信号データに、第1撮像条件が適用された信号データと第2撮像条件が適用された信号データが混在する場合
この場合には、制御部34のレンズ移動制御部34dは、枠170内の画素のうち、第2撮像条件が適用された画素が属するブロック111aに対応する補正部322に対して以下の(例1)~(例3)のように第2補正処理を行わせる。そして、制御部34のレンズ移動制御部34dは、第1撮像条件が適用された画素の信号データと、第2補正処理後の信号データとを用いて焦点検出処理を行う。
(例1)
第2撮像条件が適用された画素が属するブロック111aに対応する補正部322は、たとえば、第1撮像条件と第2撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第2撮像条件のISO感度が800の場合、第2撮像条件の信号データに対し、第2補正処理として100/800を掛ける。これにより、撮像条件の相違による信号データ間の差異を小さくする。
(例2)
第2撮像条件が適用された画素が属するブロック111aに対応する補正部322は、たとえば、第1撮像条件と第2撮像条件との間でシャッター速度のみが異なり、第1撮像条件のシャッター速度が1/1000秒で、第2撮像条件のシャッター速度が1/100秒の場合、第2撮像条件の信号データに対し、第2補正処理として1/1000/1/100=1/10を掛ける。これにより、撮像条件の相違による信号データ間の差異を小さくする。
(例3)
第2撮像条件が適用された画素が属するブロック111aに対応する補正部322は、たとえば、第1撮像条件と第2撮像条件との間でフレームレートのみが異なり(電荷蓄積時間は同じ)、第1撮像条件のフレームレートが30fpsで、第2撮像条件のフレームレートが60fpsの場合、第2撮像条件(60fps)の信号データについて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の信号データを採用することを第2補正処理とする。これにより、撮像条件の相違による信号データ間の差異を小さくする。
なお、第2撮像条件(60fps)で取得した前後する複数のフレーム画像に基づいて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の信号データを補間算出することを第2補正処理としてもよい。
なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
また、上記の例では、信号データのうちの第2撮像条件の信号データに対して第2補正処理を行う例を説明したが、信号データのうちの第1撮像条件の信号データに対して第2補正処理を行ってもよい。
さらにまた、信号データのうちの第1撮像条件の信号データおよび第2撮像条件のデータに対してそれぞれ第2補正処理を行うことにより、第2補正処理後の双方の信号データ間の差を小さくするようにしてもよい。
図26は、焦点検出処理に係る、第1信号データと第2信号データとの処理について模式的に表した図である。
第1撮像領域141の主ブロックの各画素は、第1撮像条件で撮像された、第1信号データの一部を出力し、境界ブロックの各画素のうち第1撮像領域141に属する各画素は、第3撮像条件で撮像された、第1信号データの残部を出力する。第2撮像領域142の主ブロックの各画素は、第2撮像条件で撮像された、第2信号データの一部を出力し、境界ブロックの各画素のうち第2撮像領域142に属する各画素は、第3撮像条件で撮像された、第2信号データの残部を出力する。第1撮像領域141からの第1信号データは、第1処理部151に出力される。同様に、第2撮像領域142からの第2信号データは、第2処理部152に出力される。
第1処理部151は、必要に応じて、第1画像データに対して上記第1補正処理および上記第2補正処理、または、上記第1補正処理もしくは上記第2補正処理を行う。第2処理部152は、必要に応じて、第2画像データに対して上記第1補正処理および上記第2補正処理、または、上記第1補正処理もしくは上記第2補正処理を行う。
なお、上述したように、第2補正処理を行うにあたり、第1信号データは、すべて第1撮像条件が適用されて撮像して得られたものとして扱われ、第2信号データは、すべて第2撮像条件が適用されて撮像して得られたものとして扱われる。
上述した第2補正処理において、信号データのうちの第2撮像条件の信号データに対して第2補正処理を行うことにより、第2補正処理後の信号データと第1撮像条件の信号データとの差を小さくする場合、第2処理部152が処理を行う。第2撮像領域142に含まれる画素からの第2信号データに、第2処理部152は上述した第2補正処理を行う。なお、第2処理部152は、撮像条件の相違による信号データ間の差異を小さくするために必要な第1撮像条件についての情報181を、たとえば、第1処理部151から受信する。
なお、信号データのうちの第2撮像条件の信号データに対して第2補正処理を行うことにより、第2補正処理後の信号データと第1撮像条件の信号データとの差を小さくする場合、第1処理部151は、第1信号データに第2補正処理を行わない。
また、信号データのうちの第1撮像条件の信号データに対して第2補正処理を行うことにより、第2補正処理後の信号データと第1撮像条件の信号データとの差を小さくする場合、第1処理部151が処理を行う。第1撮像領域141に含まれる画素からの第1信号データに、第1処理部151は上述した第2補正処理を行う。なお、第1処理部151は、撮像条件の相違による信号データ間の差異を小さくするために必要な第2撮像条件についての情報を第2処理部152から受信する。
なお、信号データのうちの第1撮像条件の信号データに対して第2補正処理を行うことにより、第2補正処理後の信号データと第1撮像条件の信号データとの差を小さくする場合、第2処理部152は、第2信号データに第2補正処理を行わない。
さらにまた、信号データのうちの第1撮像条件の信号データおよび第2撮像条件のデータに対してそれぞれ第2補正処理を行うことにより、第2補正処理後の双方の信号データ間の差を小さくする場合、第1処理部151と第2処理部152とが処理を行う。第1処理部151は、第1撮像領域141に含まれる画素からの第1信号データに上述した第2補正処理を行い、第2処理部152は、第2撮像領域142に含まれる画素からの第2信号データに上述した第2補正処理を行う。
レンズ移動制御部34dは、第1処理部151および第2処理部152からの信号データに基づいて焦点検出処理を行い、その演算結果に基づいて、撮像光学系31のフォーカスレンズを合焦位置へ移動させるための駆動信号を出力する。
3.被写体検出処理を行う場合
分割した領域間で異なる撮像条件が設定されており、探索範囲190が分割された領域の境界を含む場合、本実施の形態では、以下の3-2.で説明するように、制御部34の物体検出部34aは、補正部322に対して探索範囲190内の少なくとも1つの領域の画像データに対する第2補正処理を行わせる。
なお、第2補正処理を行わせるにあたり、境界ブロックの各画素から出力される画素からの信号は、第1補正処理によって補正されているものとする。すなわち、第2補正処理を行わせるにあたり、第1画像データは、すべて第1撮像条件が適用されて撮像して得られたものとして扱われ、第2画像データは、すべて第2撮像条件が適用されて撮像して得られたものとして扱われる。
3-1.図16における探索範囲190の画像データに、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在しない場合
この場合、補正部322は第2補正処理を行わず、制御部34の物体検出部34aは探索範囲190を構成する画像データをそのまま用いて被写体検出処理を行う。
3-2.図16における探索範囲190の画像データに、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在する場合
この場合、制御部34の物体検出部34aは、探索範囲190の画像のうち、第2撮像条件が適用された画素が属するブロック111aに対応する補正部322に対して、焦点検出処理を行う場合として上述した(例1)~(例3)のように第2補正処理を行わせる。そして、制御部34の物体検出部34aは、第1条件が適用された画素の画像データと、第2補正処理後の画像データとを用いて被写体検出処理を行う。
図27は、被写体検出処理に係る、第1画像データと第2画像データとの処理について模式的に表した図である。
第2補正処理において、第1処理部151または/および第2処理部152で行われる第2補正処理は、焦点検出処理を行う場合として上述した図26についての第2補正処理と同じである。
物体検出部34aは、第1処理部151および第2処理部152からの画像データに基づいて被写体要素を検出する処理を行い、検出結果を出力する。
4.撮像条件を設定する場合
撮像画面の領域を分割し、分割した領域間で異なる撮像条件を設定した状態で、新たに測光し直して露出条件を決定する場合について説明する。なお、露出条件を決定するにあたり、境界ブロックの各画素から出力される画素からの信号は、第1補正処理によって補正されているものとする。
4-1.測光範囲の画像データに、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在しない場合
この場合、補正部322は第2補正処理を行わず、制御部34の設定部34bは測光範囲を構成する画像データをそのまま用いて露出演算処理を行う。
4-2.測光範囲の画像データに、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在する場合
この場合、制御部34の設定部34bは、測光範囲の画像データのうち、第2撮像条件が適用された画素が属するブロック111aに対応する補正部322に対して、焦点検出処理を行う場合として上述した(例1)~(例3)のように第2補正処理を行わせる。そして、制御部34の設定部34bは、第2補正処理後の画像データを用いて露出演算処理を行う。
図28は、露出演算処理等の撮像条件の設定に係る、第1画像データと第2画像データとの処理について模式的に表した図である。
第2補正処理において、第1処理部151または/および第2処理部152で行われる第2補正処理は、焦点検出処理を行う場合として上述した図26についての第2補正処理と同じである。
設定部34bは、第1処理部151および第2処理部152からの画像データに基づいて露出演算処理等の撮像条件の算出処理を行い、その演算結果に基づいて、撮像部32による撮像画面を、検出した被写体要素を含む複数の領域に分割するとともに、複数の領域に対して撮像条件を再設定する。
以上説明した第3の実施の形態によれば、次の作用効果が得られる。
(1)画像処理部32cは、第1撮像領域141で撮像された被写体の画像データの生成を行う第1処理部151と、第2撮像領域142で撮像された被写体の画像データの生成を行う第2処理部152とを有する。第1処理部151は、第2撮像領域142で撮像された被写体の画像データにより第1撮像領域141で撮像された被写体の画像データを生成する。これにより、画像データに対する前処理(第1補正処理、第2補正処理)を複数の補正部322で並列処理できるので、補正部322における処理負担を軽減できる。
(2)画像処理部32cは、第1撮像領域141に入射した被写体に基づく信号の生成を行う第1処理部151と、第2撮像領域142に入射した被写体に基づく信号の生成を行う第2処理部152とを有する。第1処理部151は、第2撮像領域142に入射した被写体に基づく信号により第1撮像領域141で撮像された被写体に基づく信号を生成する。これにより、画像データの前処理を複数の補正部322で並列処理できるので、補正部322における処理負担を軽減できるとともに、複数の補正部322による前処理が並列処理によって短時間に行われるので、レンズ移動制御部34dでの焦点検出処理の開始までの時間を短縮化でき、焦点検出処理の高速化に資する。
---第3の実施の形態の変形例---
次のような変形も本発明の範囲内であり、変形例の1つ、もしくは複数を上述の実施の形態と組み合わせることも可能である。
(変形例13)
上述した第3の実施の形態では、補正部322の1つとブロック111a(単位区分)の1つとが対応している。しかし、補正部322の1つと、複数のブロック111a(単位区分)を有する複合ブロック(複合区分)の1つとが対応するようにしてもよい。この場合、補正部322は、当該複合ブロックに含まれる複数のブロック111aに属する画素からの画像データを順次補正する。複数の補正部322が、複数のブロック111aを有する複合ブロック毎に対応して設けられていても、画像データの第2補正処理を複数の補正部322で並列処理できるので、補正部322における処理負担を軽減でき、撮像条件が異なる領域でそれぞれ生成された画像データから適切な画像を短時間で生成することができる。
(変形例14)
上述した第3の実施の形態では、生成部323は撮像部32Aの内部に設けられている。しかし、生成部323を撮像部32Aの外部に設けてもよい。生成部323を撮像部32Aの外部に設けても上述した作用効果と同様の作用効果を奏する。
(変形例15)
上述した第3の実施の形態では、積層型撮像素子100Aは、裏面照射型撮像チップ111と、信号処理チップ112と、メモリチップ113とに加えて、上述した前処理および画像処理を行う画像処理チップ114をさらに備える。しかし、積層型撮像素子100Aに画像処理チップ114を設けず、信号処理チップ112に画像処理部32cが設けられていてもよい。
(変形例16)
上述した第3の実施の形態では、第2処理部152は、撮像条件の相違による画像データ間の差異を小さくするために必要な第1撮像条件についての情報を、第1処理部151から受信した。また、第1処理部151は、撮像条件の相違による画像データ間の差異を小さくするために必要な第2撮像条件についての情報を、第2処理部152から受信した。しかし、第2処理部152は、撮像条件の相違による画像データ間の差異を小さくするために必要な第1撮像条件についての情報を、駆動部32bや制御部34から受信してもよい。同様に、第1処理部151は、撮像条件の相違による画像データ間の差異を小さくするために必要な第2撮像条件についての情報を、駆動部32bや制御部34から受信してもよい。
なお、上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。
以上説明した撮像光学系31は、ズームレンズやアオリレンズを含んでいてもよい。レンズ移動制御部34dは、ズームレンズを光軸方向に移動させることによって、撮像光学系31による画角を調節する。すなわち、ズームレンズの移動によって、広い範囲の被写体の像を得たり、遠くの被写体について大きな像を得たりするなど、撮像光学系31による像を調節することができる。
また、レンズ移動制御部34dは、アオリレンズを光軸に直交する方向に移動させることによって、撮像光学系31による像の歪みを調節することができる。
そして、撮像光学系31による像の状態(例えば画角の状態、または像の歪みの状態)を調節するために、上述したような前処理後の画像データを用いる方が好ましいという考え方に基づき、上述した前処理を行うとよい。
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1,1C…カメラ
1B…撮像システム
31…撮像光学系
32…撮像部
32a、100…撮像素子
33…画像処理部
33a,321…入力部
33b,322…補正部
33c,323…生成部
34…制御部
34a…物体検出部
34b…設定部
34c…撮像制御部
34d…レンズ移動制御部
35…表示部
80…所定範囲
90…注目領域
1001…撮像装置
1002…表示装置
P…注目画素

Claims (12)

  1. 複数の画素を含むブロックごとに撮像条件が設定可能な撮像素子と、
    第1被写体からの第1の光が入射した第1領域の前記ブロックに第1撮像条件を設定し、第2被写体からの第2の光が入射した第2領域の前記ブロックに第2撮像条件を設定し、前記第1領域と前記第2領域との間にある第3領域の前記ブロックに前記第1撮像条件および前記第2撮像条件と異なる撮像条件を設定する撮像条件設定部と、を備え
    前記撮像条件設定部は、前記第1撮像条件により設定される設定値と前記第2撮像条件により設定される設定値とに基づいて、前記第3領域に設定される撮像条件の数を設定する撮像装置。
  2. 請求項1に記載の撮像装置において、
    前記第3領域の前記ブロックの複数の前記画素の一部からの信号を前記第1撮像条件に基づいて補正し、前記第3領域の前記ブロックの複数の前記画素の他部からの信号を前記第2撮像条件に基づいて補正する補正部を備える撮像装置。
  3. 請求項2に記載の撮像装置において、
    前記補正部により補正された信号と、前記第1領域の前記ブロックの前記画素からの信号と、前記第2領域の前記ブロックの前記画素からの信号と、により画像を生成する生成部を備える撮像装置。
  4. 請求項2に記載の撮像装置において、
    前記補正部により補正された信号と、前記第1領域の前記ブロックの前記画素からの信号と、前記第2領域の前記ブロックの前記画素からの信号と、により被写体を検出する検出部を備える撮像装置。
  5. 請求項3に記載の撮像装置において、
    前記撮像素子は、光学系の光軸方向に移動可能なレンズを介して被写体を撮像する複数の領域の前記ブロックを有し、
    前記補正部により補正された信号と、前記複数の領域のうちの前記第1領域の前記ブロックの前記画素からの信号と、前記複数の領域のうちの前記第2領域の前記ブロックの前記画素からの信号と、により前記レンズを移動する制御部を備える撮像装置。
  6. 請求項2に記載の撮像装置において、
    前記撮像素子は、光学系の光軸方向に移動可能なレンズを介して被写体を撮像する複数の領域の前記ブロックを有し、
    前記補正部により補正された信号と、前記複数の領域のうちの前記第1領域の前記ブロックの前記画素からの信号と、前記複数の領域のうちの前記第2領域の前記ブロックの前記画素からの信号と、により前記レンズを移動させるための信号を生成する制御部を備える撮像装置。
  7. 請求項2に記載の撮像装置において、
    前記補正部により補正された信号と、前記第1領域の前記ブロックの前記画素からの信号と、前記第2領域の前記ブロックの前記画素からの信号と、により前記ブロックに設定されている撮像条件の設定を制御する撮像装置。
  8. 請求項1から7のいずれか一項に記載の撮像装置において、
    前記撮像条件設定部は、前記第1撮像条件と前記第2撮像条件とに基づいて前記異なる撮像条件を設定する撮像装置。
  9. 請求項1から7のいずれか一項に記載の撮像装置において、
    前記撮像条件設定部は、前記第3領域に設定される設定値を、前記第1撮像条件により設定される設定値と、前記第2撮像条件により設定される設定値と、の間の値に設定する撮像装置。
  10. 請求項8に記載の撮像装置において、
    前記撮像条件設定部は、前記第3領域の前記ブロックの前記画素からの信号から階調情報が喪失しないように前記異なる撮像条件を設定する撮像装置。
  11. 請求項1に記載の撮像装置において、
    前記撮像条件設定部は、前記第1撮像条件により設定される設定値と前記第2撮像条件により設定される設定値との差が大きくなると、前記第3領域に設定される撮像条件の数を多く設定する撮像装置。
  12. 請求項1に記載の撮像装置において、
    前記撮像条件設定部は、前記第1撮像条件により設定される設定値と前記第2撮像条件により設定される設定値との差が第1差分では前記第3領域に第1数の撮像条件を設定し、前記第1差分よりも大きい第2差分では前記第2領域に前記第1数よりも大きい第2数の撮像条件を設定する撮像装置。
JP2022075764A 2017-03-23 2022-05-02 撮像装置 Active JP7439856B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022075764A JP7439856B2 (ja) 2017-03-23 2022-05-02 撮像装置
JP2024020973A JP2024045553A (ja) 2017-03-23 2024-02-15 撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057679A JP2018160830A (ja) 2017-03-23 2017-03-23 撮像装置
JP2022075764A JP7439856B2 (ja) 2017-03-23 2022-05-02 撮像装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017057679A Division JP2018160830A (ja) 2017-03-23 2017-03-23 撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024020973A Division JP2024045553A (ja) 2017-03-23 2024-02-15 撮像装置

Publications (2)

Publication Number Publication Date
JP2022115944A JP2022115944A (ja) 2022-08-09
JP7439856B2 true JP7439856B2 (ja) 2024-02-28

Family

ID=63796005

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017057679A Ceased JP2018160830A (ja) 2017-03-23 2017-03-23 撮像装置
JP2022075764A Active JP7439856B2 (ja) 2017-03-23 2022-05-02 撮像装置
JP2024020973A Pending JP2024045553A (ja) 2017-03-23 2024-02-15 撮像装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017057679A Ceased JP2018160830A (ja) 2017-03-23 2017-03-23 撮像装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024020973A Pending JP2024045553A (ja) 2017-03-23 2024-02-15 撮像装置

Country Status (1)

Country Link
JP (3) JP2018160830A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137662A1 (ja) 2018-12-26 2020-07-02 富士フイルム株式会社 撮像装置、撮像装置の画像データ処理方法、及びプログラム
EP3952292A4 (en) * 2019-03-29 2022-11-30 Nikon Corporation IMAGE CAPTURE ELEMENT AND IMAGE CAPTURE DEVICE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092660A (ja) 2013-10-01 2015-05-14 株式会社ニコン 撮像装置、撮像装置の制御方法、電子機器、電子機器の制御方法、及び制御プログラム
JP2016192606A (ja) 2015-03-30 2016-11-10 株式会社ニコン 電子機器、およびプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006157862A (ja) * 2004-11-08 2006-06-15 Matsushita Electric Ind Co Ltd Mos型撮像素子および撮像装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092660A (ja) 2013-10-01 2015-05-14 株式会社ニコン 撮像装置、撮像装置の制御方法、電子機器、電子機器の制御方法、及び制御プログラム
JP2016192606A (ja) 2015-03-30 2016-11-10 株式会社ニコン 電子機器、およびプログラム

Also Published As

Publication number Publication date
JP2024045553A (ja) 2024-04-02
JP2018160830A (ja) 2018-10-11
JP2022115944A (ja) 2022-08-09

Similar Documents

Publication Publication Date Title
JP7363953B2 (ja) 撮像装置
JP7372034B2 (ja) 撮像装置、および画像処理装置
CN112714252B (zh) 摄像装置
WO2017170716A1 (ja) 撮像装置、画像処理装置、および電子機器
JP7439856B2 (ja) 撮像装置
WO2017170717A1 (ja) 撮像装置、焦点調節装置、および電子機器
WO2017170726A1 (ja) 撮像装置および電子機器
JP6521085B2 (ja) 撮像装置、および制御装置
JP6589988B2 (ja) 撮像装置
JP6604385B2 (ja) 撮像装置
JP6589989B2 (ja) 撮像装置
WO2017057267A1 (ja) 撮像装置、および焦点検出装置
WO2017057280A1 (ja) 撮像装置、および被写体検出装置
WO2017170724A1 (ja) 撮像装置、レンズ調節装置、および電子機器
JPWO2017170718A1 (ja) 撮像装置、被写体検出装置、および電子機器
JPWO2017170719A1 (ja) 撮像装置、および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R150 Certificate of patent or registration of utility model

Ref document number: 7439856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150