JP7439813B2 - battery monitoring device - Google Patents

battery monitoring device Download PDF

Info

Publication number
JP7439813B2
JP7439813B2 JP2021196921A JP2021196921A JP7439813B2 JP 7439813 B2 JP7439813 B2 JP 7439813B2 JP 2021196921 A JP2021196921 A JP 2021196921A JP 2021196921 A JP2021196921 A JP 2021196921A JP 7439813 B2 JP7439813 B2 JP 7439813B2
Authority
JP
Japan
Prior art keywords
information
battery
intensity
unit
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021196921A
Other languages
Japanese (ja)
Other versions
JP2022033141A (en
Inventor
達宏 沼田
俊一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2021196921A priority Critical patent/JP7439813B2/en
Publication of JP2022033141A publication Critical patent/JP2022033141A/en
Application granted granted Critical
Publication of JP7439813B2 publication Critical patent/JP7439813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車両等に搭載されている組電池を監視する電池監視装置に関する。 The present invention relates to a battery monitoring device that monitors assembled batteries installed in vehicles and the like.

電池監視装置の中には、次のように構成されたものがある。電池監視装置は、組電池が有する複数のセル電池をグループ分けした電池群毎に設置されているサテライトと、電池ECUとを有する。各サテライトと電池ECUとは、無線通信可能に構成されている。その無線通信により、各サテライトは、セル電池に関する情報である電池情報を電池ECUに送信する。 Some battery monitoring devices are configured as follows. The battery monitoring device includes a satellite and a battery ECU, which are installed for each battery group in which a plurality of cell batteries included in the assembled battery are grouped. Each satellite and battery ECU are configured to be able to communicate wirelessly. Through the wireless communication, each satellite transmits battery information, which is information regarding the cell battery, to the battery ECU.

電池監視装置は、あるサテライトが所定の周波数により電池情報を電池ECUへ送信するのに失敗した場合、別の周波数帯を利用して送信をリトライする周波数冗長や、別のサテライトを経由することで送信を成立させる空間冗長を利用して、電池情報を電池ECUに送信する。そして、このような技術を示す文献としては、次の特許文献1がある。 The battery monitoring device uses frequency redundancy, which retries transmission using a different frequency band if a satellite fails to transmit battery information to the battery ECU using a predetermined frequency, or by transmitting battery information via another satellite. Battery information is transmitted to the battery ECU using spatial redundancy to establish transmission. As a document showing such a technique, there is the following Patent Document 1.

特許第6093448号公報Patent No. 6093448

このような構成の場合、あるサテライトが電池情報の送信に失敗した場合にも、別の周波数体を利用すること、または別のサテライトを経由することにより、電池情報を電池ECUに送信することができる。しかしながら、上記の構成では、電波の波形に基づいて電池情報を伝達しているので、例えば、電波の波形の把握を困難にするノイズ強度を持って、使用周波数帯域全体にまたがるノイズが進入した場合等には、電池情報をサテライトから電池ECUに伝達することができなくなる。 In such a configuration, even if a satellite fails to transmit battery information, it is possible to transmit battery information to the battery ECU by using another frequency body or via another satellite. can. However, in the above configuration, battery information is transmitted based on the waveform of radio waves, so for example, if noise that spans the entire frequency band in use enters with a noise intensity that makes it difficult to understand the waveform of radio waves. etc., it becomes impossible to transmit battery information from the satellite to the battery ECU.

本発明は、上記事情に鑑みてなされたものであり、電池情報をサテライトから電池ECUへ、電波の波形に基づく通信により伝達するのが難しい状況下においても、伝達できるようにすることを、主たる目的とする。 The present invention has been made in view of the above circumstances, and its main purpose is to enable battery information to be transmitted from a satellite to a battery ECU even under circumstances where it is difficult to transmit battery information by communication based on radio waveforms. purpose.

本発明の電池監視装置は、組電池が有する複数のセル電池をグループ分けした電池群毎に設置されており、前記セル電池に関する情報である電池情報を取得するサテライトと、電池ECUと、制御部と、を有し、前記サテライトは、子機を有し、前記電池ECUは、前記子機と無線通信を行う親機を有し、前記子機の通信機は、前記親機に送信する電波の強度を変化させることにより、当該電波の強度変化に、前記電池情報を持たせる送信強度変調部を有し、前記親機の通信機は、前記子機から受信した電波の強度変化が持つ前記電池情報を取得する強度情報処理部を有し、前記制御部は、前記電池情報を取得して、前記電池情報に基づいて前記送信強度変調部を制御し、前記制御部は、電源スイッチを切り替え制御することにより、前記送信強度変調部への電力の供給及び遮断を切り替え制御する。 The battery monitoring device of the present invention is installed for each battery group in which a plurality of cell batteries included in an assembled battery are divided into groups, and includes a satellite that acquires battery information that is information regarding the cell batteries, a battery ECU, and a control unit. The satellite has a slave unit, the battery ECU has a base unit that performs wireless communication with the slave unit, and the communication device of the slave unit transmits radio waves to the base unit. The communication device of the base unit includes a transmission intensity modulation unit that makes the intensity change of the radio wave include the battery information by changing the intensity of the radio wave, and the communication device of the base unit has the transmission intensity modulation unit that gives the battery information to the intensity change of the radio wave received from the slave unit. an intensity information processing section that acquires battery information; the control section acquires the battery information and controls the transmission intensity modulation section based on the battery information; and the control section switches a power switch. By controlling, supply and cutoff of power to the transmission intensity modulation section are switched and controlled.

本発明によれば、子機は送信強度変調部により、親機に送信する電波の強度変化に電池情報を持たせる。そして、親機は、強度情報処理部により、子機から受信した電波の強度変化が持つ電池情報を取得する。 According to the present invention, the slave unit uses the transmission intensity modulation unit to include battery information in the intensity change of radio waves transmitted to the base unit. Then, the base device uses the strength information processing unit to acquire battery information included in the change in the intensity of the radio waves received from the slave device.

そのため、電波の波形に基づく通信以外の通信である、電波の強度変化に基づく通信により、電池情報をサテライトから電池ECUへ伝達することができる。そのため、電池情報をサテライトから電池ECUへ、電波の波形に基づく通信により伝達するのが難しい状況下においても、電波の強度変化に基づく通信により伝達することができる。 Therefore, battery information can be transmitted from the satellite to the battery ECU through communication based on changes in the intensity of radio waves, which is communication other than communication based on the waveform of radio waves. Therefore, even in situations where it is difficult to transmit battery information from the satellite to the battery ECU by communication based on the waveform of radio waves, it is possible to transmit the battery information by communication based on changes in the intensity of radio waves.

第1実施形態の電池監視装置を示す回路図A circuit diagram showing the battery monitoring device of the first embodiment サテライトを示す回路図Schematic showing satellite 電池ECUを示す回路図Circuit diagram showing battery ECU 受信信号の電力変化を示すグラフGraph showing the power change of the received signal 第2実施形態のサテライトを示す回路図Circuit diagram showing the satellite of the second embodiment 電池ECUを示す回路図Circuit diagram showing battery ECU 受信信号の電力変化及び電圧波形を示すグラフGraph showing power changes and voltage waveforms of received signals 第3実施形態の受信信号の強度変化を示すグラフGraph showing changes in received signal strength in the third embodiment 第4実施形態のサテライトを示す回路図Circuit diagram showing the satellite of the fourth embodiment 電池ECUを示す回路図Circuit diagram showing battery ECU 第5実施形態のサテライトを示す回路図Circuit diagram showing the satellite of the fifth embodiment 電池ECUを示す回路図Circuit diagram showing battery ECU

次に、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更して実施できる。 Next, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments, and can be implemented with appropriate modifications without departing from the spirit of the invention.

[第1実施形態]
図1は、本実施形態の電池監視装置60を示す回路図である。電池監視装置60は、車両に搭載されている組電池90を監視する装置であって、電池ECU10と、複数のサテライト20とを有する。サテライト20は、組電池90が有する複数のセル電池95をグループ分けした電池群94毎に設置されている。
[First embodiment]
FIG. 1 is a circuit diagram showing a battery monitoring device 60 of this embodiment. The battery monitoring device 60 is a device that monitors a battery pack 90 mounted on a vehicle, and includes a battery ECU 10 and a plurality of satellites 20. The satellite 20 is installed for each battery group 94 in which a plurality of cell batteries 95 included in the assembled battery 90 are divided into groups.

電池ECU10は、制御MCU15と親機C1とを有する。サテライト20は、監視回路25と子機C2とを有する。制御MCU15は、監視回路25に対する指令を出す。その指令に関する情報である指令情報i1は、親機C1から子機C2に送信されることにより、監視回路25に伝達される。監視回路25は、その指令情報i1に基づいて、各セル電池95の電圧や電流等に関する情報である電池情報i2を取得する。その電池情報i2は、子機C2から親機C1に送信されることにより、制御MCU15に伝達される。 The battery ECU 10 includes a control MCU 15 and a master unit C1. The satellite 20 includes a monitoring circuit 25 and a slave unit C2. The control MCU 15 issues commands to the monitoring circuit 25. Command information i1, which is information regarding the command, is transmitted to the monitoring circuit 25 by being transmitted from the base unit C1 to the slave unit C2. The monitoring circuit 25 acquires battery information i2, which is information regarding the voltage, current, etc. of each cell battery 95, based on the command information i1. The battery information i2 is transmitted from the slave device C2 to the parent device C1, thereby being transmitted to the control MCU 15.

図2は、サテライト20を示す回路図であり、図3は、電池ECU10を示す回路図である。子機C2及び親機C1の各通信機は、情報処理部30と、制御部36と、送信処理部45と、増幅部50と、アンテナ51と、RSSI演算部59とを有する。制御部36は、情報処理部30と送信処理部45と増幅部50とRSSI演算部59とを制御する。 FIG. 2 is a circuit diagram showing the satellite 20, and FIG. 3 is a circuit diagram showing the battery ECU 10. Each of the communication devices, child device C2 and parent device C1, includes an information processing section 30, a control section 36, a transmission processing section 45, an amplification section 50, an antenna 51, and an RSSI calculation section 59. The control section 36 controls the information processing section 30, the transmission processing section 45, the amplification section 50, and the RSSI calculation section 59.

各通信機の情報処理部30は、送信情報処理部31と強度情報処理部33とを有する。各通信機の増幅部50は、送信増幅部49と受信増幅部53とを有する。 The information processing section 30 of each communication device includes a transmission information processing section 31 and an intensity information processing section 33. The amplification section 50 of each communication device includes a transmission amplification section 49 and a reception amplification section 53.

次に、電池情報i2をサテライト20から電池ECU10に伝達する際について説明する。図2に示すように、サテライト20の監視回路25は、取得した電池情報i2を、子機C2の送信情報処理部31に送信する。送信情報処理部31は、電池情報i2の受信に基づいて、送信指令αを送信処理部45に送信する。 Next, the transmission of the battery information i2 from the satellite 20 to the battery ECU 10 will be described. As shown in FIG. 2, the monitoring circuit 25 of the satellite 20 transmits the acquired battery information i2 to the transmission information processing unit 31 of the slave unit C2. The transmission information processing section 31 transmits the transmission command α to the transmission processing section 45 based on the reception of the battery information i2.

送信処理部45は、送信指令αを受信すると、電波を発生させる電気信号である送信信号Saを発生させる。その送信信号Saは、送信増幅部49に入力される。制御部36は、情報処理部30から電池情報i2を取得して、その電池情報i2に基づいて送信増幅部49を制御することにより、送信信号Saの電力変化に電池情報i2を持たせる。具体的には、制御部36は、送信信号Saを所定のタイミングでは増幅させ、それ以外のタイミングでは増幅させないことにより、送信信号Saの電力を変化させて、送信信号Saの電力変化に電池情報i2を持たせる。 Upon receiving the transmission command α, the transmission processing unit 45 generates a transmission signal Sa, which is an electrical signal that generates radio waves. The transmission signal Sa is input to the transmission amplification section 49. The control unit 36 acquires the battery information i2 from the information processing unit 30 and controls the transmission amplification unit 49 based on the battery information i2, thereby causing the power change of the transmission signal Sa to include the battery information i2. Specifically, the control unit 36 changes the power of the transmission signal Sa by amplifying the transmission signal Sa at a predetermined timing and not at other timings, and incorporates battery information into the power change of the transmission signal Sa. Have i2.

その送信信号Saは、アンテナ51に入力される。その送信信号Saにより、アンテナ51で電波が発生する。その電波は、送信信号Saが増幅された所定のタイミングでは相対的に強度が強い強電波状態になり、それ以外のタイミングでは相対的に強度が弱い弱電波状態になる。それにより、電波は、強度変化に電池情報i2を持つことになる。つまり、子機C2は、送信増幅部49により送信信号Saの電力を変化させることにより、送信する電波の強度を変化させて、当該強度変化に電池情報i2を持たせることになる。 The transmission signal Sa is input to the antenna 51. Radio waves are generated at the antenna 51 by the transmission signal Sa. The radio waves are in a relatively strong strong radio wave state at a predetermined timing when the transmission signal Sa is amplified, and are in a relatively weak weak radio wave state at other timings. Thereby, the radio wave has battery information i2 in the intensity change. That is, by changing the power of the transmission signal Sa by the transmission amplifying section 49, the slave unit C2 changes the intensity of the radio waves to be transmitted, and makes the change in intensity include the battery information i2.

図3に示すように、親機C1のアンテナ51が子機C2から電波を受信すると、その電波により、電気信号である受信信号Sbが発生する。その受信信号Sbは、電力変化に電池情報i2を持つことになる。 As shown in FIG. 3, when the antenna 51 of the base unit C1 receives a radio wave from the slave unit C2, the radio wave generates a reception signal Sb which is an electrical signal. The received signal Sb has battery information i2 in the power change.

その受信信号Sbは、受信増幅部53に入力される。受信増幅部53は、受信信号Sbを増幅量可変に増幅させることにより、RSSI演算部59に入力される受信信号Sbの電力範囲を調節する。具体的には、受信増幅部53は、RSSI演算部59に入力される受信信号Sbの電力の最大値が、RSSI演算部59により測定可能な受信信号Sbの電力の上限値Xを超えない範囲で、受信信号Sbの電力を増幅させる。 The received signal Sb is input to the reception amplification section 53. The reception amplification unit 53 adjusts the power range of the reception signal Sb input to the RSSI calculation unit 59 by amplifying the reception signal Sb with a variable amplification amount. Specifically, the reception amplification unit 53 operates within a range in which the maximum value of the power of the reception signal Sb input to the RSSI calculation unit 59 does not exceed the upper limit value X of the power of the reception signal Sb that can be measured by the RSSI calculation unit 59. Then, the power of the received signal Sb is amplified.

増幅された受信信号Sbは、RSSI演算部59に入力される。RSSI演算部59は、受信信号Sbの電力を測定する。その電力の測定は、例えば、交流の電気信号である受信信号Sbの電力の実効値を測定することにより行う。その測定された電力を表す電力情報β2は、強度情報処理部33に入力される。強度情報処理部33は、電力情報β2に基づいて、受信信号Sbの電力変化を取得して、その電力変化が持つ電池情報i2、すなわち、子機C2から受信した電波の強度変化が持つ電池情報i2を取得する。その電池情報i2は、制御MCU15に送信される。以上により、電池情報i2が、サテライト20から電池ECU10に伝達される。 The amplified received signal Sb is input to the RSSI calculation section 59. RSSI calculation section 59 measures the power of received signal Sb. The power is measured, for example, by measuring the effective value of the power of the received signal Sb, which is an AC electrical signal. Power information β2 representing the measured power is input to the intensity information processing section 33. The intensity information processing unit 33 acquires the power change of the received signal Sb based on the power information β2, and obtains battery information i2 that is included in the power change, that is, battery information that is included in the intensity change of the radio wave received from the slave device C2. Get i2. The battery information i2 is transmitted to the control MCU 15. As described above, battery information i2 is transmitted from satellite 20 to battery ECU 10.

なお、指令情報i1を電池ECU10からサテライト20に伝達する際の説明については、上記の電池情報i2をサテライト20から電池ECU10に伝達する際の説明を、次のように読み替えて同様である。すなわち、「電池情報i2」を「指令情報i1」に読み替える。また、「図2」及び「図3」の各方を他方に読み替え、「サテライト20」及び「電池ECU10」の各方を他方に読み替える。また、「監視回路25」及び「制御MCU15」の各方を他方に読み替え、「子機C2」及び「親機C1」の各方を他方に読み替える。 Note that the explanation for transmitting the command information i1 from the battery ECU 10 to the satellite 20 is the same as the explanation for transmitting the battery information i2 from the satellite 20 to the battery ECU 10 above, except that it is read as follows. That is, "battery information i2" is read as "command information i1". Further, each of "FIG. 2" and "FIG. 3" is replaced with the other, and each of "satellite 20" and "battery ECU 10" is replaced with the other. Also, each of "monitoring circuit 25" and "control MCU 15" is read as the other, and each of "slave device C2" and "base device C1" is read as the other.

図4は、強度情報処理部33に入力される受信信号Sbの電力変化を示すグラフである。強度情報処理部33は、受信信号Sbの電力が所定の上側閾値Hiを上回ると「1」と判定し、上側閾値Hiよりも小さい所定の下側閾値Loを下回ると「0」と判定する。すなわち、強度情報処理部33は、受信信号Sbの電力が、一旦、上側閾値Hiを上回ったら、次に下側閾値Loを下回るまで「1」と判定する。そして、受信信号Sbの電力が、一旦、下側閾値Loを下回ったら、次に上側閾値Hiを上回るまで「0」と判定する。これにより、受信信号Sbの電力変化が持つ情報、すなわち、受信した電波の強度変化が持つ情報を、デジタル処理して解析する。 FIG. 4 is a graph showing changes in the power of the received signal Sb input to the intensity information processing section 33. As shown in FIG. The intensity information processing unit 33 determines that the power of the received signal Sb is "1" when it exceeds a predetermined upper threshold value Hi, and determines that it is "0" when it falls below a predetermined lower threshold value Lo that is smaller than the upper threshold value Hi. That is, once the power of the received signal Sb exceeds the upper threshold Hi, the intensity information processing unit 33 determines that the power of the received signal Sb is "1" until the power falls below the lower threshold Lo. Once the power of the received signal Sb falls below the lower threshold Lo, it is determined to be "0" until it exceeds the upper threshold Hi. Thereby, the information contained in the power change of the received signal Sb, that is, the information contained in the intensity change of the received radio wave, is digitally processed and analyzed.

本実施形態によれば、次の効果が得られる。子機C2は送信増幅部49により、親機C1に送信する電波の強度変化に電池情報i2を持たせる。そして、親機C1は、RSSI演算部59及び強度情報処理部33により、子機C2から受信した電波の強度変化が持つ電池情報i2を取得する。 According to this embodiment, the following effects can be obtained. The slave unit C2 uses the transmission amplification unit 49 to include battery information i2 in the intensity change of the radio waves transmitted to the base unit C1. Then, the base unit C1 uses the RSSI calculation unit 59 and the intensity information processing unit 33 to acquire battery information i2 that is included in the change in the intensity of the radio wave received from the slave unit C2.

そのため、電波の波形に基づく通信以外の通信である、電波の強度変化に基づく通信により、電池情報i2をサテライト20から電池ECU10へ伝達することができる。そのため、電池情報i2をサテライト20から電池ECU10へ、電波の波形に基づく通信により伝達するのが難しい状況下においても、電波の強度変化に基づく通信により伝達することができる。 Therefore, the battery information i2 can be transmitted from the satellite 20 to the battery ECU 10 by communication based on changes in the intensity of radio waves, which is communication other than communication based on the waveform of radio waves. Therefore, even in a situation where it is difficult to transmit the battery information i2 from the satellite 20 to the battery ECU 10 by communication based on the waveform of radio waves, the battery information i2 can be transmitted by communication based on changes in the intensity of radio waves.

また、親機C1から子機C2への指令情報i1の伝達についても、上記の子機C2から親機C1への電池情報i2の伝達の場合と同様に、電波の強度変化に基づく通信により行うことができる。そのため、指令情報i1を電池ECU10からサテライト20へ、電波の波形に基づく通信により伝達するのが難しい状況下においても、電波の強度変化に基づく通信により伝達することができる。 Also, the transmission of the command information i1 from the base unit C1 to the slave unit C2 is performed by communication based on changes in the strength of radio waves, similar to the transmission of the battery information i2 from the slave unit C2 to the base unit C1 described above. be able to. Therefore, even in a situation where it is difficult to transmit the command information i1 from the battery ECU 10 to the satellite 20 by communication based on the waveform of radio waves, it is possible to transmit the command information i1 by communication based on changes in the intensity of radio waves.

また、送信増幅部49により、送信信号Saを所定のタイミングでは増幅させ、それ以外のタイミングでは増幅させないことにより、シンプルな態様で、電波の強度を変調することができる。また、受信増幅部53が有るため、受信した電波が弱く、それにより受信信号Sbが弱い場合にも、受信増幅部53により受信信号Sbの電力を増幅させることができる。そのため、RSSI演算部59は、受信信号Sbの電力を測定し易くなり、それに伴い、強度情報処理部33は、受信信号Sbの電力変化を解析し易くなる。 Furthermore, the transmission amplification section 49 amplifies the transmission signal Sa at a predetermined timing and does not amplify it at other timings, so that the intensity of the radio wave can be modulated in a simple manner. Further, since the reception amplification section 53 is provided, even if the received radio waves are weak and therefore the reception signal Sb is weak, the reception amplification section 53 can amplify the power of the reception signal Sb. Therefore, the RSSI calculation unit 59 can easily measure the power of the received signal Sb, and accordingly, the intensity information processing unit 33 can easily analyze the power change of the received signal Sb.

また、受信増幅部53は、RSSI演算部59により測定可能な受信信号Sbの電力の上限値Xを超えない範囲で、受信信号Sbの電力を増幅させるので、当該上限値Xを超えるまで、受信信号Sbの強度を増幅させる場合に比べて、増幅量を小さく抑えることができる。そのため、受信増幅部53による消費電力を抑えることができると共に、増幅量が小さくて済むため、スピーディーな電波の強度変化にも対応し易くなる。 In addition, the reception amplification section 53 amplifies the power of the reception signal Sb within a range that does not exceed the upper limit X of the power of the reception signal Sb that can be measured by the RSSI calculation section 59. Compared to the case where the intensity of the signal Sb is amplified, the amount of amplification can be kept small. Therefore, the power consumption by the reception amplification section 53 can be suppressed, and the amount of amplification can be small, making it easier to respond to speedy changes in the strength of radio waves.

また、強度情報処理部33は、受信信号Sbの電力が、一旦、上側閾値Hiを上回ったら、次に下側閾値Loを下回るまで「1」と判定し、一旦、下側閾値Loを下回ったら、次に上側閾値Hiを上回るまで「0」と判定する。そのため、単に一の閾値を上回るか下回るかで、「1」か「0」かの判定を行う場合に比べて、ノイズに対する耐性が強くなる。 In addition, once the power of the received signal Sb exceeds the upper threshold Hi, the intensity information processing unit 33 determines that the power of the received signal Sb is "1" until it falls below the lower threshold Lo, and once the power falls below the lower threshold Lo. , and then it is determined to be "0" until it exceeds the upper threshold value Hi. Therefore, the resistance to noise is stronger than when determining whether it is "1" or "0" simply based on whether it exceeds or falls below a threshold of one.

[第2実施形態]
次に第2実施形態について説明する。以下の実施形態においては、それ以前の実施形態のものと同一の又は対応する部材等は同一の符号を付する。本実施形態については、第1実施形態をベースにこれと異なる点を中心に説明する。
[Second embodiment]
Next, a second embodiment will be described. In the following embodiments, members that are the same as or correspond to those of the previous embodiments are given the same reference numerals. The present embodiment will be described based on the first embodiment, focusing on the points that are different from the first embodiment.

図5は、本実施形態のサテライト20を示す回路図である。図6は、本実施形態の電池ECU10を示す回路図である。本実施形態では、通常時には、電波の波形に基づく通信を行い、所定時には、それに加えて、電波の強度変化に基づく通信も行う。そのため、子機C2及び親機C1の各通信機は、第1実施形態の構成に加えて、電波の波形に基づく通信を行うための構成を有する。詳しくは、子機C2及び親機C1の各通信機は、さらに受信処理部55を有する。そして、各通信機の情報処理部30は、さらに受信情報処理部32を有する。 FIG. 5 is a circuit diagram showing the satellite 20 of this embodiment. FIG. 6 is a circuit diagram showing the battery ECU 10 of this embodiment. In this embodiment, communication is performed based on the waveform of radio waves during normal times, and communication based on changes in the intensity of radio waves is also performed at predetermined times. Therefore, each communication device of the slave device C2 and the parent device C1 has a configuration for performing communication based on the waveform of radio waves, in addition to the configuration of the first embodiment. Specifically, each communication device of the slave device C2 and the parent device C1 further includes a reception processing section 55. The information processing section 30 of each communication device further includes a received information processing section 32.

次に、電池情報i2を、サテライト20から電池ECU10に、電波の波形に基づく通信と電波の強度変化に基づく通信との両方の通信により、伝達する際について説明する。 Next, a case will be described in which the battery information i2 is transmitted from the satellite 20 to the battery ECU 10 through both communication based on the waveform of radio waves and communication based on changes in the intensity of radio waves.

子機C2は、電波の波形に基づく通信により電池情報i2を親機C1に伝達することに失敗したことを条件に、伝達に失敗した電池情報i2を、電波の強度変化に基づく通信により親機C1に伝達する。 On the condition that the slave unit C2 fails to transmit the battery information i2 to the base unit C1 through communication based on the waveform of radio waves, the slave unit C2 transmits the failed battery information i2 to the base unit through communication based on changes in the strength of radio waves. Transfer to C1.

詳しくは、子機C2は、電波の波形に基づく通信において、ノイズなどにより、親機C1に対して通信不能と判定した場合に、送信信号Saの電力を上げて通信する。増加後の送信信号Saの電力で、電波の波形に基づく通信が成立すれば当該通信を継続する。他方、増加後の送信信号Saの電力でも、電波の波形に基づく通信が成立しない場合は、当該電波の波形に基づく通信と共に、電波の強度変化に基づく通信を行う。すなわち、子機C2は、親機C1に送信する電波の波形に所定の電池情報i2を持たせると共に、当該電波の強度変化にその電池情報i2と少なくとも一部が同じ電池情報i2を持たせる。それにより、波形及び強度変化の両方に同じ電池情報i2を持つ電波を、親機C1に送信する。その具体的な手順は、次のとおりである。 Specifically, in communication based on the waveform of radio waves, when it is determined that the slave unit C2 cannot communicate with the base unit C1 due to noise or the like, the slave unit C2 increases the power of the transmission signal Sa and performs communication. If communication based on the waveform of radio waves is established with the increased power of the transmission signal Sa, the communication is continued. On the other hand, if communication based on the waveform of the radio wave is not established even with the increased power of the transmission signal Sa, communication based on the waveform of the radio wave and communication based on the change in the intensity of the radio wave are performed. That is, the handset C2 includes predetermined battery information i2 in the waveform of the radio wave transmitted to the base unit C1, and also causes the change in the intensity of the radio wave to include battery information i2 that is at least partially the same as the battery information i2. Thereby, a radio wave having the same battery information i2 in both waveform and intensity change is transmitted to the base unit C1. The specific steps are as follows.

図5に示すように、サテライト20の監視回路25は、取得した電池情報i2を、子機C2の送信情報処理部31に送信する。送信情報処理部31は、電池情報i2の受信に基づいて、送信指令αを送信処理部45に送信する。 As shown in FIG. 5, the monitoring circuit 25 of the satellite 20 transmits the acquired battery information i2 to the transmission information processing unit 31 of the slave unit C2. The transmission information processing section 31 transmits the transmission command α to the transmission processing section 45 based on the reception of the battery information i2.

送信処理部45は、送信指令αを受信すると、電波を発生させる電気信号である送信信号Saを発生させる。このとき、制御部36は、情報処理部30から電池情報i2を取得して、その電池情報i2に基づいて送信処理部45を制御する。それにより、送信信号Saの周波数を変調して、送信信号Saの電圧波形、すなわち周波数変化に電池情報i2を持たせる。 Upon receiving the transmission command α, the transmission processing unit 45 generates a transmission signal Sa, which is an electrical signal that generates radio waves. At this time, the control section 36 acquires battery information i2 from the information processing section 30, and controls the transmission processing section 45 based on the battery information i2. Thereby, the frequency of the transmission signal Sa is modulated so that the voltage waveform of the transmission signal Sa, that is, the frequency change, has battery information i2.

その送信信号Saは、送信増幅部49に入力される。制御部36は、第1実施形態の場合と同様に送信増幅部49を制御することにより、送信信号Saの電力変化に電池情報i2を持たせる。それにより、送信信号Saは、電圧波形及び電力変化の両方に電池情報i2を持つことになる。 The transmission signal Sa is input to the transmission amplification section 49. The control unit 36 controls the transmission amplification unit 49 in the same way as in the first embodiment, so that the power change of the transmission signal Sa includes battery information i2. Thereby, the transmission signal Sa has battery information i2 in both the voltage waveform and the power change.

その送信信号Saは、アンテナ51に入力される。その送信信号Saにより、アンテナ51で電波が発生する。その電波は、波形及び強度変化の両方に電池情報i2を持つことになる。 The transmission signal Sa is input to the antenna 51. Radio waves are generated at the antenna 51 by the transmission signal Sa. The radio wave will have battery information i2 in both the waveform and intensity change.

図6に示すように、親機C1のアンテナ51が子機C2から電波を受信すると、その電波により、電気信号である受信信号Sbが発生する。その受信信号Sbは、電圧波形及び電力変化の両方に電池情報i2を持つことになる。その受信信号Sbは、親機C1の受信増幅部53に入力される。受信増幅部53は、受信信号Sbを、第1実施形態の場合と同様に増幅させる。 As shown in FIG. 6, when the antenna 51 of the base unit C1 receives a radio wave from the slave unit C2, the radio wave generates a reception signal Sb, which is an electrical signal. The received signal Sb has battery information i2 in both the voltage waveform and the power change. The received signal Sb is input to the reception amplification section 53 of the base unit C1. The reception amplification section 53 amplifies the reception signal Sb as in the first embodiment.

増幅された受信信号Sbは、受信処理部55及びRSSI演算部59に入力される。受信処理部55は、受信信号Sbの電圧波形を検出及び解析してデジタル情報β1に変換する。そのデジタル情報β1は、受信情報処理部32に入力される。受信情報処理部32は、そのデジタル情報β1に基づいて、受信信号Sbの電圧波形が持つ電池情報i2、すなわち、子機C2から受信した電波の波形が持つ電池情報i2を取得する。その電池情報i2は、制御MCU15に送信される。 The amplified received signal Sb is input to the reception processing section 55 and the RSSI calculation section 59. The reception processing unit 55 detects and analyzes the voltage waveform of the reception signal Sb, and converts it into digital information β1. The digital information β1 is input to the received information processing section 32. Based on the digital information β1, the reception information processing unit 32 acquires battery information i2 possessed by the voltage waveform of the reception signal Sb, that is, battery information i2 possessed by the waveform of the radio wave received from the slave unit C2. The battery information i2 is transmitted to the control MCU 15.

他方、RSSI演算部59及び強度情報処理部33は、第1実施形態の場合と同様に、受信信号Sbの電力変化が持つ電池情報i2、すなわち、子機C2から受信した電波の強度変化が持つ電池情報i2を取得する。その電池情報i2は、制御MCU15に送信される。 On the other hand, as in the case of the first embodiment, the RSSI calculation unit 59 and the intensity information processing unit 33 calculate the battery information i2 that is included in the power change of the received signal Sb, that is, the battery information i2 that is included in the intensity change of the radio wave received from the slave unit C2. Obtain battery information i2. The battery information i2 is transmitted to the control MCU 15.

以上により、電池情報i2が、電波の波形による通信と、電波の強度変化による通信との両方の通信により、サテライト20から電池ECU10に伝達される。なお、以上では、両方の通信が成功した場合を示しているが、いずれか一方の通信が失敗した場合には、他方の通信のみにより電池情報i2が、サテライト20から電池ECU10に伝達されることになる。 As described above, the battery information i2 is transmitted from the satellite 20 to the battery ECU 10 through both communication based on the waveform of radio waves and communication based on changes in the intensity of radio waves. Note that although the above describes a case where both communications are successful, if either communication fails, the battery information i2 is transmitted from the satellite 20 to the battery ECU 10 only by the other communication. become.

なお、指令情報i1を電池ECU10からサテライト20に両方の通信により伝達する際の説明については、上記の電池情報i2をサテライト20から電池ECU10に両方の通信により伝達する際の説明を、次のように読み替えて同様である。すなわち、「電池情報i2」を「指令情報i1」に読み替える。また、「図5」及び「図6」の各方を他方に読み替え、「サテライト20」及び「電池ECU10」の各方を他方に読み替える。また、「監視回路25」及び「制御MCU15」の各方を他方に読み替え、「子機C2」及び「親機C1」の各方を他方に読み替える。 The explanation for transmitting the command information i1 from the battery ECU 10 to the satellite 20 through both communications is as follows. It is the same when read as . That is, "battery information i2" is read as "command information i1". Further, each of "FIG. 5" and "FIG. 6" will be read as the other, and each of "satellite 20" and "battery ECU 10" will be read as the other. Also, each of "monitoring circuit 25" and "control MCU 15" is read as the other, and each of "slave device C2" and "base device C1" is read as the other.

また、電波の波形による通信のみを行い、電波の強度波形による通信を行わない通常時の説明については、上記の説明において、送信増幅部49による増幅量を一定にすると共に、RSSI演算部59による受信信号Sbの電力の取得、及び強度情報処理部33による解析を行わないようにして同様である。 In addition, regarding the description of the normal state in which communication is performed only by the waveform of radio waves and no communication is performed by the intensity waveform of radio waves, in the above explanation, the amount of amplification by the transmission amplification unit 49 is constant, and the amount of amplification by the RSSI calculation unit 59 is The same thing is true except that the power of the received signal Sb is not acquired and the analysis by the intensity information processing section 33 is not performed.

図7は、受信処理部55及び強度情報処理部33等に入力される受信信号Sbの電圧波形及び電力変化を示すグラフである。図4に示す第1実施形態と比較して、電力変化については、同様であるが、電圧波形が情報を持つ点で相違する。受信処理部55は、受信信号Sbの電圧波形における周波数変化に基づいて、デジタル情報β1を取得する。 FIG. 7 is a graph showing voltage waveforms and power changes of the reception signal Sb input to the reception processing section 55, the intensity information processing section 33, and the like. Compared to the first embodiment shown in FIG. 4, the power change is similar, but the difference is that the voltage waveform has information. The reception processing unit 55 acquires digital information β1 based on the frequency change in the voltage waveform of the reception signal Sb.

なお、図7は、受信信号Sbの電圧波形及び電力変化を示すグラフであるが、それを発生させる電波の波形及び強度変化を示すグラフもこれと同様となる。電波は、波形に基づく通信において一塊の情報を有するフレームfを複数有する。送信増幅部49は、1又は複数のフレームf毎に、電波の強度を、相対的に強い強電波状態と、相対的に弱い弱電波状態とのいずれかにする。それにより、当該電波の強度変化に情報を持たせる。 Note that although FIG. 7 is a graph showing the voltage waveform and power change of the received signal Sb, the graph showing the waveform and intensity change of the radio wave that generates it is also similar to this. Radio waves have a plurality of frames f each containing a block of information in waveform-based communication. The transmission amplification unit 49 sets the strength of the radio waves to either a relatively strong strong radio wave state or a relatively weak weak radio wave state for each one or a plurality of frames f. Thereby, the change in the intensity of the radio wave is given information.

本実施形態によれば、次の効果が得られる。子機C2と親機C1とは、電波の波形に基づく通信により電池情報i2及び指令情報i1を伝達するのに加え、電波の強度変化に基づく通信によっても電池情報i2及び指令情報i1を伝達する。そのため、それらの両方の通信により、通信の冗長性を確保することができる。 According to this embodiment, the following effects can be obtained. In addition to transmitting battery information i2 and command information i1 through communication based on radio wave waveforms, slave unit C2 and base unit C1 also transmit battery information i2 and command information i1 through communication based on changes in radio wave intensity. . Therefore, communication redundancy can be ensured by both of these communications.

具体的には、子機C2及び親機C1の各通信機は、電波の波形に基づく通信により情報を相手方の通信機に伝達し、それに失敗したことを条件に、伝達に失敗した情報を、電波の強度変化に基づく通信により相手方の通信機に伝達する。そのため、通常時には電波の波形に基づく通信を行うと共に、その途絶時には、電波の強度変化に基づく通信により、通信を確保することができる。 Specifically, each communication device of the handset C2 and the base device C1 transmits information to the communication device of the other party by communication based on the waveform of radio waves. Transmits information to the other party's communication device using communication based on changes in the strength of radio waves. Therefore, during normal times, communication is performed based on the waveform of radio waves, and when communication is interrupted, communication can be ensured by communication based on changes in the intensity of radio waves.

また、子機C2及び親機C1の各通信機は、波形及び強度変化の両方に同じ所定情報を持つ電波を送信するので、電波の波形による通信により、所定情報の伝達をトライしつつも、電波の強度変化による通信によっても、同じ所定情報の伝達をトライすることができる。 In addition, since each communication device of the handset C2 and the base unit C1 transmits radio waves having the same predetermined information in both waveform and intensity change, while attempting to transmit the predetermined information through communication using the radio wave waveform, Transmission of the same predetermined information can also be attempted through communication based on changes in the strength of radio waves.

また、電波は、1又は複数のフレームf毎に強電波状態と弱電波状態とのいずれかになるので、構成がシンプルになり、波形及び強度を変調し易くなる。 Further, since the radio waves are in either a strong radio wave state or a weak radio wave state for each frame f or a plurality of frames f, the configuration becomes simple and the waveform and intensity can be easily modulated.

[第3実施形態]
次に第3実施形態について説明する。本実施形態については、第2実施形態をベースにこれと異なる点を中心に説明する。
[Third embodiment]
Next, a third embodiment will be described. The present embodiment will be described based on the second embodiment, focusing on the points that are different from the second embodiment.

図8は、RSSI演算部59が測定した受信信号Sbの電力変化を示すグラフである。受信増幅部53は、RSSI演算部59に入力される受信信号Sbの電力の最大値が、RSSI演算部59により測定可能な受信信号Sbの電力の上限値Xを超えるように、受信信号Sbの強度を増幅させる。強度情報処理部33は、第1及び第2実施形態と同様に、RSSI演算部59により測定された受信信号Sbの電力が、上側閾値Hiを上回った否か及び下側閾値Loを下回ったか否かに基づいて、受信信号Sbの電力変化を解析する。上側閾値Hi及び下側閾値Loは、第1及び第2実施形態の場合よりも大きい。上側閾値Hiは、上限値Xよりも所定値小さい。 FIG. 8 is a graph showing power changes of the received signal Sb measured by the RSSI calculation unit 59. The reception amplification unit 53 adjusts the received signal Sb so that the maximum value of the power of the received signal Sb input to the RSSI calculation unit 59 exceeds the upper limit value X of the power of the reception signal Sb that can be measured by the RSSI calculation unit 59. Amplify the strength. Similarly to the first and second embodiments, the intensity information processing unit 33 determines whether the power of the received signal Sb measured by the RSSI calculation unit 59 exceeds the upper threshold Hi and falls below the lower threshold Lo. Based on this, the power change of the received signal Sb is analyzed. The upper threshold value Hi and the lower threshold value Lo are larger than those in the first and second embodiments. The upper threshold value Hi is smaller than the upper limit value X by a predetermined value.

ただし、この状態において、電波の強度変化に基づく通信を成立させることができない場合は、さらに、受信増幅部53により、受信信号Sbの電力を増幅させる。そして、強度情報処理部33は、RSSI演算部59により測定された受信信号Sbの電力が上限値Xに達したか否かに基づいて、受信信号Sbの電力変化を解析する。 However, in this state, if communication cannot be established based on the change in radio wave intensity, the reception amplification section 53 further amplifies the power of the reception signal Sb. Then, the intensity information processing unit 33 analyzes the power change of the received signal Sb based on whether the power of the received signal Sb measured by the RSSI calculation unit 59 has reached the upper limit value X.

本実施形態によれば、受信信号Sbの電力を、RSSI演算部59により測定可能な受信信号Sbの電力の上限値Xを超えるまで増幅させると共に、上側閾値Hi及び下側閾値Loを高く設定することにより、ノイズが大きい場合等にも、電波の強度変化に基づく通信を成立させ易くなる。 According to the present embodiment, the power of the received signal Sb is amplified until it exceeds the upper limit value X of the power of the received signal Sb that can be measured by the RSSI calculation unit 59, and the upper threshold Hi and the lower threshold Lo are set high. This makes it easier to establish communication based on changes in radio wave intensity even when there is a lot of noise.

[第4実施形態]
次に第4実施形態について説明する。本実施形態については、第2実施形態をベースにこれと異なる点を中心に説明する。
[Fourth embodiment]
Next, a fourth embodiment will be described. The present embodiment will be described based on the second embodiment, focusing on the points that are different from the second embodiment.

図9は、本実施形態のサテライト20を示す回路図である。図10は、本実施形態の電池ECU10を示す回路図である。子機C2及び親機C1の各通信機は、受信増幅部53を有しない。そのため、アンテナ51で発生した受信信号Sbは、受信増幅部53により増幅されることなく、受信処理部55及びRSSI演算部59に入力される。 FIG. 9 is a circuit diagram showing the satellite 20 of this embodiment. FIG. 10 is a circuit diagram showing the battery ECU 10 of this embodiment. Each of the communication devices, child device C2 and parent device C1, does not include a reception amplification section 53. Therefore, the reception signal Sb generated by the antenna 51 is input to the reception processing section 55 and the RSSI calculation section 59 without being amplified by the reception amplification section 53.

本実施形態によれば、子機C2及び親機C1の各通信機が受信増幅部53を有しないため、受信信号Sbを増幅することはできないが、各通信機の構成及び制御がシンプルになる。 According to this embodiment, each of the communication devices of the handset C2 and the base device C1 does not have the reception amplification section 53, so the received signal Sb cannot be amplified, but the configuration and control of each communication device becomes simple. .

[第5実施形態]
次に第5実施形態について説明する。本実施形態については、第4実施形態をベースにこれと異なる点を中心に説明する。
[Fifth embodiment]
Next, a fifth embodiment will be described. The present embodiment will be described based on the fourth embodiment, focusing on the points that are different from the fourth embodiment.

図11は、本実施形態のサテライト20を示す回路図である。図12は、本実施形態の電池ECU10を示す回路図である。各通信機の送信増幅部49は、増幅部本体49aと、電源スイッチ49bと、第1スイッチ49cと、第2スイッチ49dとを有する。 FIG. 11 is a circuit diagram showing the satellite 20 of this embodiment. FIG. 12 is a circuit diagram showing the battery ECU 10 of this embodiment. The transmission amplification section 49 of each communication device includes an amplification section main body 49a, a power switch 49b, a first switch 49c, and a second switch 49d.

電源スイッチ49bは、ONになると増幅部本体49aに電力が供給されるようになり、OFFになると増幅部本体49aに電力が供給されなくなる。増幅部本体49aは、電源スイッチ49bがONになると送信信号Saを一定の状態で増幅させるようになり、電源スイッチ49bがOFFになると送信信号Saを増幅不能になる。 When the power switch 49b is turned on, power is supplied to the amplifier body 49a, and when it is turned off, power is no longer supplied to the amplifier body 49a. When the power switch 49b is turned ON, the amplifier main body 49a amplifies the transmission signal Sa in a constant state, and when the power switch 49b is turned OFF, the amplifier main body 49a cannot amplify the transmission signal Sa.

第1スイッチ49cは、ONになると、送信処理部45から送信信号Saが、増幅部本体49aを経由しない直接経路でアンテナ51に入力されるようになり、OFFになると、送信信号Saが、上記の直接経路ではアンテナ51に入力されなくなる。第2スイッチ49dは、ONになると、送信処理部45から送信信号Saが、増幅部本体49aを経由する増幅経路でアンテナ51に入力されるようになり、OFFになると、送信信号Saが、上記の増幅経路ではアンテナ51に入力されなくなる。 When the first switch 49c is turned ON, the transmission signal Sa from the transmission processing section 45 is inputted to the antenna 51 through a direct route that does not go through the amplifier main body 49a, and when it is turned OFF, the transmission signal Sa is The signal is no longer input to the antenna 51 through the direct route. When the second switch 49d is turned ON, the transmission signal Sa from the transmission processing section 45 is inputted to the antenna 51 via the amplification path passing through the amplifier main body 49a, and when it is turned OFF, the transmission signal Sa is The signal is no longer input to the antenna 51 through the amplification path.

制御部36は、次のように、送信増幅部49の各スイッチ49b,49c,49dを制御する。すなわち、制御部36は、送信信号Saを増幅させないタイミングでは、電源スイッチ49b及び第2スイッチ49dをOFFにし、且つ第1スイッチ49cをONにする。これにより、増幅部本体49aの電源がOFFになると共に、送信信号Saが増幅部本体49aを経由しない直接経路でアンテナ51に入力されるようになる。 The control section 36 controls each switch 49b, 49c, and 49d of the transmission amplification section 49 as follows. That is, the control unit 36 turns off the power switch 49b and the second switch 49d, and turns on the first switch 49c at a timing when the transmission signal Sa is not amplified. As a result, the power of the amplifier main body 49a is turned off, and the transmission signal Sa is input to the antenna 51 through a direct route without passing through the amplifier main body 49a.

他方、送信信号Saを増幅させるタイミングでは、電源スイッチ49b及び第2スイッチ49dをONにし、第1スイッチ49cをOFFにする。これにより、増幅部本体49aの電源がONになると共に、送信信号Saが増幅部本体49aを経由する増幅経路でアンテナ51に入力されるようになる。 On the other hand, at the timing to amplify the transmission signal Sa, the power switch 49b and the second switch 49d are turned on, and the first switch 49c is turned off. As a result, the power of the amplifier main body 49a is turned on, and the transmission signal Sa is input to the antenna 51 via the amplification path passing through the amplifier main body 49a.

本実施形態によれば、送信信号Saを増幅させないタイミングでは、送信信号Saが増幅部本体49aを経由しない直接経路でアンテナ51に入力され、送信信号Saを増幅させるタイミングでは、送信信号Saが増幅部本体49aを経由する増幅経路でアンテナ51に入力される。そのため、増幅部本体49aは、送信信号Saを一定の状態で増幅するだけの機能を有していればよく、送信信号Saの増幅量を変調する機能を有する必要がない。そのため、送信増幅部49の構成をシンプルにすることができる。また、送信信号Saを増幅させないタイミングでは、増幅部本体49aの電源がOFFになるので、増幅部本体49aによる消費電力を抑えることができる。 According to the present embodiment, at the timing when the transmission signal Sa is not amplified, the transmission signal Sa is input to the antenna 51 through a direct route that does not go through the amplifier main body 49a, and at the timing when the transmission signal Sa is amplified, the transmission signal Sa is amplified. The signal is input to the antenna 51 via an amplification path passing through the main body 49a. Therefore, the amplifier main body 49a only needs to have the function of amplifying the transmission signal Sa in a constant state, and does not need to have the function of modulating the amplification amount of the transmission signal Sa. Therefore, the configuration of the transmission amplifying section 49 can be simplified. Moreover, since the power of the amplifier main body 49a is turned off at the timing when the transmission signal Sa is not amplified, the power consumption by the amplifier main body 49a can be suppressed.

[他の実施形態]
以上に示した各実施形態は、次のように変更して実施することもできる。例えば、第2~第5実施形態において、子機C2のRSSI演算部59、強度情報処理部33等を省いて、電波の強度変化に基づく通信は、電池情報i2をサテライト20から電池ECU10に伝達する場合にのみ行うようにしてもよい。
[Other embodiments]
Each of the embodiments described above can be modified and implemented as follows. For example, in the second to fifth embodiments, the RSSI calculation unit 59, intensity information processing unit 33, etc. of the slave device C2 are omitted, and communication based on changes in radio wave intensity transmits battery information i2 from the satellite 20 to the battery ECU 10. It may be done only when necessary.

また例えば、第2~第5実施形態において、電波の波形に基づく通信の途絶時のみならず、常に電波の強度変化に基づく通信を行うようにしてもよい。また例えば、第2~第5実施形態において、電波の波形に基づく通信の途絶時には、電波の波形に基づく通信の再挑戦は行わず、電波の強度変化に基づく通信のみを行うようにしてもよい。 Furthermore, for example, in the second to fifth embodiments, communication may be performed not only when communication based on the waveform of radio waves is interrupted, but also based on changes in the intensity of radio waves at all times. For example, in the second to fifth embodiments, when communication based on the waveform of radio waves is interrupted, communication based on the waveform of radio waves may not be attempted again, but only communication based on changes in the strength of radio waves may be performed. .

また例えば、第2~第5実施形態において、子機C2及び親機C1の各通信機は、送信する電波の波形に所定情報を持たせると共に、当該電波の強度変化にその所定情報とは別の別情報を持たせるようにしてもよい。すなわち、各通信機は、波形に所定情報を持ち且つ強度変化に別情報を持つ電波を、相手方の通信機に送信するようにしてもよい。この場合、電波の波形に基づく通信により、所定情報を伝達しつつも、電波の強度変化に基づく通信により、別情報を伝達することができるようになる。 Further, for example, in the second to fifth embodiments, each communication device of the slave device C2 and the parent device C1 has predetermined information in the waveform of the radio waves to be transmitted, and the change in the intensity of the radio waves is different from the predetermined information. It is also possible to have separate information for . That is, each communication device may transmit radio waves having predetermined information in the waveform and different information in the intensity change to the communication device of the other party. In this case, while predetermined information is transmitted through communication based on the waveform of radio waves, other information can be transmitted through communication based on changes in the intensity of radio waves.

また例えば、第2~第5実施形態において、送信増幅部49は、電波のフレームfに関係なく、電波の強度を、相対的に強い強電波状態と、相対的に弱い弱電波状態とのいずれかにすることにより、当該電波の強度変化に情報を持たせるようにしてもよい。この場合、電波の強度変化に情報を自由に持たせ易くなるので、より多くの情報を持たせ易くなる。 Further, for example, in the second to fifth embodiments, the transmission amplification unit 49 adjusts the strength of the radio wave to either a relatively strong strong radio wave state or a relatively weak weak radio wave state, regardless of the frame f of the radio wave. By doing so, information may be given to the change in the intensity of the radio wave. In this case, it becomes easier to freely provide information to changes in the intensity of radio waves, so it becomes easier to provide more information.

また例えば、第2~第5実施形態において、電波の強度変化に基づく通信における強電波状態のときにのみ、電波の波形に情報を持たせ、電波の強度変化に基づく通信における弱電波状態のときには、電波の波形に情報を持たせないようにしてもよい。 For example, in the second to fifth embodiments, the waveform of the radio wave is provided with information only when the radio wave is in a strong radio wave state in communication based on changes in the intensity of radio waves, and when the radio wave is in a weak radio wave state in communication based on changes in the intensity of radio waves. , the waveform of the radio wave may not contain any information.

また例えば、各実施形態において、送信増幅部49の代わりに、送信信号Saを増幅及び減衰させる送信増減部を設け、この送信増減部で送信信号Saの電力を変調するようにしてもよい。 For example, in each embodiment, a transmission increase/decrease section for amplifying and attenuating the transmission signal Sa may be provided in place of the transmission amplification section 49, and the power of the transmission signal Sa may be modulated by this transmission increase/decrease section.

また例えば、各実施形態において、RSSI演算部59を受信処理部55の内部に設けてもよい。また例えば、各実施形態において、強度情報処理部33をRSSI演算部59の内部に設けてもよい。 Further, for example, in each embodiment, the RSSI calculation section 59 may be provided inside the reception processing section 55. Further, for example, in each embodiment, the intensity information processing section 33 may be provided inside the RSSI calculation section 59.

また例えば、各実施形態において、強度情報処理部33は、上側閾値Hiと下側閾値Loとの代わりに、それらの間に1つの閾値を設定して、その閾値を上回るか下回るかで、「1」か「0」かの判定をするようにしてもよい。 For example, in each embodiment, the intensity information processing unit 33 sets one threshold between the upper threshold Hi and the lower threshold Lo, and determines whether the threshold is exceeded or below. Alternatively, the determination may be made as to whether the value is 1 or 0.

10…電池ECU、20…サテライト、33…強度情報処理部、49…送信増幅部、59…RSSI演算部、60…電池監視装置、90…組電池、94…電池群、95…セル電池、C1…親機、C2…子機、Sb…受信信号、i1…指令情報、i2…電池情報。 DESCRIPTION OF SYMBOLS 10... Battery ECU, 20... Satellite, 33... Intensity information processing part, 49... Transmission amplification part, 59... RSSI calculation part, 60... Battery monitoring device, 90... Assembled battery, 94... Battery group, 95... Cell battery, C1 ...Main device, C2...Slave device, Sb...Received signal, i1...Command information, i2...Battery information.

Claims (17)

組電池(90)が有する複数のセル電池(95)をグループ分けした電池群(94)毎に設置されており、前記セル電池に関する情報である電池情報(i2)を取得するサテライト(20)と、電池ECU(10)と、前記サテライトの制御部(36)と、を有し、
前記サテライトは、子機(C2)を有し、前記電池ECUは、前記子機と無線通信を行う親機(C1)を有し、
前記子機の通信機は、前記親機に送信する電波の強度を変化させることにより、当該電波の強度変化に、前記電池情報を持たせる送信強度変調部(49)を有し、
前記親機の通信機は、前記子機から受信した電波の強度変化が持つ前記電池情報を取得する強度情報処理部(33)を有し、
前記サテライトの前記制御部は、前記電池情報を取得して、前記電池情報に基づいて前記送信強度変調部を制御し、
前記サテライトの前記制御部は、電源スイッチを切り替え制御することにより、前記送信強度変調部への電力の供給及び遮断を切り替え制御する、
電池監視装置(60)。
A satellite (20) is installed for each battery group (94) in which a plurality of cell batteries (95) included in the assembled battery (90) are divided into groups, and acquires battery information (i2) that is information regarding the cell battery. , a battery ECU (10), and a control unit (36) for the satellite ,
The satellite has a slave unit (C2), the battery ECU has a master unit (C1) that performs wireless communication with the slave unit,
The communication device of the child device includes a transmission intensity modulation unit (49) that changes the intensity of the radio waves transmitted to the base device to include the battery information in the change in the intensity of the radio waves,
The base unit communication device includes an intensity information processing unit (33) that acquires the battery information included in the intensity change of radio waves received from the slave unit,
The control unit of the satellite acquires the battery information and controls the transmission intensity modulation unit based on the battery information,
The control unit of the satellite controls supply and cutoff of power to the transmission intensity modulation unit by switching and controlling a power switch.
Battery monitoring device (60).
前記親機は、前記子機から受信した電波により発生する電気信号である受信信号(Sb)の電力を測定するRSSI演算部(59)を有し、
前記強度情報処理部は、前記RSSI演算部が測定した前記電力に基づいて前記電池情報を取得する、
請求項1に記載の電池監視装置。
The base unit includes an RSSI calculation unit (59) that measures the power of a received signal (Sb) that is an electric signal generated by radio waves received from the slave unit,
The intensity information processing unit acquires the battery information based on the power measured by the RSSI calculation unit.
The battery monitoring device according to claim 1.
組電池(90)が有する複数のセル電池(95)をグループ分けした電池群(94)毎に設置されており、前記セル電池に関する情報である電池情報(i2)を取得するサテライト(20)と、前記サテライトに指令を出す電池ECU(10)と、前記サテライトの制御部(36)と、を有し、
前記サテライトは、子機(C2)を有し、前記電池ECUは、前記子機と無線通信を行う親機(C1)を有し、
前記子機及び前記親機の各通信機は、相手方の前記通信機に送信する電波の強度を変化させることにより、当該電波の強度変化に情報を持たせる送信強度変調部(49)と、相手方の前記通信機から受信した電波の強度変化が持つ情報を取得する強度情報処理部(33)とを有し、
前記子機の前記送信強度変調部は、前記子機が送信する電波の強度変化に前記電池情報を持たせ、前記親機の前記送信強度変調部は、前記親機が送信する電波の強度変化に、前記指令に関する情報である指令情報(i1)を持たせ、
前記サテライトの前記制御部は、前記電池情報を取得して、前記電池情報に基づいて前記送信強度変調部を制御し、
前記サテライトの前記制御部は、電源スイッチを切り替え制御することにより、前記送信強度変調部への電力の供給及び遮断を切り替え制御する、
電池監視装置(60)。
A satellite (20) is installed for each battery group (94) in which a plurality of cell batteries (95) included in the assembled battery (90) are divided into groups, and acquires battery information (i2) that is information regarding the cell battery. , a battery ECU (10) that issues commands to the satellite, and a control unit (36) for the satellite ,
The satellite has a slave unit (C2), the battery ECU has a master unit (C1) that performs wireless communication with the slave unit,
Each of the communication devices of the slave device and the base device includes a transmission intensity modulation unit (49) that changes the intensity of the radio waves transmitted to the communication device of the other party, thereby imparting information to changes in the intensity of the radio waves, and an intensity information processing unit (33) that acquires information contained in changes in the intensity of radio waves received from the communication device;
The transmission intensity modulation unit of the slave unit adds the battery information to the change in the intensity of radio waves transmitted by the slave unit, and the transmission strength modulation unit of the base unit adds the battery information to the change in the strength of radio waves transmitted by the base unit. has command information (i1) that is information regarding the command,
The control unit of the satellite acquires the battery information and controls the transmission intensity modulation unit based on the battery information,
The control unit of the satellite controls supply and cutoff of power to the transmission intensity modulation unit by switching and controlling a power switch.
Battery monitoring device (60).
前記子機及び前記親機の各通信機は、相手方の前記通信機から受信した電波により発生する電気信号である受信信号(Sb)の電力を測定するRSSI演算部(59)を有し、
前記強度情報処理部は、前記RSSI演算部が測定した前記電力に基づいて前記電池情報を取得する、
請求項3に記載の電池監視装置。
Each communication device of the child device and the parent device has an RSSI calculation unit (59) that measures the power of a received signal (Sb) that is an electric signal generated by radio waves received from the communication device of the other party,
The intensity information processing unit acquires the battery information based on the power measured by the RSSI calculation unit.
The battery monitoring device according to claim 3.
前記子機及び前記親機の各通信機は、相手方の前記通信機に送信する電波の波形に情報を持たせる送信処理部(45)と、相手方の前記通信機から受信した電波の波形を検出する受信処理部(55)と、検出された前記波形が持つ情報を取得する受信情報処理部(32)とを有し、
前記子機の前記送信処理部は、前記親機に送信する電波の波形に前記電池情報を持たせ、前記親機の前記送信処理部は、前記子機に送信する電波の波形に前記指令情報を持たせる、
請求項3又は4に記載の電池監視装置。
Each communication device of the slave device and the parent device includes a transmission processing unit (45) that adds information to the waveform of a radio wave to be transmitted to the communication device of the other party, and a transmission processing unit (45) that detects the waveform of the radio wave received from the communication device of the other party. and a reception information processing unit (32) that acquires information possessed by the detected waveform,
The transmission processing unit of the slave unit includes the battery information in the waveform of radio waves to be transmitted to the base unit, and the transmission processing unit of the base unit includes the command information in the waveform of radio waves to be transmitted to the slave unit. to have,
The battery monitoring device according to claim 3 or 4.
前記通信機は、電波の波形に基づく通信により情報を相手方の前記通信機に伝達することに失敗したことを条件に、伝達に失敗した前記情報を、電波の強度変化に基づく通信により相手方の前記通信機に伝達する、請求項5に記載の電池監視装置。 On the condition that the communication device fails to transmit information to the communication device of the other party through communication based on the waveform of radio waves, the communication device transmits the information that has failed to be transmitted to the communication device of the other party through communication based on changes in the intensity of radio waves. The battery monitoring device according to claim 5, wherein the battery monitoring device transmits the information to a communication device. 前記通信機は、前記送信処理部により電波の波形に情報を持たせると共に、前記送信強度変調部により当該電波の強度変化に情報を持たせることにより、波形及び強度変化の両方に情報を持つ電波を送信する、請求項5又は6に記載の電池監視装置。 The communication device generates a radio wave having information in both the waveform and the intensity change by imparting information to the waveform of the radio wave by the transmission processing unit and imparting information to the intensity change of the radio wave by the transmission intensity modulation unit. The battery monitoring device according to claim 5 or 6, which transmits. 前記通信機は、前記送信処理部により電波の波形に所定情報を持たせると共に、前記送信強度変調部により当該電波の強度変化に、前記所定情報と少なくとも一部が同じ情報を持たせることにより、波形及び強度変化の両方に同じ情報を持つ電波を送信する、請求項7に記載の電池監視装置。 In the communication device, the transmission processing unit imparts predetermined information to the waveform of the radio wave, and the transmission intensity modulation unit causes the change in the intensity of the radio wave to include information at least partially the same as the predetermined information. The battery monitoring device according to claim 7, which transmits radio waves having the same information in both waveform and intensity change. 前記通信機は、前記送信処理部により電波の波形に所定情報を持たせると共に、前記送信強度変調部により当該電波の強度変化に前記所定情報とは別の別情報を持たせることにより、波形に前記所定情報を持ち且つ強度変化に前記別情報を持つ電波を送信する、請求項7に記載の電池監視装置。 In the communication device, the transmission processing section imparts predetermined information to the waveform of the radio wave, and the transmission intensity modulation section imparts information different from the predetermined information to the change in the intensity of the radio wave, thereby modifying the waveform. The battery monitoring device according to claim 7, wherein the battery monitoring device transmits a radio wave having the predetermined information and having the separate information in response to a change in intensity. 前記電波は、波形に基づく通信において一塊の情報を有するフレーム(f)を複数有し、
前記送信強度変調部は、1又は複数の前記フレーム毎に、前記電波の強度を、相対的に強い強電波状態と、相対的に弱い弱電波状態とのいずれかにすることにより、当該電波の強度変化に情報を持たせる、請求項7~9のいずれか1項に記載の電池監視装置。
The radio wave has a plurality of frames (f) having a lump of information in communication based on a waveform,
The transmission intensity modulation unit modulates the intensity of the radio wave by setting the intensity of the radio wave to either a relatively strong strong radio wave state or a relatively weak weak radio wave state for each one or more of the frames. The battery monitoring device according to any one of claims 7 to 9, wherein the intensity change has information.
前記電波は、波形に基づく通信において一塊の情報を有するフレーム(f)を複数有し、
前記送信強度変調部は、前記フレームに関係なく、前記電波の強度を、相対的に強い強電波状態と、相対的に弱い弱電波状態とのいずれかにすることにより、当該電波の強度変化に情報を持たせる、請求項7~9のいずれか1項に記載の電池監視装置。
The radio wave has a plurality of frames (f) having a lump of information in communication based on a waveform,
The transmission intensity modulation unit adjusts the intensity of the radio waves to either a relatively strong strong radio wave state or a relatively weak weak radio wave state regardless of the frame, thereby adjusting the intensity of the radio waves to a change in the intensity of the radio waves. The battery monitoring device according to any one of claims 7 to 9, wherein the battery monitoring device has information.
前記通信機は、電気信号である送信信号(Sa)を発生させる送信処理部(45)と、前記送信信号により電波を発生させるアンテナ(51)とを有し、
前記送信強度変調部は、前記送信処理部から前記アンテナに入力される前記送信信号の電力を増幅させる送信増幅部(49)である、請求項4~11のいずれか1項に記載の電池監視装置。
The communication device includes a transmission processing unit (45) that generates a transmission signal (Sa) that is an electric signal, and an antenna (51) that generates radio waves by the transmission signal,
The battery monitoring device according to any one of claims 4 to 11, wherein the transmission intensity modulation unit is a transmission amplification unit (49) that amplifies the power of the transmission signal input from the transmission processing unit to the antenna. Device.
前記通信機は、電波を受信して受信信号を発生させるアンテナ(51)と、前記アンテナからRSSI演算部に入力される前記受信信号の電力を増幅させる受信増幅部(53)とを有する、
請求項4~12のいずれか1項に記載の電池監視装置。
The communication device includes an antenna (51) that receives radio waves and generates a received signal, and a reception amplification unit (53) that amplifies the power of the received signal input from the antenna to the RSSI calculation unit.
The battery monitoring device according to any one of claims 4 to 12.
前記受信増幅部は、前記受信信号を増幅量可変に増幅させることにより、前記RSSI演算部に入力される前記受信信号の電力範囲を調節するものである、請求項13に記載の電池監視装置。 14. The battery monitoring device according to claim 13, wherein the reception amplification section adjusts the power range of the reception signal input to the RSSI calculation section by amplifying the reception signal with a variable amplification amount. 前記受信増幅部は、前記RSSI演算部に入力される前記受信信号の電力の最大値が、前記RSSI演算部により測定可能な前記受信信号の電力の上限値(X)を超えない範囲で、前記受信信号の電力を増幅させる、請求項13又は14に記載の電池監視装置。 The reception amplification section is configured to operate the reception amplification section so that the maximum value of the power of the reception signal input to the RSSI calculation section does not exceed an upper limit value (X) of the power of the reception signal that can be measured by the RSSI calculation section. The battery monitoring device according to claim 13 or 14, wherein the power of the received signal is amplified. 前記受信増幅部は、前記RSSI演算部に入力される前記受信信号の電力の最大値が、前記RSSI演算部により測定可能な前記受信信号の電力の上限値(X)を超えるように、前記受信信号の強度を増幅させるものであり、
前記強度情報処理部は、前記RSSI演算部により測定された前記受信信号の電力が、前記上限値に達したか否か、又は前記上限値よりも所定値小さい閾値(Hi)を上回ったか否かに基づいて、電波の強度変化が持つ情報を取得する、
請求項13又は14に記載の電池監視装置。
The reception amplification section is configured to increase the power of the reception signal so that the maximum value of the power of the reception signal input to the RSSI calculation section exceeds an upper limit value (X) of the power of the reception signal that can be measured by the RSSI calculation section. It amplifies the strength of the signal,
The intensity information processing section determines whether the power of the received signal measured by the RSSI calculation section has reached the upper limit value or exceeded a threshold value (Hi) that is smaller than the upper limit value by a predetermined value. Based on the information obtained from changes in the strength of radio waves,
The battery monitoring device according to claim 13 or 14.
前記通信機は、電気信号である送信信号(Sa)を発生させる送信処理部(45)と、前記送信信号により電波を発生させるアンテナ(51)とを有し、
前記送信強度変調部は、電波の強度を変化させる増幅部本体(49a)と、前記送信処理部と前記アンテナとの間の通信経路であって、前記増幅部本体を迂回する直接経路に設けられた第1スイッチ(49c)と、前記増幅部本体が設けられた通信経路上に設けられた第2スイッチ(49d)と、を有し、
前記サテライトの前記制御部は、前記第1スイッチ及び前記第2スイッチの切り替え制御によって、電波の強度を変化させるか否かを制御する、請求項1~16のうちいずれか1項に記載の電池監視装置。
The communication device includes a transmission processing unit (45) that generates a transmission signal (Sa) that is an electric signal, and an antenna (51) that generates radio waves by the transmission signal,
The transmission intensity modulation section is a communication path between the amplification section main body (49a) that changes the intensity of radio waves, the transmission processing section and the antenna, and is provided in a direct path that bypasses the amplification section main body. a first switch (49c), and a second switch (49d) provided on a communication path in which the amplifier main body is provided,
The battery according to any one of claims 1 to 16, wherein the control unit of the satellite controls whether or not to change the intensity of radio waves by controlling switching of the first switch and the second switch. Monitoring equipment.
JP2021196921A 2019-08-22 2021-12-03 battery monitoring device Active JP7439813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021196921A JP7439813B2 (en) 2019-08-22 2021-12-03 battery monitoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019152256A JP7156212B2 (en) 2019-08-22 2019-08-22 battery monitor
JP2021196921A JP7439813B2 (en) 2019-08-22 2021-12-03 battery monitoring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019152256A Division JP7156212B2 (en) 2019-08-22 2019-08-22 battery monitor

Publications (2)

Publication Number Publication Date
JP2022033141A JP2022033141A (en) 2022-02-28
JP7439813B2 true JP7439813B2 (en) 2024-02-28

Family

ID=74677772

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019152256A Active JP7156212B2 (en) 2019-08-22 2019-08-22 battery monitor
JP2021196921A Active JP7439813B2 (en) 2019-08-22 2021-12-03 battery monitoring device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019152256A Active JP7156212B2 (en) 2019-08-22 2019-08-22 battery monitor

Country Status (1)

Country Link
JP (2) JP7156212B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187189A (en) * 2017-05-10 2018-11-29 株式会社三洋物産 Game machine
JP2018187190A (en) * 2017-05-10 2018-11-29 株式会社三洋物産 Game machine
US11942609B2 (en) 2021-10-29 2024-03-26 Texas Instruments Incorporated Reduced power wireless battery management system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075996A (en) 2007-09-25 2009-04-09 Brother Ind Ltd Radio tag communication device
JP2014197345A (en) 2013-03-29 2014-10-16 日立オートモティブシステムズ株式会社 Battery system
WO2018131338A1 (en) 2017-01-12 2018-07-19 株式会社日立製作所 Wireless battery system
JP2019082399A (en) 2017-10-30 2019-05-30 ラピスセミコンダクタ株式会社 Battery measuring device and battery monitoring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075996A (en) 2007-09-25 2009-04-09 Brother Ind Ltd Radio tag communication device
JP2014197345A (en) 2013-03-29 2014-10-16 日立オートモティブシステムズ株式会社 Battery system
WO2018131338A1 (en) 2017-01-12 2018-07-19 株式会社日立製作所 Wireless battery system
JP2019082399A (en) 2017-10-30 2019-05-30 ラピスセミコンダクタ株式会社 Battery measuring device and battery monitoring system

Also Published As

Publication number Publication date
JP7156212B2 (en) 2022-10-19
JP2022033141A (en) 2022-02-28
JP2021035143A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP7439813B2 (en) battery monitoring device
JP6247787B1 (en) ET system with noise adjustment
WO2007026699A1 (en) Wireless communication system, wireless communication apparatus, amplification rate deciding method, and storing medium
KR101693862B1 (en) System for matching impedence of antenna using greedy algorithm
TW200605535A (en) Downlink power control with limit to dynamic range using detection of downlink transmit power
KR20120134028A (en) Apparatus and method for communication using wireless power
CN101810021A (en) Radio communication system, radio base station device, and transmission control method
JP2001016116A (en) Portable radio equipment
US20170019279A1 (en) Wireless communication apparatus
JPH09162773A (en) Radio transmitter-receiver with consumed current reduction function
US6360085B1 (en) System and method for receiving a signal
JP2000138614A (en) Radio transmitter-receiver
JP2015508266A (en) High frequency transmitter, wireless microphone, and guitar transmitter or pocket transmitter
JP3783684B2 (en) Wireless communication device
CN201887917U (en) Wireless microphone and receiver for teaching
EP1708358A2 (en) Mobile communications terminal having driving voltage control apparatus and method thereof
JP4382570B2 (en) Wireless device remote wired control system
KR100932267B1 (en) Received signal gain control method and wireless signal receiver
WO2004015643A1 (en) Wireless audio monitor
JP2009010857A (en) Digital wireless communication system and digital receiver
JP4170081B2 (en) Interference wave detection device, reception device, and communication device
JP4011412B2 (en) COMMUNICATION SYSTEM, TRANSMISSION DEVICE, AND RECEPTION DEVICE
WO2001031802A1 (en) Apparatus and method for controlling transmission power of mobile station
JPH03154430A (en) Automatic transmission power controller
KR101628359B1 (en) Radio frequency communication device and method of cotrolling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R151 Written notification of patent or utility model registration

Ref document number: 7439813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151