JP7437754B2 - air conditioner - Google Patents

air conditioner Download PDF

Info

Publication number
JP7437754B2
JP7437754B2 JP2020094731A JP2020094731A JP7437754B2 JP 7437754 B2 JP7437754 B2 JP 7437754B2 JP 2020094731 A JP2020094731 A JP 2020094731A JP 2020094731 A JP2020094731 A JP 2020094731A JP 7437754 B2 JP7437754 B2 JP 7437754B2
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
degree
temperature
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020094731A
Other languages
Japanese (ja)
Other versions
JP2021188835A (en
Inventor
秀憲 武居
拓 松本
訓 金澤
暢之 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020094731A priority Critical patent/JP7437754B2/en
Priority to CN202110583040.3A priority patent/CN113739439A/en
Publication of JP2021188835A publication Critical patent/JP2021188835A/en
Application granted granted Critical
Publication of JP7437754B2 publication Critical patent/JP7437754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Description

本発明は、空気調和装置に関する。 The present invention relates to an air conditioner.

従来、液冷媒を一時的に貯蔵させるレシーバタンクを備えた空気調和装置が知られている(例えば、特許文献1参照)。特許文献1では、凝縮器として機能する室外機の下流側に流量調節弁が配置され、流量調節弁により流量調節された冷媒が流入可能な箇所にレシーバタンクが配置され、レシーバタンクから流出した冷媒が流入可能な箇所に膨張弁が配置され、膨張弁の下流側に蒸発器として機能する室内機が配置されている。特許文献1には、冷房運転時において、室内機から流出する冷媒の温度などに基づいて膨張弁を開閉制御すると共に、圧縮機の運転台数等や回転数に基づく冷媒流量に基づいて流量調節弁を調整制御することが記載されている。特許文献1では、空調負荷が変わっても最適な凝縮圧力を保って、冷媒の凝縮作用性を向上させようとしている。 BACKGROUND ART Conventionally, an air conditioner including a receiver tank that temporarily stores liquid refrigerant is known (for example, see Patent Document 1). In Patent Document 1, a flow rate control valve is disposed downstream of an outdoor unit that functions as a condenser, a receiver tank is disposed at a location where the refrigerant whose flow rate is regulated by the flow rate control valve can flow in, and the refrigerant flowing out from the receiver tank is disposed. An expansion valve is disposed at a location where water can flow in, and an indoor unit functioning as an evaporator is disposed downstream of the expansion valve. Patent Document 1 discloses that during cooling operation, an expansion valve is opened and closed based on the temperature of the refrigerant flowing out from the indoor unit, and a flow rate adjustment valve is controlled based on the refrigerant flow rate based on the number of operating compressors and the rotation speed. It is described that it can be adjusted and controlled. Patent Document 1 attempts to improve the condensing efficiency of the refrigerant by maintaining an optimal condensing pressure even when the air conditioning load changes.

特開2016-173200号公報Japanese Patent Application Publication No. 2016-173200

しかしながら、蒸発器の出口の温度や、圧縮機の運転台数等は、凝縮器の状態を示す間接的な情報であって直接的な情報ではない。このため、蒸発器の出口の温度等に基づいて、膨張弁等を開閉制御しても、凝縮器内の冷媒量やレシーバタンク内の冷媒量は、結果的に調節されるに過ぎないため、凝縮器内の冷媒量に対して凝縮器の状態が適切に反映されていない恐れがある。
本発明は、上述した事情に鑑みてなされたものであり、運転負荷が異なる場合でも、凝縮器の状態に基づいて成績係数を良好にしながら凝縮器を機能させることができる空気調和装置を提供することを目的とする。
However, the temperature at the outlet of the evaporator, the number of operating compressors, etc. are indirect information indicating the state of the condenser, and are not direct information. For this reason, even if you control the opening and closing of the expansion valve etc. based on the temperature at the outlet of the evaporator, etc., the amount of refrigerant in the condenser and the amount of refrigerant in the receiver tank will only be adjusted as a result. The state of the condenser may not be appropriately reflected in the amount of refrigerant in the condenser.
The present invention has been made in view of the above-mentioned circumstances, and provides an air conditioner that can operate a condenser while improving the coefficient of performance based on the state of the condenser even when the operating load is different. The purpose is to

前記課題を解決するために、本発明は、圧縮機と、凝縮器と、減圧装置と、蒸発器とが配管で接続された冷媒回路を備える空気調和装置であって、前記凝縮器の出口に配置され前記凝縮器内の冷媒の流出量を調整する膨張弁と、前記膨張弁と前記減圧装置との間に配置され前記凝縮器から流出した冷媒を貯蔵可能なレシーバタンクと、前記膨張弁を開閉制御して前記凝縮器内の冷媒の液量を調整する制御部とを備え、前記制御部は、前記凝縮器から流出する冷媒の温度と前記凝縮器の外気温度との温度差分が、予め設定された所定値に近づくように前記膨張弁を開閉制御することを特徴とする。
これによれば、凝縮器から流出する冷媒の温度と凝縮器の外気温度という凝縮器の状態に基づいて、膨張弁を開閉制御することができる。また、凝縮器内の冷媒の液量を調整する際に余る冷媒はレシーバタンクに貯蔵させることができる。
In order to solve the above problems, the present invention provides an air conditioner including a refrigerant circuit in which a compressor, a condenser, a pressure reducing device, and an evaporator are connected via piping, and the present invention provides an expansion valve arranged to adjust the amount of refrigerant flowing out from the condenser; a receiver tank arranged between the expansion valve and the pressure reducing device and capable of storing the refrigerant flowing out from the condenser; a control unit that controls opening and closing to adjust the amount of refrigerant in the condenser; The invention is characterized in that the expansion valve is controlled to open and close so as to approach a set predetermined value.
According to this, it is possible to control the opening and closing of the expansion valve based on the state of the condenser, that is, the temperature of the refrigerant flowing out from the condenser and the temperature of the outside air of the condenser. Further, when adjusting the amount of refrigerant in the condenser, surplus refrigerant can be stored in the receiver tank.

本発明によれば、運転負荷が異なる場合でも、凝縮器の状態に基づいて成績係数を良好にしながら凝縮器を機能させることができる。 According to the present invention, even when operating loads differ, the condenser can be made to function while maintaining a good coefficient of performance based on the state of the condenser.

第1実施形態に係る空気調和装置の構成を示す図A diagram showing the configuration of an air conditioner according to the first embodiment 冷媒回路への封入冷媒量と成績係数と通年エネルギー消費効率との関係を示す図Diagram showing the relationship between the amount of refrigerant sealed in the refrigerant circuit, coefficient of performance, and year-round energy consumption efficiency 第1実施形態の空気調和装置の制御部のブロック図Block diagram of the control unit of the air conditioner according to the first embodiment 第1実施形態の凝縮器における冷媒の状態を示す模式図Schematic diagram showing the state of refrigerant in the condenser of the first embodiment 第1実施形態の凝縮器に保有される冷媒量に対する成績係数と凝縮圧力と凝縮器の出口の冷媒温度との関係を示す図A diagram showing the relationship between the coefficient of performance, condensation pressure, and refrigerant temperature at the outlet of the condenser for the amount of refrigerant held in the condenser of the first embodiment 第1実施形態の制御部の動作を示すフローチャートFlowchart showing the operation of the control unit of the first embodiment

第1の発明は、圧縮機と、凝縮器と、減圧装置と、蒸発器とが配管で接続された冷媒回路を備える空気調和装置であって、前記凝縮器の出口に配置され前記凝縮器内の冷媒の流出量を調整する膨張弁と、前記膨張弁と前記減圧装置との間に配置され前記凝縮器から流出した冷媒を貯蔵可能なレシーバタンクと、前記膨張弁を開閉制御して前記凝縮器内の冷媒の液量を調整する制御部とを備え、前記制御部は、前記凝縮器から流出する冷媒の温度と前記凝縮器の外気温度との温度差分が、予め設定された所定値に近づくように前記膨張弁を開閉制御する。
これによれば、凝縮器から流出する冷媒の温度と凝縮器の外気温度という凝縮器の状態に基づいて、膨張弁を開閉制御することにより、凝縮器内の冷媒の液量を調整することができると共に、成績係数を良好とする場合に余る冷媒はレシーバタンクに貯蔵させることができる。このため、運転負荷が異なる場合でも、凝縮器の状態に基づいて成績係数を良好にしながら凝縮器を機能させることができる。
A first aspect of the invention is an air conditioner including a refrigerant circuit in which a compressor, a condenser, a pressure reducing device, and an evaporator are connected via piping, the air conditioner being arranged at an outlet of the condenser and inside the condenser. an expansion valve that adjusts the amount of refrigerant that flows out of the condenser; a receiver tank that is arranged between the expansion valve and the pressure reducing device and is capable of storing the refrigerant that flowed out of the condenser; and a receiver tank that controls opening and closing of the expansion valve to condense the refrigerant. a control unit that adjusts the amount of refrigerant in the container; The expansion valve is controlled to open and close so as to approach the expansion valve.
According to this, the amount of refrigerant in the condenser can be adjusted by controlling the opening and closing of the expansion valve based on the conditions of the condenser, such as the temperature of the refrigerant flowing out of the condenser and the temperature of the outside air of the condenser. In addition, if the coefficient of performance is good, the excess refrigerant can be stored in the receiver tank. Therefore, even when the operating loads are different, the condenser can be operated while maintaining a good coefficient of performance based on the state of the condenser.

第2の発明は、前記制御部は、前記温度差分が前記所定値よりも大きい場合に前記膨張弁を閉制御し、前記温度差分が前記所定値よりも小さい場合に前記膨張弁を開制御する。
これによれば、温度差分が所定値よりも大きい場合には凝縮器の過冷却度が小さいと想定され易いため、膨張弁を閉制御することにより凝縮器内の冷媒の液量を増大させ易くすると共に、温度差分が所定値よりも小さい場合には凝縮器の過冷却度が大きいと想定され易いため、膨張弁を開制御することにより凝縮器内の冷媒の液量を減少させ易くすることで、成績係数が最高となるように、過冷却度を調整し易くできる。
In a second invention, the control unit controls the expansion valve to close when the temperature difference is larger than the predetermined value, and controls the expansion valve to open when the temperature difference is smaller than the predetermined value. .
According to this, when the temperature difference is larger than a predetermined value, it is easy to assume that the degree of supercooling of the condenser is small, so it is easy to increase the amount of refrigerant in the condenser by controlling the expansion valve to close. At the same time, if the temperature difference is smaller than a predetermined value, it is likely that the degree of supercooling of the condenser is large, so the amount of refrigerant in the condenser can be easily reduced by controlling the expansion valve to open. This makes it easy to adjust the degree of supercooling so that the coefficient of performance is the highest.

第3の発明は、前記制御部は、前記温度差分が前記所定値よりも大きい場合に、前記凝縮器から流出する冷媒の過冷却度が目標の過冷却度よりも大きい場合には、前記膨張弁を閉制御に代えて開制御する。
これによれば、温度差分が所定値よりも大きい場合には膨張弁を閉制御すれば成績係数が良くなると想定されるが、凝縮器の負荷によっては膨張弁の開閉と過冷却度の大小は相関しないため、目標の過冷却度に基づく制御により、より精度良く成績係数が最高となるように凝縮器内の冷媒の液量を調整できる。
In a third aspect of the present invention, the control unit controls the expansion when the degree of supercooling of the refrigerant flowing out from the condenser is larger than a target degree of supercooling when the temperature difference is larger than the predetermined value. The valve is controlled to open instead of closed.
According to this, if the temperature difference is larger than a predetermined value, it is assumed that the coefficient of performance will improve if the expansion valve is controlled to close, but depending on the load on the condenser, the opening and closing of the expansion valve and the degree of supercooling will be Since there is no correlation, the amount of refrigerant in the condenser can be adjusted more accurately by controlling based on the target degree of supercooling so that the coefficient of performance becomes the highest.

第4の発明は、前記制御部は、前記温度差分が前記所定値よりも小さい場合に、前記凝縮器から流出する冷媒の過冷却度が以前の過冷却度よりも大きく且つ前記過冷却度が目標の過冷却度よりも小さい場合には、前記膨張弁を開制御に代えて閉制御する。
これによれば、温度差分が所定値よりも小さい場合には膨張弁を開制御すれば成績係数が良くなると想定されるが、凝縮器の負荷によっては膨張弁の開閉と過冷却度の大小は相関しないため、目標の過冷却度に基づく制御により、より精度良く成績係数が最高となるように凝縮器内の冷媒の液量を調整できる。
A fourth aspect of the invention is that, when the temperature difference is smaller than the predetermined value, the degree of supercooling of the refrigerant flowing out from the condenser is larger than the previous degree of supercooling, and the degree of supercooling is When the degree of supercooling is smaller than the target degree of supercooling, the expansion valve is controlled to be closed instead of being controlled to open.
According to this, it is assumed that if the temperature difference is smaller than a predetermined value, the coefficient of performance will improve if the expansion valve is controlled to open, but depending on the load on the condenser, the opening/closing of the expansion valve and the degree of supercooling may be affected. Since there is no correlation, the amount of refrigerant in the condenser can be adjusted more accurately by controlling based on the target degree of supercooling so that the coefficient of performance becomes the highest.

第5の発明は、前記制御部は、前記温度差分が前記所定値よりも小さい場合に、前記凝縮器から流出する冷媒の過冷却度が以前の過冷却度よりも小さく且つ前記過冷却度が目標の過冷却度よりも小さい場合には、前記膨張弁を開制御に代えて開閉制御しない。
これによれば、温度差分が所定値よりも小さい場合に、凝縮器から流出する冷媒の過冷却度が以前の過冷却度よりも小さい場合には、膨張弁の開度が既に小さいと想定されるため、過冷却度が目標の過冷却度よりも小さい場合でも、膨張弁を閉制御しないことにより、膨張弁を閉め過ぎることを抑制できる。
In a fifth aspect of the invention, when the temperature difference is smaller than the predetermined value, the degree of supercooling of the refrigerant flowing out from the condenser is smaller than the previous degree of supercooling, and the degree of supercooling is When the degree of supercooling is smaller than the target degree of supercooling, the expansion valve is not controlled to open or close instead of being controlled to open.
According to this, if the temperature difference is smaller than a predetermined value and the degree of supercooling of the refrigerant flowing out from the condenser is smaller than the previous degree of supercooling, it is assumed that the opening degree of the expansion valve is already small. Therefore, even when the degree of supercooling is smaller than the target degree of supercooling, by not controlling the expansion valve to close, it is possible to suppress the expansion valve from being closed too much.

第6の発明は、前記圧縮機の出口側に配置され前記圧縮機から流出する冷媒の圧力を検知する高圧センサと、前記凝縮器の出口側に配置され前記凝縮器から流出する冷媒の温度を検知する冷媒温度センサと、を備え、前記制御部は、前記高圧センサの検知結果に基づいて前記凝縮器の冷媒の飽和温度を決定すると共に、前記飽和温度と、前記冷媒温度センサの検知結果に基づいて、前記凝縮器から流出する冷媒の過冷却度を演算する。
これによれば、高圧センサと冷媒温度センサとの検知結果に基づいて、過冷却度を演算することができる。
A sixth aspect of the present invention includes a high-pressure sensor arranged on the outlet side of the compressor to detect the pressure of the refrigerant flowing out from the compressor, and a high-pressure sensor arranged on the outlet side of the condenser to detect the temperature of the refrigerant flowing out from the condenser. a refrigerant temperature sensor for detecting, the control unit determines the saturation temperature of the refrigerant in the condenser based on the detection result of the high pressure sensor, and the control unit determines the saturation temperature of the refrigerant of the condenser based on the detection result of the refrigerant temperature sensor. Based on this, the degree of subcooling of the refrigerant flowing out from the condenser is calculated.
According to this, the degree of supercooling can be calculated based on the detection results of the high pressure sensor and the refrigerant temperature sensor.

第7の発明は、前記凝縮器の外気の温度を検知する外気温度センサと、前記凝縮器の冷媒の出口に配置され前記凝縮器から流出する冷媒の温度を検知する冷媒温度センサと、を備え、前記制御部は、前記外気温度センサと前記冷媒温度センサとの検知結果に基づいて、前記凝縮器から流出する冷媒の温度と前記凝縮器の外気温度との温度差分を演算する。
これによれば、外気温度センサと冷媒温度センサの検知結果に基づいて、温度差分を演算することができる。
A seventh aspect of the invention includes an outside air temperature sensor that detects the temperature of outside air in the condenser, and a refrigerant temperature sensor that is disposed at a refrigerant outlet of the condenser and detects the temperature of the refrigerant flowing out from the condenser. , the control unit calculates a temperature difference between the temperature of the refrigerant flowing out from the condenser and the outside temperature of the condenser, based on the detection results of the outside air temperature sensor and the refrigerant temperature sensor.
According to this, the temperature difference can be calculated based on the detection results of the outside air temperature sensor and the refrigerant temperature sensor.

第8の発明は、第1負荷モードと、前記第1負荷モードとは異なる第2負荷モードとで運転可能に構成され、前記レシーバタンクは、前記冷媒回路に収容される冷媒について、前記第1負荷モードの成績係数が最高となる冷媒の量と、前記第2負荷モードの成績係数が最高となる冷媒の量と、の差分以上の量を収容可能な容量に構成されている。
これによれば、空気調和装置の運転負荷が異なる第1負荷モードと第2負荷モードのいずれでも、成績係数が最高となる冷媒の量で運転することができる。
An eighth invention is configured to be operable in a first load mode and a second load mode different from the first load mode, and the receiver tank is configured to operate in the first load mode with respect to the refrigerant accommodated in the refrigerant circuit. The capacity is configured to accommodate an amount that is greater than the difference between the amount of refrigerant that gives the highest coefficient of performance in the load mode and the amount of refrigerant that gives the highest coefficient of performance in the second load mode.
According to this, the air conditioner can be operated with the amount of refrigerant that provides the highest coefficient of performance in both the first load mode and the second load mode in which the operating loads of the air conditioner are different.

以下、本発明の一実施の形態を、図面を参照して説明する。
[1.第1実施形態]
図1は、第1実施形態に係る空気調和装置1の構成を示す図である。
空気調和装置1は、圧縮機2と、凝縮器3と、減圧装置4と、蒸発器5と、を備える。また、空気調和装置1は、膨張弁11と、レシーバタンク12と、過冷却熱交換器13と、リキッド弁14とを備える。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
[1. First embodiment]
FIG. 1 is a diagram showing the configuration of an air conditioner 1 according to the first embodiment.
The air conditioner 1 includes a compressor 2, a condenser 3, a pressure reducing device 4, and an evaporator 5. The air conditioner 1 also includes an expansion valve 11 , a receiver tank 12 , a subcooling heat exchanger 13 , and a liquid valve 14 .

圧縮機2と、凝縮器3と、膨張弁11と、レシーバタンク12と、過冷却熱交換器13と、減圧装置4と、蒸発器5とが、冷媒配管15で接続されている。また、過冷却熱交換器13と、リキッド弁14とが、分岐配管16で接続されている。
圧縮機2と、凝縮器3と、膨張弁11と、レシーバタンク12と、過冷却熱交換器13と、減圧装置4と、蒸発器5と、リキッド弁14と、冷媒配管15と、分岐配管16とで、本実施形態では、冷媒回路17が構成される。冷媒回路17では、冷媒が矢印Y1の方向に循環する。
The compressor 2, the condenser 3, the expansion valve 11, the receiver tank 12, the subcooling heat exchanger 13, the pressure reducing device 4, and the evaporator 5 are connected by a refrigerant pipe 15. Further, the subcooling heat exchanger 13 and the liquid valve 14 are connected through a branch pipe 16.
Compressor 2, condenser 3, expansion valve 11, receiver tank 12, subcooling heat exchanger 13, pressure reducing device 4, evaporator 5, liquid valve 14, refrigerant pipe 15, branch pipe 16 constitutes a refrigerant circuit 17 in this embodiment. In the refrigerant circuit 17, refrigerant circulates in the direction of arrow Y1.

圧縮機2は、入口側から冷媒を吸引して圧縮し、出口側から吐出する。
凝縮器3は、凝縮器3内のガス冷媒と、凝縮器3の外気とを熱交換させて、ガス冷媒を凝縮させる。
減圧装置4は、高圧の冷媒を減圧して膨張させる。減圧装置4は、膨張弁で構成されており、開度を調整制御可能に構成されている。
蒸発器5は、蒸発器5内の液冷媒と、蒸発器5の外気とを熱交換させ、液冷媒を気化させる。
The compressor 2 sucks refrigerant from the inlet side, compresses it, and discharges it from the outlet side.
The condenser 3 condenses the gas refrigerant by exchanging heat between the gas refrigerant in the condenser 3 and the outside air of the condenser 3.
The pressure reducing device 4 reduces the pressure of the high-pressure refrigerant and expands it. The pressure reducing device 4 is composed of an expansion valve, and is configured to be able to adjust and control its opening degree.
The evaporator 5 exchanges heat between the liquid refrigerant in the evaporator 5 and the outside air of the evaporator 5 to vaporize the liquid refrigerant.

凝縮器3の出口側には、膨張弁11が配置されている。膨張弁11は、開度を調整制御可能に構成されている。膨張弁11の開度が調整されることにより、凝縮器3から流出する冷媒の流出量が調整可能である。
膨張弁11の下流側には、レシーバタンク12が配置されている。レシーバタンク12には、凝縮器3から流出した冷媒が貯蔵可能に構成されている。
An expansion valve 11 is arranged on the outlet side of the condenser 3. The expansion valve 11 is configured such that its opening degree can be adjusted and controlled. By adjusting the opening degree of the expansion valve 11, the amount of refrigerant flowing out from the condenser 3 can be adjusted.
A receiver tank 12 is arranged downstream of the expansion valve 11 . The receiver tank 12 is configured to be able to store the refrigerant flowing out from the condenser 3.

レシーバタンク12の下流側には過冷却熱交換器13が配置されている。
レシーバタンク12の下流側であって、過冷却熱交換器13の上流側には、冷媒配管15から分岐する分岐配管16が接続されている。分岐配管16には、リキッド弁14が接続されている。リキッド弁14は、開度を調整制御可能に構成されている。リキッド弁14は、レシーバタンク12から流出した冷媒を減圧して膨張させる。
A supercooling heat exchanger 13 is arranged downstream of the receiver tank 12.
A branch pipe 16 branching from the refrigerant pipe 15 is connected to the downstream side of the receiver tank 12 and the upstream side of the subcooling heat exchanger 13 . A liquid valve 14 is connected to the branch pipe 16. The liquid valve 14 is configured such that its opening degree can be adjusted and controlled. The liquid valve 14 reduces the pressure of the refrigerant flowing out from the receiver tank 12 and expands it.

リキッド弁14の下流側には、過冷却熱交換器13が配置される。過冷却熱交換器13では、リキッド弁14で膨張して過冷却熱交換器13の蒸発側を流れる冷媒と、凝縮器3で凝縮されて過冷却熱交換器13の凝縮側を流れる冷媒とが熱交換可能に設けられている。これにより、過冷却熱交換器13は、過冷却熱交換器13の凝縮側を流れる冷媒を冷却して過冷却する、あるいは、すでに過冷却状態で凝縮側を流れる冷媒の過冷却度合いを大きくする。
過冷却熱交換器13から延びる分岐配管16は、蒸発器5の下流側であって圧縮機2の上流側で冷媒配管15に接続される。
A supercooling heat exchanger 13 is arranged downstream of the liquid valve 14 . In the supercooling heat exchanger 13, the refrigerant expands in the liquid valve 14 and flows on the evaporation side of the supercooling heat exchanger 13, and the refrigerant condenses in the condenser 3 and flows on the condensation side of the supercooling heat exchanger 13. Provided for heat exchange. Thereby, the supercooling heat exchanger 13 cools the refrigerant flowing on the condensing side of the supercooling heat exchanger 13 to subcool it, or increases the degree of supercooling of the refrigerant flowing on the condensing side while it is already in a supercooled state. .
A branch pipe 16 extending from the subcooling heat exchanger 13 is connected to the refrigerant pipe 15 on the downstream side of the evaporator 5 and upstream of the compressor 2.

圧縮機2の冷媒の入口側には、冷媒の圧力を検知する低圧センサ21が配置されている。低圧センサ21は、圧縮機2に流入する冷媒の圧力を検知する。
圧縮機2の冷媒の出口側には、冷媒の圧力を検知する高圧センサ22が配置されている。高圧センサ22は、圧縮機2から圧縮されて流出する冷媒の圧力を検知する。
A low pressure sensor 21 is arranged on the refrigerant inlet side of the compressor 2 to detect the pressure of the refrigerant. The low pressure sensor 21 detects the pressure of refrigerant flowing into the compressor 2.
A high pressure sensor 22 is arranged on the refrigerant outlet side of the compressor 2 to detect the pressure of the refrigerant. The high pressure sensor 22 detects the pressure of the refrigerant compressed and flowing out from the compressor 2.

凝縮器3には、外気温度センサ23が配置されている。外気温度センサ23は、凝縮器3に吸い込まれる外気の温度を検知する。
凝縮器3の冷媒の出口側には、冷媒温度センサ24が配置されている。冷媒温度センサ24は、凝縮器3から流出する冷媒の温度を検知する。
An outside air temperature sensor 23 is arranged in the condenser 3 . The outside air temperature sensor 23 detects the temperature of outside air sucked into the condenser 3.
A refrigerant temperature sensor 24 is arranged on the refrigerant outlet side of the condenser 3 . Refrigerant temperature sensor 24 detects the temperature of the refrigerant flowing out from condenser 3 .

図2は、冷媒回路17への封入冷媒量と成績係数C10、C20、C11、C21と通年エネルギー消費効率A1、A2との関係を示す図である。なお、図2では、横軸は封入冷媒量を示すが、縦軸は示される値の種類毎に対応する単位をとり、図の上下の位置関係は、異なる値の大小関係を必ずしも表すものではない。
図2において、左側はレシーバタンク12が無い場合の関係を示し、右側はレシーバタンク12が備えられた本実施形態の空気調和装置1の関係を示す。
一般に、成績係数(COP:Coefficient Of Performance)C10、C20、C11、C21や、通年エネルギー消費効率(APF:Annual Performance Factor)A1、A2は、冷媒回路17に封入された封入冷媒量に応じて変化する。
FIG. 2 is a diagram showing the relationship between the amount of refrigerant sealed in the refrigerant circuit 17, the coefficients of performance C10, C20, C11, and C21, and the year-round energy consumption efficiencies A1 and A2. In Figure 2, the horizontal axis indicates the amount of refrigerant enclosed, but the vertical axis has units corresponding to the types of values shown, and the vertical positional relationship in the diagram does not necessarily represent the magnitude relationship of different values. do not have.
In FIG. 2, the left side shows the relationship when there is no receiver tank 12, and the right side shows the relationship in the air conditioner 1 of this embodiment equipped with the receiver tank 12.
Generally, coefficients of performance (COP) C10, C20, C11, C21 and annual performance factors (APF) A1, A2 change depending on the amount of refrigerant sealed in the refrigerant circuit 17. do.

例えば、レシーバタンク12が無い場合には、定格冷房標準(第1負荷モード)の成績係数C10や、定格冷房標準よりも運転負荷の小さい中間冷房中温(第2負荷モード)の成績係数C20は、封入冷媒量が増加するにしたがって山状に増減し、成績係数C10、C20は、それぞれ、封入冷媒量R1、R2の場合に、最高値を示す。定格冷房標準の成績係数C10は封入冷媒量が多い領域で増減し、また、中間冷房中温の成績係数C20は、封入冷媒量が少ない場合に増減する。成績係数C10が最高値となる封入冷媒量R1は、成績係数C20が最高値となる封入冷媒量R2よりも大きい。 For example, when there is no receiver tank 12, the coefficient of performance C10 of the rated cooling standard (first load mode) and the coefficient of performance C20 of the intermediate cooling medium temperature (second load mode), which has a smaller operating load than the rated cooling standard, are as follows. The coefficients of performance C10 and C20 increase and decrease in a mountain-like manner as the amount of enclosed refrigerant increases, and the coefficients of performance C10 and C20 show the highest values when the amount of enclosed refrigerant is R1 and R2, respectively. The coefficient of performance C10 of the rated cooling standard increases or decreases in a region where the amount of enclosed refrigerant is large, and the coefficient of performance C20 of intermediate cooling medium temperature increases or decreases when the amount of enclosed refrigerant is small. The amount R1 of enclosed refrigerant at which the coefficient of performance C10 becomes the highest value is larger than the amount R2 of enclosed refrigerant at which the coefficient of performance C20 becomes the highest value.

また、通年エネルギー消費効率A1は、封入冷媒量が増加するにしたがって増減し、封入冷媒量R2のときに最高値を示す。通年エネルギー消費効率A1は、成績係数C20が最高値を示す封入冷媒量R2の場合と、成績係数C10が最高値を示す封入冷媒量R1の場合とでは、値に差ΔA1が生じる。 Moreover, the year-round energy consumption efficiency A1 increases and decreases as the amount of enclosed refrigerant increases, and shows the highest value when the amount of enclosed refrigerant is R2. There is a difference ΔA1 in the year-round energy consumption efficiency A1 between the case where the enclosed refrigerant amount R2 has the highest coefficient of performance C20 and the case where the enclosed refrigerant amount R1 has the highest coefficient of performance C10.

一方、レシーバタンク12を設ける場合、冷媒回路17に封入される封入冷媒量が、成績係数C10、C20が最高値を示す封入冷媒量R1、R2よりも多い場合には、各運転時に、多い分の余剰冷媒量をレシーバタンク12に一時的に貯蔵することが可能となる。したがって、例えば、封入冷媒量R1、R2の差分以上の容量Vを有するレシーバタンク12を冷媒回路17に配置することで、運転時に、余剰冷媒量をレシーバタンク12に一時的に貯蔵させて運転することが可能となる。これにより、定格冷房標準の成績係数C10と、中間冷房中温の成績係数C20とは、右側の図のように、封入冷媒量R1、R2に容量Vの冷媒量を加算した範囲全体で最高値を有する成績係数C11、C21の曲線にすることができる。成績係数C11、C21では、最高値を示す封入冷媒量が範囲W0で重複する。 On the other hand, when the receiver tank 12 is provided, if the amount of refrigerant sealed in the refrigerant circuit 17 is larger than the amount of refrigerant R1 and R2 at which the coefficients of performance C10 and C20 have the highest values, the larger amount is It becomes possible to temporarily store the amount of surplus refrigerant in the receiver tank 12. Therefore, for example, by arranging in the refrigerant circuit 17 a receiver tank 12 having a capacity V greater than the difference between the filled refrigerant amounts R1 and R2, the receiver tank 12 temporarily stores the surplus refrigerant amount during operation. becomes possible. As a result, the coefficient of performance C10 of the rated cooling standard and the coefficient of performance C20 of the intermediate cooling medium temperature are the highest values in the entire range of adding the refrigerant amount of capacity V to the enclosed refrigerant amounts R1 and R2, as shown in the figure on the right. It can be made into a curve with a coefficient of performance C11 or C21. In the coefficients of performance C11 and C21, the amounts of enclosed refrigerant showing the highest values overlap in the range W0.

この場合の通年エネルギー消費効率A2では、重複する範囲W0において、最高値を示し、その最高値は、レシーバタンク12が無い場合の通年エネルギー消費効率A1の最高値よりも差ΔA2だけ大きい。レシーバタンク12を設け、重複する範囲の封入冷媒量を冷媒回路17に封入することで、運転負荷が異なる場合であっても、最高の成績係数C11、C21にすることができる。 In this case, the year-round energy consumption efficiency A2 shows the highest value in the overlapping range W0, and the highest value is larger than the highest value of the year-round energy consumption efficiency A1 without the receiver tank 12 by a difference ΔA2. By providing the receiver tank 12 and filling the refrigerant circuit 17 with overlapping amounts of refrigerant, the highest coefficients of performance C11 and C21 can be achieved even when the operating loads are different.

図3は、第1実施形態の空気調和装置1の制御部100のブロック図である。
制御部100は、CPUやMPU等のプログラムを実行するプロセッサ110、及び、記憶部120を備え、空気調和装置1の各部を制御する。制御部100は、プロセッサ110が、記憶部120に記憶された制御プログラム121を読み出して処理を実行するように、ハードウェア及びソフトウェアの協働により各種処理を実行する。
FIG. 3 is a block diagram of the control unit 100 of the air conditioner 1 of the first embodiment.
The control unit 100 includes a processor 110 such as a CPU or an MPU that executes a program, and a storage unit 120, and controls each unit of the air conditioner 1. The control unit 100 executes various processes through cooperation of hardware and software, such that the processor 110 reads the control program 121 stored in the storage unit 120 and executes the process.

記憶部120は、プロセッサ110が実行するプログラムや、プロセッサ110により処理されるデータを記憶する記憶領域を有する。記憶部120は、プロセッサ110が実行する制御プログラムや、空気調和装置1の各種設定に係る設定データ、その他の各種データを記憶する。記憶部120は、プログラムやデータを不揮発的に記憶する不揮発性記憶領域を有する。また、記憶部120は、揮発性記憶領域を備え、プロセッサ110が実行するプログラムや処理対象のデータを一時的に記憶するワークエリアを構成してもよい。 The storage unit 120 has a storage area that stores programs executed by the processor 110 and data processed by the processor 110. The storage unit 120 stores a control program executed by the processor 110, setting data related to various settings of the air conditioner 1, and other various data. The storage unit 120 has a nonvolatile storage area that stores programs and data in a nonvolatile manner. Furthermore, the storage unit 120 may include a volatile storage area and constitute a work area in which programs to be executed by the processor 110 and data to be processed are temporarily stored.

制御部100には、制御部100に信号を入力する要素として、入力部101と、低圧センサ21と、高圧センサ22と、外気温度センサ23と、冷媒温度センサ24とが電気的に接続されている。 The control unit 100 is electrically connected to an input unit 101, a low pressure sensor 21, a high pressure sensor 22, an outside air temperature sensor 23, and a refrigerant temperature sensor 24 as elements for inputting signals to the control unit 100. There is.

入力部101は、操作スイッチや、タッチパネル、マウス、キーボード等の入力手段を備え、作業者の入力手段に対する操作を検出し、検出結果を制御部100に出力する。制御部100は、入力部101からの入力に基づいて、入力手段に対する操作に対応する処理を実行する。 The input unit 101 includes input means such as an operation switch, a touch panel, a mouse, and a keyboard, detects the operator's operation on the input means, and outputs the detection result to the control unit 100. The control unit 100 executes processing corresponding to the operation on the input means based on the input from the input unit 101.

制御部100には、制御部100が制御信号を出力する要素として、表示部102と、圧縮機2と、膨張弁11と、減圧装置4と、リキッド弁14とが制御可能に電気的に接続されている。 A display unit 102, a compressor 2, an expansion valve 11, a pressure reducing device 4, and a liquid valve 14 are electrically connected to the control unit 100 so as to be controllable as elements to which the control unit 100 outputs control signals. has been done.

表示部102は、LEDや表示パネル等を備え、制御部100の制御に従って、LEDの所定の態様での点灯/点滅/消灯や、表示パネルへの情報の表示等を実行する。 The display unit 102 includes LEDs, a display panel, and the like, and executes lighting/blinking/extinguishing of the LEDs in a predetermined manner, displaying information on the display panel, etc. under the control of the control unit 100.

制御部100は、入力部101と、低圧センサ21と、高圧センサ22と、外気温度センサ23と、冷媒温度センサ24の入力信号、検知信号に基づいて、表示部102と、圧縮機2と、膨張弁11と、減圧装置4と、リキッド弁14とを制御する。 The control unit 100 controls the display unit 102, the compressor 2, The expansion valve 11, the pressure reducing device 4, and the liquid valve 14 are controlled.

図4は、第1実施形態の凝縮器3における冷媒の状態を示す模式図である。
凝縮器3では、圧縮機2で圧縮された高温、高圧のガス冷媒Rgが凝縮されて液冷媒Rlとなる。液冷媒Rlは飽和温度よりも冷却された場合に過冷却される。液温度に対する飽和温度の差分を過冷却度SCという。
図4において、領域W1は、ガス冷媒Rgが液冷媒Rlに凝縮する凝縮域(以降、凝縮域W1という)を示す。また、領域W2は、液冷媒Rlからガス冷媒Rgが発生するフラッシュガス領域(以降、フラッシュガス領域W2という)を示す。さらに、領域W3は、液冷媒Rlが過冷却された過冷却領域(以降、過冷却領域W3という)を示す。
凝縮域W1では、ガス冷媒Rgと液冷媒Rlの面積と、凝縮圧力には相関関係がある。
FIG. 4 is a schematic diagram showing the state of the refrigerant in the condenser 3 of the first embodiment.
In the condenser 3, the high temperature, high pressure gas refrigerant Rg compressed by the compressor 2 is condensed into liquid refrigerant Rl. The liquid refrigerant Rl is supercooled when it is cooled below the saturation temperature. The difference between the saturation temperature and the liquid temperature is called the degree of supercooling SC.
In FIG. 4, region W1 indicates a condensation region (hereinafter referred to as condensation region W1) where gas refrigerant Rg condenses into liquid refrigerant Rl. Further, region W2 indicates a flash gas region (hereinafter referred to as flash gas region W2) where gas refrigerant Rg is generated from liquid refrigerant Rl. Furthermore, region W3 indicates a supercooling region (hereinafter referred to as supercooling region W3) in which the liquid refrigerant Rl is supercooled.
In the condensation zone W1, there is a correlation between the area of the gas refrigerant Rg and the liquid refrigerant Rl and the condensation pressure.

図5は、第1実施形態の凝縮器3に保有される冷媒量に対する成績係数Cと凝縮圧力Pと凝縮器3の出口の冷媒温度Tとの関係を示す図である。図5において、横軸は、凝縮器3に保有される冷媒量を示すが、縦軸は、示す値に応じた単位をとる。
図5に示すように、冷媒温度Tは、冷媒量が増加するのに応じて、外気温度T0に向かって単調に漸減する。また、凝縮圧力Pは、冷媒量が増加するのに応じて右上がりに増大する。また、成績係数Cは、冷媒量が増加するのに応じて増減し、冷媒量R0の場合に最大値を示す。
冷媒量R0の近傍は、成績係数Cが良好であり凝縮器3を機能させる場合は、この冷媒量R0の近傍範囲となる冷媒量となるように運転させることが望ましい。そして、冷媒量は、冷媒重量を示すが、ガス冷媒Rgに比べて液冷媒Rlの密度が十倍以上あるため、液冷媒Rlの割合を調整することで、冷媒量の制御が可能となる。
FIG. 5 is a diagram showing the relationship between the coefficient of performance C, condensation pressure P, and refrigerant temperature T at the outlet of the condenser 3 with respect to the amount of refrigerant held in the condenser 3 of the first embodiment. In FIG. 5, the horizontal axis indicates the amount of refrigerant held in the condenser 3, and the vertical axis takes units according to the indicated value.
As shown in FIG. 5, the refrigerant temperature T gradually decreases toward the outside air temperature T0 as the amount of refrigerant increases. Further, the condensing pressure P increases upward to the right as the amount of refrigerant increases. Further, the coefficient of performance C increases or decreases as the amount of refrigerant increases, and shows the maximum value when the amount of refrigerant is R0.
The coefficient of performance C is good in the vicinity of the refrigerant amount R0, and when the condenser 3 is to function, it is desirable to operate the refrigerant amount in the vicinity of the refrigerant amount R0. The amount of refrigerant indicates the weight of the refrigerant, and since the density of the liquid refrigerant Rl is more than ten times that of the gas refrigerant Rg, the amount of refrigerant can be controlled by adjusting the proportion of the liquid refrigerant Rl.

そこで、本実施形態の制御部100は、冷媒量の最適制御処理を実行する。冷媒量の最適制御処理では、外気温度T0に対する冷媒温度Tの差分である温度差分ΔT(=T-T0)が所定値ΔTaに近づくように膨張弁11を開閉制御して、凝縮器3の過冷却された液冷媒Rlの量を調整する。基本的には、膨張弁11の開閉制御により、凝縮器3内の凝縮圧力Pを制御可能となるため、それに応じて液冷媒の量も変更される。本実施形態において、温度差分ΔTが所定値ΔTaに近づくとは、温度差分ΔTが所定値ΔTaに近づく場合と、温度差分ΔTが所定値ΔTaに対して予め設定された温度の範囲ΔTa+α~ΔTa-β(図5参照)に留まることも意味するものとする。範囲ΔTa+α~ΔTa-βは、冷媒量R0の成績係数Cに対して許容可能な成績係数Cとなる範囲である。なお、所定値ΔTaとしては、例えば、2℃以上5℃以下を設定可能である。本実施形態では、一例として、3℃を設定している。 Therefore, the control unit 100 of this embodiment executes an optimal control process for the amount of refrigerant. In the refrigerant amount optimization process, the expansion valve 11 is controlled to open and close so that the temperature difference ΔT (=T−T0), which is the difference between the refrigerant temperature T and the outside air temperature T0, approaches a predetermined value ΔTa, and the condenser 3 is prevented from overheating. Adjust the amount of cooled liquid refrigerant Rl. Basically, the condensation pressure P in the condenser 3 can be controlled by controlling the opening and closing of the expansion valve 11, so the amount of liquid refrigerant is also changed accordingly. In this embodiment, the temperature difference ΔT approaches the predetermined value ΔTa means that the temperature difference ΔT approaches the predetermined value ΔTa, and when the temperature difference ΔT approaches the predetermined value ΔTa within a preset temperature range ΔTa+α to ΔTa− It also means that it remains at β (see FIG. 5). The range ΔTa+α to ΔTa−β is a range in which the coefficient of performance C is acceptable with respect to the coefficient of performance C of the refrigerant amount R0. Note that the predetermined value ΔTa can be set to, for example, 2° C. or more and 5° C. or less. In this embodiment, as an example, the temperature is set at 3°C.

図6は、第1実施形態の制御部100の動作を示すフローチャートである。
次に、空気調和装置1の制御部100が実行する冷媒量の最適制御処理の動作を説明する。
FIG. 6 is a flowchart showing the operation of the control unit 100 of the first embodiment.
Next, the operation of the refrigerant amount optimization control process executed by the control unit 100 of the air conditioner 1 will be described.

制御部100は、冷媒量の最適制御処理を開始すると、圧縮機2の運転設定に応じた運転負荷(運転モード)の情報を取得する(ST1)。
制御部100は、センサ22~24により検知する(ステップST2)。すなわち、制御部100は、外気温度センサ23より凝縮器3の外気温度T0を検知する。また、制御部100は、冷媒温度センサ24より凝縮器3から流出する冷媒の冷媒温度Tを検知する。さらに、制御部100は、高圧センサ22により、圧縮機2から流出する冷媒の冷媒圧力を検知する。
制御部100は、外気温度T0に対する冷媒温度Tの差分である温度差分ΔTを演算する(ステップST3)。
When the control unit 100 starts the refrigerant amount optimization control process, it acquires information on the operating load (operating mode) according to the operating setting of the compressor 2 (ST1).
The control unit 100 detects using the sensors 22 to 24 (step ST2). That is, the control unit 100 detects the outside air temperature T0 of the condenser 3 using the outside air temperature sensor 23. Further, the control unit 100 detects the refrigerant temperature T of the refrigerant flowing out from the condenser 3 using the refrigerant temperature sensor 24 . Furthermore, the control unit 100 detects the refrigerant pressure of the refrigerant flowing out from the compressor 2 using the high pressure sensor 22 .
The control unit 100 calculates a temperature difference ΔT, which is the difference between the refrigerant temperature T and the outside air temperature T0 (step ST3).

制御部100は、予め設定されたルックアップテーブル情報に基づいて、飽和温度T1と、目標過冷却度SC0を決定する(ステップST4)。すなわち、制御部100は、予め設定された第1のルックアップテーブル情報を参照して、検知された冷媒圧力に対応する飽和温度T1を決定する(ステップST4)。また、制御部100は、予め設定された第2のルックアップテーブル情報を参照して、圧縮機2の運転負荷と冷媒温度Tとに対応する目標とすべき目標過冷却度SC0を決定する(ステップST4)。
制御部100は、冷媒温度Tに対する飽和温度T1の差分である過冷却度SCを演算する(ステップST5)。
Control unit 100 determines saturation temperature T1 and target degree of supercooling SC0 based on preset lookup table information (step ST4). That is, the control unit 100 refers to preset first lookup table information and determines the saturation temperature T1 corresponding to the detected refrigerant pressure (step ST4). Further, the control unit 100 refers to the second lookup table information set in advance to determine the target degree of supercooling SC0 that corresponds to the operating load of the compressor 2 and the refrigerant temperature T ( Step ST4).
The control unit 100 calculates the degree of supercooling SC, which is the difference between the saturation temperature T1 and the refrigerant temperature T (step ST5).

制御部100は、温度差分ΔTが予め設定された所定値ΔTaよりも大きいか否かを判別する(ステップST6)。 The control unit 100 determines whether the temperature difference ΔT is larger than a predetermined value ΔTa (step ST6).

制御部100は、温度差分ΔTが所定値ΔTaよりも大きいと判別した場合(ステップST6:YES)、過冷却度SCが目標過冷却度SC0よりも小さいか否かを判別する(ステップST7)。
制御部100は、過冷却度SCが目標過冷却度SC0よりも小さいと判別した場合(ステップST7:YES)、所定の開度分、膨張弁を閉制御する(ステップST8)。
制御部100は、過冷却度SCが目標過冷却度SC0よりも小さくない、すなわち、過冷却度SCが目標過冷却度SC0よりも大きい又は過冷却度SCが目標過冷却度SC0に等しいと判別した場合(ステップST7:NO)、所定の開度分、膨張弁を開制御する(ステップST9)。
制御部100は、過冷却度SCの記憶情報を更新して保持する(ステップST10)。これにより、現在の過冷却度SCを以前の過冷却度SC1として参照可能とする。
When the control unit 100 determines that the temperature difference ΔT is larger than the predetermined value ΔTa (step ST6: YES), it determines whether the degree of supercooling SC is smaller than the target degree of supercooling SC0 (step ST7).
When the control unit 100 determines that the degree of subcooling SC is smaller than the target degree of subcooling SC0 (step ST7: YES), the control unit 100 controls the expansion valve to close by a predetermined opening degree (step ST8).
The control unit 100 determines that the degree of subcooling SC is not smaller than the target degree of supercooling SC0, that is, the degree of subcooling SC is greater than the target degree of supercooling SC0, or the degree of subcooling SC is equal to the target degree of supercooling SC0. If so (step ST7: NO), the expansion valve is controlled to open by a predetermined opening degree (step ST9).
The control unit 100 updates and holds the storage information of the degree of subcooling SC (step ST10). Thereby, the current degree of supercooling SC can be referred to as the previous degree of supercooling SC1.

ステップST6において、制御部100は、温度差分ΔTが所定値ΔTaよりも大きくない、すなわち、温度差分ΔTが所定値ΔTaよりも小さい又は温度差分ΔTが所定値ΔTaに等しいと判別した場合(ステップST6:NO)、過冷却度SCが、記憶保持されている前過冷却度SC1よりも大きいか否かを判別する(ステップST11)。
制御部100は、過冷却度SCが前過冷却度SC1よりも大きいと判別した場合(ステップST11:YES)、過冷却度SCが目標過冷却度SC0よりも小さいか否かを判別する(ステップST12)。
In step ST6, if the control unit 100 determines that the temperature difference ΔT is not larger than the predetermined value ΔTa, that is, the temperature difference ΔT is smaller than the predetermined value ΔTa, or the temperature difference ΔT is equal to the predetermined value ΔTa (step ST6 : NO), it is determined whether or not the degree of supercooling SC is larger than the previously stored degree of supercooling SC1 (step ST11).
When the control unit 100 determines that the degree of subcooling SC is larger than the previous degree of subcooling SC1 (step ST11: YES), it determines whether the degree of subcooling SC is smaller than the target degree of subcooling SC0 (step ST12).

制御部100は、過冷却度SCが目標過冷却度SC0よりも小さいと判別した場合(ステップST12:YES)、所定の開度分、膨張弁11を閉制御する(ステップST13)。
制御部100は、過冷却度SCが、目標過冷却度SC0よりも小さくない、すなわち、過冷却度SCが目標過冷却度SC0よりも大きい又は過冷却度SCが目標過冷却度SC0と等しいと判別した場合(ステップST12:NO)、所定の開度分、膨張弁11を開制御する(ステップST14)。
When the control unit 100 determines that the degree of subcooling SC is smaller than the target degree of supercooling SC0 (step ST12: YES), the control unit 100 controls the expansion valve 11 to close by a predetermined opening degree (step ST13).
The control unit 100 determines that the degree of subcooling SC is not smaller than the target degree of supercooling SC0, that is, the degree of subcooling SC is greater than the target degree of subcooling SC0, or the degree of subcooling SC is equal to the target degree of supercooling SC0. If it is determined (step ST12: NO), the expansion valve 11 is controlled to open by a predetermined opening degree (step ST14).

制御部100は、過冷却度SCが前過冷却度SC1よりも大きくない、すなわち、過冷却度SCが前過冷却度SC1よりも小さい又は過冷却度SCが前過冷却度SC1と等しいと判別した場合(ステップST11:NO)、過冷却度SCが目標過冷却度SC0よりも小さいか否かを判別する(ステップST21)。
制御部100は、過冷却度SCが目標過冷却度SC0よりも小さいと判別した場合(ステップST21:YES)、膨張弁11の開度を制御せずにステップST10に移行する。
制御部100は、過冷却度SCが目標過冷却度SC0よりも小さくない、すなわち、過冷却度SCが目標過冷却度SC0よりも大きい又は過冷却度SCが目標過冷却度SC0と等しいと判別した場合(ステップST21:NO)、所定の開度分、膨張弁11を開制御する(ステップST22)。
The control unit 100 determines that the degree of subcooling SC is not greater than the previous degree of subcooling SC1, that is, the degree of subcooling SC is smaller than the previous degree of subcooling SC1, or the degree of subcooling SC is equal to the previous degree of supercooling SC1. If so (step ST11: NO), it is determined whether or not the degree of supercooling SC is smaller than the target degree of supercooling SC0 (step ST21).
When the control unit 100 determines that the degree of subcooling SC is smaller than the target degree of subcooling SC0 (step ST21: YES), the control unit 100 moves to step ST10 without controlling the opening degree of the expansion valve 11.
The control unit 100 determines that the degree of subcooling SC is not smaller than the target degree of supercooling SC0, that is, the degree of subcooling SC is greater than the target degree of supercooling SC0, or the degree of subcooling SC is equal to the target degree of supercooling SC0. If so (step ST21: NO), the expansion valve 11 is controlled to open by a predetermined opening degree (step ST22).

そして、ステップST10において、過冷却度の記憶情報を更新して保持すると、制御部100は、運転終了か否かを判別する(ステップST23)。
制御部100は、運転終了と判別した場合(ステップST23:YES)、冷媒量の最適制御処理を終了する。
制御部100は、運転終了でないと判別した場合(ステップST23:NO)、ステップST1に移行する。
After updating and retaining the stored information on the degree of subcooling in step ST10, the control unit 100 determines whether or not the operation is finished (step ST23).
When the control unit 100 determines that the operation has ended (step ST23: YES), the control unit 100 ends the refrigerant amount optimization control process.
When the control unit 100 determines that the operation has not ended (step ST23: NO), the process proceeds to step ST1.

空気調和装置1では、圧縮機2が動作を開始すると、その運転の負荷に応じて冷媒が循環する。本実施形態では、凝縮器3の外気温度T0と、凝縮器3の出口の冷媒温度Tとに基づいて、膨張弁11の開度を調節しながら、レシーバタンク12に余剰冷媒を貯蔵させることで、凝縮器3内の液冷媒の重量が調節される。これにより、負荷に応じて最適な成績係数Cとなるように、凝縮器3の過冷却度SCが調整される。 In the air conditioner 1, when the compressor 2 starts operating, refrigerant is circulated according to the operating load. In this embodiment, surplus refrigerant is stored in the receiver tank 12 while adjusting the opening degree of the expansion valve 11 based on the outside air temperature T0 of the condenser 3 and the refrigerant temperature T at the outlet of the condenser 3. , the weight of the liquid refrigerant in the condenser 3 is adjusted. Thereby, the degree of supercooling SC of the condenser 3 is adjusted so that the coefficient of performance C is optimal depending on the load.

従来は、蒸発器の出口温度や、圧縮機の運転台数などに基づいて、弁の開度を調節して、凝縮圧力を調整しており、結果的に凝縮器内の冷媒の重量が調節されるに過ぎない。このため、凝縮器内の冷媒量やレシーバタンク内の冷媒量に対して凝縮器の状態が適切に反映されていない恐れがある。 Conventionally, the condensing pressure was adjusted by adjusting the valve opening based on the evaporator outlet temperature and the number of compressors in operation, and as a result, the weight of the refrigerant in the condenser was adjusted. It's just that. Therefore, the state of the condenser may not be appropriately reflected in the amount of refrigerant in the condenser or the amount of refrigerant in the receiver tank.

これに対して、本実施形態では、凝縮器3の出口の冷媒温度Tと、凝縮器3の外気温度T0とに基づく温度差分ΔTに基づいて、膨張弁11の開閉制御を行っており、凝縮器3の状態を適切に反映させた状態で、凝縮器3内の液冷媒Rlの量を調整して、過冷却度SCを調整し易くなっている。したがって、運転負荷が異なる場合でも、凝縮器3の状態に基づいて成績係数Cが良好な状態にしながら凝縮器3を機能させることができる。 On the other hand, in this embodiment, the opening/closing control of the expansion valve 11 is performed based on the temperature difference ΔT between the refrigerant temperature T at the outlet of the condenser 3 and the outside air temperature T0 of the condenser 3. The degree of supercooling SC can be easily adjusted by adjusting the amount of liquid refrigerant Rl in the condenser 3 while appropriately reflecting the state of the condenser 3. Therefore, even when the operating loads are different, the condenser 3 can be made to function while keeping the coefficient of performance C in a good state based on the state of the condenser 3.

具体的には、冷媒量の最適制御処理のステップST6により、凝縮器3の出口の冷媒温度Tと、凝縮器3の外気温度T0との温度差分ΔTが所定値ΔTaより大きいか否か判別される。ここで、図5に示すように、温度差分ΔTが予め設定された所定値ΔTaよりも大きい場合、凝縮器3の液冷媒の量が少なくて過冷却度が小さく、凝縮器3の負荷は小さい状態と想定される。また、温度差分ΔTが予め設定された所定値ΔTaよりも小さい場合、凝縮器3の液冷媒の量が多くて過冷却度が大きく、凝縮器3の負荷は大きい状態と想定される。したがって、温度差分ΔTが予め設定された所定値ΔTaよりも大きいか否かを判別することにより、膨張弁11を制御可能とする。これにより、凝縮器3内の液冷媒Rlの量を調整可能であり、過冷却度を調整可能である。 Specifically, in step ST6 of the refrigerant amount optimization control process, it is determined whether the temperature difference ΔT between the refrigerant temperature T at the outlet of the condenser 3 and the outside air temperature T0 of the condenser 3 is larger than a predetermined value ΔTa. Ru. Here, as shown in FIG. 5, when the temperature difference ΔT is larger than a preset predetermined value ΔTa, the amount of liquid refrigerant in the condenser 3 is small, the degree of supercooling is small, and the load on the condenser 3 is small. Assumed to be the state. Further, when the temperature difference ΔT is smaller than a preset predetermined value ΔTa, it is assumed that the amount of liquid refrigerant in the condenser 3 is large, the degree of supercooling is large, and the load on the condenser 3 is large. Therefore, the expansion valve 11 can be controlled by determining whether or not the temperature difference ΔT is larger than a predetermined value ΔTa. Thereby, the amount of liquid refrigerant Rl in the condenser 3 can be adjusted, and the degree of supercooling can be adjusted.

また、空気調和装置1の運転負荷や、凝縮器3の外気温度、凝縮器3に取り入れられる外気の量などの外部要因により凝縮器3の負荷が変動した場合には、膨張弁11の開閉と、過冷却度SCの大小関係が逆になる場合があるため、本実施形態の冷媒量の最適制御処理では、さらに、ステップST7、ST12、ST21により、過冷却度SCと目標過冷却度SC0との大小を判別して、膨張弁11の開閉制御を行っている。したがって、温度差分ΔTと所定値ΔTaとの大小に基づくのみで膨張弁11の開閉制御を行う場合に比べて、より精度良く成績係数Cを向上させることができる。 In addition, when the load on the condenser 3 fluctuates due to external factors such as the operating load on the air conditioner 1, the outside air temperature on the condenser 3, and the amount of outside air taken into the condenser 3, the expansion valve 11 may be opened or closed. , the magnitude relationship of the degree of supercooling SC may be reversed, so in the optimal control process for the amount of refrigerant of this embodiment, the degree of supercooling SC and the target degree of supercooling SC0 are further determined in steps ST7, ST12, and ST21. The opening/closing control of the expansion valve 11 is performed by determining the size of the expansion valve 11. Therefore, the coefficient of performance C can be improved more accurately than when the opening/closing control of the expansion valve 11 is performed only based on the magnitude of the temperature difference ΔT and the predetermined value ΔTa.

また、温度差分ΔTが所定値ΔTaよりも小さい場合には過冷却度SCが大きく凝縮器3の負荷が大きいと想定される。この場合に、現在の過冷却度SCが以前の過冷却度SC1よりも小さい場合には、膨張弁11の開度が十分に小さい場合がある。このため、冷媒量の最適制御処理のステップST11、ST21では、温度差分ΔTが所定値ΔTaよりも小さく且つ現在の過冷却度SCが以前の過冷却度SC1よりも小さい場合には、目標過冷却度SC0に現在過冷却度SCが到達してなくても、膨張弁11を閉制御しない。これにより、冷媒回路17を閉じてしまい冷媒の循環を止めてしまうことを抑制している。 Furthermore, when the temperature difference ΔT is smaller than the predetermined value ΔTa, it is assumed that the degree of subcooling SC is large and the load on the condenser 3 is large. In this case, if the current degree of subcooling SC is smaller than the previous degree of subcooling SC1, the opening degree of the expansion valve 11 may be sufficiently small. Therefore, in steps ST11 and ST21 of the refrigerant amount optimization control process, if the temperature difference ΔT is smaller than the predetermined value ΔTa and the current degree of supercooling SC is smaller than the previous degree of supercooling SC1, the target supercooling Even if the current supercooling degree SC has not reached the degree SC0, the expansion valve 11 is not controlled to close. This prevents the refrigerant circuit 17 from closing and stopping the circulation of the refrigerant.

以上説明したように、本実施形態の空気調和装置1は、圧縮機2と、凝縮器3と、減圧装置4と、蒸発器5とが冷媒配管15で接続された冷媒回路17を備える空気調和装置1であって、凝縮器3の出口に配置され凝縮器3内の冷媒の流出量を調整する膨張弁11と、膨張弁11と減圧装置4との間に配置され凝縮器3から流出した冷媒を貯蔵可能なレシーバタンク12と、膨張弁11を開閉制御して凝縮器3内の冷媒の液量を調整する制御部100とを備え、制御部100は、凝縮器3から流出する冷媒の温度Tと凝縮器3の外気温度T0との温度差分ΔTが、予め設定された所定値ΔTaに近づくように膨張弁11を開閉制御する。
これによれば、凝縮器3から流出する冷媒の温度Tと凝縮器3の外気温度T0という凝縮器3の状態に基づいて、膨張弁11を開閉制御することにより、凝縮器3内の冷媒の液量を調整することができると共に、成績係数Cを良好とする場合に余る冷媒はレシーバタンク12に貯蔵させることができる。このため、運転負荷が異なる場合でも、凝縮器3の状態に基づいて成績係数Cを良好にしながら凝縮器3を機能させることができる。
As described above, the air conditioner 1 of the present embodiment includes a refrigerant circuit 17 in which a compressor 2, a condenser 3, a pressure reducing device 4, and an evaporator 5 are connected via a refrigerant pipe 15. The device 1 includes an expansion valve 11 disposed at the outlet of the condenser 3 to adjust the amount of refrigerant flowing out from the condenser 3, and an expansion valve 11 disposed between the expansion valve 11 and the pressure reducing device 4 for refrigerant flowing out from the condenser 3. The controller 100 includes a receiver tank 12 that can store refrigerant, and a control unit 100 that controls the opening and closing of the expansion valve 11 to adjust the amount of refrigerant in the condenser 3. The expansion valve 11 is controlled to open and close so that the temperature difference ΔT between the temperature T and the outside air temperature T0 of the condenser 3 approaches a predetermined value ΔTa.
According to this, by controlling the opening and closing of the expansion valve 11 based on the state of the condenser 3, which is the temperature T of the refrigerant flowing out from the condenser 3 and the outside air temperature T0 of the condenser 3, the refrigerant in the condenser 3 is The amount of liquid can be adjusted, and the remaining refrigerant can be stored in the receiver tank 12 when the coefficient of performance C is good. Therefore, even when the operating loads are different, the condenser 3 can be made to function while improving the coefficient of performance C based on the state of the condenser 3.

本実施形態では、制御部100は、温度差分ΔTが所定値ΔTaよりも大きい場合に膨張弁11を閉制御し、温度差分ΔTが所定値ΔTaよりも小さい場合に膨張弁11を開制御する。
これによれば、温度差分ΔTが所定値ΔTaよりも大きい場合には凝縮器3の過冷却度SCが小さいと想定され易いため、膨張弁11を閉制御することにより凝縮器3内の冷媒の液量を増大させ易くすると共に、温度差分ΔTが所定値ΔTaよりも小さい場合には凝縮器3の過冷却度SCが大きいと想定され易いため、膨張弁11を開制御することにより凝縮器3内の冷媒の液量を減少させ易くすることで、成績係数Cが最高となるように、過冷却度を調整し易くできる。
In this embodiment, the control unit 100 controls the expansion valve 11 to close when the temperature difference ΔT is larger than the predetermined value ΔTa, and controls the expansion valve 11 to open when the temperature difference ΔT is smaller than the predetermined value ΔTa.
According to this, when the temperature difference ΔT is larger than the predetermined value ΔTa, it is likely that the degree of subcooling SC of the condenser 3 is small, so by controlling the expansion valve 11 to close, the refrigerant in the condenser 3 is In addition to making it easier to increase the liquid amount, when the temperature difference ΔT is smaller than the predetermined value ΔTa, it is likely that the degree of supercooling SC of the condenser 3 is large, so by controlling the expansion valve 11 to open, the condenser 3 By making it easier to reduce the amount of refrigerant in the tank, the degree of supercooling can be easily adjusted so that the coefficient of performance C becomes the highest.

また、本実施形態では、制御部100は、温度差分ΔTが所定値ΔTaよりも大きい場合に、凝縮器3から流出する冷媒の過冷却度SCが目標の過冷却度SC0よりも大きい場合には、膨張弁11を閉制御に代えて開制御する。
これによれば、温度差分ΔTが所定値ΔTaよりも大きい場合には膨張弁11を閉制御すれば成績係数Cが良くなると想定されるが、外部要因により凝縮器3の負荷が変動した場合には、膨張弁11の開閉と過冷却度SCの大小は相関しないため、目標の過冷却度SC0に基づく制御により、より精度良く成績係数Cが最高となるように凝縮器3内の冷媒の液量を調整できる。
Furthermore, in the present embodiment, when the temperature difference ΔT is larger than the predetermined value ΔTa, and when the degree of supercooling SC of the refrigerant flowing out from the condenser 3 is larger than the target degree of supercooling SC0, , the expansion valve 11 is controlled to open instead of closed.
According to this, it is assumed that the coefficient of performance C will improve if the expansion valve 11 is controlled to close when the temperature difference ΔT is larger than the predetermined value ΔTa, but when the load on the condenser 3 changes due to external factors, Since there is no correlation between the opening and closing of the expansion valve 11 and the magnitude of the degree of supercooling SC, the refrigerant liquid in the condenser 3 is adjusted more accurately by controlling based on the target degree of supercooling SC0 so that the coefficient of performance C becomes the highest. You can adjust the amount.

また、本実施形態では、制御部100は、温度差分ΔTが所定値ΔTaよりも小さい場合に、凝縮器3から流出する冷媒の過冷却度SCが以前の過冷却度SC1よりも大きく且つ過冷却度SCが目標過冷却度SC0よりも小さい場合には、膨張弁11を開制御に代えて閉制御する。
これによれば、温度差分が所定値よりも小さい場合には膨張弁を開制御すれば成績係数が良くなると想定されるが、外部要因により凝縮器3の負荷が変動した場合には、膨張弁11の開閉と過冷却度SCの大小は相関しないため、目標の過冷却度に基づく制御により、より精度良く成績係数が最高となるように凝縮器内の冷媒の液量を調整できる。
Furthermore, in the present embodiment, when the temperature difference ΔT is smaller than the predetermined value ΔTa, the control unit 100 controls whether the degree of subcooling SC of the refrigerant flowing out from the condenser 3 is larger than the previous degree of subcooling SC1 and the degree of subcooling is When the degree SC is smaller than the target degree of supercooling SC0, the expansion valve 11 is controlled to be closed instead of being controlled to open.
According to this, if the temperature difference is smaller than a predetermined value, it is assumed that the coefficient of performance will improve if the expansion valve is controlled to open, but if the load on the condenser 3 fluctuates due to external factors, the expansion valve 11 and the magnitude of the degree of supercooling SC, the amount of refrigerant in the condenser can be adjusted with higher accuracy by controlling based on the target degree of supercooling so that the coefficient of performance becomes the highest.

また、本実施形態では、制御部100は、温度差分ΔTが所定値ΔTaよりも小さい場合に、凝縮器3から流出する冷媒の過冷却度SCが前過冷却度SC1よりも小さく且つ過冷却度SCが目標の過冷却度SC0よりも小さい場合には、膨張弁11を開制御に代えて開閉制御しない。
これによれば、温度差分ΔTが所定値ΔTaよりも小さい場合に、凝縮器3から流出する冷媒の過冷却度SCが前過冷却度SC1よりも小さい場合には、膨張弁11の開度が既に小さいと想定されるため、過冷却度SCが目標過冷却度SC1よりも小さい場合でも、膨張弁11を閉制御しないことにより、膨張弁11を閉め過ぎることを抑制できる。
In the present embodiment, the control unit 100 controls the degree of supercooling SC of the refrigerant flowing out from the condenser 3 to be smaller than the previous degree of supercooling SC1 and the degree of supercooling when the temperature difference ΔT is smaller than the predetermined value ΔTa. When SC is smaller than the target degree of supercooling SC0, the expansion valve 11 is not controlled to open or close instead of being controlled to open.
According to this, when the temperature difference ΔT is smaller than the predetermined value ΔTa and the degree of subcooling SC of the refrigerant flowing out from the condenser 3 is smaller than the pre-supercooling degree SC1, the opening degree of the expansion valve 11 is Since it is assumed that the subcooling degree SC is already small, even if the subcooling degree SC is smaller than the target subcooling degree SC1, the expansion valve 11 can be prevented from being closed too much by not controlling the expansion valve 11 to close.

また、本実施形態では、圧縮機2の出口側に配置され圧縮機2から流出する冷媒の圧力を検知する高圧センサ22と、凝縮器3の出口側に配置され凝縮器3から流出する冷媒の温度Tを検知する冷媒温度センサ24と、を備え、制御部100は、高圧センサ22の検知結果に基づいて凝縮器3の冷媒の飽和温度T1を決定すると共に、飽和温度T1と、冷媒温度センサ24の検知結果に基づいて、凝縮器3から流出する冷媒の過冷却度SCを演算する。
これによれば、高圧センサ22と冷媒温度センサ24との検知結果に基づいて、過冷却度SCを演算することができる。
Further, in this embodiment, a high pressure sensor 22 is arranged at the outlet side of the compressor 2 to detect the pressure of the refrigerant flowing out from the compressor 2, and a high pressure sensor 22 is arranged at the outlet side of the condenser 3 to detect the pressure of the refrigerant flowing out from the condenser 3. A refrigerant temperature sensor 24 that detects the temperature T, and the control unit 100 determines the saturation temperature T1 of the refrigerant in the condenser 3 based on the detection result of the high pressure sensor 22, and also determines the saturation temperature T1 and the refrigerant temperature sensor 24. 24, the degree of supercooling SC of the refrigerant flowing out from the condenser 3 is calculated.
According to this, the degree of supercooling SC can be calculated based on the detection results of the high pressure sensor 22 and the refrigerant temperature sensor 24.

また、本実施形態では、凝縮器3の外気の温度T0を検知する外気温度センサ23と、凝縮器3の冷媒の出口に配置され凝縮器3から流出する冷媒の温度Tを検知する冷媒温度センサ24と、を備え、制御部100は、外気温度センサ23と冷媒温度センサ24との検知結果に基づいて、凝縮器3から流出する冷媒の温度Tと凝縮器3の外気温度T0との温度差分ΔTを演算する。
これによれば、外気温度センサ23と冷媒温度センサ24の検知結果に基づいて、温度差分ΔTを演算することができる。
Further, in this embodiment, an outside air temperature sensor 23 that detects the temperature T0 of the outside air of the condenser 3, and a refrigerant temperature sensor that is arranged at the refrigerant outlet of the condenser 3 and that detects the temperature T of the refrigerant flowing out from the condenser 3 are used. 24, the control unit 100 determines the temperature difference between the temperature T of the refrigerant flowing out from the condenser 3 and the outside air temperature T0 of the condenser 3, based on the detection results of the outside air temperature sensor 23 and the refrigerant temperature sensor 24. Calculate ΔT.
According to this, the temperature difference ΔT can be calculated based on the detection results of the outside air temperature sensor 23 and the refrigerant temperature sensor 24.

また、本実施形態では、定格冷房標準と、定格冷房標準とは異なる中間冷房中温とで運転可能に構成され、レシーバタンク12は、冷媒回路17に収容される冷媒について、定格冷房標準の成績係数C11が最高となる冷媒の量と、中間冷房中温の成績係数C21が最高となる冷媒の量と、の差分以上の量を収容可能な容量Vに構成されている。
これによれば、空気調和装置1の運転負荷が異なる定格冷房標準と中間冷房中温のいずれでも、成績係数Cが最高となる冷媒の量で運転することができる。
Further, in this embodiment, the receiver tank 12 is configured to be operable at a rated cooling standard and an intermediate cooling medium temperature different from the rated cooling standard, and the receiver tank 12 has a coefficient of performance of the rated cooling standard for the refrigerant accommodated in the refrigerant circuit 17. The capacity V is configured to accommodate an amount that is greater than the difference between the amount of refrigerant that gives the highest C11 and the amount of refrigerant that gives the highest coefficient of performance C21 for intermediate cooling medium temperature.
According to this, the air conditioner 1 can be operated with the amount of refrigerant that gives the highest coefficient of performance C even when the operating loads of the air conditioner 1 are different, rated cooling standard and intermediate cooling medium temperature.

上述した各実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形および応用が可能である。 Each of the embodiments described above merely represents one aspect of the present invention, and can be arbitrarily modified and applied within the scope of the present invention.

上述した各実施形態では、冷媒回路17の各機器はそれぞれ一つずつ設けられる構成を説明したが、一部の機器を複数設けてもよい。 In each of the embodiments described above, a configuration has been described in which one device is provided in the refrigerant circuit 17, but a plurality of some devices may be provided.

また、上述した各実施形態では、四方弁など冷媒の循環方向を切り替える構成にしてもよい。この場合、冷房運転と暖房運転とで、ある熱交換器の役割は凝縮器と蒸発器とで切り替わるが、本発明は凝縮器として機能する熱交換器に適用可能である。 Further, in each of the embodiments described above, a configuration such as a four-way valve that switches the refrigerant circulation direction may be used. In this case, the role of a certain heat exchanger is switched between a condenser and an evaporator between cooling operation and heating operation, but the present invention is applicable to a heat exchanger that functions as a condenser.

上述した実施形態では、定格冷房標準と、中間冷房中温の構成を説明したが、さらに負荷が異なる運転可能な構成でもよく、レシーバタンク12の容量Vは、各運転の成績係数が最高値を示す封入冷媒量に関する最大値と最小値との差分以上を収容可能な容量であればよい。 In the embodiment described above, the rated cooling standard and intermediate cooling medium temperature configurations have been described, but a configuration that allows operations with different loads may also be possible, and the capacity V of the receiver tank 12 is such that the coefficient of performance of each operation shows the highest value. Any capacity may be sufficient as long as it can accommodate the difference between the maximum value and the minimum value regarding the amount of refrigerant enclosed.

また、制御部100の機能は、複数のプロセッサ、又は、半導体チップにより実現してもよい。 Further, the functions of the control unit 100 may be realized by a plurality of processors or semiconductor chips.

また、図3に示した各部は一例であって、具体的な実装形態は特に限定されない。上述した実施形態においてソフトウェアで実現される機能の一部をハードウェアとしてもよく、或いは、ハードウェアで実現される機能の一部をソフトウェアで実現してもよい。 Moreover, each part shown in FIG. 3 is an example, and the specific implementation form is not particularly limited. In the embodiments described above, some of the functions implemented by software may be implemented by hardware, or some of the functions implemented by hardware may be implemented by software.

また、例えば、図6に示す動作のステップ単位は、制御部100の各部の動作の理解を容易にするために、主な処理内容に応じて分割したものであり、処理単位の分割の仕方や名称によって、本発明が限定されることはない。処理内容に応じて、さらに多くのステップ単位に分割してもよい。また、1つのステップ単位がさらに多くの処理を含むように分割してもよい。また、そのステップの順番は、本発明の趣旨に支障のない範囲で適宜に入れ替えてもよい。 Further, for example, the step units of the operation shown in FIG. 6 are divided according to the main processing contents in order to facilitate understanding of the operation of each part of the control unit 100. The invention is not limited by the name. Depending on the processing content, the process may be divided into more steps. Furthermore, the process may be divided so that one step unit includes more processes. Further, the order of the steps may be changed as appropriate within a range that does not interfere with the spirit of the present invention.

以上のように、本発明に係る空気調和装置は、レシーバタンクを備える用途に利用可能である。 As described above, the air conditioner according to the present invention can be used in applications including a receiver tank.

1 空気調和装置
2 圧縮機
3 凝縮器
4 減圧装置
5 蒸発器
11 膨張弁
12 レシーバタンク
15、16 配管
17 冷媒回路
22 高圧センサ
23 外気温度センサ
24 冷媒温度センサ
100 制御部
C 成績係数
R0 冷媒量
SC 過冷却度
SC0 目標の過冷却度
SC1 以前の過冷却度
T 冷媒温度(冷媒の温度)
T0 外気温度
T1 飽和温度
ΔT 温度差分
ΔTa 所定値
1 Air conditioner 2 Compressor 3 Condenser 4 Pressure reducing device 5 Evaporator 11 Expansion valve 12 Receiver tank 15, 16 Piping 17 Refrigerant circuit 22 High pressure sensor 23 Outside temperature sensor 24 Refrigerant temperature sensor 100 Control unit C Coefficient of performance R0 Refrigerant amount SC Degree of supercooling SC0 Target degree of supercooling SC1 Previous degree of supercooling T Refrigerant temperature (refrigerant temperature)
T0 Outside air temperature T1 Saturation temperature ΔT Temperature difference ΔTa Predetermined value

Claims (8)

圧縮機と、凝縮器と、減圧装置と、蒸発器とが配管で接続された冷媒回路を備える空気調和装置であって、
前記凝縮器の出口に配置され前記凝縮器内の冷媒の流出量を調整する膨張弁と、前記膨張弁と前記減圧装置との間に配置され前記凝縮器から流出した冷媒を貯蔵可能なレシーバタンクと、前記膨張弁を開閉制御して前記凝縮器内の冷媒の液量を調整する制御部とを備え、
前記制御部は、前記凝縮器から流出する冷媒の温度と前記凝縮器の外気温度との温度差分が、予め設定された所定値に近づくように前記膨張弁を開閉制御する
ことを特徴とする空気調和装置。
An air conditioner comprising a refrigerant circuit in which a compressor, a condenser, a pressure reducing device, and an evaporator are connected via piping,
an expansion valve arranged at the outlet of the condenser to adjust the amount of refrigerant flowing out of the condenser; and a receiver tank arranged between the expansion valve and the pressure reducing device and capable of storing the refrigerant flowing out from the condenser. and a control unit that controls opening and closing of the expansion valve to adjust the amount of refrigerant in the condenser,
The control unit controls the opening and closing of the expansion valve so that a temperature difference between the temperature of the refrigerant flowing out of the condenser and the outside air temperature of the condenser approaches a predetermined value set in advance. harmonization device.
前記制御部は、前記温度差分が前記所定値よりも大きい場合に前記膨張弁を閉制御し、前記温度差分が前記所定値よりも小さい場合に前記膨張弁を開制御する
ことを特徴とする請求項1に記載の空気調和装置。
The control unit controls the expansion valve to close when the temperature difference is larger than the predetermined value, and controls the expansion valve to open when the temperature difference is smaller than the predetermined value. Item 1. The air conditioner according to item 1.
前記制御部は、前記温度差分が前記所定値よりも大きい場合に、前記凝縮器から流出する冷媒の過冷却度が目標の過冷却度よりも大きい場合には、前記膨張弁を閉制御に代えて開制御する
ことを特徴とする請求項2に記載の空気調和装置。
When the temperature difference is larger than the predetermined value and the degree of supercooling of the refrigerant flowing out from the condenser is larger than a target degree of supercooling, the control unit controls the expansion valve to close. The air conditioner according to claim 2, wherein the air conditioner is controlled to open by opening the air conditioner.
前記制御部は、前記温度差分が前記所定値よりも小さい場合に、前記凝縮器から流出する冷媒の過冷却度が以前の過冷却度よりも大きく且つ前記過冷却度が目標の過冷却度よりも小さい場合には、前記膨張弁を開制御に代えて閉制御する
ことを特徴とする請求項2又は3に記載の空気調和装置。
The control unit is configured such that when the temperature difference is smaller than the predetermined value, the degree of supercooling of the refrigerant flowing out from the condenser is larger than the previous degree of supercooling, and the degree of supercooling is less than the target degree of supercooling. The air conditioner according to claim 2 or 3, wherein when the expansion valve is small, the expansion valve is controlled to close instead of being controlled to open.
前記制御部は、前記温度差分が前記所定値よりも小さい場合に、前記凝縮器から流出する冷媒の過冷却度が以前の過冷却度よりも小さく且つ前記過冷却度が目標の過冷却度よりも小さい場合には、前記膨張弁を開制御に代えて開閉制御しない
ことを特徴とする請求項2乃至4のいずれか一項に記載の空気調和装置。
The control unit is configured such that, when the temperature difference is smaller than the predetermined value, the degree of supercooling of the refrigerant flowing out from the condenser is smaller than the previous degree of supercooling, and the degree of supercooling is less than the target degree of supercooling. The air conditioner according to any one of claims 2 to 4, wherein if the expansion valve is small, the expansion valve is not controlled to open or close instead of being controlled to open.
前記圧縮機の出口側に配置され前記圧縮機から流出する冷媒の圧力を検知する高圧センサと、前記凝縮器の出口側に配置され前記凝縮器から流出する冷媒の温度を検知する冷媒温度センサと、を備え、
前記制御部は、前記高圧センサの検知結果に基づいて前記凝縮器の冷媒の飽和温度を決定すると共に、前記飽和温度と、前記冷媒温度センサの検知結果に基づいて、前記凝縮器から流出する冷媒の過冷却度を演算する
ことを特徴とする請求項3乃至5のいずれか一項に記載の空気調和装置。
a high pressure sensor arranged on the outlet side of the compressor to detect the pressure of the refrigerant flowing out from the compressor; and a refrigerant temperature sensor arranged on the outlet side of the condenser to detect the temperature of the refrigerant flowing out from the condenser. , comprising;
The control unit determines the saturation temperature of the refrigerant in the condenser based on the detection result of the high pressure sensor, and determines the saturation temperature of the refrigerant flowing out from the condenser based on the saturation temperature and the detection result of the refrigerant temperature sensor. The air conditioner according to any one of claims 3 to 5, wherein the degree of subcooling of the air conditioner is calculated.
前記凝縮器の外気の温度を検知する外気温度センサと、前記凝縮器の冷媒の出口に配置され前記凝縮器から流出する冷媒の温度を検知する冷媒温度センサと、を備え、
前記制御部は、前記外気温度センサと前記冷媒温度センサとの検知結果に基づいて、前記凝縮器から流出する冷媒の温度と前記凝縮器の外気温度との温度差分を演算する
ことを特徴とする請求項1乃至6のいずれか一項に記載の空気調和装置。
an outside air temperature sensor that detects the temperature of the outside air of the condenser; and a refrigerant temperature sensor that is disposed at the refrigerant outlet of the condenser and detects the temperature of the refrigerant flowing out from the condenser,
The control unit may calculate a temperature difference between the temperature of the refrigerant flowing out from the condenser and the outside air temperature of the condenser, based on the detection results of the outside air temperature sensor and the refrigerant temperature sensor. An air conditioner according to any one of claims 1 to 6.
第1負荷モードと、前記第1負荷モードとは異なる第2負荷モードとで運転可能に構成され、
前記レシーバタンクは、前記冷媒回路に収容される冷媒について、前記第1負荷モードの成績係数が最高となる冷媒の量と、前記第2負荷モードの成績係数が最高となる冷媒の量と、の差分以上の量を収容可能な容量に構成されている
ことを特徴とする請求項1乃至7のいずれか一項に記載の空気調和装置。
configured to be operable in a first load mode and a second load mode different from the first load mode,
The receiver tank is configured to control the amount of refrigerant contained in the refrigerant circuit so that the coefficient of performance in the first load mode is the highest, and the amount of refrigerant that gives the highest coefficient of performance in the second load mode. The air conditioner according to any one of claims 1 to 7, wherein the air conditioner is configured to have a capacity that can accommodate an amount equal to or more than the difference.
JP2020094731A 2020-05-29 2020-05-29 air conditioner Active JP7437754B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020094731A JP7437754B2 (en) 2020-05-29 2020-05-29 air conditioner
CN202110583040.3A CN113739439A (en) 2020-05-29 2021-05-27 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020094731A JP7437754B2 (en) 2020-05-29 2020-05-29 air conditioner

Publications (2)

Publication Number Publication Date
JP2021188835A JP2021188835A (en) 2021-12-13
JP7437754B2 true JP7437754B2 (en) 2024-02-26

Family

ID=78728360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020094731A Active JP7437754B2 (en) 2020-05-29 2020-05-29 air conditioner

Country Status (2)

Country Link
JP (1) JP7437754B2 (en)
CN (1) CN113739439A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212078A (en) 2006-02-10 2007-08-23 Fujitsu General Ltd Air-conditioner control device
JP2007263383A (en) 2006-03-27 2007-10-11 Daikin Ind Ltd Refrigerating device
WO2019082372A1 (en) 2017-10-27 2019-05-02 三菱電機株式会社 Refrigeration cycle device
US20190323752A1 (en) 2016-02-03 2019-10-24 Danfoss A/S, Danfoss Intellectual Property A method for controlling a fan of a vapour compression system in accordance with a variable temperature setpoint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212078A (en) 2006-02-10 2007-08-23 Fujitsu General Ltd Air-conditioner control device
JP2007263383A (en) 2006-03-27 2007-10-11 Daikin Ind Ltd Refrigerating device
US20190323752A1 (en) 2016-02-03 2019-10-24 Danfoss A/S, Danfoss Intellectual Property A method for controlling a fan of a vapour compression system in accordance with a variable temperature setpoint
WO2019082372A1 (en) 2017-10-27 2019-05-02 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
CN113739439A (en) 2021-12-03
JP2021188835A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
CN108027179B (en) Air conditioner
JP5865482B2 (en) Refrigeration cycle equipment
JP5045524B2 (en) Refrigeration equipment
JP6320639B2 (en) Air conditioner
EP2090849A1 (en) Refrigeration device
EP2375188B1 (en) Air conditioner
US20110232308A1 (en) Air conditioner
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
JP2007263440A (en) Air conditioner
EP2420765B1 (en) Heat source unit
JP5375919B2 (en) heat pump
JP2006336932A (en) Air conditioner and its control method
CN110741211A (en) Refrigerating machine
JPWO2015125219A1 (en) Air conditioner
JP2016008743A (en) Air conditioning device and refrigerant distribution unit
JP7437754B2 (en) air conditioner
JP2987951B2 (en) Operation control device for air conditioner
JP2008190757A (en) Refrigeration system
JP2010014386A (en) Refrigerating device
JP2007327717A (en) Air conditioner
JP7204947B2 (en) air conditioner
JP2006145174A (en) Air conditioner and its operating method
JP7378671B1 (en) air conditioner
JP2002228284A (en) Refrigerating machine
JP6972422B2 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R151 Written notification of patent or utility model registration

Ref document number: 7437754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151