JP7436263B2 - Conductive static crushing agent and static crushing method using the same - Google Patents

Conductive static crushing agent and static crushing method using the same Download PDF

Info

Publication number
JP7436263B2
JP7436263B2 JP2020063907A JP2020063907A JP7436263B2 JP 7436263 B2 JP7436263 B2 JP 7436263B2 JP 2020063907 A JP2020063907 A JP 2020063907A JP 2020063907 A JP2020063907 A JP 2020063907A JP 7436263 B2 JP7436263 B2 JP 7436263B2
Authority
JP
Japan
Prior art keywords
static crushing
crushing agent
conductive
agent
conductive static
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020063907A
Other languages
Japanese (ja)
Other versions
JP2021159857A (en
Inventor
侑平 白鳥
俊幸 山中
浩志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2020063907A priority Critical patent/JP7436263B2/en
Publication of JP2021159857A publication Critical patent/JP2021159857A/en
Application granted granted Critical
Publication of JP7436263B2 publication Critical patent/JP7436263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コンクリート構造物や岩石の取崩しや撤去の際に用いられる導電性静的破砕剤に関するものである。 The present invention relates to a conductive static crushing agent used for demolishing or removing concrete structures or rocks.

主に建設・土木分野で、コンクリート構造物や岩石の取崩しや撤去の際に、周囲環境を考慮し、爆破や衝撃等の動的手段ではなく、刳り抜かれた複数の小孔に充填して膨張亀裂を生じさせる静的破砕手段が採用されることがある。水和反応膨張性を有する静的破砕剤を被破砕物であるコンクリート構造物や岩石に孔が穿たれた後、孔内に水で混練された静的破砕剤が充填されることが提案されている。即ち、孔内に充填された静的破砕剤の水和反応による膨張現象によって、岩石や鉄筋コンクリート構造物は破砕される(特許文献1)。
しかしながら、上記手法において一般的な静的破砕剤の亀裂発生時間の目安が12~24時間、速効型の場合1~3時間と広く 、工程管理が困難、低温環境下(5℃程度)での静的破砕剤の破砕遅延、端境期の番手選定が困難といった問題が挙げられる。
この問題を解決する目的で、特許文献2では、破砕物の孔に充填された混練物を孔の開口部側から加熱(加熱源:酸化カルシウム、アルミン酸塩、焼ドロマイト、またはその他の水和反応により発熱する物質、ガスバーナ、トーチバーナ、電熱線、たき火等からの発生熱のうちの1種類以上からなるものを利用)する工法が提案されている。
また、特許文献3では孔内に断熱性を有する素材からなる筒体もしくは中空多角体を配置し該筒体内に混練物を充填して、混練物の反応熱を現象せしめて反応を促進させ、非破壊物を破砕させることを特徴とする断熱材を利用した破砕工法が提案されている。
さらに、特許文献4では被破砕体に設けた孔内の中央部に、内部に流体を流通させることのできる温度調整管を設置し、該温度調整管の周囲に静的破砕剤を充填し、該温度調整管の周囲に流体を流通させることにより静的破砕剤の反応時間を制御することを特徴とする工法が提案されている。
Mainly in the construction and civil engineering fields, when demolishing or removing concrete structures or rocks, the surrounding environment is taken into consideration, and instead of using dynamic means such as blasting or impact, the expansion is done by filling multiple small holes hollowed out. Static fracturing means to create cracks may be employed. It has been proposed that after a hole is drilled in a concrete structure or rock to be crushed using a static crushing agent that has hydration reaction expansion properties, the static crushing agent mixed with water is filled into the hole. ing. That is, rocks and reinforced concrete structures are crushed by the expansion phenomenon caused by the hydration reaction of the static crushing agent filled in the holes (Patent Document 1).
However, in the above method, the estimated crack initiation time for general static crushing agents ranges from 12 to 24 hours, while for fast-acting agents it ranges from 1 to 3 hours, making it difficult to control the process and making it difficult to use in low-temperature environments (approximately 5 degrees Celsius). Problems include the delay in crushing with static crushing agents and the difficulty in selecting the number during the off-season period.
In order to solve this problem, Patent Document 2 proposes heating the kneaded material filled in the holes of the crushed material from the opening side of the holes (heating source: calcium oxide, aluminate, calcined dolomite, or other hydrated material). A construction method has been proposed that uses one or more of the following: a substance that generates heat through a reaction, heat generated from a gas burner, a torch burner, an electric heating wire, a bonfire, etc.
Further, in Patent Document 3, a cylinder or a hollow polygon made of a material having heat insulating properties is placed in the hole, a kneaded material is filled in the cylinder, and the reaction heat of the kneaded material is generated to promote the reaction, A crushing method using a heat insulating material has been proposed, which is characterized by crushing non-destructible materials.
Furthermore, in Patent Document 4, a temperature adjustment tube that allows fluid to flow inside is installed in the center of the hole provided in the object to be crushed, and a static crushing agent is filled around the temperature adjustment tube, A construction method has been proposed in which the reaction time of the static crushing agent is controlled by circulating a fluid around the temperature regulating pipe.

特開2014-141387号公報Japanese Patent Application Publication No. 2014-141387 特開昭60-161751号公報Japanese Unexamined Patent Publication No. 161751/1986 特開昭60-164595号公報Japanese Unexamined Patent Publication No. 164595/1983 特開昭61-17673号公報Japanese Unexamined Patent Publication No. 17673/1983

しかし、特許文献2の場合、加温範囲が孔の開口部の接触している部分のみの加温となり、混練物全体を上面からのみの加温となっており、孔内の混練物の均一の加温されるまでに時間がかかり、温度調整や任意のタイミングでの被破砕物の破砕が困難であるという問題がある。また、特許文献3の場合、保温だけでは混練物が加温されるまでの時間がかかり、温度調整や任意のタイミングでの被破砕物の破砕が困難であるという問題がある。さらに、特許文献4の場合、冷水や温水を循環させるため、配管やポンプやコンプレッサー等の大がかりな準備が必要となる。また、静的破砕剤の充填孔内に円形状の管を埋設しているため、静的破砕剤の充填量が減り破砕効果が低減する問題がある。 However, in the case of Patent Document 2, the heating range is only the part that is in contact with the opening of the hole, and the entire kneaded material is heated only from the top surface, so that the kneaded material inside the hole is not uniform. There is a problem in that it takes time for the material to be heated, and it is difficult to adjust the temperature or crush the material to be crushed at an arbitrary timing. Further, in the case of Patent Document 3, there is a problem that it takes time to heat the kneaded material only by keeping it warm, and it is difficult to adjust the temperature or crush the material to be crushed at an arbitrary timing. Furthermore, in the case of Patent Document 4, in order to circulate cold water and hot water, large-scale preparations such as piping, pumps, compressors, etc. are required. Furthermore, since the circular tube is buried in the static crushing agent filling hole, there is a problem that the amount of static crushing agent filled decreases and the crushing effect is reduced.

本発明は、前記課題を解決すべく、種々検討を重ねた結果、静的破砕剤に導電性物質を添加し、通電することによって静的破砕剤を発熱させることが可能であることを見出し、以て前記課題が解消できる知見を得て、本発明を完成するに至った。
すなわち、本発明は以下のとおりである。
〔1〕遊離生石灰と、炭素系導電粒子と、電解質とを含む導電性静的破砕剤であって、前記導電性静的破砕剤中、炭素系導電粒子の含有量が0.1~3.0質量%であり、電解質の含有量が0.05~3.0質量%である導電性静的破砕剤
〔2〕前記電解質が、アルカリ金属の炭酸塩、過炭酸塩、硫酸塩、亜硫酸塩、硝酸塩、亜硝酸塩及び塩化物から選ばれる1種または2種以上である〔1〕の導電性静的破砕剤。
〔3〕導電性静的破砕剤を用いた被破砕物の破砕方法であって、被破砕物に孔を設け、前記孔の内部に、電極と、〔1〕又は〔2〕の導電性静的破砕剤とを配置した状態で、前記電極に通電することによって前記導電性静的破砕剤が自己発熱することを特徴とする破砕方法。
In order to solve the above-mentioned problems, the present invention has been made after various studies, and it has been discovered that it is possible to make the static crushing agent generate heat by adding a conductive substance to the static crushing agent and applying electricity. As a result, we have obtained knowledge that can solve the above-mentioned problems, and have completed the present invention.
That is, the present invention is as follows.
[1] A conductive static crushing agent containing free quicklime, carbon-based conductive particles, and an electrolyte , wherein the content of the carbon-based conductive particles in the conductive static crushing agent is 0.1 to 3. 0% by mass and an electrolyte content of 0.05 to 3.0% by mass .
[2] The conductive static crushing of [1], wherein the electrolyte is one or more selected from alkali metal carbonates, percarbonates, sulfates, sulfites, nitrates, nitrites, and chlorides. agent.
[3] A method for crushing an object to be crushed using a conductive static crushing agent, in which a hole is provided in the object to be crushed, and an electrode and the conductive static of [1] or [2] are placed inside the hole. A crushing method characterized in that the electrically conductive static crushing agent self-heats by supplying electricity to the electrode in a state where the static crushing agent is placed.

本発明における導電性静的破砕剤を使用することにより、温度環境によらず、具体的には低温環境下においても、所定の時間内にコンクリート等の被破砕物を破壊することができる。 By using the conductive static crushing agent of the present invention, objects to be crushed such as concrete can be destroyed within a predetermined time regardless of the temperature environment, specifically even in a low temperature environment.

本発明による破砕方法を表す概念図。FIG. 1 is a conceptual diagram showing a crushing method according to the present invention. 実施例における混練物温度、型枠ひずみ-時間関係を示す図。FIG. 3 is a diagram showing the relationship between kneaded material temperature and mold strain-time in Examples. 実施例および比較例における型枠ひずみ-時間関係を示す図。FIG. 3 is a diagram showing the relationship between formwork strain and time in Examples and Comparative Examples.

本発明における導電性静的破砕剤は、遊離生石灰と、炭素系導電粒子と、電解質とを含有する。以下に、本発明の実施形態について詳細に説明する。 The conductive static crushing agent in the present invention contains free quicklime, carbon-based conductive particles, and an electrolyte. Embodiments of the present invention will be described in detail below.

<導電性静的破砕剤>
本発明の導電性静的破砕剤は、遊離生石灰を有効成分とするものである。遊離生石灰は、結晶質のCaOである。遊離生石灰の含有量は例えばコンクリート硬化体に膨張亀裂を生じさせる膨張力を発現できるような量であれば良く、特に限定されるものではない。好ましくは、より高い膨張力を安定して発現できる可能性があることから、導電性静的破砕剤中の遊離生石灰含有率は65質量%以上が好ましく、70質量%以上がより好ましく、75質量%以上がさらに好ましい。
<Conductive static crushing agent>
The conductive static crushing agent of the present invention contains free quicklime as an active ingredient. Free quicklime is crystalline CaO. The content of free quicklime is not particularly limited, as long as it can exhibit an expansion force that causes expansion cracks in the hardened concrete. Preferably, the free quicklime content in the conductive static crushing agent is preferably 65% by mass or more, more preferably 70% by mass or more, and 75% by mass or more, since it is possible to stably express higher expansion force. % or more is more preferable.

本発明に使用される遊離生石灰は、石灰石等の石灰質原料を焼成して得られる。または、石灰質原料を主成分とし、これにシリカ質原料、アルミナ質原料、フェライト系原料、石膏原料等の1種または2種以上を混合して焼成されるものである。焼成後は、遊離生石灰を主成分とする塊状物(クリンカー)として得られるが、これを粉砕、分級して得られた粉粒状のものが使用される。 Free quicklime used in the present invention is obtained by calcining calcareous raw materials such as limestone. Alternatively, the calcareous material is mainly composed of a calcareous raw material, and one or more of a siliceous raw material, an alumina raw material, a ferrite raw material, a gypsum raw material, etc. are mixed therein and fired. After calcination, clinker is obtained as a clinker whose main component is free quicklime, and granules obtained by crushing and classifying this are used.

本発明における炭素系導電粒子としては、カーボンブラック(ファーネスブラック、ケッチェンブラック、アセチレンブラック等)、グラファイト、カーボンナノチューブ、グラフェン、フラーレン、炭素繊維などが挙げられ、1種または2種以上を用いることができる。特にグラファイト等の粒子と、ケッチェンブラック、ナノカーボン等の微粒子を組み合わせた2種以上を含む構成が、発熱効率の点から好ましい。炭素系導電粒子の含有量としては、導電性静的破砕剤中、0.1~3.0質量%が好ましく、0.5~1.5質量%がより好ましい。 Examples of the carbon-based conductive particles in the present invention include carbon black (furnace black, Ketjen black, acetylene black, etc.), graphite, carbon nanotubes, graphene, fullerene, carbon fiber, etc., and one or more types may be used. Can be done. In particular, a configuration containing two or more types of particles such as graphite and fine particles such as Ketjen black and nanocarbon in combination is preferable from the viewpoint of heat generation efficiency. The content of carbon-based conductive particles in the conductive static crushing agent is preferably 0.1 to 3.0% by mass, more preferably 0.5 to 1.5% by mass.

本発明においては、炭素系導電粒子とともに電解質が含まれる。これによって、通電効率が良く、かつ発熱効率がよい導電性静的破砕剤が得られる。本発明における電解質とは、水に溶け、電離して陰イオンと陽イオンを生じる物質であれば良く、特に限定されるわけではないが、例えば、アルカリ金属の炭酸塩、過炭酸塩、硫酸塩、亜硫酸塩、硝酸塩、亜硝酸塩及び塩化物からが挙げられ、これらの中から選ばれる1種または2種以上であることが好ましい。具体的には、塩化ナトリウム、塩化カリウム、塩化カルシウム、硫酸ナトリウム、硫酸鉄、硝酸ナトリウム、硝酸カルシウム、硝酸マグネシウム、硝酸鉄等が挙げられる。電解質の含有量としては、導電性静的破砕剤中、0.05~3.0質量%が好ましく、0.1~2.0質量%がより好ましく、0.2~1.5質量%がさらに好ましい。 In the present invention, an electrolyte is included together with the carbon-based conductive particles. As a result, a conductive static crushing agent with good current conduction efficiency and good heat generation efficiency can be obtained. The electrolyte in the present invention may be any substance that dissolves in water and ionizes to produce anions and cations, and is not particularly limited, but includes, for example, alkali metal carbonates, percarbonates, and sulfates. , sulfites, nitrates, nitrites, and chlorides, and it is preferable to use one or more selected from these. Specific examples include sodium chloride, potassium chloride, calcium chloride, sodium sulfate, iron sulfate, sodium nitrate, calcium nitrate, magnesium nitrate, iron nitrate, and the like. The content of the electrolyte in the conductive static crushing agent is preferably 0.05 to 3.0% by mass, more preferably 0.1 to 2.0% by mass, and 0.2 to 1.5% by mass. More preferred.

<静的破砕方法>
まず、被破砕物に孔が設けられる。被破砕物は、一般的に静的破砕方法による破砕が可能な脆性物体であれば特に限定されるものではなく、例えば、コンクリート構造物、岩石、岩盤などが挙げられる。
<Static crushing method>
First, holes are provided in the object to be crushed. The object to be crushed is not particularly limited as long as it is a brittle object that can generally be crushed by a static crushing method, and examples thereof include concrete structures, rocks, bedrock, and the like.

孔の大きさや孔間隔は、被破砕物の岩質、節理、鉄筋量、自由面の状態に応じて適宜選択される。一般的には、孔径は30~80mm、孔間隔は30~60cm程度とされることが多いが、必要に応じて試験破砕を行って決定される。孔を設ける方法は特に限定されないが、コアドリル等を用いるのが一般的である。 The hole size and hole spacing are appropriately selected depending on the rock quality of the object to be crushed, the joints, the amount of reinforcing steel, and the condition of the free surface. Generally, the pore diameter is 30 to 80 mm and the pore spacing is often about 30 to 60 cm, but this can be determined by conducting test crushing as necessary. The method for forming the holes is not particularly limited, but generally a core drill or the like is used.

次いで、設けられた孔の内部に、電極と導電性静的破砕剤とを配置する。一般的には、孔内に電極を挿入し、孔内の余剰空間に導電性静的破砕剤が充填される。このとき、孔内に充填された導電性静的破砕剤を効率的に加熱できるように、電極は孔の先端部近傍まで挿入されることが好ましい。また、導電性静的破砕剤は孔が完全に埋まるように、むしろ少しあふれる程度に充填されることが好ましい。 Then, an electrode and a conductive static crushing agent are placed inside the provided hole. Generally, an electrode is inserted into the hole, and the excess space within the hole is filled with a conductive static crushing agent. At this time, the electrode is preferably inserted to the vicinity of the tip of the hole so that the conductive static crushing agent filled in the hole can be efficiently heated. Further, it is preferable that the conductive static crushing agent be filled so that the holes are completely filled, but rather that they slightly overflow.

ここで、使用される電極は、一般に使用されている電極材料であれば特に限定されるものではない。例えば、鉄、銅、亜鉛 等が挙げられる。本発明に用いる電極としては、銅 が好ましい。電極は、孔内に挿入するため、棒状または帯状の形態が好ましい。電極は、陽極と負極が相互に一定の距離をおいて、孔内に配置される。電極は、配線を介して、外部電源装置に接続される。 The electrode used here is not particularly limited as long as it is a commonly used electrode material. Examples include iron, copper, zinc, etc. Copper is preferable as the electrode used in the present invention. Since the electrode is inserted into the hole, it is preferably rod-shaped or band-shaped. The electrodes are placed within the hole, with the anode and the negative electrode spaced apart from each other by a certain distance. The electrodes are connected to an external power supply via wiring.

本発明の静的破砕方法で使用される導電性静的破砕剤は、上述した遊離生石灰と、炭素系導電粒子と、電解質とを含む導電性静的破砕剤である。導電性静的破砕剤を被破砕物に設けられた孔内に充填する場合、水と練混ぜた状態(混練物)で充填される。水の配合量は、導電性静的破砕剤100質量部に対して、15~35質量部が好ましく、18~32質量部がより好ましい。練混ぜは手練りまたはハンドミキサ等を用いて行うことができ、2分以内に終了することが望ましい。 The conductive static crushing agent used in the static crushing method of the present invention is a conductive static crushing agent containing the above-mentioned free quicklime, carbon-based conductive particles, and electrolyte. When the conductive static crushing agent is filled into the holes provided in the object to be crushed, it is filled in a state where it is mixed with water (kneaded material). The amount of water blended is preferably 15 to 35 parts by weight, more preferably 18 to 32 parts by weight, per 100 parts by weight of the conductive static crushing agent. The kneading can be done by hand or using a hand mixer, and is preferably completed within 2 minutes.

本発明の方法によれば、電極と導電性静的破砕剤が被破砕物の孔内に配置された後、電極に通電することにより、導電性静的破砕剤そのものを発熱させることができる。これにより、導電性静的破砕剤の水和を促進させ、水和反応による膨張圧を早期に発現させることができる。これにより、被破砕物を短時間で破砕させることができる。また、低温環境下においても、環境温度の影響を受けることなく、速やかに破砕することができる。さらに、通電するタイミングを調整することによって、所望する時間に被破砕物を破砕させることも可能である。 According to the method of the present invention, after the electrode and the conductive static crushing agent are placed in the holes of the object to be crushed, the conductive static crushing agent itself can be made to generate heat by energizing the electrode. Thereby, hydration of the conductive static crushing agent can be promoted, and expansion pressure due to the hydration reaction can be developed at an early stage. Thereby, the object to be crushed can be crushed in a short time. Further, even in a low-temperature environment, it can be crushed quickly without being affected by the environmental temperature. Furthermore, by adjusting the timing of energization, it is also possible to crush the object at a desired time.

本発明は、導電性静的破砕剤自体が通電により発熱することが特徴である。従来技術のガスバーナ、電熱線などによる加熱手法に比べ、導電性静的破砕剤そのものを均一かつ効率的に発熱させることができ、速やかに、均一かつ効率的に導電性静的破砕剤の膨張圧を発現させることができる効果を有する。 The present invention is characterized in that the conductive static crushing agent itself generates heat when energized. Compared to conventional heating methods using gas burners, heating wires, etc., the conductive static crushing agent itself can be uniformly and efficiently heated, and the expansion pressure of the conductive static crushing agent can be quickly, uniformly and efficiently reduced. It has the effect of making it possible to express.

次に実施例を挙げて本発明をさらに詳細に説明する。なお、本発明は下記の実施例に限定されるものではない。 Next, the present invention will be explained in more detail with reference to Examples. Note that the present invention is not limited to the following examples.

<導電性静的破砕剤の作製>
まず、生石灰95重量部、粘土4重量部、石膏1重量部の混合粉末を1450℃で1時間焼成して、遊離生石灰を80質量%含むクリンカーを得た。このクリンカーをインペラブレーカーで粗砕し、更にミルで粉砕した。このクリンカー粉砕物100質量部と、炭素系導電粒子としてグラファイト(富士フイルム和光社製)を1.25質量部、炭素系導電性微粒子としてケッチェンブラックECP(ライオン・スペシャリティ・ケミカルズ社製、粒径39.5nm) を0.05質量部及び電解質として硫酸鉄(II)七水和物(関東化学株式会社製)0.5質量部を配合した導電性静的破砕剤を作製した。 従って、本導電性静的破砕剤は、炭素系導電粒子の含有量が1.28質量%、硫酸鉄(II)七水和物の含有量が0.49質量%(無水物換算で0.27質量%)である。
<Preparation of conductive static crushing agent>
First, a mixed powder of 95 parts by weight of quicklime, 4 parts by weight of clay, and 1 part by weight of gypsum was calcined at 1450° C. for 1 hour to obtain clinker containing 80% by mass of free quicklime. This clinker was coarsely crushed using an impeller breaker and further crushed using a mill. 100 parts by mass of this pulverized clinker, 1.25 parts by mass of graphite (manufactured by Fujifilm Wako) as carbon-based conductive particles, and Ketjenblack ECP (manufactured by Lion Specialty Chemicals, particle size) as carbon-based conductive fine particles. A conductive static crushing agent was prepared by blending 0.05 parts by mass of 39.5 nm) and 0.5 parts by mass of iron (II) sulfate heptahydrate (manufactured by Kanto Kagaku Co., Ltd.) as an electrolyte. Therefore, the present conductive static crushing agent contains 1.28% by mass of carbon-based conductive particles and 0.49% by mass of iron(II) sulfate heptahydrate (0.49% by mass in terms of anhydride). 27% by mass).

<導電性静的破砕剤を用いた破砕試験>
上記導電性静的破砕剤を使用して破砕試験を行った。被破砕物として、円柱状コンクリート供試体(φ150×300mm)を準備した。円柱状コンクリート供試体にφ42×250mmの孔(充填孔)を開け、上記導電性静的破砕剤100質量部に対して水20質量部を加えた導電性静的破砕剤混練物を充填し、混練物の温度を測定するための熱電対を孔内に設置した。また、円柱状コンクリート供試体の型枠にひずみゲージを設置した。
導電性静的破砕剤混練物を孔内に充填し電極として銅棒を孔内に差し込み、充填から15分後に定電圧で20V印加する。
図2に導電性を有した導電性静的破砕剤の破砕試験結果により得られた混練物温度-時間関係および型枠ひずみ-時間関係のグラフを示す。比較例として、市販の静的破砕剤である太平洋パワーブライスター(太平洋マテリアル(株)製)を使用した場合の破砕試験を実施した。導電性静的破砕剤の場合、通電後から温練物の温度立上りが大きくことが確認された。また、型枠のひずみに注目すると、充填後約45分でひずみの値が急激に上昇したことが確認(コンクリート供試体破砕)された。比較例の場合、型枠ひずみは実施例と比較して緩やかにひずみが上昇し、コンクリート供試体が破砕されるまで約80分程度を要した。即ち、導電性静的破砕剤を加温することによって導電性静的破砕剤の破砕効果が向上することが確認された。
<Crushing test using conductive static crushing agent>
A crushing test was conducted using the above conductive static crushing agent. A cylindrical concrete specimen (φ150×300 mm) was prepared as an object to be crushed. A hole (filling hole) of φ42 x 250 mm is opened in a cylindrical concrete specimen, and filled with a conductive static crushing agent kneaded mixture in which 20 parts by mass of water is added to 100 parts by mass of the above conductive static crushing agent, A thermocouple was installed in the hole to measure the temperature of the kneaded material. In addition, strain gauges were installed in the formwork of the cylindrical concrete specimen.
A conductive static crushing agent kneaded material is filled into the hole, a copper rod is inserted into the hole as an electrode, and 15 minutes after filling, a constant voltage of 20 V is applied.
FIG. 2 shows a graph of the kneaded material temperature-time relationship and mold strain-time relationship obtained from the crushing test results of a conductive static crushing agent. As a comparative example, a crushing test was conducted using Taiheiyo Power Blaster (manufactured by Taiheiyo Materials Co., Ltd.), which is a commercially available static crushing agent. In the case of the conductive static crushing agent, it was confirmed that the temperature rise of the warmed material was large after energization. Furthermore, when looking at the strain in the formwork, it was confirmed that the strain value rapidly increased approximately 45 minutes after filling (the concrete specimen was crushed). In the case of the comparative example, the strain in the formwork increased more slowly than in the example, and it took about 80 minutes until the concrete specimen was crushed. That is, it was confirmed that the crushing effect of the conductive static crushing agent was improved by heating the conductive static crushing agent.

1 被破砕物
2 導電性静的破砕剤
3 電極
4 電源装置
5 配線

1 Object to be crushed 2 Conductive static crushing agent 3 Electrode 4 Power supply device 5 Wiring

Claims (3)

遊離生石灰と、炭素系導電粒子と、電解質とを含む導電性静的破砕剤であって、前記導電性静的破砕剤中、炭素系導電粒子の含有量が0.1~3.0質量%であり、電解質の含有量が0.05~3.0質量%である導電性静的破砕剤 A conductive static crushing agent containing free quicklime, carbon-based conductive particles, and an electrolyte , wherein the content of carbon-based conductive particles in the conductive static crushing agent is 0.1 to 3.0% by mass. A conductive static crushing agent having an electrolyte content of 0.05 to 3.0% by mass . 前記電解質が、アルカリ金属の炭酸塩、過炭酸塩、硫酸塩、亜硫酸塩、硝酸塩、亜硝酸塩及び塩化物から選ばれる1種または2種以上である請求項1に記載の導電性静的破砕剤。 The conductive static crushing agent according to claim 1, wherein the electrolyte is one or more selected from alkali metal carbonates, percarbonates, sulfates, sulfites, nitrates, nitrites, and chlorides. . 導電性静的破砕剤を用いた被破砕物の静的破砕方法であって、
被破砕物に孔を設け、前記孔の内部に、電極と、請求項1又は2に記載の導電性静的破砕剤とを配置した状態で、前記電極に通電することによって前記導電性静的破砕剤が自己発熱することを特徴とする破砕方法。
A method for statically crushing an object to be crushed using a conductive static crushing agent, the method comprising:
A hole is provided in the object to be crushed, and an electrode and the conductive static crushing agent according to claim 1 or 2 are arranged inside the hole, and the conductive static crushing agent is energized by supplying electricity to the electrode. A crushing method characterized by self-heating of the crushing agent.
JP2020063907A 2020-03-31 2020-03-31 Conductive static crushing agent and static crushing method using the same Active JP7436263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020063907A JP7436263B2 (en) 2020-03-31 2020-03-31 Conductive static crushing agent and static crushing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063907A JP7436263B2 (en) 2020-03-31 2020-03-31 Conductive static crushing agent and static crushing method using the same

Publications (2)

Publication Number Publication Date
JP2021159857A JP2021159857A (en) 2021-10-11
JP7436263B2 true JP7436263B2 (en) 2024-02-21

Family

ID=78004198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063907A Active JP7436263B2 (en) 2020-03-31 2020-03-31 Conductive static crushing agent and static crushing method using the same

Country Status (1)

Country Link
JP (1) JP7436263B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154221A (en) 2003-11-27 2005-06-16 Sekisui Chem Co Ltd Portland cement substitute and method of manufacturing the same
US20050252775A1 (en) 2002-05-09 2005-11-17 Malone Philip G Electro-osmotic pulse (EOP) treatment system for structure and method of use therefor
JP2009007492A (en) 2007-06-28 2009-01-15 Taiheiyo Material Kk Static crushing agent for super large pore diameter
JP2014141387A (en) 2012-12-28 2014-08-07 Taiheiyo Material Kk Crushing material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252775A1 (en) 2002-05-09 2005-11-17 Malone Philip G Electro-osmotic pulse (EOP) treatment system for structure and method of use therefor
JP2005154221A (en) 2003-11-27 2005-06-16 Sekisui Chem Co Ltd Portland cement substitute and method of manufacturing the same
JP2009007492A (en) 2007-06-28 2009-01-15 Taiheiyo Material Kk Static crushing agent for super large pore diameter
JP2014141387A (en) 2012-12-28 2014-08-07 Taiheiyo Material Kk Crushing material

Also Published As

Publication number Publication date
JP2021159857A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
Wang et al. Effects of fineness and content of phosphorus slag on cement hydration, permeability, pore structure and fractal dimension of concrete
Koumpouri et al. Effect of boron waste and boric acid addition on the production of low energy belite cement
Wang Compressive strength and thermal conductivity of concrete with nanoclay under Various High-Temperatures
EP3284879B1 (en) Concrete construction technique capable of controlling setting time and special equipment therefor
Pavlík et al. DSC and TG analysis of a blended binder based on waste ceramic powder and portland cement
Krivenko et al. Alkali-activated portland cement with adjustable proper deformations for anchoring application
Rossignolo et al. Influence of microwave oven calcination on the pozzolanicity of sugar cane bagasse ashes (SCBA) from the cogeneration industry
ES2545303A1 (en) Addition to obtain structural concretes and thermal conductive mortars (Machine-translation by Google Translate, not legally binding)
GB2095657A (en) Destructive cementitious composition
JP7436263B2 (en) Conductive static crushing agent and static crushing method using the same
Terzić et al. Mechanically activated coal ash as refractory bauxite shotcrete microfiller: Thermal interactions mechanism investigation
JPH04501406A (en) low cement refractories
Cai et al. Investigation on deterioration mechanism of geopolymer cemented coal Gangue-Fly ash backfill under combined action of high temperature and salt corrosion environment
JP2003306368A (en) Grout and injection method using it
CN105778875A (en) Geopolymer oil well cement
JP2022149104A (en) Static crushing method
Benzaazoua et al. Key issues related to behaviour of binders in cemented paste backfilling
Yao et al. Performance and energy calculation on a green cementitious material composed of coal refuse
JP6110749B2 (en) Crushed material
US3666515A (en) Process for the production of cement expansive additives
CN114988821A (en) Low-heat early-strength cement-based material and preparation method and application thereof
BR112019011438B1 (en) DESIGNED CONCRETE BINDER COMPOSITION
RU2689586C1 (en) Method of producing silicon carbide
JP2004043234A (en) Ultrahigh strength mortar
KR102649017B1 (en) Covering material using mixture of solid refuse fuel and coal ash for stabilizing ground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240208

R150 Certificate of patent or registration of utility model

Ref document number: 7436263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150