JP7434438B2 - oxygen reduction system - Google Patents

oxygen reduction system Download PDF

Info

Publication number
JP7434438B2
JP7434438B2 JP2022108880A JP2022108880A JP7434438B2 JP 7434438 B2 JP7434438 B2 JP 7434438B2 JP 2022108880 A JP2022108880 A JP 2022108880A JP 2022108880 A JP2022108880 A JP 2022108880A JP 7434438 B2 JP7434438 B2 JP 7434438B2
Authority
JP
Japan
Prior art keywords
room
oxygen
air
reduction system
arrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022108880A
Other languages
Japanese (ja)
Other versions
JP2024007662A (en
Inventor
達也 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Safety Service Inc
Original Assignee
Air Water Safety Service Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Safety Service Inc filed Critical Air Water Safety Service Inc
Priority to JP2022108880A priority Critical patent/JP7434438B2/en
Publication of JP2024007662A publication Critical patent/JP2024007662A/en
Application granted granted Critical
Publication of JP7434438B2 publication Critical patent/JP7434438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Description

この発明は、酸素を低減する酸素低減システムに関する。 TECHNICAL FIELD This invention relates to an oxygen reduction system for reducing oxygen.

従来、酸素低減システムは、たとえば特許第5045758号(特許文献1)、特許第5021750号(特許文献2)、特許第4809077号(特許文献3)および特許第4679113号(特許文献4)に開示されている。 Conventionally, oxygen reduction systems have been disclosed in, for example, Patent No. 5045758 (Patent Document 1), Patent No. 5021750 (Patent Document 2), Patent No. 4809077 (Patent Document 3), and Patent No. 4679113 (Patent Document 4). ing.

特許第5045758号Patent No. 5045758 特許第5021750号Patent No. 5021750 特許第4809077号Patent No. 4809077 特許第4679113号Patent No. 4679113

従来のシステムでは、部屋の酸素濃度が低くなりすぎるという問題があった。 The problem with conventional systems was that the oxygen concentration in the room became too low.

酸素低減システムは、外部から大気が供給される部屋の酸素を低減するシステムであって、部屋の空気を吸い込んでその空気から酸素を減少させて酸素が減少した窒素富化空気を部屋に供給するとともに酸素が増加した酸素富化排気を部屋の外へ送る装置を備える。 An oxygen reduction system is a system that reduces oxygen in a room where air is supplied from the outside, and it sucks in the air in the room, reduces oxygen from that air, and supplies nitrogen-enriched air with reduced oxygen to the room. It is also equipped with a device that sends oxygen-enriched exhaust gas to the outside of the room.

このように構成された酸素低減システムにおいては、酸素が減少した窒素富化空気が装置から部屋へ供給されるものの、部屋には大気が供給されるため運転を続けると酸素濃度は平衡状態となり、酸素が減少しすぎることを防止できる。運転当初は部屋の空気の酸素割合は大気の酸素割合である。運転を継続すると部屋の酸素割合が徐々に低下する。これにより酸素富化排気の酸素割合も徐々に低下する。酸素富化排気の酸素割合が大気の酸素割合と同じになると、外部から部屋に供給される大気の酸素割合と部屋から外部へ排出される酸素富化排気の酸素割合とが同じとなり、部屋における酸素割合(窒素割合)が平衡状態となる。そのため、過度に酸素が減少することを防止できる。 In an oxygen reduction system configured in this way, nitrogen-enriched air with reduced oxygen is supplied from the device to the room, but the room is supplied with atmospheric air, so if the system continues to operate, the oxygen concentration will reach an equilibrium state. It can prevent oxygen from decreasing too much. At the beginning of operation, the oxygen percentage in the air in the room is the oxygen percentage in the atmosphere. As operation continues, the oxygen percentage in the room gradually decreases. As a result, the oxygen content of the oxygen-enriched exhaust gas also gradually decreases. When the oxygen percentage of the oxygen-enriched exhaust gas becomes the same as the oxygen percentage of the atmosphere, the oxygen percentage of the atmosphere supplied from the outside to the room and the oxygen percentage of the oxygen-enriched exhaust gas discharged from the room to the outside become the same, and the oxygen percentage in the room becomes the same. The oxygen ratio (nitrogen ratio) is in equilibrium. Therefore, excessive decrease in oxygen can be prevented.

好ましくは、装置は部屋の中に設けられる。この場合、装置を部屋に設けることで、装置と部屋との間の配管を簡素化または省略することが可能になる。 Preferably, the device is located within a room. In this case, by providing the device in the room, it becomes possible to simplify or omit piping between the device and the room.

好ましくは、装置は部屋に外に設けられており、部屋と装置とを接続して部屋の空気を装置へ送る第一経路と、部屋と装置とを接続して酸素が減少した空気を部屋へ送る第二経路とを備える。この場合、部屋に装置が設けられないため、部屋を効率よく利用することが可能となる。さらに、部屋に入ること無く装置をメンテナンスすることができる。 Preferably, the device is located outside the room, with a first path connecting the room and the device to convey room air to the device, and a first path connecting the room and the device to convey oxygen-depleted air to the room. and a second route for sending. In this case, since no device is installed in the room, the room can be used efficiently. Furthermore, the device can be maintained without entering the room.

図1は、実施の形態1に従った、部屋2の内部に設けられた窒素発生装置3を有する酸素低減システム1の模式図である。FIG. 1 is a schematic diagram of an oxygen reduction system 1 having a nitrogen generator 3 provided inside a room 2 according to a first embodiment. 図2は、実施の形態2に従った、部屋2の外部に設けられた窒素発生装置3を有する酸素低減システム1の模式図である。FIG. 2 is a schematic diagram of an oxygen reduction system 1 having a nitrogen generator 3 provided outside a room 2 according to a second embodiment.

以下、実施の形態について図面を参照して説明する。同一または相当する部分については同一の参照符号を付し、その説明は繰り返さない.各実施の形態を組み合わせることも可能である。 Hereinafter, embodiments will be described with reference to the drawings. Identical or corresponding parts are given the same reference numerals and their explanations will not be repeated. It is also possible to combine each embodiment.

(実施の形態1)
図1は、実施の形態1に従った、部屋2の内部に設けられた窒素発生装置3を有する酸素低減システム1の模式図である。図1で示すように、実施の形態1に従った酸素低減システム1は、矢印4で示すように外部から大気が供給される部屋2の酸素を低減する酸素低減システム1である。酸素低減システム1は、矢印5で示すように部屋2の空気を吸い込んでその空気から酸素を減少させて酸素が減少した窒素富化空気を矢印6で示すように部屋2に供給するとともに酸素が増加した酸素富化排気を矢印7で示すように部屋の外へ送る装置としての窒素発生装置3を備える。窒素発生装置3は部屋2の内部に設けられる。
(Embodiment 1)
FIG. 1 is a schematic diagram of an oxygen reduction system 1 having a nitrogen generator 3 provided inside a room 2 according to a first embodiment. As shown in FIG. 1, the oxygen reduction system 1 according to the first embodiment is an oxygen reduction system 1 that reduces oxygen in a room 2 to which air is supplied from the outside as shown by an arrow 4. The oxygen reduction system 1 sucks air from a room 2 as shown by an arrow 5, reduces oxygen from the air, and supplies nitrogen-enriched air with reduced oxygen to the room 2 as shown by an arrow 6. A nitrogen generator 3 is provided as a device for sending the increased oxygen-enriched exhaust gas out of the room as indicated by an arrow 7. The nitrogen generator 3 is provided inside the room 2.

防火システムとして、スプリンクラーのように火災発生後に消火する設備もあるが、事前に火災の発生を予防するシステムがある。 Fire prevention systems include equipment such as sprinklers that extinguish fires after they occur, but there are also systems that prevent fires from occurring in advance.

火災を予防するシステムの一つであるイナートシステム(図1)は、部屋2の内部に対する防火システムで、室内酸素濃度を大気よりも下げておく手法である。大気中の酸素濃度は約21体積%だが、これが15%程度まで減少すると発火が困難になる。この性質を利用して、保護したい室内空気の酸素濃度を人為的に常時下げることで、火災に対する予防を行う。また、酸素濃度を下げすぎると人や生物が窒息して死亡するため、人が出入りする可能性のある区画は12%程度以上の酸素濃度に設定することが多い。 The inert system (Fig. 1), which is one of the systems for preventing fires, is a fire protection system for the interior of the room 2, and is a method of keeping the oxygen concentration in the room lower than that in the atmosphere. The oxygen concentration in the atmosphere is approximately 21% by volume, but if this decreases to around 15%, it becomes difficult to ignite. This property is used to prevent fires by artificially constantly lowering the oxygen concentration in the indoor air that you want to protect. Furthermore, if the oxygen concentration is too low, people and living creatures will suffocate and die, so areas where people may enter and exit are often set at an oxygen concentration of around 12% or higher.

このような酸素低減システム1では不活性ガス(窒素)が矢印6で示すように送り続けられた場合も、部屋2の内部の酸素濃度が想定より下がることはあり得ない。矢印5で示す方向に流れる原料としての空気は部屋2の内部から供給される。不活性ガスは部屋内部に供給される。酸素富化排気は矢印7で示すように室外に放出することで部屋2の内部が陰圧になり、部屋2の隙間等から矢印4で示すように吸込空気が発生する。 In such an oxygen reduction system 1, even if the inert gas (nitrogen) is continuously fed as shown by the arrow 6, the oxygen concentration inside the room 2 will never drop as much as expected. Air as a raw material flowing in the direction shown by the arrow 5 is supplied from inside the chamber 2. Inert gas is supplied inside the room. By discharging the oxygen-enriched exhaust gas to the outside as shown by arrow 7, a negative pressure is created inside the room 2, and suction air is generated from gaps in the room 2 as shown by arrow 4.

ここで酸素量についてのマテリアルバランスを考える。 Now consider the material balance regarding the amount of oxygen.

前述の原料空気量/製品N量=A/N=3.5の時のデータを表1に示す。 Table 1 shows the data when the aforementioned raw material air amount/product N2 amount = A/N = 3.5.

Figure 0007434438000001
Figure 0007434438000001

矢印5で示す原料空気量が3.5、矢印6で示す窒素量が1のため、矢印7で示す酸素富化排気の量は2.5である。また矢印7で示す酸素富化排気が矢印4で示す吸込空気量と一致するはずなので、吸込空気量も2.5である。 Since the amount of raw air shown by arrow 5 is 3.5, and the amount of nitrogen shown by arrow 6 is 1, the amount of oxygen-enriched exhaust gas shown by arrow 7 is 2.5. Furthermore, since the oxygen-enriched exhaust gas indicated by arrow 7 should match the amount of intake air indicated by arrow 4, the amount of intake air is also 2.5.

矢印6で示す窒素濃度100%(酸素濃度0%)、矢印4で示す吸込空気と初期の部屋2内の酸素濃度を21%と仮定する。窒素発生装置3の起動開始時の酸素富化排気中の酸素量、酸素濃度は表1のように計算できる。この状態では酸素富化排気に含まれる酸素量が、吸込空気に含まれる酸素量よりも多いため、部屋2内の酸素濃度が減少していく。また部屋2内の空気の酸素濃度が減少すると、原料空気量は変化しないので酸素富化排気中の酸素も減少する。 Assume that the nitrogen concentration is 100% (oxygen concentration 0%) as indicated by arrow 6, and the oxygen concentration in the intake air and the initial room 2 as indicated by arrow 4 is 21%. The amount and concentration of oxygen in the oxygen-enriched exhaust gas at the time of starting the nitrogen generator 3 can be calculated as shown in Table 1. In this state, the amount of oxygen contained in the oxygen-enriched exhaust gas is greater than the amount of oxygen contained in the intake air, so the oxygen concentration in the room 2 decreases. Further, when the oxygen concentration of the air in the room 2 decreases, the amount of raw material air does not change, so the oxygen in the oxygen-enriched exhaust gas also decreases.

室内酸素濃度が15%まで低下したとき、酸素富化排気と吸込大気中の酸素量が一致し、室内酸素濃度が平衡に至る。つまり、不活性ガス発生装置としての窒素発生装置3が動き続けた場合も、本システムでは物理原理的にこれ以上室内酸素濃度が低下せず、人体に安全である。 When the indoor oxygen concentration drops to 15%, the amount of oxygen in the oxygen-enriched exhaust gas and the amount of oxygen in the intake air match, and the indoor oxygen concentration reaches equilibrium. In other words, even if the nitrogen generator 3 as an inert gas generator continues to operate, in this system, the indoor oxygen concentration will not decrease any further due to physical principles, and it is safe for the human body.

表2では、各々の気体の流量を変化された場合の平衡時の酸素量を示している。 Table 2 shows the amount of oxygen at equilibrium when the flow rate of each gas was changed.

Figure 0007434438000002
Figure 0007434438000002

窒素発生装置3を運転し続けるだけで、目標酸素濃度に到達するため、室内酸素濃度による制御を取り付ける必要がない。(ただし、ランニングコストのため取り付けても良い)。制御がなければ、酸素濃度計やバイパス、自動弁など必然的に機器点数も少なくなりシンプルな構造である。そのため、故障の可能性が低くなり、イニシャルコストが下がる。また特許文献1から4で用いられるタンクや室内への空気供給ライン(もしくは酸素富化ガスライン)も必要ないため省スペースである。 Since the target oxygen concentration is reached simply by continuing to operate the nitrogen generator 3, there is no need to install control based on the indoor oxygen concentration. (However, it may be installed due to running costs). Without control, the number of devices such as oxygen concentration meters, bypasses, and automatic valves would be reduced, resulting in a simple structure. Therefore, the possibility of failure is reduced and the initial cost is reduced. Further, since the tank and indoor air supply line (or oxygen enriched gas line) used in Patent Documents 1 to 4 are not required, space is saved.

さらに、本システムでは圧縮装置一体型のNPSAのような装置を、保護したい部屋に置けば、酸素富化排気を室外に送るダクトを取り付けるだけでイナートシステムが完成する。A/N(矢印5の流量/矢印6の流量)のみあらかじめ調整した装置を用意すればよく、従来の配管を敷設するようなイナートシステムより簡易に設置できる。 Furthermore, with this system, if you place a device such as an N 2 PSA with an integrated compressor in the room you want to protect, you can complete the inert system by simply attaching a duct to send oxygen-enriched exhaust gas outside. It is only necessary to prepare a device in which only the A/N (flow rate indicated by arrow 5/flow rate indicated by arrow 6) is adjusted in advance, and the system can be installed more easily than a conventional inert system that requires laying piping.

室内で人間が活動する際は酸素を消費するため、必ず換気(外気を部屋2内に給気)が必要である。特許文献1および2では圧縮空気を室内に送り込むことで、実質的に換気を行っている。その他イナートシステムでも、記載がなくとも、別に室内に取り付けられた換気扇などがない限り、酸素濃度が減少する。 Since oxygen is consumed when humans are active indoors, ventilation (supplying outside air into room 2) is always required. In Patent Documents 1 and 2, ventilation is substantially performed by sending compressed air into the room. Even if other inert systems are not mentioned, the oxygen concentration will decrease unless there is a ventilation fan installed in the room.

実施の形態の酸素低減システム1では、特に換気ライン等を敷設せずとも、室内が陰圧になることから自然と室外空気を部屋2の通気口もしくは隙間から取り込むことになる。換気システムを別に用意する必要がない。 In the oxygen reduction system 1 of the embodiment, outdoor air is naturally taken in through the vents or gaps in the room 2 because the indoor pressure is negative, even without installing a ventilation line or the like. There is no need for a separate ventilation system.

設定酸素濃度はA/Nのみによって決まり、部屋2の大きさや形状に影響を受けない。流量によって、部屋2の空気を置換する速度が変わってくるので、流量のみいくつかラインナップを作れば、どんな部屋2にも設計変更なしで対応できる。 The set oxygen concentration is determined only by the A/N and is not affected by the size or shape of the room 2. The speed at which air is replaced in the room 2 changes depending on the flow rate, so by creating a lineup of several flow rates, it can be adapted to any room 2 without changing the design.

部屋2内の酸素濃度を測定するための測定装置を設けてもよい。測定装置は、たとえば1分間に1回の頻度で連続的に酸素濃度を測定する。測定装置によって測定された酸素が所定の値以下となると、測定装置に接続された制御装置が、窒素発生装置3の運転を停止することができる。 A measuring device for measuring the oxygen concentration within the room 2 may be provided. The measuring device continuously measures the oxygen concentration, for example, once every minute. When the oxygen measured by the measuring device falls below a predetermined value, a control device connected to the measuring device can stop the operation of the nitrogen generator 3.

測定装置によって測定された酸度濃度が所定値以下となると、部屋2の中の人間に警報または警告を与えることができる。警報または警告は、たとえば、音または光により行うことができる。 When the acidity concentration measured by the measuring device falls below a predetermined value, an alarm or warning can be given to people in the room 2. The alarm or warning can be provided, for example, by sound or light.

酸素低減雰囲気であることを示す掲示を部屋2におけるすべての出入口に配置することができる。 Signs indicating a reduced oxygen atmosphere may be placed at all entrances to the room 2.

窒素発生装置3の運転を制御する制御装置は、酸素もしくはその他の物質の測定結果、警報、監視装置上での故障状態の表示、状態の変化および資源管理情報を収集し、処理し、適宜送信する。安全に関連した構成要素への配線に断線および短絡がないかを制御装置が監視することができる。 The control device that controls the operation of the nitrogen generator 3 collects, processes, and transmits oxygen or other substance measurement results, alarms, failure status indications on monitoring devices, status changes, and resource management information as appropriate. do. The control device can monitor the wiring to safety-related components for breaks and short circuits.

制御装置は、平均酸素濃度、警報、警告、故障表示、運転時間および待機時間の少なくともいずれかのデータを記録し、所定の期間保存できるものであってもよい。これらのデータを保持することにより、部屋2内での異変、たとえば人間の体調不良、が起こった時のその異変の原因を究明することができる。 The control device may be capable of recording and storing data of at least one of average oxygen concentration, alarm, warning, failure indication, operating time, and standby time for a predetermined period of time. By retaining these data, it is possible to investigate the cause of an abnormality in the room 2, for example, when a person becomes unwell.

(実施の形態2)
図2は、実施の形態2に従った、部屋2の外部に設けられた窒素発生装置3を有する酸素低減システム1の模式図である。
(Embodiment 2)
FIG. 2 is a schematic diagram of an oxygen reduction system 1 having a nitrogen generator 3 provided outside a room 2 according to a second embodiment.

図2で示すように、実施の形態2に従った酸素低減システム1においては、窒素発生装置3が部屋2の外に置かれている点において、実施の形態1に従った酸素低減システム1と異なる。部屋2と窒素発生装置3とは、部屋2と窒素発生装置3とを接続して窒素富化空気を部屋へ送る第二経路としての配管8、および、部屋2と窒素発生装置3とを接続して部屋2の空気を窒素発生装置3へ送る第一経路としての配管9で結ばれている。 As shown in FIG. 2, the oxygen reduction system 1 according to the second embodiment differs from the oxygen reduction system 1 according to the first embodiment in that the nitrogen generator 3 is placed outside the room 2. different. The room 2 and the nitrogen generator 3 are connected by a pipe 8 as a second route that connects the room 2 and the nitrogen generator 3 and sends nitrogen-enriched air to the room, and a pipe 8 that connects the room 2 and the nitrogen generator 3. The air in the room 2 is then connected to the nitrogen generator 3 by a pipe 9 as a first route.

配管9内を矢印5で示すように部屋2内の空気が流れる。空気は窒素発生装置3へ供給される。配管8内を矢印6で示すように窒素富化空気が流れる。 Air within the room 2 flows within the pipe 9 as indicated by an arrow 5. Air is supplied to the nitrogen generator 3. Nitrogen-enriched air flows through the pipe 8 as shown by arrow 6.

このように窒素発生装置3を部屋2の外に置くことで、部屋2内を充分に活用することができる。さらに、窒素発生装置3の振動およびノイズが部屋2に伝わることを防止できる。窒素発生装置3が過熱したとしても部屋2内に影響を及ぼすことがない。 By placing the nitrogen generator 3 outside the room 2 in this manner, the inside of the room 2 can be fully utilized. Furthermore, vibrations and noise of the nitrogen generator 3 can be prevented from being transmitted to the room 2. Even if the nitrogen generator 3 overheats, it will not affect the inside of the room 2.

以上、この発明の実施の形態について説明したが、ここで示した実施の形態は様々に変形することが可能である。まず、この酸素低減システム1は、美術館、倉庫などの防護区画を保護するものとして使用される。 Although the embodiments of the present invention have been described above, the embodiments shown here can be modified in various ways. First, this oxygen reduction system 1 is used to protect protected areas such as museums and warehouses.

これとは反対に、酸素富化空気を部屋2の内部に送り、窒素富化空気を部屋2の外へ送ることで、図1および2において酸素富化システムを構成することができる。この場合であっても矢印4で示すように外部の大気が部屋2内に流入する。部屋2内の空気を矢印5で示すように窒素発生装置3に供給する。 Conversely, by sending oxygen-enriched air into the interior of room 2 and sending nitrogen-enriched air outside of room 2, an oxygen enrichment system can be constructed in FIGS. 1 and 2. Even in this case, external air flows into the room 2 as shown by arrow 4. Air within the room 2 is supplied to the nitrogen generator 3 as indicated by an arrow 5.

これにより、部屋2の中の酸素濃度が高くなる。しかしながら、運転を継続すると窒素富化空気中の酸素濃度と大気の酸素濃度とが同じになるため、部屋2内の酸素の濃度が平衡状態となる。その結果、酸素の濃度が過剰に上昇することを防止できる。 This increases the oxygen concentration in the room 2. However, if the operation continues, the oxygen concentration in the nitrogen-enriched air becomes the same as the oxygen concentration in the atmosphere, so the oxygen concentration in the room 2 becomes in an equilibrium state. As a result, it is possible to prevent the concentration of oxygen from increasing excessively.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.

1 酸素低減システム、2 部屋、3 窒素発生装置、4-7 矢印、8,9 配管。 1 Oxygen reduction system, 2 Room, 3 Nitrogen generator, 4-7 Arrow, 8,9 Piping.

Claims (3)

外部から大気が供給される部屋の酸素を低減するシステムであって、
前記部屋の空気を吸い込んでその空気から酸素を減少させて酸素が減少した窒素富化空気を前記部屋に供給するとともに酸素が増加した酸素富化排気を前記部屋の外へ送る装置を備え、運転を続けると酸素濃度は平衡状態となる、酸素低減システム。
A system for reducing oxygen in a room where air is supplied from the outside,
a device for sucking in air from the room, reducing oxygen from the air, supplying nitrogen-enriched air with reduced oxygen to the room, and sending oxygen-enriched exhaust gas with increased oxygen to the outside of the room; If you continue to do this, the oxygen concentration will reach an equilibrium state, an oxygen reduction system.
前記装置は前記部屋の中に設けられる、請求項1に記載の酸素低減システム。 2. The oxygen reduction system of claim 1, wherein the device is located within the room. 前記装置は前記部屋に外に設けられており、前記部屋と前記装置とを接続して前記部屋の空気を前記装置へ送る第一経路と、前記部屋と前記装置とを接続して窒素富化空気を前記部屋へ送る第二経路とを備えた、請求項1に記載の酸素低減システム。 The device is provided outside the room, and a first path connects the room and the device to send air from the room to the device, and a first path connects the room and the device to enrich the air with nitrogen. and a second path for delivering air to the room.
JP2022108880A 2022-07-06 2022-07-06 oxygen reduction system Active JP7434438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022108880A JP7434438B2 (en) 2022-07-06 2022-07-06 oxygen reduction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022108880A JP7434438B2 (en) 2022-07-06 2022-07-06 oxygen reduction system

Publications (2)

Publication Number Publication Date
JP2024007662A JP2024007662A (en) 2024-01-19
JP7434438B2 true JP7434438B2 (en) 2024-02-20

Family

ID=89544250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022108880A Active JP7434438B2 (en) 2022-07-06 2022-07-06 oxygen reduction system

Country Status (1)

Country Link
JP (1) JP7434438B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350758A (en) 2003-05-27 2004-12-16 National Research Institute Of Fire & Disaster Fire defense system
JP2006110128A (en) 2004-10-15 2006-04-27 Matsushita Electric Ind Co Ltd On-vehicle nitrogen-enriched air generating apparatus
JP2007280265A (en) 2006-04-11 2007-10-25 Takenaka Komuten Co Ltd Safety management system and the safety management method in oxygen concentration variable space
JP2007322119A (en) 2006-05-02 2007-12-13 Matsushita Denko Bath & Life Kk Bathroom air conditioning system
JP2009515310A (en) 2005-11-10 2009-04-09 エアバス・ドイチュラント・ゲーエムベーハー Fire protection using fuel cell exhaust
JP2011050794A (en) 2010-12-17 2011-03-17 Takenaka Komuten Co Ltd Low oxygen concentration fire prevention system
JP5045758B2 (en) 2006-10-19 2012-10-10 アムロナ・アーゲー Deactivation device with nitrogen generator
JP2015092889A (en) 2013-11-08 2015-05-18 株式会社モリタホールディングス Fire protection device using gas and nitrogen-enriched air fire protection device
US20160263413A1 (en) 2013-12-04 2016-09-15 Amrona Ag Oxygen reduction system and method for operating an oxygen reduction system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350758A (en) 2003-05-27 2004-12-16 National Research Institute Of Fire & Disaster Fire defense system
JP2006110128A (en) 2004-10-15 2006-04-27 Matsushita Electric Ind Co Ltd On-vehicle nitrogen-enriched air generating apparatus
JP2009515310A (en) 2005-11-10 2009-04-09 エアバス・ドイチュラント・ゲーエムベーハー Fire protection using fuel cell exhaust
JP2007280265A (en) 2006-04-11 2007-10-25 Takenaka Komuten Co Ltd Safety management system and the safety management method in oxygen concentration variable space
JP2007322119A (en) 2006-05-02 2007-12-13 Matsushita Denko Bath & Life Kk Bathroom air conditioning system
JP5045758B2 (en) 2006-10-19 2012-10-10 アムロナ・アーゲー Deactivation device with nitrogen generator
JP2011050794A (en) 2010-12-17 2011-03-17 Takenaka Komuten Co Ltd Low oxygen concentration fire prevention system
JP2015092889A (en) 2013-11-08 2015-05-18 株式会社モリタホールディングス Fire protection device using gas and nitrogen-enriched air fire protection device
US20160263413A1 (en) 2013-12-04 2016-09-15 Amrona Ag Oxygen reduction system and method for operating an oxygen reduction system

Also Published As

Publication number Publication date
JP2024007662A (en) 2024-01-19

Similar Documents

Publication Publication Date Title
AU2007327712B2 (en) Method and device for the regulated supply of incoming air
US20070169947A1 (en) System and methods for preventing ignition and fire via a maintained hypoxic environment
US9733149B2 (en) Method and device for determining and/or monitoring the air tightness of an enclosed room
BRPI1000641B1 (en) FIRE SUPPRESSION SYSTEM, AND, METHOD FOR USE WITH A FIRE SUPPRESSION SYSTEM
US20130005236A1 (en) Air supply damper for separately supplying leakage air flow and supplementary air flow, method for controlling the same, and smoke control system utilizing the same
EP2629875B1 (en) Breathing air production and filtration system
RU2010108167A (en) METHOD AND DEVICE FOR PREVENTION AND EXTINGUISHING OF FIRE IN AN ENCLOSED SPACE
KR20070102511A (en) Inertization method for avoiding fires
JP7434438B2 (en) oxygen reduction system
US10933262B2 (en) Oxygen-reducing installation and method for operating an oxygen-reducing installation
KR101747360B1 (en) Fire Fighting Apparatus Having Prevention Fire Smoking of Appatment
AU2016268932B2 (en) Ventilation system
JP2011050794A (en) Low oxygen concentration fire prevention system
US20140027132A1 (en) Hypoxic Fire Prevention System, Building Provided Therewith and Method Therefor
JP5955547B2 (en) Oxygen concentrator
JP6346914B2 (en) Breathing gas supply device
JP7235625B2 (en) Hypoxic environment warning system and hypoxic environment forming device
KR20160064664A (en) Toxic gas filtration device
KR101138959B1 (en) Pneumatic block apparatus of medical ventilator
CN210904769U (en) Fire extinguishing system is with cigarette shower nozzle of feeling
JP2012183160A (en) Oxygen concentrator
EP2865424A1 (en) Air compressor system
JPS60118603A (en) Oxygen enriching device
JP2004169952A (en) Differential pressure control unit
KR100954893B1 (en) Gas enrichment film apparatus and air conditioning apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231101

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R150 Certificate of patent or registration of utility model

Ref document number: 7434438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150