JP7434398B2 - terminal - Google Patents

terminal Download PDF

Info

Publication number
JP7434398B2
JP7434398B2 JP2022055843A JP2022055843A JP7434398B2 JP 7434398 B2 JP7434398 B2 JP 7434398B2 JP 2022055843 A JP2022055843 A JP 2022055843A JP 2022055843 A JP2022055843 A JP 2022055843A JP 7434398 B2 JP7434398 B2 JP 7434398B2
Authority
JP
Japan
Prior art keywords
terminal
line
based material
region
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022055843A
Other languages
Japanese (ja)
Other versions
JP2023148021A (en
Inventor
茂樹 関谷
秀一 北河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2022055843A priority Critical patent/JP7434398B2/en
Publication of JP2023148021A publication Critical patent/JP2023148021A/en
Application granted granted Critical
Publication of JP7434398B2 publication Critical patent/JP7434398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Description

本発明は、端子に関し、特に電線端末接続や電線接続に用いられる端子に関する。 The present invention relates to a terminal, and particularly to a terminal used for connecting wire ends or connecting wires.

通常、配電用電線には導電率の高い銅系導体および銅系端子が用いられている。近年では、軽量化の観点から、アルミニウム系導体が用いられることがある。また、アルミニウム系導体の端末接続には、アルミニウム系端子が用いられることがある。アルミニウム系導体にアルミニウム系端子を装着したアルミニウム系端子付きアルミニウム系導体ケーブルを他の接続部材にボルトなどで締結することによって、電気回路を作り、電流を流すことができる。 Usually, a copper-based conductor and a copper-based terminal with high electrical conductivity are used for power distribution wires. In recent years, aluminum-based conductors are sometimes used from the viewpoint of weight reduction. Furthermore, aluminum terminals are sometimes used for terminal connections of aluminum conductors. By fastening an aluminum-based conductor cable with an aluminum-based terminal, which is an aluminum-based conductor with an aluminum-based terminal attached thereto, to another connecting member with a bolt or the like, an electric circuit can be created and a current can be caused to flow.

しかしながら、アルミニウム系端子付きアルミニウム系導体ケーブルを、他の接続部材にボルトなどで締結し、これらを連結した状態で繰り返し電流を流すと、電流に応じて端子と他の接続部材の連結部の周辺が発熱したり放熱したりすることで、連結部の周辺の温度が変化する。このとき、端子と他の接続部材の連結部は、ミクロな視点で見ると、熱膨張および熱収縮を繰り返すことで、端子の表面がずれて新しい接触面が露出し、露出した部分が酸化するため、端子と他の接続部材との間の接触抵抗が上昇する。さらに、アルミニウムは熱膨張係数が大きいことで、熱膨張によるサイズの変化が大きくなるため、端子と他の接続部材との間の接触抵抗がより上昇しやすい。その結果、端子と他の接続部材との間の接触抵抗が増大して温度が上昇するため、発火事故を防ぐ対策をとる必要が生じうる。 However, if an aluminum conductor cable with an aluminum terminal is fastened to another connecting member with bolts, etc., and a current is repeatedly applied while these are connected, the area around the connecting part of the terminal and other connecting member may change depending on the current. The temperature around the connecting part changes as it generates and radiates heat. At this time, when viewed from a microscopic point of view, the connection between the terminal and other connecting members undergoes repeated thermal expansion and contraction, causing the surface of the terminal to shift, exposing a new contact surface, and oxidizing the exposed portion. Therefore, contact resistance between the terminal and other connecting members increases. Furthermore, since aluminum has a large coefficient of thermal expansion, the change in size due to thermal expansion becomes large, so that the contact resistance between the terminal and other connecting members is more likely to increase. As a result, the contact resistance between the terminal and other connecting members increases and the temperature rises, so it may be necessary to take measures to prevent a fire accident.

そこで、他の接続部材に接続する接続部に銅系材料を用いた、アルミニウム系端子が知られている。例えば、特許文献1には、銅製の端子羽子板部の対向端部に設けた対向アルミニウム棒の対向端部の直径より若干大きい直径の凹所内に、アルミニウム棒の対向端部を接合し、両者の接合部の周囲に形成された溝に防蝕用材料を介在せしめてなる、銅-アルミニウム端子が記載されている。 Therefore, aluminum-based terminals are known in which a copper-based material is used for the connection portion that connects to other connection members. For example, in Patent Document 1, the opposite ends of the aluminum rods are joined in a recess with a diameter slightly larger than the diameter of the opposite ends of the opposite aluminum rods provided at the opposite ends of the copper terminal battledore part, and both A copper-aluminum terminal is described in which a corrosion-protective material is interposed in a groove formed around the joint.

実開昭53-85586号公報Utility Model Publication No. 53-85586

特許文献1に記載されている銅-アルミニウム端子は、銅とアルミニウムを摩擦圧接により接合した端子であり、アルミニウム棒(アルミニウム系導線)と接続する導線接続部にアルミニウム系材料を用いるとともに、他の接続部材に接続する端子羽子板部には銅系材料を用いており、これらの対向面を接合面で接合している。 The copper-aluminum terminal described in Patent Document 1 is a terminal in which copper and aluminum are joined by friction welding, and the conductor connection part that connects to the aluminum rod (aluminum-based conductor wire) is made of an aluminum-based material, and other materials are used. A copper-based material is used for the terminal battledore portion that connects to the connecting member, and these opposing surfaces are joined by a joining surface.

しかし、屋内配線を施工する際には、端子を設置して導線を配策することができるスペースが限られており、端子を他の接続部材に接続した後で、導線を引っ張ったり曲げたりして配策する場合がある。このとき、端子にも導線と同様に曲げによる負荷が掛かることで、端子の接合部にクラックが発生して割れる恐れがある。そこで、電線の配策時の曲げに耐久できる端子が求められている。 However, when installing indoor wiring, there is limited space in which to install terminals and route conductors, and it is difficult to pull or bend the conductors after connecting the terminals to other connection members. In some cases, measures may be taken. At this time, the terminals are also subjected to a bending load in the same way as the conductor wires, which may cause cracks to occur at the joints of the terminals and cause them to break. Therefore, there is a need for terminals that can withstand bending during wiring of electric wires.

この点、特許文献1に記載されている銅-アルミニウム端子は、接合された界面の状態に関する記載がないことからも明らかなように、端子を他の接続部材に接続した後で、導線を引っ張ったり曲げたりしたときの耐久性に着目するものではない。しかしながら、特許文献1に記載されるような、アルミニウムなどのAl系材料と銅などのCu系材料とを摩擦圧接により接合した端子では、これらの接合部が、曲げや引っ張りに対して弱くなりやすい。 In this regard, in the copper-aluminum terminal described in Patent Document 1, as is clear from the fact that there is no description of the state of the bonded interface, the conductor is pulled after the terminal is connected to another connecting member. It does not focus on durability when being bent or bent. However, in a terminal in which an Al-based material such as aluminum and a Cu-based material such as copper are joined by friction welding, as described in Patent Document 1, these joints tend to be weak against bending and tension. .

よって、本発明の目的は、Al系材料およびCu系材料が接合する接合部に割れが起こり難い端子を提供することにある。 Therefore, an object of the present invention is to provide a terminal in which cracks do not easily occur at the joint where an Al-based material and a Cu-based material are joined.

上記目的を達成するため、本発明の要旨構成は、以下のとおりである。 In order to achieve the above object, the gist of the present invention is as follows.

(1)Al系材料からなり、導線に接続される第1接続部と、Cu系材料からなり、他の導体部材が連結される第2接続部と、を有し、前記第1接続部の中実部分である第1端部、および前記第2接続部の中実部分である第2端部を、互いに対向させた状態で接合して、前記第1端部の第1対向面と前記第2端部の第2対向面の間に接合面が形成されている端子であって、前記接合面の中心位置を通り、前記端子の長手方向に沿って切断したときの縦断面で見て、前記第1接続部は、前記接合面を始端とする、Al系材料の平均結晶粒径が3μm以下となる微結晶領域の終端位置が、前記接合面の中心位置を起点として、前記端子の長手方向に前記接合面の円相当直径の3%に相当する寸法だけ離れた第1位置と、前記接合面の円相当直径の15%に相当する寸法だけ離れた第2位置とで画定される第1領域内にあり、かつ、前記微結晶領域を、第1中央域と、前記第1中央域の周りに位置する第1外周域とに区画するとき、前記第1中央域における前記Al系材料の平均結晶粒径に対する、前記第1外周域における前記Al系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にある、端子。 (1) It has a first connection part made of an Al-based material and connected to a conductive wire, and a second connection part made of a Cu-based material and connected to another conductor member, and the first connection part A first end portion that is a solid portion and a second end portion that is a solid portion of the second connecting portion are joined while facing each other, and the first opposing surface of the first end portion and the second end portion that are the solid portion of the second connecting portion are A terminal in which a bonding surface is formed between the second opposing surfaces of the second end, when viewed in a longitudinal section when cut along the longitudinal direction of the terminal passing through the center position of the bonding surface. , the first connection part is such that the terminal position of a microcrystalline region having an average crystal grain size of 3 μm or less of the Al-based material, which starts from the joint surface, is located at the terminal from the center position of the joint surface. It is defined by a first position separated in the longitudinal direction by a dimension corresponding to 3% of the equivalent circular diameter of the joint surface, and a second position separated by a dimension corresponding to 15% of the circular equivalent diameter of the joint surface. When the microcrystalline region is located in a first region and is divided into a first central region and a first outer peripheral region located around the first central region, the Al system in the first central region A terminal, wherein the ratio of the average crystal grain size of the Al-based material in the first outer peripheral region to the average crystal grain size of the material is in the range of 0.75 or more and 1.25 or less.

(2)前記第1接続部の前記第1端部および前記第2接続部の前記第2端部は、いずれも略円柱形状を有する、上記(1)に記載の端子。 (2) The terminal according to (1) above, wherein the first end of the first connecting portion and the second end of the second connecting portion both have a substantially cylindrical shape.

(3)前記縦断面で見て、前記第2接続部は、前記接合面の中心位置と、前記端子の長手方向に前記接合面の円相当直径の3%に相当する寸法だけ離れた第5位置とで区画される第2領域におけるCu系材料の平均結晶粒径に対する、前記接合面の中心位置を起点として、前記端子の長手方向に前記接合面の円相当直径の15%に相当する寸法だけ離れた第6位置と、前記接合面の円相当直径の20%に相当する寸法だけ離れた第7位置とで画定される第3領域におけるCu系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にある、上記(1)または(2)に記載の端子。 (3) Seen in the longitudinal section, the second connecting portion is located at a fifth point spaced apart from the center position of the joint surface by a dimension corresponding to 3% of the equivalent circle diameter of the joint surface in the longitudinal direction of the terminal. A dimension corresponding to 15% of the equivalent circular diameter of the bonding surface in the longitudinal direction of the terminal, starting from the center position of the bonding surface, relative to the average crystal grain size of the Cu-based material in the second region defined by the position. The ratio of the average crystal grain size of the Cu-based material in the third region defined by the sixth position separated by a distance of 0.01 and the seventh position separated by a dimension corresponding to 20% of the equivalent circle diameter of the bonding surface is 0. The terminal according to (1) or (2) above, which is in the range of 75 or more and 1.25 or less.

(4)前記縦断面で見て、前記接合面が表出した線である接合線の長さ寸法が、前記第1接続部の前記第1端部の円相当直径および前記第2接続部の前記第2端部の円相当直径のうち、小さい方の円相当直径に対して0.6%以上21.1%以下の寸法分だけ大きい、上記(1)から(3)のいずれか1項に記載の端子。 (4) When viewed in the longitudinal section, the length dimension of the joining line, which is the line where the joining surface is exposed, is the circle equivalent diameter of the first end of the first connecting part and the length of the joining line, which is the line where the joining surface is exposed. Any one of (1) to (3) above, which is larger than the smaller equivalent circle diameter by 0.6% or more and 21.1% or less among the equivalent circle diameters of the second end. Terminals listed in .

(5)前記縦断面で見て、前記接合面が表出した線である接合線と、前記第1接続部の前記第1端部の外周面が表出した線である第1外周線および前記第2接続部の前記第2端部の外周面が表出した線である第2外周線のうちのいずれかの外周線とのなす接合端位置での角度の平均が、78°以上88°以下の範囲である、上記(1)から(4)のいずれか1項に記載の端子。 (5) A bonding line that is a line where the bonding surface is exposed when viewed in the longitudinal section; a first outer circumference line that is a line where the outer circumferential surface of the first end of the first connection portion is exposed; and The average angle at the joint end position of the second connecting portion with any one of the second peripheral lines, which is a line on which the peripheral surface of the second end portion is exposed, is 78° or more and 88° or more. The terminal according to any one of (1) to (4) above, wherein the terminal is within a range of .

(6)前記縦断面で見て、前記接合面が表出した線である接合線は、前記長手方向について前記接合面の円相当直径の2%以上に相当する大きさの接合範囲に広がり、かつ、前記接合範囲の少なくとも一部に、前記長手方向に対して垂直な垂線と、前記接合線との交点が2点以上形成される範囲を有する、上記(1)から(5)のいずれか1項に記載の端子。 (6) When viewed in the longitudinal section, the bonding line, which is a line where the bonding surface is exposed, extends in the longitudinal direction to a bonding range of a size equivalent to 2% or more of the equivalent circle diameter of the bonding surface; and any one of (1) to (5) above, wherein at least a part of the bonding range has a range where two or more intersections between a perpendicular line to the longitudinal direction and the bonding line are formed. The terminal described in item 1.

(7)前記縦断面にて、前記端子の長手方向に沿って走査させてWDX分析を行なったとき、AlおよびCuの検出強度は、いずれも分析した全元素の検出強度の合計に対する強度比にして、90%以下となる領域の走査長さが、5μm以下である、上記(1)から(6)のいずれか1項に記載の端子。 (7) When WDX analysis is performed by scanning along the longitudinal direction of the terminal in the longitudinal section, the detected intensities of Al and Cu are both expressed as an intensity ratio to the sum of the detected intensities of all elements analyzed. The terminal according to any one of (1) to (6) above, wherein the scanning length of the area where the area is 90% or less is 5 μm or less.

本発明によれば、Al系材料およびCu系材料が接合する接合部に割れが起こり難い端子を提供することができる。 According to the present invention, it is possible to provide a terminal in which cracks do not easily occur at the joint where an Al-based material and a Cu-based material are joined.

図1Aは、第1実施形態の端子の斜視図である。FIG. 1A is a perspective view of the terminal of the first embodiment. 図1Bは、第1実施形態の端子の第1領域、第2領域および第3領域を示す図であって、図1Aの仮想平面Pにおける縦断面図である。FIG. 1B is a diagram showing a first region, a second region, and a third region of the terminal of the first embodiment, and is a longitudinal cross-sectional view on the virtual plane P of FIG. 1A. 図1Cは、第1実施形態の端子の第1中央域および第1外周域を示す図であって、図1Aの仮想平面Pにおける縦断面図である。FIG. 1C is a diagram showing the first central region and the first outer peripheral region of the terminal of the first embodiment, and is a longitudinal cross-sectional view on the virtual plane P of FIG. 1A. 図2は、第2実施形態の端子の内部構造を示した縦断面図である。FIG. 2 is a longitudinal sectional view showing the internal structure of the terminal of the second embodiment. 図3は、曲面によって構成される接合面の、接合前および接合後の一例を示した要部の縦断面図であって、図3(a)が接合前の状態を示す縦断面図、図3(b)が接合後の状態を示す縦断面図である。FIG. 3 is a vertical cross-sectional view of a main part of a joint surface constituted by a curved surface, showing an example before and after joining, and FIG. 3(a) is a vertical cross-sectional view showing the state before joining. 3(b) is a vertical cross-sectional view showing the state after joining. 図4は、曲面によって構成される接合面の、接合前および接合後の他の例を示した要部の縦断面図であって、図4(a)が接合前の状態を示す縦断面図、図4(b)が接合後の状態を示す縦断面図である。FIG. 4 is a vertical cross-sectional view of a main part of a joint surface formed by a curved surface, showing another example before and after joining, and FIG. 4(a) is a vertical cross-sectional view showing the state before joining. , FIG. 4(b) is a longitudinal sectional view showing the state after bonding. 図5は、曲面によって構成される接合面の、接合前および接合後の他の例を示した要部の縦断面図であって、図5(a)が接合前の状態を示す縦断面図、図5(b)が接合後の状態を示す縦断面図である。FIG. 5 is a vertical cross-sectional view of a main part showing another example of a joint surface formed by a curved surface before and after joining, and FIG. 5(a) is a vertical cross-sectional view showing the state before joining. , FIG. 5(b) is a longitudinal cross-sectional view showing the state after bonding. 図6は、端子についての3点曲げ評価の方法を説明するための図である。FIG. 6 is a diagram for explaining a method for evaluating three-point bending of a terminal.

以下、本発明の具体的な実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。 Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the following embodiments, and various changes can be made without changing the gist of the present invention.

<第1の実施形態>
図1Aは、第1実施形態の端子の斜視図である。また、図1Bは、第1実施形態の端子の第1領域、第2領域および第3領域を示す図であって、図1Aの仮想平面Pにおける縦断面図である。また、図1Cは、第1実施形態の端子の第1中央域および第1外周域を示す図であって、図1Aの仮想平面Pにおける縦断面図である。
<First embodiment>
FIG. 1A is a perspective view of the terminal of the first embodiment. Moreover, FIG. 1B is a diagram showing the first region, second region, and third region of the terminal of the first embodiment, and is a longitudinal cross-sectional view on the virtual plane P of FIG. 1A. Moreover, FIG. 1C is a diagram showing the first central region and the first outer peripheral region of the terminal of the first embodiment, and is a longitudinal cross-sectional view on the virtual plane P of FIG. 1A.

端子1は、Al系材料からなり、導線7に接続される第1接続部11と、Cu系材料からなり、他の導体部材8が連結される第2接続部12と、を有し、第1接続部11の中実部分である第1端部11a、および第2接続部12の中実部分である第2端部12aを、互いに対向させた状態で接合して、第1端部11aの第1対向面31と第2端部12aの第2対向面32の間に接合面3が形成されている端子1であって、接合面3の中心位置Cを通り、端子1の長手方向Xに沿って切断したときの縦断面で見て、第1接続部11は、接合面3を始端とする、Al系材料の平均結晶粒径が3μm以下となる微結晶領域の終端位置が、接合面3の中心位置Cを起点として、端子1の長手方向Xに接合面3の円相当直径Dの3%に相当する寸法だけ離れた第1位置41と、接合面3の円相当直径Dの15%に相当する寸法だけ離れた第2位置42とで画定される第1領域51内にあり、かつ、微結晶領域を、第1中央域61と、第1中央域61の周りに位置する第1外周域62とに区画するとき、第1中央域61におけるAl系材料の平均結晶粒径に対する、第1外周域62におけるAl系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にある。 The terminal 1 has a first connection part 11 made of an Al-based material and connected to the conductor 7, and a second connection part 12 made of a Cu-based material to which another conductor member 8 is connected. The first end 11a, which is a solid part of the first connecting part 11, and the second end 12a, which is a solid part of the second connecting part 12, are joined in a state where they are opposed to each other to form the first end 11a. A terminal 1 in which a bonding surface 3 is formed between a first opposing surface 31 of the second end 12a and a second opposing surface 32 of the second end 12a, the longitudinal direction of the terminal 1 passing through the center position C0 of the bonding surface 3. When viewed in a longitudinal cross-section taken along the direction , a first position 41 separated by a dimension corresponding to 3% of the circle equivalent diameter D of the joint surface 3 in the longitudinal direction X of the terminal 1, starting from the center position C 0 of the joint surface 3; The microcrystalline region is located within the first region 51 defined by the second position 42 separated by a dimension corresponding to 15% of the diameter D, and the microcrystalline region is defined by the first central region 61 and around the first central region 61. When partitioning into a first outer circumferential region 62 located at It is in the range of 1.25 or more.

この端子1では、Al系材料からなる第1接続部11のうち、Cu系材料からなる第2接続部12との接合面3の周辺において、Al系材料の微細な結晶粒が存在する領域が広がっており、かつ、接合面3の近傍の微結晶領域において、第1中央域61におけるAl系材料の粒径と、その周りに位置する第1外周域62におけるAl系材料の粒径とが、ほぼ同等の大きさになる。このように、Cu系材料との接合面3やその周辺に、Al系材料の微細な結晶粒が存在する領域が広がることで、端子1を引っ張ったり曲げたりしたときの変形に対し、Al系材料およびCu系材料の接合部分を十分に耐久させることができる。これは、Cu系材料との接合面3やその周辺における、Al系材料の結晶粒径が微細かつ均一であれば、端子1を引っ張ったり曲げたりしたときの変形に対して、局所的に変形することなく、端子1の全体で緩やかに変形できるためであると考えられる。 In this terminal 1, there is a region where fine crystal grains of the Al-based material exist around the joint surface 3 of the first connection portion 11 made of the Al-based material with the second connection portion 12 made of the Cu-based material. In the microcrystalline region that is spread out and near the bonding surface 3, the grain size of the Al-based material in the first central region 61 and the grain size of the Al-based material in the first outer peripheral region 62 located around it are the same. , are almost the same size. In this way, by expanding the area where fine crystal grains of the Al-based material exist in and around the bonding surface 3 with the Cu-based material, the Al-based material will resist deformation when the terminal 1 is pulled or bent. The joint portion between the material and the Cu-based material can be made sufficiently durable. If the crystal grain size of the Al-based material is fine and uniform at the joint surface 3 with the Cu-based material and its surroundings, local deformation will occur when the terminal 1 is pulled or bent. This is thought to be because the entire terminal 1 can be gently deformed without causing any deformation.

加えて、この端子1では、Al系材料からなる第1接続部11と、Cu系材料からなる第2接続部12が接合面3で接合されており、他の導体部材8が連結される第2接続部12がCu系材料によって構成されるため、他の導体部材8との間の接触抵抗を小さくすることができる。 In addition, in this terminal 1, a first connection part 11 made of an Al-based material and a second connection part 12 made of a Cu-based material are joined at a joint surface 3, and a second connection part 11 made of an Al-based material is joined at a joint surface 3. Since the 2-connection portion 12 is made of a Cu-based material, contact resistance with other conductor members 8 can be reduced.

したがって、この端子1によることで、Al系材料およびCu系材料が接合する接合部に割れが起こり難い端子1を提供することができる。 Therefore, by using this terminal 1, it is possible to provide a terminal 1 in which cracks do not easily occur at the joint where the Al-based material and the Cu-based material are joined.

[端子の構成について]
図1Aに示すように、端子1は、Al系材料からなり、導線7に接続される第1接続部11と、Cu系材料からなり、他の導体部材8が連結される第2接続部12と、を有する。
[About the terminal configuration]
As shown in FIG. 1A, the terminal 1 includes a first connection part 11 made of an Al-based material and connected to the conductor 7, and a second connection part 12 made of a Cu-based material and connected to another conductor member 8. and has.

第1接続部11を構成するAl系材料としては、純アルミニウムやアルミニウム合金を用いることができる。ここで、第1接続部11の導電性を高める観点では、Al系材料として純アルミニウムを用いることが好ましい。他方で、第1接続部11の耐久強度を高くする観点では、Al系材料としてアルミニウム合金を用いることが好ましい。純アルミニウムとしては、工業用純アルミニウムを挙げることができ、例えば、アルミニウムの他に、Fe(鉄)を0.3重量%以下、Si(ケイ素)を0.1重量%以下、その他の元素を合計で0.1重量%以下含むものを用いることができる。他方で、アルミニウム合金としては、第1接続部11の導電性を低下させない観点から、添加元素が少ないことが好ましく、例えば、Fe(鉄)、Si(ケイ素)、Cu(銅)、Mg(マグネシウム)、Mn(マンガン)、Cr(クロム)、Zn(亜鉛)、Ti(チタン)をそれぞれ1重量%以下含み、その他の元素を合計で0.1重量%以下含むものを用いることができる。 As the Al-based material constituting the first connection portion 11, pure aluminum or an aluminum alloy can be used. Here, from the viewpoint of increasing the conductivity of the first connecting portion 11, it is preferable to use pure aluminum as the Al-based material. On the other hand, from the viewpoint of increasing the durability strength of the first connecting portion 11, it is preferable to use an aluminum alloy as the Al-based material. Examples of pure aluminum include industrial pure aluminum; for example, in addition to aluminum, it contains 0.3% by weight or less of Fe (iron), 0.1% by weight or less of Si (silicon), and other elements. Those containing 0.1% by weight or less in total can be used. On the other hand, from the viewpoint of not reducing the conductivity of the first connecting portion 11, it is preferable that the aluminum alloy contains few additive elements, such as Fe (iron), Si (silicon), Cu (copper), Mg (magnesium). ), Mn (manganese), Cr (chromium), Zn (zinc), and Ti (titanium) each at 1% by weight or less, and other elements in a total amount of 0.1% by weight or less can be used.

第2接続部12を構成するCu系材料としては、純銅や銅合金を用いることができる。ここで、第2接続部12の導電性を高める観点では、Cu系材料として純銅を用いることが好ましい。他方で、第2接続部12の耐久強度を高くする観点では、Cu系材料として銅合金を用いることが好ましい。純銅としては、タフピッチ銅や無酸素銅を挙げることができ、例えば、銅の他に、その他の元素を合計で0.1重量%以下含むものを用いることができる。他方で、銅合金は、第2接続部12の導電性を低下させない観点から、添加元素が少ないことが好ましく、例えば、Sn(錫)またはCr(クロム)をそれぞれ1重量%以下含んだものや、黄銅を用いることができる。 As the Cu-based material constituting the second connection portion 12, pure copper or a copper alloy can be used. Here, from the viewpoint of increasing the conductivity of the second connection portion 12, it is preferable to use pure copper as the Cu-based material. On the other hand, from the viewpoint of increasing the durability strength of the second connecting portion 12, it is preferable to use a copper alloy as the Cu-based material. Examples of pure copper include tough pitch copper and oxygen-free copper, and for example, copper containing other elements in a total amount of 0.1% by weight or less in addition to copper can be used. On the other hand, from the viewpoint of not reducing the conductivity of the second connection part 12, the copper alloy preferably contains few additive elements, such as those containing 1% by weight or less of each of Sn (tin) or Cr (chromium). , brass can be used.

この端子1では、図1Bに示すように、第1接続部11の中実部分である第1端部11aと、第2接続部12の中実部分である第2端部12aとが、互いに対向した状態で接合されており、このとき対向する面である、第1端部11aの第1対向面31と、第2端部12aの第2対向面32との間に、接合面3が形成されている。 In this terminal 1, as shown in FIG. 1B, the first end portion 11a, which is a solid portion of the first connecting portion 11, and the second end portion 12a, which is a solid portion of the second connecting portion 12, are mutually connected. The joint surface 3 is formed between the first opposing surface 31 of the first end 11a and the second opposing surface 32 of the second end 12a, which are the opposing surfaces at this time. It is formed.

ここで、第1端部11aの第1対向面31と、第2端部12aの第2対向面32は、いずれも略円形状を有するとともに、略同心になるように配置されることが好ましい。特に、第1接続部11の第1端部11aおよび第2接続部12の第2端部12aは、いずれも略円柱形状を有することがより好ましい。このように、第1対向面31および第2対向面32が略円形状を有し、より好ましくは第1端部11aおよび第2端部12aが略円柱形状を有することで、摩擦圧接による第1接続部11および第2接続部12の接合の際に、第1端部11aおよび第2端部12aが均等に加熱されるようになるため、結晶粒をより均一に存在させることができる。 Here, it is preferable that the first opposing surface 31 of the first end 11a and the second opposing surface 32 of the second end 12a both have a substantially circular shape and are arranged substantially concentrically. . In particular, it is more preferable that the first end portion 11a of the first connecting portion 11 and the second end portion 12a of the second connecting portion 12 both have a substantially cylindrical shape. In this way, the first opposing surface 31 and the second opposing surface 32 have a substantially circular shape, and more preferably, the first end 11a and the second end 12a have a substantially cylindrical shape. When the first connecting portion 11 and the second connecting portion 12 are joined, the first end portion 11a and the second end portion 12a are heated evenly, so that crystal grains can be made to exist more uniformly.

第1端部11aの第1対向面31と、第2端部12aの第2対向面32は、いずれも円相当直径で、25mm以下であることが好ましい。第1対向面31および第2対向面32の円相当直径が25mmを超えると、第1接続部11および第2接続部12を接合した後の冷却が不十分になりやすくなることで、接合面3の近傍における結晶粒径が不均一になるため、端子1を引っ張ったり曲げたりしたときの変形に対する耐久性が低下しやすい。なお、第1対向面31および第2対向面32の円相当直径の下限は、特に限定されないが、例えば7mm以上としてもよい。 It is preferable that the first opposing surface 31 of the first end 11a and the second opposing surface 32 of the second end 12a both have an equivalent circle diameter of 25 mm or less. If the equivalent circle diameter of the first opposing surface 31 and the second opposing surface 32 exceeds 25 mm, cooling after joining the first connecting portion 11 and the second connecting portion 12 is likely to be insufficient, and the joining surface Since the crystal grain size in the vicinity of terminal 3 becomes non-uniform, durability against deformation when the terminal 1 is pulled or bent tends to decrease. Note that the lower limit of the equivalent circle diameters of the first opposing surface 31 and the second opposing surface 32 is not particularly limited, but may be, for example, 7 mm or more.

第1接続部11は、図1Bに示すような、接合面3の中心位置Cを通り、端子1の長手方向Xに沿って切断したときの縦断面で見て、接合面3を始端とする、Al系材料の平均結晶粒径が3μm以下となる微結晶領域の終端位置が、接合面3の中心位置Cを起点として、端子1の長手方向Xに接合面3の円相当直径Dの3%に相当する寸法だけ離れた第1位置41と、接合面3の円相当直径Dの15%に相当する寸法だけ離れた第2位置42とで画定される第1領域51内にあるように構成される。これにより、接合面3から第1領域51内の位置までの範囲に、Al系材料の微細な結晶粒が存在する領域が広がるため、端子1を引っ張ったり曲げたりしたときの変形に対し、特にCu系材料より柔らかく、かつ耐久性の小さい接合面3の近傍にあるAl系材料を、十分に耐久させることができる。このような、接合面3から第1領域51内までの範囲にAl系材料の微細な結晶粒が存在する微細構造は、例えば、第1接続部11および第2接続部12を接合する際に接合面3の近傍を水冷などで冷却することで得ることができる。他方で、この微結晶領域の終端位置が、接合面3の中心位置Cを起点として、端子1の長手方向Xに接合面3の円相当直径Dの3%以上15%以下の範囲になく、かつ、長手方向Xに接合面3の円相当直径Dの15%超の範囲にもない場合、接合面3の近傍におけるAl系材料の結晶粒径が大きくなるため、引っ張ったり曲げたりしたときの変形に十分に耐久できずに端子1が破壊する恐れがある。また、この微結晶領域の終端位置が、長手方向Xに接合面3の円相当直径Dの15%超の範囲にある場合、接合面3の近傍が必要以上に加熱されることで、アルミニウムと銅の金属間化合物が生成して接合面3の近傍が脆くなるため、引っ張ったり曲げたりしたときの変形に十分に耐久できずに端子1が破壊する恐れがある。従って、この微結晶領域の終端位置は、接合面3の中心位置Cを起点として、端子1の長手方向Xに、接合面3の円相当直径Dの5%以上12%以下の範囲にあることが好ましく、接合面3の円相当直径Dの6%以上10%以下の範囲にあることがより好ましい。 As shown in FIG. 1B, the first connecting portion 11 has the joining surface 3 as the starting end when viewed in a longitudinal section taken along the longitudinal direction X of the terminal 1 passing through the center position C0 of the joining surface 3. The terminal position of the microcrystalline region where the average crystal grain size of the Al-based material is 3 μm or less is the circle equivalent diameter D of the joint surface 3 in the longitudinal direction X of the terminal 1, starting from the center position C0 of the joint surface 3. It is located within a first region 51 defined by a first position 41 separated by a dimension corresponding to 3% of the diameter D of the joint surface 3, and a second position 42 separated by a dimension corresponding to 15% of the equivalent circle diameter D of the joint surface 3. It is configured as follows. This expands the region where fine crystal grains of the Al-based material exist in the range from the bonding surface 3 to the position within the first region 51, so that it is particularly resistant to deformation when the terminal 1 is pulled or bent. The Al-based material near the bonding surface 3, which is softer and less durable than the Cu-based material, can be made sufficiently durable. Such a microstructure in which fine crystal grains of the Al-based material exist in the range from the bonding surface 3 to the inside of the first region 51 can be used, for example, when bonding the first connection portion 11 and the second connection portion 12. It can be obtained by cooling the vicinity of the joint surface 3 with water cooling or the like. On the other hand, if the terminal position of this microcrystalline region is not within the range of 3% or more and 15% or less of the equivalent circular diameter D of the joint surface 3 in the longitudinal direction X of the terminal 1 starting from the center position C0 of the joint surface 3; , and it is not within the range of more than 15% of the equivalent circle diameter D of the joint surface 3 in the longitudinal direction There is a risk that the terminal 1 may be damaged due to insufficient durability against deformation. Furthermore, if the terminal position of this microcrystalline region is in a range exceeding 15% of the equivalent circle diameter D of the joint surface 3 in the longitudinal direction X, the vicinity of the joint surface 3 is heated more than necessary, and aluminum Since a copper intermetallic compound is generated and the vicinity of the bonding surface 3 becomes brittle, the terminal 1 may not be able to sufficiently withstand deformation when pulled or bent, and the terminal 1 may break. Therefore, the terminal position of this microcrystalline region is in the range of 5% to 12% of the equivalent circular diameter D of the bonding surface 3 in the longitudinal direction X of the terminal 1, starting from the center position C0 of the bonding surface 3. It is preferable that it is in the range of 6% or more and 10% or less of the equivalent circle diameter D of the joint surface 3.

なお、この微結晶領域の終端位置は、接合面3の中心位置Cを通るように長手方向Xに沿って切断したときの端子1の縦断面について、1000倍の光学顕微鏡を用いて横105μm×縦80μmの観察領域で、接合面3の中心位置Cを通り、かつ端子1の長手方向Xに沿った中心線Cを含むように撮影し、得られる画像について、接合面3が表出した線である接合線を長手方向Xに平行移動させた線で、中心位置Cから円相当直径Dの1%ごとに区分して、Al系材料の平均結晶粒径をそれぞれ測定したときに、平均結晶粒径が3μm以下となる区画のうち、接合面3から最も遠い区画における終端の位置とすることができる。すなわち、縦断面を、中心位置Cから、接合面3の円相当直径Dの0%超1%以下の区画、1%超2%以下の区画、の要領で1%ごとに区分して測定されるAl系材料の平均結晶粒径を求めていき、最初に平均結晶粒径が3μm超であった区画と、それより円相当直径Dの1%だけ小さい区画との境界の位置を、この微結晶領域の終端位置とすることができる。例えば、接合面3の円相当直径Dの10%以下の区画における平均結晶粒径がすべて3μm以下であり、接合面3の円相当直径Dの10%超11%以下の区画における平均結晶粒径が3.5μmであった場合、この微結晶領域の終端位置は、接合面3の円相当直径Dの10%となる。 The terminal position of this microcrystalline region is determined by measuring 105 μm in width using an optical microscope with a magnification of 1000 times with respect to the longitudinal section of the terminal 1 when cut along the longitudinal direction X passing through the center position C0 of the bonding surface 3. The bonding surface 3 is exposed in the image obtained by taking an image in an observation area of 80 μm vertically, passing through the center position C0 of the bonding surface 3 and including the center line C along the longitudinal direction X of the terminal 1. When the average crystal grain size of the Al-based material is measured by dividing the bonding line, which is a line parallel to the longitudinal direction X, into 1% of the equivalent circle diameter D from the center position , among the sections where the average crystal grain size is 3 μm or less, the terminal end position can be in the section farthest from the bonding surface 3. In other words, the longitudinal section is measured by dividing it into sections of 1% from the center position C 0 in the following manner: divisions exceeding 0% but not more than 1% of the equivalent circle diameter D of the joint surface 3, and divisions exceeding 1% and not more than 2%. Find the average crystal grain size of the Al-based material, and first find the position of the boundary between the section where the average crystal grain size is over 3 μm and the section smaller than that by 1% of the equivalent circle diameter D. This can be the terminal position of the microcrystalline region. For example, the average crystal grain size in a section that is 10% or less of the equivalent circle diameter D of the joint surface 3 is all 3 μm or less, and the average crystal grain size in a section that is more than 10% and 11% or less of the equivalent circle diameter D of the joint surface 3. is 3.5 μm, the end position of this microcrystalline region is 10% of the equivalent circle diameter D of the bonding surface 3.

また、接合面3の円相当直径Dは、端子1の長手方向Xに対して垂直な断面を研磨面として、Al系材料の側からCu系材料の側に、長手方向Xに向かって研磨していき、研磨面の全面がCu系材料に変わった瞬間の断面を鏡面に仕上げて光学顕微鏡で撮影し、得られる画像を解析することで接合面3の面積を求め、この接合面3の面積と等しい面積を有する円の直径を、円相当直径Dとすることができる。また、端子1の外観を目視で観察して、接合面3が円形状であることが明らかな場合には、接合面3の直径を直接ノギスで測定してもよい。 The equivalent circle diameter D of the bonding surface 3 is determined by polishing the terminal 1 in the longitudinal direction X from the Al-based material side to the Cu-based material side, with the cross section perpendicular to the longitudinal direction X as the polishing surface. Then, the cross-section at the moment when the entire surface of the polished surface is changed to Cu-based material is polished to a mirror surface, photographed with an optical microscope, and the area of the bonding surface 3 is determined by analyzing the obtained image. The diameter of a circle having an area equal to can be defined as the equivalent circle diameter D. Further, if the appearance of the terminal 1 is visually observed and it is clear that the bonding surface 3 is circular, the diameter of the bonding surface 3 may be directly measured with a caliper.

第1接続部11のうち、Al系材料の平均結晶粒径が3μm以下となる微結晶領域を、図1Cに示すように、第1中央域61と、第1中央域61の周りに位置する第1外周域62とに区画するとき、第1中央域61におけるAl系材料の平均結晶粒径に対する、第1外周域62におけるAl系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にあるように構成される。これにより、微結晶領域において、第1中央域61におけるAl系材料の粒径と、その周りに位置する第1外周域62におけるAl系材料の粒径とが、ほぼ同等の大きさになることで、端子1を引っ張ったり曲げたりしたときの変形に対し、局所的な変形が起こり難くなり、それにより端子が全体的に変形するようになるため、Al系材料およびCu系材料の接合部分を十分に耐久させることができる。他方で、第1中央域61におけるAl系材料の平均結晶粒径に対する、第1外周域62におけるAl系材料の平均結晶粒径の比が0.75未満または1.25超であると、微結晶領域における結晶粒径が不均一になることで、引っ張ったり曲げたりしたときの変形に十分に耐久できずに端子1が破壊する恐れがある。第1中央域61におけるAl系材料の平均結晶粒径に対する、第1外周域62におけるAl系材料の平均結晶粒径の比は、0.85以上1.15以下の範囲が好ましく、0.90以上1.10以下の範囲がより好ましい。 In the first connecting portion 11, microcrystalline regions in which the average crystal grain size of the Al-based material is 3 μm or less are located in the first central region 61 and around the first central region 61, as shown in FIG. 1C. When partitioning into the first outer peripheral region 62, the ratio of the average crystal grain size of the Al-based material in the first outer peripheral region 62 to the average crystal grain size of the Al-based material in the first central region 61 is 0.75 or more. 25 or less. As a result, in the microcrystalline region, the grain size of the Al-based material in the first central region 61 and the grain size of the Al-based material in the first outer peripheral region 62 located around it become approximately the same size. Therefore, when the terminal 1 is pulled or bent, local deformation is less likely to occur, and as a result, the terminal deforms as a whole. It can be made durable enough. On the other hand, if the ratio of the average crystal grain size of the Al-based material in the first peripheral region 62 to the average crystal grain size of the Al-based material in the first central region 61 is less than 0.75 or more than 1.25, Since the crystal grain size in the crystal region becomes non-uniform, the terminal 1 may not be able to withstand enough deformation when being pulled or bent, and the terminal 1 may be destroyed. The ratio of the average crystal grain size of the Al-based material in the first outer peripheral region 62 to the average crystal grain size of the Al-based material in the first central region 61 is preferably in the range of 0.85 or more and 1.15 or less, and 0.90. A range of 1.10 or less is more preferable.

ここで、第1中央域61は、Al系材料の微結晶領域のうち、中心寄りの領域に設定される。より具体的に、第1中央域61は、接合面3の中心位置Cを通り、端子1の長手方向Xに沿った中心線Cの位置やその近傍であり、中心線Cの位置から円相当直径Dの5%(D/20)に相当する寸法だけ外周面21の側にある第3位置43によって囲まれる領域に設定される。他方で、第1外周域62は、Al系材料の微結晶領域のうち、外周面21寄りの領域に設定することができる。より具体的に、第1外周域62は、第1外周線21aから円相当直径Dの5%(D/20)に相当する寸法だけ中心線Cの側にある第4位置44と、第1外周線21aによって囲まれる領域に設定される。 Here, the first central region 61 is set in a region closer to the center of the microcrystalline region of the Al-based material. More specifically, the first central region 61 passes through the center position C0 of the joint surface 3, is at or near the center line C along the longitudinal direction X of the terminal 1, and is a circle extending from the center line C. It is set in an area surrounded by the third position 43 located on the outer circumferential surface 21 side by a dimension corresponding to 5% (D/20) of the equivalent diameter D. On the other hand, the first outer peripheral region 62 can be set in a region closer to the outer peripheral surface 21 in the microcrystalline region of the Al-based material. More specifically, the first outer circumferential region 62 has a fourth position 44 located on the center line C side by a dimension corresponding to 5% (D/20) of the equivalent circle diameter D from the first outer circumferential line 21a; It is set in the area surrounded by the outer circumferential line 21a.

ここで、第1中央域61におけるAl系材料の平均結晶粒径は、上述の微結晶領域の終端位置を求める際に用いた縦断面の画像のうち、微結晶領域にあたる部分の第1中央域61に、結晶粒界が50個跨るような線分を長手方向Xに沿って引き、その線分のうち結晶粒界を跨いでいる部分の長さを50で割ることで求めることができる。ここで、中心線Cに沿って結晶粒界が50個跨るような線分を引けなかった場合は、同様に撮影した複数の画像を用いてもよく、同じ画像に複数の線分を引いてもよい。また、第1外周域62におけるAl系材料の平均結晶粒径についても同様に、接合面3の中心位置Cを通るように長手方向Xに沿って端子1を切断したときの第1外周域62を含む縦断面について、1000倍の光学顕微鏡を用いて横105μm×縦80μmの観察領域で撮影し、微結晶領域にあたる部分の第1外周域62に、結晶粒界が50個跨るような線分を長手方向Xに沿って引き、その線分のうち結晶粒界を跨いでいる部分の長さを50で割ることで求めることができる。 Here, the average crystal grain size of the Al-based material in the first central region 61 is the first central region of the portion corresponding to the microcrystalline region in the vertical cross-sectional image used to find the end position of the microcrystalline region described above. 61, a line segment that spans 50 grain boundaries is drawn along the longitudinal direction X, and the length of the segment that spans the grain boundaries is divided by 50. If it is not possible to draw a line segment that spans 50 grain boundaries along the center line C, you may use multiple images taken in the same way, or draw multiple line segments on the same image. Good too. Similarly, regarding the average crystal grain size of the Al-based material in the first outer circumferential area 62, the first outer circumferential area when the terminal 1 is cut along the longitudinal direction X so as to pass through the center position C0 of the joint surface 3. A vertical cross section including 62 was photographed in an observation area of 105 μm in width x 80 μm in height using an optical microscope with a magnification of 1000 times, and a line such that 50 grain boundaries spanned the first outer peripheral region 62 of the part corresponding to the microcrystalline region. It can be determined by drawing a line segment along the longitudinal direction X and dividing the length of the portion of the line segment that straddles the grain boundary by 50.

第1接続部11に接続される導線7は、特に限定されず、単独の素線によって構成されてもよく、複数の素線を撚り合わせた撚線であってもよく、複数の素線を束ねた束線であってもよい。導線7の材料の一例として、純アルミニウムおよびアルミニウム合金を含むAl系材料を挙げることができる。 The conducting wire 7 connected to the first connecting portion 11 is not particularly limited, and may be composed of a single strand, a stranded wire made by twisting a plurality of strands, or a stranded wire made by twisting a plurality of strands. It may be a bundled wire. As an example of the material of the conducting wire 7, an Al-based material including pure aluminum and an aluminum alloy can be mentioned.

第2接続部12は、図1Bに示すように、接合面3の中心位置Cを通るように、端子1の長手方向Xに沿って切断したときの縦断面で見て、接合面3の中心位置Cと、そこから端子1の長手方向Xに接合面3の円相当直径Dの3%に相当する寸法だけ離れた第5位置45とで区画される第2領域52におけるCu系材料の平均結晶粒径に対する、接合面3の中心位置Cを起点として、端子1の長手方向Xに接合面3の円相当直径Dの15%に相当する寸法だけ離れた第6位置46と、接合面3の円相当直径Dの20%に相当する寸法だけ離れた第7位置47とで画定される第3領域53におけるCu系材料の平均結晶粒径の比が、0.75以上1.25以下の範囲にあることが好ましい。これにより、接合面3の近傍である第2領域52と、接合面3から十分に離れていて接合時の熱の影響を受けない第3領域53との間で、Cu系材料の平均結晶粒径がほぼ同等の大きさになることで、接合面3の付近における摩擦熱の影響が小さいことが表わされるため、アルミニウムと銅の金属間化合物を生成し難くして、端子1を引っ張ったり曲げたりしたときの変形に対し、Al系材料およびCu系材料の接合部分を十分に耐久させることができる。 As shown in FIG. 1B, the second connecting portion 12 is of the bonding surface 3 when viewed in a longitudinal section taken along the longitudinal direction X of the terminal 1 so as to pass through the center position C0 of the bonding surface 3. Cu-based material in a second region 52 defined by a center position C0 and a fifth position 45 separated from the center position C0 by a distance corresponding to 3% of the equivalent circle diameter D of the joint surface 3 in the longitudinal direction X of the terminal 1. a sixth position 46 that is spaced from the center position C0 of the joint surface 3 in the longitudinal direction X of the terminal 1 by a dimension corresponding to 15% of the equivalent circle diameter D of the joint surface 3, The ratio of the average crystal grain size of the Cu-based material in the third region 53 defined by the seventh position 47 separated by a dimension corresponding to 20% of the equivalent circle diameter D of the joint surface 3 is 0.75 or more and 1. It is preferably in the range of 25 or less. As a result, the average crystal grain of the Cu-based material is formed between the second region 52, which is near the joint surface 3, and the third region 53, which is sufficiently far away from the joint surface 3 and is not affected by the heat during joining. Since the diameters are approximately the same size, the effect of frictional heat near the joint surface 3 is small, making it difficult to form an intermetallic compound between aluminum and copper, making it easier to pull or bend the terminal 1. The bonded portion of the Al-based material and the Cu-based material can be made sufficiently durable against deformation caused by

第2接続部12は、接合面3から離隔した位置(図1の端子1では、接合面3に対して長手方向Xの他端側)に、板状接続部12bを備える。板状接続部12bは、貫通穴Sを備え、ボルトなどの締結部材9を挿通して、他の導体部材8に機械的かつ電気的に接続することができる。 The second connecting portion 12 includes a plate-like connecting portion 12b at a position separated from the joining surface 3 (in the terminal 1 of FIG. 1, on the other end side in the longitudinal direction X with respect to the joining surface 3). The plate-like connecting portion 12b includes a through hole S, through which a fastening member 9 such as a bolt can be inserted to mechanically and electrically connect to another conductor member 8.

第1接続部11および第2接続部12は、接合面3の中心位置Cを通るように長手方向Xに沿って切断したときの縦断面にて、端子1の長手方向Xに沿って走査させてWDX分析を行なったとき、AlおよびCuの検出強度は、いずれも分析した全元素の検出強度の合計に対する強度比にして、90%以下となる領域の走査長さが、5μm以下であることが好ましい。これにより、接合面3において適度にCu原子およびAl原子が拡散するため、第1接続部11および第2接続部12の接合強度をより高めることができる。他方で、AlおよびCuの検出強度が90%以下となる領域の走査長さが5μmを超えると、接合面3の近傍にアルミニウムと銅の脆い金属間化合物が生成することで、金属間化合物が生成した場所を起点にクラックが入りやすくなるため、第1接続部11および第2接続部12の接合強度が小さくなる傾向にある。 The first connecting portion 11 and the second connecting portion 12 are scanned along the longitudinal direction X of the terminal 1 in a longitudinal section taken along the longitudinal direction When performing WDX analysis, the scanning length of the region where the detected intensity of Al and Cu is 90% or less as an intensity ratio to the total detected intensity of all analyzed elements is 5 μm or less. It is preferable. As a result, Cu atoms and Al atoms are appropriately diffused in the bonding surface 3, so that the bonding strength between the first connecting portion 11 and the second connecting portion 12 can be further increased. On the other hand, if the scanning length of the region where the detection intensity of Al and Cu is 90% or less exceeds 5 μm, a brittle intermetallic compound of aluminum and copper is generated near the bonding surface 3, and the intermetallic compound is Since cracks tend to form starting from the generated locations, the bonding strength between the first connecting portion 11 and the second connecting portion 12 tends to decrease.

[端子の製造方法について]
次に、端子1の製造方法について説明する。
[About the terminal manufacturing method]
Next, a method for manufacturing the terminal 1 will be explained.

まず、第1旋盤加工工程では、第2接続部12となる銅丸棒の端面に旋盤加工を行ない、後述する突起や溝を、第2端部12aとなる部分に形成することができる。この第1旋盤加工工程は、図1に示されるような、略円柱形状を有する第2端部12aを備えた態様では行わなくてもよい。 First, in the first lathe processing step, lathe processing is performed on the end face of the copper round bar that will become the second connecting portion 12, so that protrusions and grooves, which will be described later, can be formed in the portion that will become the second end portion 12a. This first lathe processing step does not have to be performed in a mode including the second end portion 12a having a substantially cylindrical shape as shown in FIG.

第1旋盤加工工程の後に行なわれる摩擦圧接工程では、第1接続部11となるアルミニウム丸棒と、第2接続部12となる銅丸棒とを、互いに対向させた状態で摩擦圧接装置の治具に設置し、アルミニウム丸棒および銅丸棒を相対的に回転させながら、これらを押し込むことで摩擦により加熱した後、より大きなアップセット圧力で押し込むことで接合する。特に、本発明の端子1では、アルミニウム丸棒および銅丸棒の外周部の周速が速いことに起因する、外周部の摩擦熱を抑え、それにより生じていた外周部の結晶粒の粗大化を抑制するために、アルミニウム丸棒および銅丸棒を摩擦により加熱する際に、アルミニウム丸棒および銅丸棒が接触する部分に水を噴射することで、摩擦圧接により接合される部分の外周を水冷しながら、摩擦圧接を行なう。これにより、接合面3における結晶粒径を、ほぼ均一に制御することができる。 In the friction welding process that is performed after the first lathe processing process, the aluminum round bar that will become the first connection part 11 and the copper round bar that will become the second connection part 12 are placed facing each other while the friction welding device is being heated. The aluminum round rod and the copper round rod are placed in a tool and rotated relative to each other, and the aluminum and copper rods are pressed together to heat them by friction, and then pressed together with a larger upset pressure to join them. In particular, in the terminal 1 of the present invention, the frictional heat at the outer periphery caused by the high circumferential speed of the aluminum round bar and the copper round bar is suppressed, and the coarsening of crystal grains at the outer periphery caused by this is suppressed. In order to suppress this, when heating the aluminum round rod and copper round rod by friction, water is sprayed onto the part where the aluminum round rod and copper round rod come into contact, thereby reducing the outer periphery of the part to be joined by friction welding. Perform friction welding while cooling with water. Thereby, the crystal grain size at the bonding surface 3 can be controlled to be substantially uniform.

摩擦圧接工程の後に行なわれる第2旋盤加工工程では、第1接続部11のうち第2接続部12が接合されていない側の端部を、旋盤加工によって中空になるように切削し、導線7の端部を圧着により接続する導線接続部11bを形成する。 In the second lathe process performed after the friction welding process, the end of the first connection part 11 on the side where the second connection part 12 is not joined is cut by lathe process so that it becomes hollow, and the conductive wire 7 A conductive wire connecting portion 11b is formed to connect the ends of the wire by crimping.

第2旋盤加工工程の後に行なわれる熱処理工程では、熱処理を施して第1接続部11を軟化させる。これにより、後工程での圧着工程で、比較的弱い力で導線7を第1接続部11に圧着できるようになるため、端子1側での通電ON時の応力緩和量を減らすとともに、導線7を圧着した部分での接合を、より強化および維持することができる。 In the heat treatment step performed after the second lathe processing step, the first connection portion 11 is softened by heat treatment. This makes it possible to crimp the conductor 7 to the first connection part 11 with a relatively weak force in the crimping process in the subsequent process, reducing the amount of stress relaxation when the terminal 1 side is energized, and The bond at the crimped portion can be further strengthened and maintained.

熱処理工程の後に行なわれる第1鍛造工程では、第2接続部12のうち第1接続部11が接合されていない側の端部を、金型に入れて圧縮することで、第2接続部12に板状接続部12bを形成する。 In the first forging step performed after the heat treatment step, the end of the second connecting portion 12 on the side to which the first connecting portion 11 is not joined is placed in a mold and compressed, thereby forming the second connecting portion 12. A plate-like connecting portion 12b is formed on the plate-like connecting portion 12b.

第1鍛造工程の後に行なわれる打ち抜き工程では、打ち抜きによって板状接続部12bに貫通穴Sを設ける。 In a punching step performed after the first forging step, a through hole S is provided in the plate-like connecting portion 12b by punching.

打ち抜き工程の後に行なわれるめっき工程では、第1接続部11および第2接続部12の表面にめっきを施すことで、端子1を作製する。より具体的には、第1接続部11および第2接続部12の表面に、密着性向上のためCu下地めっきを施した後、最表層にはSnめっきを施す。 In a plating process performed after the punching process, the terminal 1 is produced by plating the surfaces of the first connection part 11 and the second connection part 12. More specifically, after Cu base plating is applied to the surfaces of the first connection part 11 and the second connection part 12 to improve adhesion, the outermost layer is subjected to Sn plating.

さらに、得られる端子1にアルミ電線を接続するために、以下の工程が行なわれる。 Furthermore, in order to connect an aluminum electric wire to the obtained terminal 1, the following steps are performed.

まず、コンパウンド挿入工程では、導線7と導線接続部11bとの密着性の向上のために、導線接続部11bの内面にコンパウンド材を挿入する。コンパウンド材は、主に鉱油および亜鉛粉末で構成され、導線7と導線接続部11bとを良好に接続するために用いられる。より具体的に、コンパウンド材は、アルミニウム圧着端子付きアルミニウム電線の良好な導電性の確保や、導線7の酸化被膜および導線接続部11bの酸化被膜の破壊、圧着部の防水などの役割を果たす。 First, in the compound insertion step, a compound material is inserted into the inner surface of the conducting wire connecting portion 11b in order to improve the adhesion between the conducting wire 7 and the conducting wire connecting portion 11b. The compound material is mainly composed of mineral oil and zinc powder, and is used to properly connect the conductive wire 7 and the conductive wire connection portion 11b. More specifically, the compound material plays roles such as ensuring good conductivity of the aluminum wire with the aluminum crimp terminal, destroying the oxide film of the conductor 7 and the oxide film of the conductor connection portion 11b, and waterproofing the crimp portion.

コンパウンド挿入工程の後に行なわれる圧着工程では、導線7を導線接続部11bに挿入し、圧着工具を用いて導線接続部11bに一方向から力を掛けることで、導線7と導線接続部11bとを圧着する。導線接続部11bの窪んだ部分である圧着凹部の窪み量が大きいほど、換言すると圧着時の押込み力が大きいほど、導線7と導線接続部11bは強固に接合される。 In the crimping process performed after the compound insertion process, the conductor 7 is inserted into the conductor connection part 11b, and a force is applied to the conductor connection part 11b from one direction using a crimping tool, thereby bonding the conductor 7 and the conductor connection part 11b. Crimp. The larger the depression amount of the crimping recess, which is the depressed portion of the conducting wire connecting portion 11b, in other words, the larger the pushing force during crimping, the more firmly the conducting wire 7 and the conducting wire connecting portion 11b are joined.

<第2の実施形態>
図2は、第2実施形態の端子の内部構造を示した縦断面図である。なお、図2に示す各構成部材は、図1に示す端子1の構成部材と同じ場合には、同じ符号を付している。
<Second embodiment>
FIG. 2 is a longitudinal sectional view showing the internal structure of the terminal of the second embodiment. In addition, each component shown in FIG. 2 is given the same reference numeral when it is the same as the component of the terminal 1 shown in FIG.

第1の実施形態で示した端子1では、第1接続部11および第2接続部12の直径(線径)が等しい態様について示したが、これに限定されない。例えば、図2の端子1Aに示すように、第1接続部11および第2接続部12は、異なる直径を有していてもよい。 In the terminal 1 shown in the first embodiment, the first connecting portion 11 and the second connecting portion 12 have the same diameter (wire diameter), but the present invention is not limited to this. For example, as shown in the terminal 1A of FIG. 2, the first connecting portion 11 and the second connecting portion 12 may have different diameters.

より具体的に、第1接続部11および第2接続部12は、接合面3Aの中心位置Cを通るように長手方向Xに沿って切断したときの縦断面で見て、接合面3Aが表出した線である接合線30Aの長さ寸法が、第1接続部11の第1端部11aの円相当直径Dおよび第2接続部12の第2端部12aの円相当直径Dのうち、小さい方の円相当直径に対して、0.6%以上21.1%以下の寸法分だけ大きいことが好ましい。特に、円相当直径DおよびDのうち小さい方の円相当直径に対して、接合線30Aの長さ寸法を0.6%以上の寸法分だけ大きくすることで、より大きな曲げ負荷に対しても耐久することができる。他方で、円相当直径DおよびDのうち小さい方の円相当直径に対して、接合線30Aの長さ寸法を21.1%の寸法分より大きくすると、第1接続部11および第2接続部12を摩擦圧接する際に負荷される力が分散するため、接合面3Aに割れが生じやすくなる。特に、円相当直径DおよびDのうち小さい方の円相当直径に対して、接合線30Aの長さ寸法を2.0%以上11.0%以下の寸法分だけ大きいことがより好ましい。 More specifically, the first connection part 11 and the second connection part 12 are such that the joint surface 3A is The length dimension of the joining line 30A, which is the exposed line, is the equivalent circle diameter D 1 of the first end 11 a of the first connecting portion 11 and the equivalent circle diameter D 2 of the second end 12 a of the second connecting portion 12 . It is preferable that the diameter is larger than the smaller equivalent circle diameter by a size of 0.6% or more and 21.1% or less. In particular, by increasing the length of the joining line 30A by 0.6% or more with respect to the smaller of the equivalent circle diameters D1 and D2 , it is possible to withstand larger bending loads. It can also be durable. On the other hand, if the length dimension of the joining line 30A is made larger than 21.1% of the smaller equivalent circle diameter of the circle equivalent diameters D1 and D2 , the first connection part 11 and the second connection part 11 and the second Since the force applied when friction welding the connecting portion 12 is dispersed, cracks are likely to occur on the joint surface 3A. In particular, it is more preferable that the length of the joining line 30A is greater than or equal to 2.0% and less than or equal to 11.0% with respect to the smaller of the equivalent circle diameters D 1 and D 2 .

接合線30Aは、第1接続部11の第1対向面31Aと第2接続部12の第2対向面32Aのうち、これらが対向する部分に形成される接合面3Aが、図2に示されるような縦断面に表出してなるものである。そのため、本実施態様の端子1Aでは、図2に示されるように、第1対向面31Aや第2対向面32Aの一部(図2では第1対向面31Aの一部)に、接合線30Aに含まれない部分を有する。 The bonding line 30A is a bonding surface 3A formed at a portion where the first opposing surface 31A of the first connecting portion 11 and the second opposing surface 32A of the second connecting portion 12 face each other, as shown in FIG. It is visible in a longitudinal section like this. Therefore, in the terminal 1A of this embodiment, as shown in FIG. Contains parts not included in

第1の実施形態で示した端子1では、第1接続部11および第2接続部12の接合面3は、第1端部11aの外周面21および第2端部12aの外周面22に対して垂直な平面になるように構成される態様について示したが、これに限定されない。例えば、図2の端子1Aに示すように、第1接続部11および第2接続部12の接合面3Aは、第1端部11aの外周面21または第2端部12aの外周面22に対して非垂直に構成されていてもよい。 In the terminal 1 shown in the first embodiment, the joint surface 3 of the first connecting portion 11 and the second connecting portion 12 is relative to the outer circumferential surface 21 of the first end portion 11a and the outer circumferential surface 22 of the second end portion 12a. Although an embodiment has been shown in which the plane is configured to be a perpendicular plane, the present invention is not limited thereto. For example, as shown in the terminal 1A in FIG. 2, the joint surface 3A of the first connecting portion 11 and the second connecting portion 12 is connected to the outer circumferential surface 21 of the first end 11a or the outer circumferential surface 22 of the second end 12a. It may also be configured non-vertically.

特に、図2(a)に示すように、端子1Aは、接合面3Aの中心位置Cを通るように長手方向Xに沿って切断したときの縦断面で見て、接合面3Aが表出した線である接合線30Aと、第1接続部11の第1端部11aの外周面21が表出した線である第1外周線21aおよび第2接続部12の第2端部12aの外周面22が表出した線である第2外周線22aのうちのいずれかの外周線とのなす、接合端位置T、Tでの角度θ、θの平均である平均接合角度が、78°以上88°以下の範囲であることが好ましい。これにより、第1接続部11および第2接続部12の接合強度をより高めることができる。他方で、平均接合角度が88°を超えると、曲げによる最大の引張応力は端子1Aの外周面21、22やその近傍で生じるため、この部分で生じたクラックが端子1Aの内部に伝わりやすく、割れが進行しやすくなる。従って、平均接合角度は、78°以上84°以下であることがより好ましい。 In particular, as shown in FIG. 2(a), when the terminal 1A is cut along the longitudinal direction X passing through the center position C0 of the bonding surface 3A, the bonding surface 3A is exposed. The joining line 30A, which is a line in which the outer peripheral surface 21 of the first end 11a of the first connecting part 11 is exposed, the first outer peripheral line 21a, which is a line where the outer peripheral surface 21 of the first end 11a of the first connecting part 11 is exposed, and the outer periphery of the second end 12a of the second connecting part 12. The average joint angle that is the average of angles θ 1 and θ 2 at joint end positions T 1 and T 2 between the surface 22 and any one of the second peripheral lines 22 a that are exposed lines is , preferably in the range of 78° or more and 88° or less. Thereby, the bonding strength between the first connecting portion 11 and the second connecting portion 12 can be further increased. On the other hand, when the average joining angle exceeds 88°, the maximum tensile stress due to bending occurs at or near the outer circumferential surfaces 21 and 22 of the terminal 1A, so cracks generated at these parts are likely to propagate to the inside of the terminal 1A. Cracking progresses more easily. Therefore, the average joining angle is more preferably 78° or more and 84° or less.

ここで、接合端位置T、Tは、それぞれ、第1外周線21aおよび第2外周線22aのうち内側にある外周線(図2(a)では第2外周線22a)と、接合線30Aとが交わる位置のことであり、両方の外周線上にそれぞれ位置する。また、接合端位置T、Tでの角度θ、θは、それぞれ外周線と接合線30Aとがなす角度であるが、当該角度が90°を超える鈍角(例えば95°)になる場合は、図2(a)の記載にかかわらず、外周線の延長線と、接合線30Aとがなす鋭角(例えば85°)を指すものとする。 Here, the joint end positions T 1 and T 2 are the inner peripheral line of the first outer peripheral line 21a and the second outer peripheral line 22a (the second outer peripheral line 22a in FIG. 2(a)), and the joint line 30A, and are located on both outer circumferential lines. Further, the angles θ 1 and θ 2 at the joint end positions T 1 and T 2 are angles formed by the outer circumferential line and the joint line 30A, respectively, but the angles are obtuse angles exceeding 90° (for example, 95°). In this case, it refers to an acute angle (for example, 85°) between the extension line of the outer circumferential line and the joining line 30A, regardless of the description in FIG. 2(a).

第1の実施形態で示した端子1では、第1接続部11および第2接続部12の接合面3は、平面によって構成される態様について示したが、これに限定されない。例えば、図2の端子1Aに示すように、第1接続部11および第2接続部12の接合面3Aは、曲面によって構成されていてもよい。接合面3Aが突起やうねり等を有する曲面によって構成されることで、端子1Aの外周面21、22やその近傍でクラックが生じても、クラック先端における引張応力が分散されるため、クラックを端子1Aの内部に伝わり難くすることができる。 In the terminal 1 shown in the first embodiment, the bonding surface 3 of the first connecting portion 11 and the second connecting portion 12 is configured as a flat surface, but the present invention is not limited thereto. For example, as shown in the terminal 1A of FIG. 2, the joint surface 3A of the first connecting portion 11 and the second connecting portion 12 may be configured by a curved surface. Since the bonding surface 3A is composed of a curved surface having protrusions, undulations, etc., even if a crack occurs on or near the outer peripheral surfaces 21, 22 of the terminal 1A, the tensile stress at the tip of the crack is dispersed, so that the crack can be removed from the terminal. It is possible to make it difficult for the light to be transmitted to the inside of 1A.

特に、図2(b)に示すように、端子1Aは、接合面3Aの中心位置Cを通るように長手方向Xに沿って切断したときの縦断面で見て、接合面3Aが表出した線である接合線30Aは、長手方向Xについて接合面3Aの円相当直径の2%以上に相当する大きさの接合範囲54に広がっていてもよい。このとき、端子1Aは、接合面3Aが存在する範囲である接合範囲54の少なくとも一部に、長手方向Xに対して垂直な垂線Qと、接合線30Aとの交点が2点以上形成される範囲を有することが好ましい。例えば、図2(b)の端子1Aでは、この範囲にある長手方向Xに対して垂直な垂線Qと、接合線30Aとの交点として、交点M、Mを有するように構成される。ここで、接合線30Aとの交点が2点以上ある範囲の一端または両端は、接合範囲54の一端または両端と重なっていてもよい。なお、接合面3Aの円相当直径は、第1接続部11の第1端部11aの円相当直径Dおよび第2接続部12の第2端部12aの円相当直径Dのうち、小さい方の円相当直径とすることができる。 In particular, as shown in FIG. 2(b), when the terminal 1A is cut along the longitudinal direction X passing through the center position C0 of the bonding surface 3A, the bonding surface 3A is exposed. The joining line 30A, which is a line formed by the bonding line 30A, may extend in the longitudinal direction X over a joining range 54 corresponding to 2% or more of the equivalent circle diameter of the joining surface 3A. At this time, the terminal 1A has two or more points of intersection between the perpendicular line Q perpendicular to the longitudinal direction It is preferable to have a range. For example, the terminal 1A in FIG. 2(b) is configured to have intersection points M 1 and M 2 as intersections between the perpendicular line Q perpendicular to the longitudinal direction X in this range and the joining line 30A. Here, one end or both ends of the range having two or more points of intersection with the joining line 30A may overlap with one end or both ends of the joining range 54. Note that the equivalent circle diameter of the joint surface 3A is the smaller of the equivalent circle diameter D1 of the first end 11a of the first connecting portion 11 and the equivalent circle diameter D2 of the second end 12a of the second connecting portion 12. It can be set as the equivalent circle diameter.

また、中心位置Cから交点Mおよび交点Mへのクラックの伝播を抑制する観点では、中心位置Cから交点Mおよび交点Mまでの直線距離は、それぞれ均等であることが好ましく、それぞれ短いことが好ましい。また、中心位置Cから交点Mおよび交点Mまでの直線距離の最大値は、それぞれ、第1接続部11の第1端部11aの円相当直径Dおよび第2接続部12の第2端部12aの円相当直径Dのうち、小さい方の円相当直径に対して、3分の1以下であることが好ましい。他方で、端子1Aの外周面21、22の近傍に交点M、Mがあると、製造条件によってその位置に空隙が存在しやすくなり、クラックの伝播を促進してしまうため、中心位置Cから交点Mまたは交点Mまでの直線距離は、第1接続部11の第1端部11aの円相当直径Dおよび第2接続部12の第2端部12aの円相当直径Dのうち、小さい方の円相当直径に対して、10分の1以上であることが好ましい。 In addition, from the viewpoint of suppressing the propagation of cracks from the center position C 0 to the intersection points M 1 and M 2 , it is preferable that the straight line distances from the center position C 0 to the intersection points M 1 and M 2 are equal. , each is preferably short. Further, the maximum value of the straight line distance from the center position C 0 to the intersection M 1 and the intersection M 2 is the circle equivalent diameter D 1 of the first end 11a of the first connection portion 11 and the circle equivalent diameter D 1 of the second connection portion 12, respectively. It is preferable that the equivalent circle diameter D2 of the two end portions 12a is one-third or less of the smaller equivalent circle diameter. On the other hand, if there are intersections M 1 and M 2 near the outer peripheral surfaces 21 and 22 of the terminal 1A, a gap will likely exist at that position depending on the manufacturing conditions, promoting crack propagation. The straight line distance from 0 to the intersection point M 1 or the intersection point M 2 is the equivalent circle diameter D 1 of the first end 11 a of the first connection portion 11 and the equivalent circle diameter D 2 of the second end 12 a of the second connection portion 12 It is preferable that the diameter is one-tenth or more of the smaller equivalent circle diameter.

このような、曲面によって構成される接合面3Aは、第1接続部11の第1端部11aとなるAl系材料の端面および第2接続部12の第2端部12aとなるCu系材料の端面のうち一方または両方に旋盤加工を行ない、第1端部11aや第2端部12aとなる部分に突起や溝を形成することで、作製することができる。 The bonding surface 3A constituted by such a curved surface is an end surface of an Al-based material that becomes the first end 11a of the first connecting portion 11 and an end surface of the Cu-based material that becomes the second end 12a of the second connecting portion 12. It can be manufactured by performing lathe processing on one or both of the end faces and forming protrusions and grooves in the portions that will become the first end 11a and the second end 12a.

例えば、図3(a)に示すように、Cu系材料のうち第2端部12aとなる部分に旋盤加工を行ない、突起12cとして直径Lおよび高さHの台部分を有する円形台を形成した場合、図3(b)に示すように、端子1Bとして、第2端部12aに凸部12c´を有するとともに、接合面3Bが表出した線である接合線30Bが存在する範囲である接合範囲54に、長手方向Xに対して垂直な垂線Qとの間で、交点M、Mを有するものを得ることができる。 For example, as shown in FIG. 3(a), a portion of the Cu-based material that will become the second end 12a is lathed to form a circular base having a diameter L1 and a height H as the protrusion 12c. In this case, as shown in FIG. 3(b), the terminal 1B has a convex portion 12c' at the second end 12a, and there is a bonding line 30B, which is a line where the bonding surface 3B is exposed. It is possible to obtain a joint region 54 having intersection points M 3 and M 4 with a perpendicular line Q perpendicular to the longitudinal direction X.

また、図4(a)に示すように、Cu系材料のうち第2端部12aとなる部分に旋盤加工を行ない、突起12dとして高さHの円錐を形成した場合、高さHを適切に調節することで、図4(b)に示すように、端子1Cとして、第2端部12aに凸部12d´を有するとともに、接合面3Cが表出した線である接合線30Cと、第1端部11aの外周面21が表出した線である第1外周線21aおよび第2接続部12の第2端部12aの外周面22が表出した線である第2外周線22aとのなす接合端位置T、Tでの角度θ、θの平均が、上述の角度θ、θと同様の範囲にあり、例えば78°以上88°以下の範囲にあるものを得ることができる。また、この端子1Cは、接合線30Cが存在する範囲である接合範囲54に、長手方向Xに対して垂直な垂線Qとの間で、交点M、Mを有することができる。 In addition, as shown in FIG. 4(a), when a portion of the Cu-based material that will become the second end 12a is lathed to form a cone with a height H as the protrusion 12d, the height H may be adjusted appropriately. By adjusting, as shown in FIG. 4(b), the terminal 1C has a convex portion 12d' on the second end 12a, and the bonding line 30C, which is the line where the bonding surface 3C is exposed, and the first A first outer circumferential line 21a, which is a line where the outer circumferential surface 21 of the end portion 11a is exposed, and a second outer circumferential line 22a, which is a line where the outer circumferential surface 22 of the second end portion 12a of the second connecting portion 12 is exposed. To obtain an object in which the average of the angles θ 3 and θ 4 at the joint end positions T 5 and T 6 is in the same range as the above-mentioned angles θ 1 and θ 2 , for example, in the range of 78° or more and 88° or less. I can do it. Further, this terminal 1C can have intersection points M 5 and M 6 between the joining range 54, which is the range where the joining line 30C exists, and the perpendicular line Q perpendicular to the longitudinal direction X.

また、図5(a)に示すように、Cu系材料のうち第2端部12aとなる部分に旋盤加工を行ない、溝12eとして溝深さE、溝幅Lおよび溝内側壁面の径Lを有する円形溝を形成した場合、図5(b)に示すように、端子1Dとして、第1端部11aに凹部12e´を有するとともに、接合面3Dが表出した線である接合線30Dは、接合線30Dが存在する範囲である接合範囲54に、長手方向Xに対して垂直な垂線Qとの間で、交点M、M、M、M10を有するものを得ることができる。 In addition, as shown in FIG. 5(a), a portion of the Cu-based material that will become the second end 12a is lathe-processed to form a groove 12e with a groove depth E, a groove width L2 , and a diameter L of the groove inner wall surface. 3 , as shown in FIG. 5(b), the terminal 1D has a recess 12e' in the first end 11a, and a bonding line 30D, which is a line where the bonding surface 3D is exposed. It is possible to obtain an intersection point M 7 , M 8 , M 9 , M 10 between the joining range 54, which is the range where the joining line 30D exists, and the perpendicular line Q perpendicular to the longitudinal direction X. can.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and includes all aspects included in the concept of the present invention and the scope of the claims. It can be modified to .

次に、本発明の効果をさらに明確にするために、本発明例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, in order to further clarify the effects of the present invention, examples of the present invention and comparative examples will be described, but the present invention is not limited to these examples.

(本発明例1~20および比較例1~6)
線径19mmの合金番号1070-O材のアルミニウム丸棒と、線径19mmの合金番号1100-O材の銅丸棒を準備し、以下の工程にて端子を作製した。ただし、本発明例11については、アルミニウム丸棒としてアルミニウム合金番号6101の丸棒を用いた。また、本発明例12については、銅丸棒として黄銅C2600の丸棒を用いた。また、本発明例13については、アルミニウム丸棒および銅丸棒として、それぞれ線径8mmの丸棒を用いた。また、本発明例14については、アルミニウム丸棒および銅丸棒として、それぞれ線径25mmの丸棒を用いた。
(Invention Examples 1 to 20 and Comparative Examples 1 to 6)
An aluminum round bar made of alloy number 1070-O with a wire diameter of 19 mm and a copper round bar made of alloy number 1100-O with a wire diameter of 19 mm were prepared, and a terminal was produced in the following steps. However, for Inventive Example 11, a round bar of aluminum alloy number 6101 was used as the aluminum round bar. Further, for Inventive Example 12, a brass C2600 round rod was used as the copper round rod. Further, for Inventive Example 13, round bars with a wire diameter of 8 mm were used as the aluminum round rod and the copper round rod, respectively. Further, for Inventive Example 14, round bars with a wire diameter of 25 mm were used as the aluminum round rod and the copper round rod, respectively.

まず、本発明例15~20では、第1旋盤加工工程として、銅丸棒の端面に旋盤加工を行ない、表1に記載される高さHの円錐や、表1に記載される直径Lおよび高さHの台部分を有する円形台、表1に記載される溝深さE、溝幅Lおよび溝の内側壁面の径Lを有する円形溝を、突起や溝として第2端部12aとなる部分に形成した。他の本発明例および比較例では、第1旋盤加工工程は行なわなかった。 First, in Examples 15 to 20 of the present invention, as the first lathe processing step, the end face of the copper round bar is lathed to form a cone with a height H listed in Table 1 and a cone with a diameter L 1 listed in Table 1. A circular base having a base portion with a height H, a circular groove having a groove depth E, a groove width L, and a diameter L 3 of the inner wall surface of the groove described in Table 1 is used as a projection or groove at the second end 12a. It was formed in the part where it becomes. In other examples of the present invention and comparative examples, the first lathe processing step was not performed.

次に、摩擦圧接工程として、第1接続部11となるアルミニウム丸棒と、第2接続部12となる銅丸棒とを、互いに対向させた状態で摩擦圧接装置の治具に設置し、アルミニウム丸棒および銅丸棒を、表1に記載される回転数で相対的に回転させるとともに、表1の「アルミニウム丸棒および銅丸棒が接触する部分への水噴射の有無」欄が「有」になっている例については、アルミニウム丸棒および銅丸棒が接触する部分に水を噴射しながら、これらを表1に記載される回転押込圧力および押込時間で押し込むことで、摩擦により加熱した。その後、表1に記載される時間で回転を停止させてから、表1に記載されるアップセット圧力で押し込むことで、アルミニウム丸棒および銅丸棒を接合した。 Next, as a friction welding process, the aluminum round bar that will become the first connection part 11 and the copper round bar that will become the second connection part 12 are placed in a jig of a friction welding device in a state facing each other, and the aluminum The round rod and the copper round rod are rotated relative to each other at the rotational speeds listed in Table 1, and the "Presence or absence of water injection to the part where the aluminum round rod and copper round rod contact" column in Table 1 is set to "Yes". '', the aluminum round rod and the copper round rod were heated by friction by pressing them at the rotational pressing pressure and pressing time listed in Table 1 while spraying water on the contact area. . Thereafter, the rotation was stopped at the time shown in Table 1, and then the aluminum round bar and the copper round bar were joined by pressing with the upset pressure shown in Table 1.

摩擦圧接工程の後、第2旋盤加工工程として、第1接続部11のうち第2接続部12が接合されていない側の端部を、旋盤加工によって中空になるように切削して、導線接続部11bを形成した。次いで、熱処理工程として350℃の加熱温度および2時間の保持時間で熱処理を行なって第1接続部11を軟化させた。 After the friction welding process, as a second lathe process, the end of the first connection part 11 on the side where the second connection part 12 is not joined is cut by lathe process so that it becomes hollow, and the conductor is connected. A portion 11b was formed. Next, as a heat treatment step, heat treatment was performed at a heating temperature of 350° C. and a holding time of 2 hours to soften the first connecting portion 11.

その後、第1鍛造工程として、第2接続部12のうち第1接続部11が接合されていない側の端部を、金型に入れて圧縮することで、第2接続部12に板状接続部12bを形成した。形成された板状接続部12bには、打ち抜き工程として、打ち抜きによって板状接続部12bに貫通穴Sを設けた。 After that, as a first forging process, the end of the second connecting part 12 on the side to which the first connecting part 11 is not joined is placed in a mold and compressed, thereby forming a plate-shaped connection to the second connecting part 12. A portion 12b was formed. In the formed plate-like connection part 12b, a through-hole S was provided in the plate-like connection part 12b by punching as a punching process.

次いで、めっき工程として、第1接続部11および第2接続部12の表面に、密着性向上のためCu下地めっきを施した後、最表層にはSnめっきを施すことで、端子1を作製した。 Next, as a plating process, the surfaces of the first connection part 11 and the second connection part 12 were subjected to Cu base plating to improve adhesion, and then Sn plating was applied to the outermost layer, thereby producing the terminal 1. .

[各種測定および評価方法]
上記本発明例および比較例に係る端子を用いて、下記に示す特性評価を行なった。各特性の評価条件は下記のとおりである。
[Various measurement and evaluation methods]
The characteristics described below were evaluated using the terminals according to the above-mentioned examples of the present invention and comparative examples. The evaluation conditions for each characteristic are as follows.

[1]材料組織に関する測定
[1-1]第1接続部の微結晶領域の終端位置の測定
得られる端子について、接合面の中心位置を通るように長手方向に沿って縦断面を切り出し、接合面を含む縦断面の周囲を樹脂で埋めて、湿式研磨およびバフ研磨によって試料表面を鏡面に仕上げた後、電解研磨およびアノーダイジング処理を行って、解析試料を得た。この解析試料のうち接合界面の周辺を、偏光板を挿入した光学顕微鏡を用いて撮影し、得られる画像について、接合面から円相当直径の0%超1%以下の範囲にある区画、1%超2%以下の範囲にある区画、の要領で、接合面から円相当直径の1%ごとに区分してAl系材料の平均結晶粒径をそれぞれ測定したときに、平均結晶粒径が3μm以下であり微結晶領域にあたる区画のうち、接合面を始端としたときの、接合面から最も遠い区画における終端位置を求めた。ここで、微結晶領域の終端位置は、接合面の円相当直径の大きさを100%としたときの相対値で表した。結果を表2に示す。
[1] Measurement regarding material structure [1-1] Measurement of the end position of the microcrystalline region of the first connection part A longitudinal cross section was cut out along the longitudinal direction of the obtained terminal so as to pass through the center position of the joint surface, and the joint was performed. The periphery of the longitudinal section including the plane was filled with resin, the sample surface was finished to a mirror finish by wet polishing and buffing, and then electropolishing and anodizing were performed to obtain an analysis sample. The area around the joint interface of this analysis sample is photographed using an optical microscope with a polarizing plate inserted, and the resulting image is divided into areas within a range of more than 0% and 1% or less of the equivalent circle diameter from the joint surface, and 1% When the average crystal grain size of the Al-based material is measured in sections of 1% of the equivalent circle diameter from the bonding surface in the same manner as in the sections in the range of 2% or less, the average crystal grain size is 3 μm or less. Among the sections corresponding to the microcrystalline region, the terminal position in the section farthest from the bonding surface, with the bonding surface as the starting point, was determined. Here, the terminal position of the microcrystalline region is expressed as a relative value when the size of the equivalent circle diameter of the bonding surface is taken as 100%. The results are shown in Table 2.

[1-2]微結晶領域における、第1中央域におけるAl系材料の平均結晶粒径に対する、第1外周域におけるAl系材料の平均結晶粒径の比の測定
上記[1-1]で得られる画像のうち、平均結晶粒径が3μm以下となる区画である微結晶領域の部分に、第1中央域に含まれる線分として、中心線に沿った結晶粒界が50個跨るような線分を長手方向に沿って引き、その線分のうち結晶粒界を跨いでいる部分の長さを50で割ることで、中心線の位置におけるAl系材料の平均結晶粒径を求めた。また、第1外周域におけるAl系材料の平均結晶粒径についても同様に、接合面の中心位置を通るように長手方向に沿って端子を切断したときの第1外周域を含む縦断面について、1000倍の光学顕微鏡を用いて横105μm×縦80μmの観察領域で撮影し、微結晶領域にあたる部分の第1外周域に、接合面の外周から円相当直径の5%に相当する寸法だけ内側にある第4位置を通る、結晶粒界が50個跨るような線分を長手方向に沿って引き、その線分のうち結晶粒界を跨いでいる部分の長さを50で割ることで求めた。そして、得られる第1中央域におけるAl系材料の平均結晶粒径と、第1外周域におけるAl系材料の平均結晶粒径の値から、これらの比を求めた。結果を表2に示す。
[1-2] Measurement of the ratio of the average crystal grain size of the Al-based material in the first peripheral region to the average crystal grain size of the Al-based material in the first central region in the microcrystalline region Obtained in [1-1] above In the image that is displayed, a line that spans 50 grain boundaries along the center line is included in the microcrystalline region, which is a section where the average grain size is 3 μm or less, as a line segment included in the first central region. The average crystal grain size of the Al-based material at the center line position was determined by drawing the line segment along the longitudinal direction and dividing the length of the portion of the line segment that spanned the grain boundary by 50. Similarly, regarding the average crystal grain size of the Al-based material in the first outer circumferential area, regarding a longitudinal section including the first outer circumferential area when the terminal is cut along the longitudinal direction so as to pass through the center position of the joint surface, Using an optical microscope with a magnification of 1000 times, a photograph was taken in an observation area of 105 μm in width x 80 μm in height, and a distance corresponding to 5% of the equivalent circle diameter was placed inward from the outer periphery of the bonding surface in the first outer peripheral region of the part corresponding to the microcrystalline region. It was calculated by drawing a line segment in the longitudinal direction that passes through a certain fourth position and spanning 50 grain boundaries, and dividing the length of the part of the line segment that spans grain boundaries by 50. . Then, the ratio was determined from the values of the average crystal grain size of the Al-based material in the first central region and the average crystal grain size of the Al-based material in the first peripheral region. The results are shown in Table 2.

[1-3]第2接続部における、第2領域のCu系材料の平均結晶粒径に対する、第3領域のCu系材料の平均結晶粒径の比の測定
上記[1-1]で得られる解析試料のうち、接合面の周辺を、偏光板を挿入した光学顕微鏡を用いて撮影し、得られる画像について、接合面が表出した線である接合線を長手方向に平行移動させた線で、接合面の中心位置から、接合面から円相当直径の0%超1%以下の範囲にある区画、1%超2%以下の範囲にある区画、の要領で、円相当直径の1%ごとに20%まで区分してCu系材料の平均結晶粒径をそれぞれ測定したときの、0%超3%以下の範囲にある区画である第2領域におけるCu系材料の平均結晶粒径と、15%超20%以下の範囲にある区画である第3領域におけるCu系材料の平均結晶粒径を求めた。そして、得られる第2領域におけるCu系材料の平均結晶粒径と、第3領域におけるCu系材料の平均結晶粒径の値から、これらの比を求めた。結果を表2に示す。
[1-3] Measurement of the ratio of the average crystal grain size of the Cu-based material in the third region to the average crystal grain size of the Cu-based material in the second region at the second connection part Obtained in [1-1] above The area around the joint surface of the analysis sample is photographed using an optical microscope with a polarizing plate inserted, and the resulting image is a line obtained by translating the joint line, which is the line where the joint surface is exposed, in the longitudinal direction. , from the center position of the joint surface to a section within a range of more than 0% to 1% of the equivalent circle diameter from the joint surface, and a section within a range of more than 1% to 2% of the equivalent circle diameter, for each 1% of the equivalent circle diameter. The average crystal grain size of the Cu-based material in the second region, which is a section in the range of more than 0% and 3% or less, when measuring the average crystal grain size of the Cu-based material by dividing up to 20%, and 15 The average crystal grain size of the Cu-based material in the third region, which is a section in the range of more than 20%, was determined. Then, the ratio was determined from the obtained average crystal grain size of the Cu-based material in the second region and the average crystal grain size of the Cu-based material in the third region. The results are shown in Table 2.

[2]接合面の形状に関する測定および評価
上記[1-1]で得られる解析試料のうち、接合面の周辺を、光学顕微鏡を用いて撮影し、得られる画像について、スケールを参照して、接合面が表出した線である接合線の長さ寸法を算出した。また、第1接続部の第1端部の円相当直径と、第2接続部の第2端部の円相当直径をそれぞれ求め、これらのうち小さい方の円相当直径に対して、接合線の長さ寸法が大きくなっている割合を求めた。
[2] Measurement and evaluation of the shape of the joint surface Of the analysis sample obtained in [1-1] above, the area around the joint surface was photographed using an optical microscope, and the obtained image was taken with reference to the scale. The length dimension of the bonding line, which is the line where the bonding surface was exposed, was calculated. In addition, the equivalent circle diameter of the first end of the first connection part and the equivalent circle diameter of the second end of the second connection part are determined, and for the smaller of these, the equivalent circle diameter of the joining line is determined. The ratio of increase in length dimension was determined.

また、この画像から、接合面が表出した線である接合線と、接合線の両側にある第1端部または第2端部の外周面が表出した線である外周線(第1外周線または第2外周線)とのなす角度である接合端位置での角度の平均を求めて、第1端部および第2端部の平均接合角度とした。ここで、外周線と接合線とがなす角度が鈍角になる場合は、外周線の延長線と、接合線とがなす鋭角を、接合端位置での角度とした。 Also, from this image, we can see that the bonding line is the line where the bonding surface is exposed, and the outer circumferential line is the line where the outer circumferential surface of the first or second end on both sides of the bonding line is exposed. The average of the angles at the joint end positions, which are the angles with the first end and the second outer circumferential line, was determined to be the average joint angle of the first end and the second end. Here, when the angle between the outer circumferential line and the joining line is an obtuse angle, the acute angle between the extension line of the outer peripheral line and the joining line is defined as the angle at the joining end position.

また、この画像から、接合線の存在範囲である接合範囲の長手方向に沿った大きさを測定し、接合面の円相当直径を100%としたときの相対値を求めた。また、この接合範囲における、長手方向に対して垂直な垂線と、接合線との交点が2点以上形成される範囲の有無を調べた。結果を表2に示す。 Further, from this image, the size along the longitudinal direction of the bonding area, which is the area where the bonding line exists, was measured, and the relative value was determined when the equivalent circle diameter of the bonding surface was taken as 100%. In addition, the presence or absence of a range in which two or more points of intersection of the perpendicular line perpendicular to the longitudinal direction and the joining line were formed in this joining range was investigated. The results are shown in Table 2.

[3]AlおよびCuの検出強度が90%以下となる領域の走査長さの測定
得られた端子の、接合面の中心位置を通るように長手方向に沿って切断した縦断面について、接合面の中心位置を通る長手方向に平行な線(中心線)上において、接合面を横切るように長さ100μmの範囲を指定し、日本電子株式会社製の電子プローブマイクロアナライザー(EPMA)を用いて、WDX分析を行なった。得られたデータから、接合面近傍の中心線における、AlおよびCuの検出強度が、いずれも分析した全元素の検出強度の合計に対する強度比にして、どちらも90%以下の強度比で検出される領域の走査長さを測定した。結果を表2に示す。
[3] Measurement of the scanning length of the region where the detection intensity of Al and Cu is 90% or less For the longitudinal section of the obtained terminal cut along the longitudinal direction passing through the center position of the bonding surface, On a line parallel to the longitudinal direction (center line) passing through the center position of WDX analysis was performed. From the obtained data, the detected intensities of Al and Cu at the center line near the joint surface are both detected at an intensity ratio of 90% or less relative to the total detected intensities of all elements analyzed. The scanning length of the area was measured. The results are shown in Table 2.

[4]3点曲げ試験の評価
JIS Z2248に沿って、図6に示す配置で、3点曲げ方法により曲げ強さを測定した。より具体的には、供試材の下側に設けた2個の治具R、Rで、接合面が治具Rおよび治具Rとの間で等間隔になるように供試材を固定し、上側から引張試験機のヘッドに取り付けられた治具Rで接合部に荷重Fを掛けて、供試材を治具Rに沿った形状に変形させた際の、接合部やその近傍へのクラックの有無を評価した。ここで、供試材としては、導線接続部にはアルミニウム導線を挿入して圧着し、板状接続部には他の導体部材である銅板材をボルト締めで固定したものを用いた。この供試材では、接合面からのアルミニウム導線および銅板材の延出距離が同じになるように、導線および他の導体部材を構成した。また、下側の治具R、Rは、いずれも先端が曲率半径50mmを有する円柱形状のもの(奥行20mm)を用い、100mmの間隔をおいて配置した。他方で、上側の治具Rは、先端が表1に記載される曲率半径を有する円柱形状のもの(奥行20mm)を用いた。また、上側の治具Rの押し込み変位量は、端子の厚さ分とした。なお、得られた端子の接合部やその近傍に段差がある場合は、研削機ややすりを用いて段差を取り除いたものを、供試材として用いた。
[4] Evaluation of 3-point bending test The bending strength was measured by a 3-point bending method in accordance with JIS Z2248 in the arrangement shown in FIG. More specifically, two jigs R 2 and R 3 are provided on the lower side of the sample material, and the joint surfaces are provided at equal intervals between the two jigs R 2 and R 3 . When the sample material is fixed and a load F is applied to the joint with the jig R1 attached to the head of the tensile tester from above, the sample material is deformed into a shape along the jig R1 . The presence or absence of cracks in and around the joints was evaluated. Here, as the test material, an aluminum conducting wire was inserted and crimped into the conducting wire connection part, and a copper plate material, which is another conductive member, was fixed with bolts to the plate-like connection part. In this sample material, the conductive wire and other conductive members were configured so that the aluminum conductive wire and the copper plate extended the same distance from the joint surface. Further, the lower jigs R 2 and R 3 were both cylindrical (depth 20 mm) with tips having a radius of curvature of 50 mm, and were arranged at an interval of 100 mm. On the other hand, the upper jig R1 had a cylindrical tip (depth 20 mm) with a radius of curvature listed in Table 1. Further, the pushing displacement amount of the upper jig R1 was set to be equal to the thickness of the terminal. In addition, if the obtained terminal had a step at or near the joint, the step was removed using a grinder or a file and used as a test material.

試験後の供試材の目視観察で、クラックが発生しなかったものは、所定の曲率半径での曲げに耐久できたものとして「○」と評価した。一方、試験後の供試材の目視観察で、クラックが発生したものは、所定の曲率半径での曲げに耐久できなかったものとして「×」と評価した。結果を表2に示す。 When the test materials were visually observed after the test, those in which no cracks occurred were evaluated as "○" because they were able to withstand bending at a predetermined radius of curvature. On the other hand, in the visual observation of the sample materials after the test, those in which cracks were generated were evaluated as "x" because they could not withstand bending at a predetermined radius of curvature. The results are shown in Table 2.

Figure 0007434398000001
Figure 0007434398000001

Figure 0007434398000002
Figure 0007434398000002

表1および表2の結果から、本発明例1~20の端子は、微結晶領域の終端位置が第1領域内にあるとともに、この微結晶領域における、第1中央域におけるAl系材料の平均結晶粒径に対する、第1外周域におけるAl系材料の平均結晶粒径の比がいずれも0.75以上1.25以下の範囲にあったため、曲率半径100mmの治具Rに沿って曲げたときの3点曲げ試験の評価において「〇」と評価されるものであった。 From the results in Tables 1 and 2, it can be seen that in the terminals of Examples 1 to 20 of the present invention, the terminal position of the microcrystalline region is within the first region, and the average amount of Al-based material in the first central region of this microcrystalline region is Since the ratio of the average crystal grain size of the Al-based material in the first outer peripheral region to the crystal grain size was in the range of 0.75 or more and 1.25 or less, it was bent along a jig R1 with a curvature radius of 100 mm. In the evaluation of the 3-point bending test at that time, it was evaluated as "○".

他方で、比較例1、2、3、5の端子は、微結晶領域の終端位置が第1領域よりも接合面の側にあり、本発明の適正範囲外であった。そのため、比較例1、2、3、5の端子は、曲率半径100mmの治具Rに沿って曲げたときの3点曲げ試験の評価において「×」と評価されていた。 On the other hand, in the terminals of Comparative Examples 1, 2, 3, and 5, the terminal position of the microcrystalline region was located closer to the bonding surface than the first region, and was outside the appropriate range of the present invention. Therefore, the terminals of Comparative Examples 1, 2, 3, and 5 were evaluated as "x" in the three-point bending test when bent along the jig R1 with a radius of curvature of 100 mm.

また、比較例4の端子は、微結晶領域の終端位置が第1領域よりも導線の側にあり、本発明の適正範囲外であった。また、微結晶領域における、第1中央域におけるAl系材料の平均結晶粒径に対する、第1外周域におけるAl系材料の平均結晶粒径の比が1.25を超えている点でも、本発明の適正範囲外であった。そのため、比較例4の端子は、曲率半径100mmの治具Rに沿って曲げたときの3点曲げ試験の評価において「×」と評価されていた。 Furthermore, in the terminal of Comparative Example 4, the terminal position of the microcrystalline region was located closer to the conducting wire than the first region, which was outside the appropriate range of the present invention. Further, the present invention is also characterized in that in the microcrystalline region, the ratio of the average crystal grain size of the Al-based material in the first peripheral region to the average crystal grain size of the Al-based material in the first central region exceeds 1.25. was outside the appropriate range. Therefore, the terminal of Comparative Example 4 was evaluated as "x" in the three-point bending test when it was bent along the jig R1 with a radius of curvature of 100 mm.

また、比較例6の端子は、微結晶領域における、第1中央域におけるAl系材料の平均結晶粒径に対する、第1外周域におけるAl系材料の平均結晶粒径の比が1.25を超えており、本発明の適正範囲外であった。そのため、比較例6の端子は、曲率半径100mmの治具Rに沿って曲げたときの3点曲げ試験の評価において「×」と評価されていた。 Further, in the terminal of Comparative Example 6, in the microcrystalline region, the ratio of the average crystal grain size of the Al-based material in the first outer peripheral region to the average crystal grain size of the Al-based material in the first central region exceeds 1.25. This was outside the appropriate range of the present invention. Therefore, the terminal of Comparative Example 6 was evaluated as "x" in the evaluation of the three-point bending test when it was bent along the jig R1 having a radius of curvature of 100 mm.

この結果から、本発明例の端子は、微結晶領域の終端位置が第1領域内にあるとともに、この微結晶領域における、第1中央域におけるAl系材料の平均結晶粒径に対する、第1外周域におけるAl系材料の平均結晶粒径の比が、いずれも0.75以上1.25以下の範囲にあったときに、曲げや引っ張りによる割れが起こり難いことが確認された。 From this result, it is found that the terminal of the example of the present invention has the terminal position of the microcrystalline region within the first region, and the first outer periphery in this microcrystalline region with respect to the average crystal grain size of the Al-based material in the first central region. It was confirmed that cracking due to bending or tension is less likely to occur when the ratio of the average crystal grain size of the Al-based material in the range is in the range of 0.75 or more and 1.25 or less.

1、1A~1D 端子
11 第1接続部
11a 第1端部
11b 導線接続部
12 第2接続部
12a 第2端部
12b 板状接続部
12c、12d 突起
12c’、12d’ 凸部
12e 溝
12e’ 凹部
21 第1端部の外周面
21a 第1外周線
22 第2端部の外周面
22a 第2外周線
3、3A 接合面
30A 接合線
31、31A 第1対向面
32、32A 第2対向面
41 第1位置
42 第2位置
43 第3位置
44 第4位置
45 第5位置
46 第6位置
47 第7位置
48 接合範囲の一方の端
49 接合範囲の他方の端
51 第1領域
52 第2領域
53 第3領域
54 接合範囲
61 第1中央域
62 第1外周域
7 導線
8 他の導体部材
9 締結部材
C 中心線
接合面の中心位置
D 接合面の円相当直径
E 溝深さ
F 荷重
H 突起の高さ
突起の直径
溝幅
溝内側壁面の径
~M10 垂線と接合線との交点
P 接合面の中心位置を通り、かつ端子の長手方向に沿った仮想平面
Q 長手方向に対して垂直な垂線
~R 治具
S 貫通穴
~T 接合端位置
X 端子の長手方向
θ~θ 接合端位置での角度
1, 1A to 1D Terminal 11 First connection part 11a First end part 11b Conductor connection part 12 Second connection part 12a Second end part 12b Plate connection part 12c, 12d Projection 12c', 12d' Convex part 12e Groove 12e' Recessed portion 21 Outer circumferential surface of the first end 21a First outer circumferential line 22 Outer circumferential surface of the second end 22a Second outer circumferential line 3, 3A Joint surface 30A Joint line 31, 31A First opposing surface 32, 32A Second opposing surface 41 1st position 42 2nd position 43 3rd position 44 4th position 45 5th position 46 6th position 47 7th position 48 One end of joining range 49 Other end of joining range 51 First area 52 Second area 53 Third region 54 Joint range 61 First central region 62 First outer peripheral region 7 Conductor 8 Other conductor members 9 Fastening member C Center line C 0 Center position of joint surface D Equivalent circle diameter of joint surface E Groove depth F Load H Height of protrusion L Diameter of 1 protrusion L 2 Groove width L Diameter of inner wall of 3 groove M 1 to M Intersection of 10 perpendicular line and bonding line P An imaginary line passing through the center of the bonding surface and along the longitudinal direction of the terminal Plane Q Perpendicular to the longitudinal direction R 1 to R 3 Jig S Through hole T 1 to T 8 Joint end position X Longitudinal direction of terminal θ 1 to θ 4 Angle at joint end position

Claims (7)

Al系材料からなり、導線に接続される第1接続部と、
Cu系材料からなり、他の導体部材が連結される第2接続部と、
を有し、
前記第1接続部の中実部分である第1端部、および前記第2接続部の中実部分である第2端部を、互いに対向させた状態で接合して、前記第1端部の第1対向面と前記第2端部の第2対向面の間に接合面が形成されている端子であって、
前記接合面の中心位置を通り、前記端子の長手方向に沿って切断したときの縦断面で見て、
前記第1接続部は、
前記接合面を始端とする、Al系材料の平均結晶粒径が3μm以下となる微結晶領域の終端位置が、前記接合面の中心位置を起点として、前記端子の長手方向に前記接合面の円相当直径の3%に相当する寸法だけ離れた第1位置と、前記接合面の円相当直径の15%に相当する寸法だけ離れた第2位置とで画定される第1領域内にあり、かつ、
前記微結晶領域を、第1中央域と、前記第1中央域の周りに位置する第1外周域とに区画するとき、前記第1中央域における前記Al系材料の平均結晶粒径に対する、前記第1外周域における前記Al系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にある、端子。
a first connection part made of an Al-based material and connected to the conductor;
a second connection part made of a Cu-based material and to which another conductor member is connected;
has
A first end portion, which is a solid portion of the first connection portion, and a second end portion, which is a solid portion, of the second connection portion are joined while facing each other, and the first end portion is a solid portion of the first connection portion. A terminal in which a bonding surface is formed between a first opposing surface and a second opposing surface of the second end,
Viewed in a longitudinal section when cut along the longitudinal direction of the terminal passing through the center position of the joint surface,
The first connection part is
Starting from the bonding surface, the terminal position of the microcrystalline region in which the average crystal grain size of the Al-based material is 3 μm or less is a circle of the bonding surface in the longitudinal direction of the terminal, starting from the center position of the bonding surface. located within a first region defined by a first position separated by a dimension corresponding to 3% of the equivalent diameter of the joint surface and a second position separated by a dimension corresponding to 15% of the circular equivalent diameter of the joint surface, and ,
When the microcrystalline region is divided into a first central region and a first peripheral region located around the first central region, the average crystal grain size of the Al-based material in the first central region is A terminal in which the ratio of the average crystal grain size of the Al-based material in the first outer peripheral region is in a range of 0.75 or more and 1.25 or less.
前記第1接続部の前記第1端部および前記第2接続部の前記第2端部は、いずれも略円柱形状を有する、請求項1に記載の端子。 The terminal according to claim 1, wherein the first end of the first connecting portion and the second end of the second connecting portion both have a substantially cylindrical shape. 前記縦断面で見て、
前記第2接続部は、
前記接合面の中心位置と、前記端子の長手方向に前記接合面の円相当直径の3%に相当する寸法だけ離れた第5位置とで区画される第2領域におけるCu系材料の平均結晶粒径に対する、前記接合面の中心位置を起点として、前記端子の長手方向に前記接合面の円相当直径の15%に相当する寸法だけ離れた第6位置と、前記接合面の円相当直径の20%に相当する寸法だけ離れた第7位置とで画定される第3領域におけるCu系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にある、請求項1または2に記載の端子。
Seen in the longitudinal section,
The second connection part is
Average crystal grains of the Cu-based material in a second region defined by the center position of the bonding surface and a fifth position spaced apart by a dimension corresponding to 3% of the circular equivalent diameter of the bonding surface in the longitudinal direction of the terminal. a sixth position separated by a dimension corresponding to 15% of the equivalent circle diameter of the joint surface in the longitudinal direction of the terminal from the center position of the joint surface with respect to the diameter; According to claim 1 or 2, the ratio of the average crystal grain size of the Cu-based material in the third region defined by the seventh position separated by a dimension corresponding to % is in the range of 0.75 to 1.25. Terminals listed.
前記縦断面で見て、前記接合面が表出した線である接合線の長さ寸法が、前記第1接続部の前記第1端部の円相当直径および前記第2接続部の前記第2端部の円相当直径のうち、小さい方の円相当直径に対して0.6%以上21.1%以下の寸法分だけ大きい、請求項1から3のいずれか1項に記載の端子。 When viewed in the longitudinal section, the length of the joining line, which is the line where the joining surface is exposed, is equal to the circle equivalent diameter of the first end of the first connecting portion and the second connecting portion of the second connecting portion. The terminal according to any one of claims 1 to 3, wherein the terminal is larger than the smaller equivalent circle diameter by 0.6% or more and 21.1% or less among the equivalent circle diameters of the end portions. 前記縦断面で見て、前記接合面が表出した線である接合線と、前記第1接続部の前記第1端部の外周面が表出した線である第1外周線および前記第2接続部の前記第2端部の外周面が表出した線である第2外周線のうちのいずれかの外周線とのなす接合端位置での角度の平均が、78°以上88°以下の範囲である、請求項1から4のいずれか1項に記載の端子。 When viewed in the longitudinal section, a joining line is a line where the joining surface is exposed, a first outer peripheral line is a line where the outer peripheral surface of the first end of the first connecting part is exposed, and the second The average angle at the joint end position between the outer circumferential surface of the second end of the connecting part and any one of the second outer circumferential lines, which is the exposed line, is 78° or more and 88° or less. 5. A terminal according to any one of claims 1 to 4, wherein the terminal is within the range. 前記縦断面で見て、前記接合面が表出した線である接合線は、前記長手方向について前記接合面の円相当直径の2%以上に相当する大きさの接合範囲に広がり、かつ、
前記接合範囲の少なくとも一部に、前記長手方向に対して垂直な垂線と、前記接合線との交点が2点以上形成される範囲を有する、請求項1から5のいずれか1項に記載の端子。
When viewed in the longitudinal section, the bonding line, which is a line where the bonding surface is exposed, extends in the longitudinal direction over a bonding range of a size equivalent to 2% or more of the equivalent circle diameter of the bonding surface, and
According to any one of claims 1 to 5, at least a part of the joining range has a range where two or more intersections between a perpendicular line perpendicular to the longitudinal direction and the joining line are formed. terminal.
前記縦断面にて、前記端子の長手方向に沿って走査させてWDX分析を行なったとき、AlおよびCuの検出強度は、いずれも分析した全元素の検出強度の合計に対する強度比にして、90%以下となる領域の走査長さが、5μm以下である、請求項1から6のいずれか1項に記載の端子。 When WDX analysis was performed on the vertical section by scanning along the longitudinal direction of the terminal, the detected intensities of Al and Cu were both expressed as an intensity ratio of 90 to the sum of the detected intensities of all the elements analyzed. 7. The terminal according to any one of claims 1 to 6, wherein the scanning length of the area where the distance is 5 μm or less is 5 μm or less.
JP2022055843A 2022-03-30 2022-03-30 terminal Active JP7434398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022055843A JP7434398B2 (en) 2022-03-30 2022-03-30 terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022055843A JP7434398B2 (en) 2022-03-30 2022-03-30 terminal

Publications (2)

Publication Number Publication Date
JP2023148021A JP2023148021A (en) 2023-10-13
JP7434398B2 true JP7434398B2 (en) 2024-02-20

Family

ID=88288564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022055843A Active JP7434398B2 (en) 2022-03-30 2022-03-30 terminal

Country Status (1)

Country Link
JP (1) JP7434398B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426945B2 (en) 2008-07-01 2014-02-26 イボクラール ビバデント アクチェンゲゼルシャフト Apparatus for photocuring dental objects
JP5475091B2 (en) 2012-11-27 2014-04-16 株式会社藤商事 Game machine
JP2016144306A (en) 2015-02-02 2016-08-08 住電機器システム株式会社 Apparatus direct connection terminal and cable connection structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426945B2 (en) 2008-07-01 2014-02-26 イボクラール ビバデント アクチェンゲゼルシャフト Apparatus for photocuring dental objects
JP5475091B2 (en) 2012-11-27 2014-04-16 株式会社藤商事 Game machine
JP2016144306A (en) 2015-02-02 2016-08-08 住電機器システム株式会社 Apparatus direct connection terminal and cable connection structure

Also Published As

Publication number Publication date
JP2023148021A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
KR101428965B1 (en) Terminal, method for manufacturing terminal, and wire-terminal connection structure
JP6535019B2 (en) Terminal Wire
JPWO2019176001A1 (en) Manufacturing methods for wire conductors, covered wires, wire harnesses, and wire conductors
KR102135666B1 (en) Composite twisted wire
JP2018037324A (en) Copper-clad stainless material, and wire formed therewith
JP2014032819A (en) Aluminum electric wire
US11387581B2 (en) Electric wire connection structure
JP7434398B2 (en) terminal
KR102483498B1 (en) connection structure
JP5128523B2 (en) Crimp terminal for high strength thin wire
JP2013016383A (en) Conductor wire
JP2016201313A (en) Wire harness and method for manufacturing the same
EP1118397A1 (en) A deformed metal composite wire
JP7448428B2 (en) Conductor for power cable and method for manufacturing power cable conductor having intermediate layer
WO2022239853A1 (en) Wire conductor, insulated wire, and wire harness
CN113994439B (en) Copper-clad steel wire, spring, twisted wire, insulated wire, and cable
JP7402422B1 (en) connection structure
WO2022210331A1 (en) Insulated electric cable, and wire harness
JP2023053682A (en) Aluminum-based terminal
KR20210157321A (en) Electric wire
JP2022100544A (en) Aluminum wire with aluminum crimp terminal
JP2021068576A (en) Flex-resistance insulated wire
JPS63252302A (en) High strength conducting fine wire
JP2014164935A (en) Method for manufacturing crimp terminal and crimp terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231218

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R151 Written notification of patent or utility model registration

Ref document number: 7434398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151