JP7433607B2 - Glass fiber-containing resin composition and cured product - Google Patents

Glass fiber-containing resin composition and cured product Download PDF

Info

Publication number
JP7433607B2
JP7433607B2 JP2019228541A JP2019228541A JP7433607B2 JP 7433607 B2 JP7433607 B2 JP 7433607B2 JP 2019228541 A JP2019228541 A JP 2019228541A JP 2019228541 A JP2019228541 A JP 2019228541A JP 7433607 B2 JP7433607 B2 JP 7433607B2
Authority
JP
Japan
Prior art keywords
group
resin
glass fiber
resin composition
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019228541A
Other languages
Japanese (ja)
Other versions
JP2021095532A (en
Inventor
和郎 有田
肇 木村
恵子 大塚
盛生 米川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Osaka Research Institute of Industrial Science and Technology
Original Assignee
DIC Corp
Osaka Research Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Osaka Research Institute of Industrial Science and Technology filed Critical DIC Corp
Priority to JP2019228541A priority Critical patent/JP7433607B2/en
Publication of JP2021095532A publication Critical patent/JP2021095532A/en
Application granted granted Critical
Publication of JP7433607B2 publication Critical patent/JP7433607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Pyrrole Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ガラス繊維含有樹脂組成物、及び、前記ガラス繊維含有樹脂組成物より得られる硬化物に関する。 The present invention relates to a glass fiber-containing resin composition and a cured product obtained from the glass fiber-containing resin composition.

自動車のエンジン周辺部品や、各種電装部品、ポンプ関連部品等には、フェノール樹脂、エポキシ樹脂、ベンゾオキサジン樹脂などをガラス繊維で強化した熱硬化性樹脂成型材料が用いられている。特に近年、金属部品の樹脂化が進んでおり、高耐熱、高強度、及び、高剛性に代表される性能の一層の向上、及びこれらを兼備する材料、組成物が求められている。なかでもビスマレイミド(BMI)は従来のエポキシ樹脂、フェノール樹脂と比較して優れた耐熱性(高ガラス転移温度及び高強度)を発現することから、近年、金属代替用途向け樹脂材料としても注目されている。 Thermosetting resin molding materials made of phenol resin, epoxy resin, benzoxazine resin, etc. reinforced with glass fiber are used for automobile engine peripheral parts, various electrical components, pump-related parts, etc. Particularly in recent years, the use of resins for metal parts has progressed, and there is a demand for materials and compositions that have further improved performance, typified by high heat resistance, high strength, and high rigidity, as well as materials and compositions that have all of these properties. Among these, bismaleimide (BMI) exhibits superior heat resistance (high glass transition temperature and high strength) compared to conventional epoxy resins and phenolic resins, so it has recently attracted attention as a resin material for metal replacement applications. ing.

市場では、DDM(4,4’-ジアミノジフェニルメタン)やDDE(4,4’-ジアミノジフェニルエーテル)骨格を有するBMIが、高耐熱樹脂として流通している(例えば、特許文献1参照)。しかし、高耐熱性のBMIは、高融点となるため、融点と硬化開始温度が近く、硬化が進行しない低温でガラス繊維を溶融混練することが困難なため、限られた用途でしか使用できないという課題に加え、ガラス繊維への密着性が低く、更なる改良、性能の向上が強く望まれている。 In the market, BMI having a DDM (4,4'-diaminodiphenylmethane) or DDE (4,4'-diaminodiphenyl ether) skeleton is distributed as a highly heat-resistant resin (see, for example, Patent Document 1). However, BMI, which has high heat resistance, has a high melting point, so the melting point and hardening start temperature are close to each other, making it difficult to melt and knead glass fiber at a low temperature where hardening does not proceed, so it can only be used in limited applications. In addition to the problems, adhesion to glass fibers is low, and further improvements and performance improvements are strongly desired.

特開2015-193628号公報Japanese Patent Application Publication No. 2015-193628

本発明の課題は、耐熱性及び機械的強度に優れた硬化物を得ることができる特定構造を有する(メタ)アリル基含有マレイミド化合物、特定構造を有する水酸基含有マレイミド化合物、及び、特定の樹脂組成物により被覆されたガラス繊維を含有するガラス繊維含有樹脂組成物、前記ガラス繊維含有樹脂組成物を硬化してなる硬化物などを提供することにある。 The object of the present invention is to provide a (meth)allyl group-containing maleimide compound having a specific structure, a hydroxyl group-containing maleimide compound having a specific structure, and a specific resin composition that can yield a cured product with excellent heat resistance and mechanical strength. The object of the present invention is to provide a glass fiber-containing resin composition containing glass fibers coated with a material, a cured product obtained by curing the glass fiber-containing resin composition, and the like.

本発明者らは、鋭意検討した結果、特定構造を有する(メタ)アリル基含有マレイミド化合物、特定構造を有する水酸基含有マレイミド化合物、及び、特定の樹脂組成物により被覆されたガラス繊維を含有するガラス繊維含有樹脂組成物が、上記課題を解決することを見出した。 As a result of intensive studies, the present inventors found that a (meth)allyl group-containing maleimide compound having a specific structure, a hydroxyl group-containing maleimide compound having a specific structure, and a glass containing glass fibers coated with a specific resin composition. It has been discovered that a fiber-containing resin composition solves the above problems.

すなわち、本発明は、下記式(1)で表される(メタ)アリル基含有マレイミド化合物、下記式(4)で表される水酸基含有マレイミド化合物、及び、重合性二重結合濃度を3モル%以上含有する、ポリエステル樹脂及びポリウレタン樹脂の少なくともいずれか一方を含有する樹脂組成物で被覆されたガラス繊維、を含有するガラス繊維含有樹脂組成物に関する。

Figure 0007433607000001
(上記式(1)中、n及びmはそれぞれ独立して1~5の整数であって、Alyは下記式(2)で表される(メタ)アリル基を有する基であって、MIは下記式(3)で表されるマレイミド基を有する基であって、Aはベンゼン環を1個以上有する構造である。)
Figure 0007433607000002
(上記式(2)中、Zは直接結合または置換基を有していても良い炭素数1~10の炭化水素基であって、Rは水素原子またはメチル基を表す。)
Figure 0007433607000003
(上記式(3)中、Zは直接結合または置換基を有していても良い炭素数1または2の炭化水素基であって、R及びRはそれぞれ独立して水素原子またはメチル基を表す。)
Figure 0007433607000004
(上記式(4)中、n及びmはそれぞれ独立して1~5の整数であって、MIは上記式(3)で表されるマレイミド基を有する基であって、Aはベンゼン環を1個以上有する構造である。) That is, the present invention provides a (meth)allyl group-containing maleimide compound represented by the following formula (1), a hydroxyl group-containing maleimide compound represented by the following formula (4), and a polymerizable double bond concentration of 3 mol%. The present invention relates to a glass fiber-containing resin composition containing glass fibers coated with a resin composition containing at least one of a polyester resin and a polyurethane resin.
Figure 0007433607000001
(In the above formula (1), n 1 and m 1 are each independently an integer of 1 to 5, and Aly is a group having a (meth)allyl group represented by the following formula (2), MI is a group having a maleimide group represented by the following formula (3), and A1 is a structure having one or more benzene rings.)
Figure 0007433607000002
(In the above formula (2), Z 1 is a hydrocarbon group having 1 to 10 carbon atoms which may have a direct bond or a substituent, and R 1 represents a hydrogen atom or a methyl group.)
Figure 0007433607000003
(In the above formula (3), Z 2 is a hydrocarbon group having 1 or 2 carbon atoms which may have a direct bond or a substituent, and R 2 and R 3 are each independently a hydrogen atom or a methyl (Represents a group.)
Figure 0007433607000004
(In the above formula (4), n 2 and m 2 are each independently an integer of 1 to 5, MI is a group having a maleimide group represented by the above formula (3), and A 2 is It is a structure with one or more benzene rings.)

本発明のガラス繊維含有樹脂組成物は、上記式(1)において、Aが下記式(5)で表される構造のうちのいずれかであることが好ましい。

Figure 0007433607000005
In the glass fiber-containing resin composition of the present invention, in the above formula (1), A 1 preferably has one of the structures represented by the following formula (5).
Figure 0007433607000005

本発明のガラス繊維含有樹脂組成物は、上記式(4)において、Aがベンゼン環構造であって、n及びmがいずれも1であることが好ましい。 In the glass fiber-containing resin composition of the present invention, preferably, in the above formula (4), A 2 is a benzene ring structure, and n 2 and m 2 are both 1.

本発明のガラス繊維含有樹脂組成物は、さらに、エポキシ化合物を含有することが好ましい。 It is preferable that the glass fiber-containing resin composition of the present invention further contains an epoxy compound.

本発明は、前記ガラス繊維含有樹脂組成物を含有するコンパウンドに関する。 The present invention relates to a compound containing the glass fiber-containing resin composition.

本発明は、前記ガラス繊維含有樹脂組成物を硬化してなる硬化物に関する。 The present invention relates to a cured product obtained by curing the glass fiber-containing resin composition.

本発明は、前記ガラス繊維含有樹脂組成物を含有する耐熱材料用組成物に関する。 The present invention relates to a composition for heat-resistant materials containing the glass fiber-containing resin composition.

本発明は、前記硬化物を含有する耐熱部材に関する。 The present invention relates to a heat-resistant member containing the cured product.

本発明によれば、得られる硬化物が耐熱性や機械的強度に優れる硬化物、更に、前記ガラス繊維含有樹脂組成物を用いたコンパウンド、耐熱部材等に好適に使用可能である。 According to the present invention, the obtained cured product has excellent heat resistance and mechanical strength, and can also be suitably used for compounds, heat-resistant members, etc. using the glass fiber-containing resin composition.

本発明は、ベンゼン環を1個以上有する構造を有し、(メタ)アリル基を有する基を1個以上有し、さらにマレイミド基を有する基を1個以上有する(メタ)アリル基含有マレイミド化合物と、ベンゼン環を1個以上有する構造を有し、水酸基を有する基を1個以上有し、さらにマレイミド基を1個以上有する水酸基含有マレイミド化合物、及び、重合性二重結合濃度を3モル%以上含有する、ポリエステル樹脂及びポリウレタン樹脂の少なくともいずれか一方を含有する樹脂組成物で被覆されたガラス繊維、を含有するガラス繊維含有樹脂組成物を提供するものである。 The present invention relates to a (meth)allyl group-containing maleimide compound having a structure having one or more benzene rings, one or more groups having a (meth)allyl group, and further having one or more groups having a maleimide group. and a hydroxyl group-containing maleimide compound having a structure having one or more benzene rings, one or more groups having a hydroxyl group, and further having one or more maleimide groups, and a polymerizable double bond concentration of 3 mol%. The present invention provides a glass fiber-containing resin composition containing glass fibers coated with a resin composition containing at least one of a polyester resin and a polyurethane resin.

<(メタ)アリル基含有マレイミド化合物>
本発明の(メタ)アリル基含有マレイミド化合物は、ベンゼン環を1個以上有する構造を有し、(メタ)アリル基を有する基を1個以上有し、さらにマレイミド基を有する基を1個以上有することを特徴とする、下記式(1)で表される化合物である。
<(Meth)allyl group-containing maleimide compound>
The (meth)allyl group-containing maleimide compound of the present invention has a structure having one or more benzene rings, has one or more groups having a (meth)allyl group, and further has one or more groups having a maleimide group. It is a compound represented by the following formula (1), which is characterized by having:

Figure 0007433607000006
Figure 0007433607000006

上記式(1)中、n及びmはそれぞれ独立して1~5の整数であって、Alyは下記式(2)で表される(メタ)アリル基を有する基であって、MIは下記式(3)で表されるマレイミド基を有する基であって、Aはベンゼン環を1個以上有する構造である。 In the above formula (1), n 1 and m 1 are each independently an integer of 1 to 5, Aly is a group having a (meth)allyl group represented by the following formula (2), and MI is a group having a maleimide group represented by the following formula (3), and A 1 is a structure having one or more benzene rings.

Figure 0007433607000007
Figure 0007433607000007

上記式(2)中、Zは直接結合または置換基を有していても良い炭素数1~10の炭化水素基であって、Rは水素原子またはメチル基を表す。 In the above formula (2), Z 1 is a hydrocarbon group having 1 to 10 carbon atoms which may have a direct bond or a substituent, and R 1 represents a hydrogen atom or a methyl group.

Figure 0007433607000008
Figure 0007433607000008

上記式(3)中、Zは直接結合または置換基を有していても良い炭素数1または2の炭化水素基であって、R及びRはそれぞれ独立して水素原子またはメチル基を表す。 In the above formula (3), Z 2 is a hydrocarbon group having 1 or 2 carbon atoms which may have a direct bond or a substituent, and R 2 and R 3 are each independently a hydrogen atom or a methyl group. represents.

ここで、前記(メタ)アリル基含有マレイミド化合物は、ベンゼン環を1個以上有することで、耐熱性、特に耐熱分解温度が向上する。また、マレイミド基を有することでガラス転移温度が上昇することから、耐熱性が更に向上する。また、(メタ)アリル基により、反応性が向上すると共に融点が低下することから、ハンドリング性が向上し様々な用途で好適に使用可能となる。 Here, the (meth)allyl group-containing maleimide compound has one or more benzene rings, thereby improving heat resistance, particularly heat resistance to decomposition temperature. Furthermore, since the presence of a maleimide group increases the glass transition temperature, the heat resistance is further improved. Moreover, since the (meth)allyl group improves reactivity and lowers the melting point, handling properties are improved and it can be suitably used in various applications.

ここで、前記(メタ)アリル基含有マレイミド化合物は、上記式(1)のAが、ベンゼン環を1個以上有する構造である。ベンゼン環を1個以上有する構造としては、例えば、下記式(6)で表される構造が例示される。 Here, the (meth)allyl group-containing maleimide compound has a structure in which A 1 in the above formula (1) has one or more benzene rings. An example of a structure having one or more benzene rings is a structure represented by the following formula (6).

Figure 0007433607000009
Figure 0007433607000009

前記構造中、ベンゼン環は置換基を有していても有していなくても良く、置換基の結合方式に特に限定は無い。また、ベンゼン環が複数存在する場合、ベンゼン環同士は、直接結合していても良く、連結基を介して結合していても良く、ベンゼン環同士が縮合して縮合環を形成していてもかまわない。
上記式(6)中のXは直接結合または2価の連結基を表す。2価の連結基としては例えば置換基を有していても良い炭素数1~3の炭化水素基、酸素原子、カルボニル基、硫黄原子、スルホン基、2価の脂環構造等が挙げられる。
上記式(6)中のYは3価の連結基を表す。3価の連結基としては、例えば置換基を有する炭素数1~3の炭化水素基、窒素原子、3価の脂環構造等が挙げられる。
In the above structure, the benzene ring may or may not have a substituent, and there is no particular limitation on the bonding method of the substituent. In addition, when multiple benzene rings exist, the benzene rings may be bonded directly to each other, may be bonded to each other through a linking group, or may be fused to each other to form a condensed ring. I don't mind.
X in the above formula (6) represents a direct bond or a divalent linking group. Examples of the divalent linking group include a hydrocarbon group having 1 to 3 carbon atoms which may have a substituent, an oxygen atom, a carbonyl group, a sulfur atom, a sulfone group, and a divalent alicyclic structure.
Y in the above formula (6) represents a trivalent linking group. Examples of the trivalent linking group include a hydrocarbon group having 1 to 3 carbon atoms having a substituent, a nitrogen atom, and a trivalent alicyclic structure.

上記式(6)で表されるベンゼン環を1個以上有する構造のうち、好ましい構造としては下記式(5)で表される構造のいずれかが挙げられる。 Among the structures having one or more benzene rings represented by the above formula (6), preferred structures include any of the structures represented by the following formula (5).

Figure 0007433607000010
Figure 0007433607000010

上記式(6)において、該構造は本発明の効果を損ねない範囲において、ベンゼン環構造の水素原子が置換基に置き換わっていてもかまわない。置換基としては、公知慣用のものが挙げられる。例えば、置換基を有していても良い炭素数1-6の炭化水素基、ハロゲン原子、水酸基、アミノ基、アミド基、ウレイド基、ウレタン基、カルボキシル基、アルコキシ基、チオエーテル基、アシル基、アシルオキシ基、アルコキシカルボニル基、シアノ基、ニトロ基等が挙げられる。 In the above formula (6), the hydrogen atom of the benzene ring structure may be replaced with a substituent as long as the effects of the present invention are not impaired. Examples of the substituent include known and commonly used substituents. For example, a hydrocarbon group having 1 to 6 carbon atoms which may have a substituent, a halogen atom, a hydroxyl group, an amino group, an amide group, a ureido group, a urethane group, a carboxyl group, an alkoxy group, a thioether group, an acyl group, Examples include acyloxy group, alkoxycarbonyl group, cyano group, and nitro group.

上記式(1)において、nは1~5の整数であればよく、nが2以上であると、融点が下がるため好ましい。また、mは1~5の整数であればよく、mが2以上であると、耐熱性が向上するため好ましい。
とnの比率としては、m:n=1:5~5:1であれば良い。好ましくはm:n=1:2~2:1である場合、耐熱性と低融点が両立できるため、特に好ましい。
(メタ)アリル基を含有する基とマレイミド基を含有する基の結合場所に特に限定はないが、マレイミド基を含有する基と(メタ)アリル基を含有する基が同じベンゼン環上に存在すると、耐熱性が更に向上するため好ましい。
In the above formula (1), n 1 may be an integer of 1 to 5, and it is preferable that n 1 is 2 or more because it lowers the melting point. Further, m 1 may be an integer of 1 to 5, and it is preferable that m 1 is 2 or more because heat resistance is improved.
The ratio of m 1 and n 1 may be m 1 :n 1 =1:5 to 5:1. It is particularly preferable that m 1 :n 1 =1:2 to 2:1, since both heat resistance and low melting point can be achieved.
There is no particular limitation on the bonding location of the group containing a (meth)allyl group and the group containing a maleimide group, but if the group containing a maleimide group and the group containing a (meth)allyl group exist on the same benzene ring, , is preferable because the heat resistance is further improved.

上記式(2)において、Zは直接結合または置換基を有していても良い炭素数1~10の炭化水素基を表す。炭素数1~10の炭化水素基とは、例えばアルキレン基、アルケニレン基、シクロアルキレン基、アリーレン基、アラルキレン基、およびそれらを複数組み合わせた基があげられる。アルキレン基としては、メチレン基、メチン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基等が挙げられる。アルケニレン基としては、ビニレン基、1-メチルビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が挙げられる。アルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、へキシニレン基等が挙げられる。シクロアルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基等が挙げられる。アリーレン基としては、フェニレン基、トリレン基、キシリレン基、ナフチレン基等が挙げられる。 In the above formula (2), Z 1 represents a hydrocarbon group having 1 to 10 carbon atoms which may have a direct bond or a substituent. Examples of the hydrocarbon group having 1 to 10 carbon atoms include an alkylene group, an alkenylene group, a cycloalkylene group, an arylene group, an aralkylene group, and a combination of two or more thereof. Examples of the alkylene group include a methylene group, a methine group, an ethylene group, a propylene group, a butylene group, a pentylene group, and a hexylene group. Examples of the alkenylene group include vinylene group, 1-methylvinylene group, propenylene group, butenylene group, and pentenylene group. Examples of the alkynylene group include ethynylene group, propynylene group, butynylene group, pentynylene group, hexynylene group, and the like. Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group. Examples of the arylene group include a phenylene group, tolylene group, xylylene group, and naphthylene group.

上記式(2)において、Zとして好ましい構造としては、直接結合またはメチレン基が挙げられる。 In the above formula (2), preferable structures for Z 1 include a direct bond or a methylene group.

上記式(3)において、Zは直接結合または置換基を有していても良い炭素数1または2の炭化水素基を表す。好ましくは直接結合またはメチレン基である。 In the above formula (3), Z 2 represents a hydrocarbon group having 1 or 2 carbon atoms which may have a direct bond or a substituent. Preferably it is a direct bond or a methylene group.

本発明の(メタ)アリル基含有マレイミド化合物として、特に好ましい構造は下記式(7-1)~(7-14)で例示される構造である。 Particularly preferred structures of the (meth)allyl group-containing maleimide compound of the present invention are structures exemplified by the following formulas (7-1) to (7-14).

Figure 0007433607000011
Figure 0007433607000011

Figure 0007433607000012
Figure 0007433607000012

Figure 0007433607000013
Figure 0007433607000013

Figure 0007433607000014
Figure 0007433607000014

Figure 0007433607000015
Figure 0007433607000015

Figure 0007433607000016
Figure 0007433607000016

Figure 0007433607000017
Figure 0007433607000017

Figure 0007433607000018
Figure 0007433607000018

Figure 0007433607000019
Figure 0007433607000019

Figure 0007433607000020
Figure 0007433607000020

Figure 0007433607000021
Figure 0007433607000021

Figure 0007433607000022
Figure 0007433607000022

Figure 0007433607000023
Figure 0007433607000023

Figure 0007433607000024
Figure 0007433607000024

上記式(7-1)~(7-14)の中でも、特に好ましいのは、上記式(7-1)、(7-2)、(7-3)、(7-4)、(7-5)、(7-6)、(7-8)、(7-12)、(7-13)で表される構造である。(メタ)アリル基を含有する基とマレイミド基が同一ベンゼン環に存在すると、融点が低下する傾向にあるため好ましい。また、硬化した際には、耐熱性が向上するため好ましい。 Among the above formulas (7-1) to (7-14), the above formulas (7-1), (7-2), (7-3), (7-4), and (7- 5), (7-6), (7-8), (7-12), and (7-13). It is preferable that a group containing a (meth)allyl group and a maleimide group exist in the same benzene ring because the melting point tends to decrease. Further, when cured, heat resistance is improved, which is preferable.

<(メタ)アリル基含有マレイミド化合物の製造(合成)方法>
本発明の(メタ)アリル基含有マレイミド化合物の製造方法は、特に限定はされないが、以下の工程を経ることで、効率的に製造を行うことが出来る。
<Production (synthesis) method of (meth)allyl group-containing maleimide compound>
Although the method for producing the (meth)allyl group-containing maleimide compound of the present invention is not particularly limited, it can be efficiently produced through the following steps.

<製造方法1>
1-1)ベンゼン環を有する水酸基含有芳香族アミノ化合物のアミノ基を保護する工程
1-2)1-1)で得られた化合物の水酸基を(メタ)アリル化する工程
1-3)1-2)で得られた化合物の保護アミノ基から脱保護する工程
1-4)1-3)で得られた化合物のアミノ基をマレイミド化する工程
<Manufacturing method 1>
1-1) Step of protecting the amino group of a hydroxyl group-containing aromatic amino compound having a benzene ring 1-2) Step of (meth)allylating the hydroxyl group of the compound obtained in 1-1) 1-3) 1- Step of deprotecting the protected amino group of the compound obtained in 2) 1-4) Step of converting the amino group of the compound obtained in step 1-3 into maleimidation

ベンゼン環を有する水酸基含有芳香族アミノ化合物を用いることで、本発明のベンゼン環を1個以上有する構造を有し、(メタ)アリル基を有する基を1個以上有し、さらにマレイミド基を1個以上有する化合物であることを特徴とする、(メタ)アリル基含有マレイミド化合物を製造することが出来る。 By using a hydroxyl group-containing aromatic amino compound having a benzene ring, it has a structure having one or more benzene rings of the present invention, has one or more groups having a (meth)allyl group, and further has one maleimide group. It is possible to produce a (meth)allyl group-containing maleimide compound, which is characterized by having at least one (meth)allyl group.

Figure 0007433607000025
Figure 0007433607000025

上記式(8)中、n及びmはそれぞれ独立して1~5の整数であって、Alyは下記式(2)で表される(メタ)アリル基を有する基であって、Bは下記式(9)で表されるアミノ基を有する基であって、Aはベンゼン環を1個以上有する構造である。 In the above formula (8), n 1 and m 1 are each independently an integer of 1 to 5, Aly is a group having a (meth)allyl group represented by the following formula (2), and B 1 is a group having an amino group represented by the following formula (9), and A 1 is a structure having one or more benzene rings.

ベンゼン環を有する水酸基含有芳香族アミノ化合物としては、好ましくは上記式(8)で表される構造のいずれかと、水酸基及びアミノ基とを有する化合物が挙げられる。具体的には、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、1,3-ビス(4-アミノ-3-ヒドロキシフェノキシ)ベンゼン、4,4’-ジアミノ-4”-ヒドロキシトリフェニルアミン等の従来公知の化合物が挙げられるが、これらに限定されることなく、アミノ基を有するフェノール化合物であればかまわない。
芳香族アミノフェノール化合物を製造するには、水酸基含有芳香族化合物をニトロ化した後に還元する方法が挙げられる。
Preferably, the hydroxyl group-containing aromatic amino compound having a benzene ring includes a compound having one of the structures represented by the above formula (8), a hydroxyl group, and an amino group. Specifically, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, 2,2-bis(3-amino -4-hydroxyphenyl) sulfone, 4,4'-diamino-3,3'-dihydroxybiphenyl, 3,3'-diamino-4,4'-dihydroxybiphenyl, 9,9-bis(3-amino-4- Examples include conventionally known compounds such as hydroxyphenyl)fluorene, 1,3-bis(4-amino-3-hydroxyphenoxy)benzene, and 4,4'-diamino-4''-hydroxytriphenylamine, but are limited to these. Any phenol compound having an amino group may be used.
A method for producing an aromatic aminophenol compound includes a method in which a hydroxyl group-containing aromatic compound is nitrated and then reduced.

Figure 0007433607000026
Figure 0007433607000026

上記式(2)中、Zは直接結合または置換基を有していても良い炭素数1~10の炭化水素基であって、Rは水素原子またはメチル基を表す。 In the above formula (2), Z 1 is a hydrocarbon group having 1 to 10 carbon atoms which may have a direct bond or a substituent, and R 1 represents a hydrogen atom or a methyl group.

Figure 0007433607000027
Figure 0007433607000027

上記式(9)中、Zは直接結合または置換基を有していても良い炭素数1または2の炭化水素基を表す。 In the above formula (9), Z 2 represents a hydrocarbon group having 1 or 2 carbon atoms which may have a direct bond or a substituent.

工程1-1)におけるアミノ基の保護は、公知慣用の方法を用いればよく、例えばアセチル化することで保護することが可能である。アセチル化には、公知慣用のアセチル化剤を用いればよく、例えば無水酢酸、塩化アセチル等が挙げられる。 The amino group in step 1-1) may be protected by any known and commonly used method, for example, by acetylation. For acetylation, any known and commonly used acetylating agent may be used, such as acetic anhydride, acetyl chloride, and the like.

工程1-2)においては、例えばアミノ基が保護された水酸基含有芳香族アミノ化合物の水酸基に対し、ハロゲン化(メタ)アリル化合物を塩基の存在化で反応させることで、(メタ)アリル化することが出来る。ハロゲン化(メタ)アリル化合物としては、臭化(メタ)アリルや塩化(メタ)アリルが挙げられ、塩基としては炭酸カリウム等が挙げられる。 In step 1-2), for example, the hydroxyl group of the hydroxyl group-containing aromatic amino compound in which the amino group is protected is reacted with a halogenated (meth)allyl compound in the presence of a base to (meth)allylate it. I can do it. Examples of the halogenated (meth)allyl compound include (meth)allyl bromide and (meth)allyl chloride, and examples of the base include potassium carbonate.

工程1-3)と工程1-4)では、保護されていたアミノ基を脱保護し、そのアミノ基をマレイミド化する。アミノ基のマレイミド化としては、例えば、下記式(10)で表される化合物を反応させることで、マレイミド化させることが出来る。 In step 1-3) and step 1-4), the protected amino group is deprotected and the amino group is converted into maleimide. The amino group can be converted into maleimidation by, for example, reacting with a compound represented by the following formula (10).

Figure 0007433607000028
Figure 0007433607000028

上記式(10)中、R及びRはそれぞれ独立して水素原子またはメチル基を表す。 In the above formula (10), R 2 and R 3 each independently represent a hydrogen atom or a methyl group.

上記式(10)で表される化合物としては、例えば無水マレイン酸、シトラコン酸無水物、2,3-ジメチルマレイン酸無水物等が挙げられる。 Examples of the compound represented by the above formula (10) include maleic anhydride, citraconic anhydride, 2,3-dimethylmaleic anhydride, and the like.

上記工程を経ることで、本発明のベンゼン環を1個以上有する構造を有し、(メタ)アリル基を有する基を1個以上有し、さらにマレイミド基を有する基を1個以上有する化合物であることを特徴とする、(メタ)アリル基含有マレイミド化合物を製造することが出来る。 By going through the above steps, a compound having a structure having one or more benzene rings of the present invention, having one or more groups having a (meth)allyl group, and further having one or more groups having a maleimide group can be obtained. A (meth)allyl group-containing maleimide compound having certain characteristics can be produced.

前記(メタ)アリル基含有マレイミド化合物を合成する場合、反応物中に未反応モノマーが残留したり、生成物として(メタ)アリル基含有マレイミド化合物とは異なる他の化合物が生成することもある。他の化合物としては、例えば未閉環のアミック酸、イソイミド、モノマー類あるいは生成物のオリゴマーなどが挙げられる。これら(メタ)アリル基含有マレイミド化合物以外の物質については、精製工程を経ることで取り除いてもかまわないし、用途によっては含有したまま使用してもかまわない。 When synthesizing the (meth)allyl group-containing maleimide compound, unreacted monomers may remain in the reaction product, or other compounds different from the (meth)allyl group-containing maleimide compound may be produced as a product. Examples of other compounds include unclosed amic acids, isoimides, monomers, and product oligomers. Substances other than these (meth)allyl group-containing maleimide compounds may be removed through a purification step, or may be used as they are contained depending on the purpose.

<水酸基含有マレイミド化合物>
本発明のガラス繊維含有樹脂組成物は、前記(メタ)アリル基含有マレイミド化合物のほかに、ベンゼン環を1個以上有する構造を有し、水酸基を有する基を1個以上有し、さらにマレイミド基を1個以上有することを特徴とする、下記式(4)で表される水酸基含有マレイミド化合物を含有する。
<Hydroxy group-containing maleimide compound>
In addition to the (meth)allyl group-containing maleimide compound, the glass fiber-containing resin composition of the present invention has a structure having one or more benzene rings, one or more groups having a hydroxyl group, and further contains a maleimide group. Contains a hydroxyl group-containing maleimide compound represented by the following formula (4), which is characterized by having one or more of the following.

Figure 0007433607000029
Figure 0007433607000029

上記式(4)中、n及びmはそれぞれ独立して1~5の整数であって、MIは上記式(3)で表されるマレイミド基を有する基であって、Aはベンゼン環を1個以上有する構造である。) In the above formula (4), n 2 and m 2 are each independently an integer of 1 to 5, MI is a group having a maleimide group represented by the above formula (3), and A 2 is benzene. It is a structure having one or more rings. )

本発明のガラス繊維含有樹脂組成物は、(メタ)アリル基含有マレイミド化合物と水酸基含有マレイミド化合物の両方を含有することで、ガラス繊維に対する密着性が向上する。また、本発明の水酸基含有マレイミド化合物は、芳香環構造を有することから、それを含有するガラス繊維含有樹脂組成物は高耐熱性を有する。 The glass fiber-containing resin composition of the present invention improves adhesion to glass fibers by containing both a (meth)allyl group-containing maleimide compound and a hydroxyl group-containing maleimide compound. Moreover, since the hydroxyl group-containing maleimide compound of the present invention has an aromatic ring structure, the glass fiber-containing resin composition containing it has high heat resistance.

上記式(4)において、nは1~5の整数であればよく、また、mは1~5の整数であればよい。
とnの比率としては、m:n=1:5~5:1であれば良い。好ましくはm:n=1:2~2:1である場合、耐熱性と低融点が両立できるため、特に好ましい。
水酸基とマレイミド基の結合場所に特に限定はないが、マレイミド基と水酸基を含有する基が同じベンゼン環上に存在すると、耐熱性が更に向上するため好ましい。
In the above formula (4), n 2 may be an integer of 1 to 5, and m 2 may be an integer of 1 to 5.
The ratio of m 2 and n 2 may be m 2 :n 2 =1:5 to 5:1. It is particularly preferable that m 2 :n 2 =1:2 to 2:1, since both heat resistance and low melting point can be achieved.
Although there is no particular limitation on the bonding location between the hydroxyl group and the maleimide group, it is preferable that the maleimide group and the group containing the hydroxyl group exist on the same benzene ring because heat resistance is further improved.

本発明の水酸基含有マレイミド化合物として、特に好ましい構造はAがベンゼン環構造であって、n及びmがいずれも1である、以下の下記式(11)の構造である。 A particularly preferred structure of the hydroxyl group-containing maleimide compound of the present invention is the structure of the following formula (11), in which A 2 is a benzene ring structure, and n 2 and m 2 are both 1.

Figure 0007433607000030
Figure 0007433607000030

<水酸基含有マレイミド化合物の製造(合成)方法> <Production (synthesis) method of hydroxyl group-containing maleimide compound>

本発明の水酸基含有マレイミド化合物の製造方法は、特に限定は無いが、ベンゼン環を有する水酸基含有芳香族アミノ化合物をマレイミド化することで、本発明のベンゼン環を1個以上有する構造を有し、水酸基を有する基を1個以上有し、さらにマレイミド基を1個以上有することを特徴とする、水酸基含有マレイミド化合物を製造することが出来る。 The method for producing a hydroxyl group-containing maleimide compound of the present invention is not particularly limited, but by maleimidizing a hydroxyl group-containing aromatic amino compound having a benzene ring, it has a structure having one or more benzene rings of the present invention, It is possible to produce a hydroxyl group-containing maleimide compound characterized by having one or more groups having a hydroxyl group and further having one or more maleimide groups.

ベンゼン環を有する水酸基含有芳香族アミノ化合物としては、好ましくは上記式(6)で表される構造のいずれかと、水酸基及びアミノ基とを有する化合物が挙げられる。具体的には、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2,4-ジヒドロキシアニリン、2,6-ジヒドロキシアニリン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、1,3-ビス(4-アミノ-3-ヒドロキシフェノキシ)ベンゼン、4,4’-ジアミノ-4”-ヒドロキシトリフェニルアミン等の従来公知の化合物が挙げられるが、これらに限定されることなく、アミノ基を有するフェノール化合物であればかまわない。
芳香族アミノフェノール化合物を製造するには、水酸基含有芳香族化合物をニトロ化した後に還元する方法が挙げられる。
Preferably, the hydroxyl group-containing aromatic amino compound having a benzene ring includes a compound having one of the structures represented by the above formula (6), a hydroxyl group, and an amino group. Specifically, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2,4-dihydroxyaniline, 2,6-dihydroxyaniline, 2,2-bis(3-amino-4-hydroxyphenyl)propane , 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, 2,2-bis(3-amino-4-hydroxyphenyl)sulfone, 4,4'-diamino-3,3'-dihydroxy Biphenyl, 3,3'-diamino-4,4'-dihydroxybiphenyl, 9,9-bis(3-amino-4-hydroxyphenyl)fluorene, 1,3-bis(4-amino-3-hydroxyphenoxy)benzene , 4,4'-diamino-4''-hydroxytriphenylamine and the like, but the present invention is not limited thereto, and any phenol compound having an amino group may be used.
A method for producing an aromatic aminophenol compound includes a method in which a hydroxyl group-containing aromatic compound is nitrated and then reduced.

アミノ基のマレイミド化としては、例えば上記式(10)で表される化合物を反応させることで、マレイミド化させることが出来る。 The amino group can be converted into maleimidation by, for example, reacting with a compound represented by the above formula (10).

上記式(10)で表される化合物としては、例えば無水マレイン酸、シトラコン酸無水物、2,3-ジメチルマレイン酸無水物等が挙げられる。 Examples of the compound represented by the above formula (10) include maleic anhydride, citraconic anhydride, 2,3-dimethylmaleic anhydride, and the like.

上記工程を経ることで、本発明のベンゼン環を1個以上有する構造を有し、水酸基を有する基を1個以上有し、さらにマレイミド基を1個以上有することを特徴とする、水酸基含有マレイミド化合物を製造することが出来る。 By going through the above steps, the hydroxyl group-containing maleimide of the present invention, which has a structure having one or more benzene rings, has one or more groups having a hydroxyl group, and further has one or more maleimide groups, can be obtained. Compounds can be manufactured.

本発明の水酸基含有マレイミド化合物を合成する場合、反応物中に未反応モノマーが残留したり、生成物として水酸基含有マレイミド化合物とは異なる他の化合物が生成することもある。他の化合物としては、例えば未閉環のアミック酸、イソイミド、モノマー類あるいは生成物のオリゴマーなどが挙げられる。これら水酸基含有マレイミド化合物以外の物質については、精製工程を経ることで取り除いてもかまわないし、用途によっては含有したまま使用してもかまわない。 When synthesizing the hydroxyl group-containing maleimide compound of the present invention, unreacted monomers may remain in the reaction product, or other compounds different from the hydroxyl group-containing maleimide compound may be produced as a product. Examples of other compounds include unclosed amic acids, isoimides, monomers, and product oligomers. Substances other than these hydroxyl group-containing maleimide compounds may be removed through a purification step, or may be used as they are, depending on the purpose.

本発明のガラス繊維含有樹脂組成物において、前記(メタ)アリル基含有マレイミド化合物と前記水酸基含有マレイミド化合物の配合比率(質量比)としては、本発明の効果を損ねない範囲において適宜調製して用いればよいが、好ましくは本発明の(メタ)アリル基含有マレイミド化合物:水酸基含有マレイミド化合物=1:5~5:1が好ましい。この範囲であれば、耐熱性と密着性のバランスに優れるためである。特に好ましくは1:2~4:1である。 In the glass fiber-containing resin composition of the present invention, the blending ratio (mass ratio) of the (meth)allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound may be appropriately adjusted and used within a range that does not impair the effects of the present invention. Preferably, the ratio of the (meth)allyl group-containing maleimide compound of the present invention to the hydroxyl group-containing maleimide compound is 1:5 to 5:1. This is because within this range, the balance between heat resistance and adhesion is excellent. Particularly preferred is 1:2 to 4:1.

<ガラス繊維>
本発明のガラス繊維含有樹脂組成物は、重合性二重結合濃度を3モル%以上含有する、ポリエステル樹脂及びポリウレタン樹脂の少なくともいずれか一方を含有する樹脂組成物で被覆されたガラス繊維を含有することを特徴とする。前記樹脂組成物は、繊維集束剤として機能し、ガラス繊維の集束性に優れ、かつ、機械的強度にも優れた硬化物を得ることができ、有用である。
<Glass fiber>
The glass fiber-containing resin composition of the present invention contains glass fibers coated with a resin composition containing at least one of a polyester resin and a polyurethane resin and having a polymerizable double bond concentration of 3 mol% or more. It is characterized by The resin composition is useful because it functions as a fiber sizing agent and can yield a cured product that has excellent glass fiber sizing properties and excellent mechanical strength.

本発明のガラス繊維含有樹脂組成物には、前記ガラス繊維に加えて、その他の繊維質基質を用いることができる。前記繊維質基質としては、特に限定はないが、繊維強化樹脂に用いられるものが好ましく、無機繊維や有機繊維が挙げられる。 In addition to the glass fibers described above, other fibrous substrates can be used in the glass fiber-containing resin composition of the present invention. The fibrous substrate is not particularly limited, but those used in fiber-reinforced resins are preferred, and examples include inorganic fibers and organic fibers.

前記無機繊維としては、カーボン繊維、ガラス繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等の無機繊維のほか、炭素繊維、活性炭繊維、黒鉛繊維、タングステンカーバイド繊維、シリコンカーバイド繊維(炭化ケイ素繊維)、セラミックス繊維、アルミナ繊維、天然繊維、玄武岩などの鉱物繊維、ボロン繊維、窒化ホウ素繊維、炭化ホウ素繊維、及び金属繊維等を挙げることができる。前記金属繊維としては、例えば、アルミニウム繊維、銅繊維、黄銅繊維、ステンレス繊維、スチール繊維を挙げることができる。これらのうち、1種類のみ用いてもよく、複数種を同時に用いてもよい。 Examples of the inorganic fiber include inorganic fibers such as carbon fiber, glass fiber, boron fiber, alumina fiber, and silicon carbide fiber, as well as carbon fiber, activated carbon fiber, graphite fiber, tungsten carbide fiber, silicon carbide fiber (silicon carbide fiber), Examples include ceramic fibers, alumina fibers, natural fibers, mineral fibers such as basalt, boron fibers, boron nitride fibers, boron carbide fibers, and metal fibers. Examples of the metal fibers include aluminum fibers, copper fibers, brass fibers, stainless steel fibers, and steel fibers. Among these, only one type may be used, or a plurality of types may be used simultaneously.

前記有機繊維としては、ポリベンザゾール、アラミド、PBO(ポリパラフェニレンベンズオキサゾール)、ポリフェニレンスルフィド、ポリエステル、アクリル、ポリアミド、ポリオレフィン、ポリビニルアルコール、ポリアリレート等の樹脂材料からなる合成繊維や、セルロース、パルプ、綿、羊毛、絹といった天然繊維、タンパク質、ポリペプチド、アルギン酸等の再生繊維等を挙げる事ができる。中でも、カーボン繊維とガラス繊維は、産業上利用範囲が広いため、好ましい。これらのうち、1種類のみ用いてもよく、複数種を同時に用いてもよい。 The organic fibers include synthetic fibers made of resin materials such as polybenzazole, aramid, PBO (polyparaphenylenebenzoxazole), polyphenylene sulfide, polyester, acrylic, polyamide, polyolefin, polyvinyl alcohol, polyarylate, cellulose, and pulp. , natural fibers such as cotton, wool, and silk, and recycled fibers such as proteins, polypeptides, and alginic acid. Among them, carbon fibers and glass fibers are preferred because they have a wide range of industrial applications. Among these, only one type may be used, or a plurality of types may be used simultaneously.

本発明で用いられるガラス繊維は、繊維の集合体であってもよく、繊維が連続していても、不連続状でもかまわず、織布状であっても、不織布状であってもかまわない。また、繊維を一方方向に整列した繊維束でもよく、繊維束を並べたシート状であってもよい。また、繊維の集合体に厚みを持たせた立体形状であってもかまわない。 The glass fibers used in the present invention may be an aggregate of fibers, may be continuous or discontinuous, and may be woven or non-woven. . Further, it may be a fiber bundle in which the fibers are aligned in one direction, or it may be in the form of a sheet in which the fiber bundles are arranged. Further, the fiber aggregate may have a three-dimensional shape with a thickness.

前記ガラス繊維としては、特に限定されないが、例えば、ガラス長繊維、ガラス短繊維などである。なお、この分類法はその製造法に拠するため、チョップドストランドのように、3mm程度に短く切断された繊維においてもガラス長繊維と呼ぶ。 The glass fibers are not particularly limited, and include, for example, long glass fibers and short glass fibers. Note that this classification method is based on the manufacturing method, so even fibers cut into short lengths of about 3 mm, such as chopped strands, are called long glass fibers.

前記ポリエステル樹脂としては、特に限定されないが、例えば、ネオペンチルグルコールやポリプロピレングリコール、ポリカプロラクトンエステルポリオール、両末端水酸基ポリブタジエンなどのジオール類と、無水マレイン酸やブチロラクトン、安息香酸などを反応させて得られる。 The polyester resin is not particularly limited, but can be obtained by, for example, reacting diols such as neopentyl glycol, polypropylene glycol, polycaprolactone ester polyol, and polybutadiene with hydroxyl groups at both ends with maleic anhydride, butyrolactone, benzoic acid, etc. It will be done.

前記ポリウレタン樹脂としては、特に限定されないが、例えば、キシレンジイソシアネートやイソホロンジイソシアネートなどのイソシアネート類と、ポリカプロラクトンエステルポリオールや両末端水酸基ポリブタジエン、ネオペンチルグルコールやポリプロピレングリコールなどを反応させて得られる。 The polyurethane resin is not particularly limited, but can be obtained by, for example, reacting isocyanates such as xylene diisocyanate and isophorone diisocyanate with polycaprolactone ester polyol, polybutadiene with hydroxyl groups at both ends, neopentyl glycol, polypropylene glycol, and the like.

前記樹脂組成物に含まれるポリエステル樹脂及びポリウレタン樹脂のいずれか少なくとも一方を含有する場合、前記重合性二重結合濃度を3モル%以上含有し、好ましくは、5モル%以上であり、より好ましくは、5~35モル%であり、更に好ましくは、5~25モル%である。前記重合性二重結合濃度が、3モル%以上であることにより、ガラス繊維への濡れ性および密着性が良好となり、コンパウンド中の繊維分散性が好ましい態様となる。 When the resin composition contains at least one of a polyester resin and a polyurethane resin, the concentration of polymerizable double bonds is 3 mol% or more, preferably 5 mol% or more, and more preferably , 5 to 35 mol%, more preferably 5 to 25 mol%. When the polymerizable double bond concentration is 3 mol % or more, the wettability and adhesion to glass fibers become good, and the fiber dispersibility in the compound becomes a preferable aspect.

前記ガラス繊維含有樹脂組成物は、必要に応じて、シランカップリング剤、硬化触媒、潤滑剤、充填剤、チキソ付与剤、粘着付与剤、ワックス、熱安定剤、耐光安定剤、蛍光増白剤、発泡剤等の添加剤、pH調整剤、レベリング剤、ゲル化防止剤、分散安定剤、酸化防止剤、ラジカル捕捉剤、耐熱性付与剤、無機充填剤、有機充填剤、可塑剤、補強剤、触媒、抗菌剤、防カビ剤、防錆剤、熱可塑性樹脂、熱硬化性樹脂、顔料、染料、導電性付与剤、帯電防止剤、透湿性向上剤、撥水剤、撥油剤、中空発泡体、結晶水含有化合物、難燃剤、吸水剤、吸湿剤、消臭剤、整泡剤、消泡剤、防黴剤、防腐剤、防藻剤、顔料分散剤、ブロッキング防止剤、加水分解防止剤等を併用することができる。 The glass fiber-containing resin composition may optionally contain a silane coupling agent, a curing catalyst, a lubricant, a filler, a thixotropic agent, a tackifier, a wax, a heat stabilizer, a light stabilizer, and an optical brightener. , additives such as foaming agents, pH adjusters, leveling agents, anti-gelling agents, dispersion stabilizers, antioxidants, radical scavengers, heat resistance imparters, inorganic fillers, organic fillers, plasticizers, reinforcing agents , catalyst, antibacterial agent, antifungal agent, rust preventive agent, thermoplastic resin, thermosetting resin, pigment, dye, conductivity imparting agent, antistatic agent, moisture permeability improver, water repellent, oil repellent, hollow foam crystal water-containing compounds, flame retardants, water absorbing agents, moisture absorbing agents, deodorizing agents, foam stabilizers, antifoaming agents, antifungal agents, preservatives, algaecides, pigment dispersants, antiblocking agents, hydrolysis prevention Agents etc. can be used in combination.

<ガラス繊維含有樹脂組成物>
本発明のガラス繊維含有樹脂組成物は、前記(メタ)アリル基含有マレイミド化合物、前記水酸基含有マレイミド化合物、及び、前記重合性二重結合濃度を3モル%以上含有する、ポリエステル樹脂及びポリウレタン樹脂の少なくともいずれか一方を含有する樹脂組成物で被覆されたガラス繊維、を含有することを特徴とする。前記ガラス繊維含有樹脂組成物を硬化して得られる硬化物は、耐熱分解性に優れ、高ガラス転移温度、低線膨張であることから、耐熱部材に好適に使用可能である。
<Glass fiber-containing resin composition>
The glass fiber-containing resin composition of the present invention comprises a polyester resin and a polyurethane resin containing the (meth)allyl group-containing maleimide compound, the hydroxyl group-containing maleimide compound, and the polymerizable double bond concentration of 3 mol% or more. It is characterized by containing glass fibers coated with a resin composition containing at least one of them. The cured product obtained by curing the glass fiber-containing resin composition has excellent heat decomposition resistance, a high glass transition temperature, and low linear expansion, and can therefore be suitably used for heat-resistant members.

<ガラス繊維含有樹脂組成物の製造(調製)方法>
前記(メタ)アリル基含有マレイミド化合物、前記水酸基含有マレイミド化合物、及び、前記重合性二重結合濃度を3モル%以上含有する、ポリエステル樹脂及びポリウレタン樹脂の少なくともいずれか一方を含有する樹脂組成物で被覆されたガラス繊維、を含有するガラス繊維含有樹脂組成物の製造(調製)方法は、特に限定はされないが、簡便な方法としては前記(メタ)アリル基含有マレイミド化合物、前記水酸基含有マレイミド化合物、及び、前記樹脂組成物で被覆されたガラス繊維をそのまま混合すればよい。
<Production (preparation) method of glass fiber-containing resin composition>
A resin composition containing at least one of a polyester resin and a polyurethane resin, the (meth)allyl group-containing maleimide compound, the hydroxyl group-containing maleimide compound, and the polymerizable double bond concentration of 3 mol% or more. The method for manufacturing (preparing) the glass fiber-containing resin composition containing the coated glass fiber is not particularly limited, but a simple method is to use the (meth)allyl group-containing maleimide compound, the hydroxyl group-containing maleimide compound, Then, the glass fibers coated with the resin composition may be mixed as they are.

前記(メタ)アリル基含有マレイミド化合物、前記水酸基含有マレイミド化合物をより均一に混合させるに、上記式(1)で表される(メタ)アリル基含有マレイミド化合物と、上記式(4)で表される水酸基含有マレイミド化合物と溶剤とを混合し混合液(i)を調製する工程と、
前記混合液(i)に、更に、前記重合性二重結合濃度を3モル%以上含有する、ポリエステル樹脂及びポリウレタン樹脂の少なくともいずれか一方を含有する樹脂組成物で被覆されたガラス繊維を混合し混合液(ii)を調製する工程と、
前記ガラス繊維を含有する混合液(ii)から溶剤を除去する工程と、を有する製造方法によって、均一なガラス繊維含有樹脂組成物を製造することが可能である。これにより、2種のマレイミド化合物が分子レベルで分散し、更にガラス繊維も混合液中で均一に分散し、ガラス繊維含有樹脂組成物の低粘度化を図ることが出来る。
In order to mix the (meth)allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound more uniformly, the (meth)allyl group-containing maleimide compound represented by the above formula (1) and the above formula (4) are combined. a step of preparing a mixed solution (i) by mixing the hydroxyl group-containing maleimide compound and a solvent;
The mixed solution (i) is further mixed with glass fibers coated with a resin composition containing at least one of a polyester resin and a polyurethane resin, which contains the polymerizable double bond concentration of 3 mol% or more. A step of preparing a mixed solution (ii);
A uniform glass fiber-containing resin composition can be produced by a production method that includes the step of removing the solvent from the glass fiber-containing mixed liquid (ii). As a result, the two types of maleimide compounds are dispersed at the molecular level, and the glass fibers are also uniformly dispersed in the mixed liquid, making it possible to lower the viscosity of the glass fiber-containing resin composition.

前記混合液(i)を製造するには、前記(メタ)アリル基含有マレイミド化合物と前記水酸基含有マレイミド化合物を一つの溶剤に溶解させることで混合させればよい。
また、前記(メタ)アリル基含有マレイミド化合物と前記水酸基含有マレイミド化合物を個別に溶剤に溶解させたのち、溶液同士を混合する方法であってもよい。このとき、前記(メタ)アリル基含有マレイミド化合物と前記水酸基含有マレイミド化合物のそれぞれを溶解させる溶剤は、相溶するものであれば異なる溶剤でもよく、もちろん同一の溶剤を用いてもかまわない。
更に、前記重合性二重結合濃度を3モル%以上含有する、ポリエステル樹脂及びポリウレタン樹脂の少なくともいずれか一方を含有する樹脂組成物で被覆されたガラス繊維を混合するために、カップリング剤や離型剤などを用いることもできる。
In order to produce the mixed solution (i), the (meth)allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound may be mixed by dissolving them in one solvent.
Alternatively, the method may be such that the (meth)allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound are individually dissolved in a solvent, and then the solutions are mixed together. At this time, the solvents for dissolving each of the (meth)allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound may be different solvents as long as they are compatible, and of course the same solvent may be used.
Furthermore, in order to mix the glass fiber coated with a resin composition containing at least one of a polyester resin and a polyurethane resin and having a polymerizable double bond concentration of 3 mol% or more, a coupling agent and a releasing agent are added. A molding agent etc. can also be used.

前記混合液(i)及び(ii)を調製する際に使用できる溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン類、テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の芳香族類、カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール類が挙げられ、これらを単独又は併用して使用可能であるが、中でも酢酸エチル、メチルエチルケトン、トルエンが、ガラス繊維含有樹脂組成物の溶解性、溶媒留去時の揮発性や溶媒回収の面から好ましい。 Examples of solvents that can be used in preparing the mixtures (i) and (ii) include ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK), and cyclic solvents such as tetrahydrofuran (THF) and dioxolane. These include ethers, esters such as methyl acetate, ethyl acetate, and butyl acetate, aromatics such as toluene and xylene, and alcohols such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether. Although they can be used alone or in combination, ethyl acetate, methyl ethyl ketone, and toluene are preferred from the viewpoint of solubility of the glass fiber-containing resin composition, volatility during solvent distillation, and solvent recovery.

前記ガラス繊維含有樹脂組成物の製造(調製)方法としては、前記(メタ)アリル基含有マレイミド化合物と前記水酸基含有マレイミド化合物の前駆体を混合した上で、一括してマレイミド化することでも製造することができる。この方法を用いると、製造(合成)工程を簡略化できる上、2種のマレイミド化合物が分子レベルで分散し、化合物を低粘度化することが出来る。 The glass fiber-containing resin composition can also be produced by mixing the (meth)allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound precursor, and then converting the mixture into maleimide all at once. be able to. By using this method, the manufacturing (synthesis) process can be simplified, and the two types of maleimide compounds can be dispersed at the molecular level, making it possible to reduce the viscosity of the compound.

具体的には、下記式(8)で表される(メタ)アリル基含有アミノ化合物と、下記式(12)で表される水酸基含有アミノ化合物とを混合して、芳香族アミノ化合物混合物を製造する工程と、
芳香族アミノ化合物混合物をマレイミド化する工程とを有する製造方法により、(メタ)アリル基含有化合物と水酸基含有マレイミド化合物を含有する組成物を一括で製造することができる。
Specifically, a (meth)allyl group-containing amino compound represented by the following formula (8) and a hydroxyl group-containing amino compound represented by the following formula (12) are mixed to produce an aromatic amino compound mixture. The process of
A composition containing a (meth)allyl group-containing compound and a hydroxyl group-containing maleimide compound can be produced all at once by a production method that includes a step of maleimidizing an aromatic amino compound mixture.

Figure 0007433607000031
Figure 0007433607000031

上記式(8)中、n及びmはそれぞれ独立して1~5の整数であって、Alyは下記式(2)で表される(メタ)アリル基を有する基であって、Bは下記式(9)で表されるアミノ基を有する基であって、Aはベンゼン環を1個以上有する構造である。 In the above formula (8), n 1 and m 1 are each independently an integer of 1 to 5, Aly is a group having a (meth)allyl group represented by the following formula (2), and B 1 is a group having an amino group represented by the following formula (9), and A 1 is a structure having one or more benzene rings.

Figure 0007433607000032
Figure 0007433607000032

上記式(2)中、Zは直接結合または置換基を有していても良い炭素数1~10の炭化水素基であって、Rは水素原子またはメチル基を表す。 In the above formula (2), Z 1 is a hydrocarbon group having 1 to 10 carbon atoms which may have a direct bond or a substituent, and R 1 represents a hydrogen atom or a methyl group.

Figure 0007433607000033
Figure 0007433607000033

上記式(9)中、Zは直接結合または置換基を有していても良い炭素数1または2の炭化水素基を表す。 In the above formula (9), Z 2 represents a hydrocarbon group having 1 or 2 carbon atoms which may have a direct bond or a substituent.

Figure 0007433607000034
Figure 0007433607000034

上記式(12)中、n及びmはそれぞれ独立して1~5の整数であって、Bは上記式(3)で表されるマレイミド基を有する基であって、Aはベンゼン環を1個以上有する構造である。 In the above formula (12), n 2 and m 2 are each independently an integer of 1 to 5, B 2 is a group having a maleimide group represented by the above formula (3), and A 2 is It has a structure having one or more benzene rings.

<エポキシ化合物>
本発明のガラス繊維含有樹脂組成物には、更にエポキシ化合物を含有させても良い。エポキシ化合物を含有させることで、更にガラス繊維への密着性が向上する。また、エポキシ化合物の有するエポキシ基と、水酸基含有マレイミド化合物の有する水酸基が反応し、さらには(メタ)アリル基含有マレイミド化合物と水酸基含有マレイミド化合物の有するマレイミド基同士が反応する複合架橋系を形成することから、耐熱性や低線膨張性が更に向上する。
<Epoxy compound>
The glass fiber-containing resin composition of the present invention may further contain an epoxy compound. By containing an epoxy compound, the adhesion to glass fibers is further improved. Further, the epoxy group of the epoxy compound and the hydroxyl group of the hydroxyl group-containing maleimide compound react, and furthermore, the maleimide groups of the (meth)allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound react with each other to form a composite crosslinked system. Therefore, heat resistance and low linear expansion properties are further improved.

本発明のガラス繊維含有樹脂組成物が、エポキシ化合物を含有する場合、水酸基含有マレイミド化合物とエポキシ化合物の配合比率は、水酸基含有マレイミド化合物の水酸基当量とエポキシ当量の比率として1:2~2:1が、硬化性や耐熱性の観点から好ましい。特に好ましくは1:1.5~1.5:1である。 When the glass fiber-containing resin composition of the present invention contains an epoxy compound, the blending ratio of the hydroxyl group-containing maleimide compound and the epoxy compound is 1:2 to 2:1 as the ratio of the hydroxyl group equivalent to the epoxy equivalent of the hydroxyl group-containing maleimide compound. is preferable from the viewpoint of curability and heat resistance. Particularly preferred is 1:1.5 to 1.5:1.

前記エポキシ化合物としては、例えばエポキシ樹脂、フェノキシ樹脂が挙げられる。エポキシ樹脂としては、エポキシ基を有していれば特に限定は無く、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールスルフィド型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂、アントラセン型エポキシ樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the epoxy compound include epoxy resin and phenoxy resin. The epoxy resin is not particularly limited as long as it has an epoxy group, and examples include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol E epoxy resin, bisphenol S epoxy resin, bisphenol sulfide epoxy resin, Phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Phenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol condensed novolac type epoxy resins, naphthol-cresol cocondensed novolac type epoxy resins, aromatic hydrocarbon formaldehyde resin-modified phenol resin type epoxy resins, biphenyl-modified novolac type epoxy resins, anthracene type epoxy resins, and the like. Each of these may be used alone, or two or more types may be used in combination.

フェノキシ樹脂は、ジフェノールと、エピクロロヒドリン等のエピハロヒドリンに基づく高分子量熱可塑性ポリエーテル樹脂のことであり、重量平均分子量が、20,000~100,000であることが好ましい。フェノキシ樹脂の構造としては、例えばビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、トリメチルシクロヘキサン骨格から選択される1種以上の骨格を有するものが挙げられる。 Phenoxy resin refers to a high molecular weight thermoplastic polyether resin based on diphenol and epihalohydrin such as epichlorohydrin, and preferably has a weight average molecular weight of 20,000 to 100,000. The structure of the phenoxy resin includes, for example, a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a bisphenolacetophenone skeleton, a novolac skeleton, a biphenyl skeleton, a fluorene skeleton, a dicyclopentadiene skeleton, a norbornene skeleton, a naphthalene skeleton, an anthracene skeleton, an adamantane skeleton, Examples include those having one or more types of skeletons selected from terpene skeletons and trimethylcyclohexane skeletons.

エポキシ化合物のうち、好ましくは芳香族エポキシ化合物であり、更に好ましくは芳香環を複数有する多環芳香族エポキシ化合物である。
好ましいエポキシ化合物として、下記式(13)で表される構造が挙げられる。
Among the epoxy compounds, aromatic epoxy compounds are preferred, and polycyclic aromatic epoxy compounds having a plurality of aromatic rings are more preferred.
A preferred epoxy compound includes a structure represented by the following formula (13).

Figure 0007433607000035
(上記式(13)中のrは繰り返し単位の平均で1~10である。)
Figure 0007433607000035
(r in the above formula (13) is 1 to 10 on average of the repeating units.)

<フィラー>
本発明のガラス繊維含有樹脂組成物は、更にフィラーを含有してもよい。フィラーとしては、無機フィラーと有機フィラーが挙げられる。無機フィラーとしては、例えば無機微粒子が挙げられる。
<Filler>
The glass fiber-containing resin composition of the present invention may further contain a filler. Examples of fillers include inorganic fillers and organic fillers. Examples of the inorganic filler include inorganic fine particles.

無機微粒子としては、例えば、耐熱性に優れるものとしては、アルミナ、マグネシア、チタニア、ジルコニア、シリカ(石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等)等;熱伝導に優れるものとしては、窒化ホウ素、窒化アルミ、酸化アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化ケイ素、ダイヤモンド等;導電性に優れるものとしては、金属単体又は合金(例えば、鉄、銅、マグネシウム、アルミニウム、金、銀、白金、亜鉛、マンガン、ステンレスなど)を用いた金属フィラー及び/又は金属被覆フィラー、;バリア性に優れるものとしては、マイカ、クレイ、カオリン、タルク、ゼオライト、ウォラストナイト、スメクタイト等の鉱物等やチタン酸カリウム、硫酸マグネシウム、セピオライト、ゾノライト、ホウ酸アルミニウム、炭酸カルシウム、酸化チタン、硫酸バリウム、酸化亜鉛、水酸化マグネシウム;屈折率が高いものとしては、チタン酸バリウム、酸化ジルコニア、酸化チタン等;光触媒性を示すものとしては、チタン、セリウム、亜鉛、銅、アルミニウム、錫、インジウム、リン、炭素、イオウ、テリウム、ニッケル、鉄、コバルト、銀、モリブデン、ストロンチウム、クロム、バリウム、鉛等の光触媒金属、前記金属の複合物、それらの酸化物等;耐摩耗性に優れるものとしては、シリカ、アルミナ、ジルコニア、酸化マグネシウム等の金属、及びそれらの複合物及び酸化物等;導電性に優れるものとしては、銀、銅などの金属、酸化錫、酸化インジウム等;絶縁性に優れるものとしては、シリカ等;紫外線遮蔽に優れるものとしては、酸化チタン、酸化亜鉛等である。
これらの無機微粒子は、用途によって適時選択すればよく、単独で使用しても、複数種組み合わせて使用してもかまわない。また、上記無機微粒子は、例に挙げた特性以外にも様々な特性を有することから、適時用途に合わせて選択すればよい。
Examples of inorganic fine particles with excellent heat resistance include alumina, magnesia, titania, zirconia, silica (quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, ultrafine amorphous powder) Examples of materials with excellent thermal conductivity include boron nitride, aluminum nitride, alumina oxide, titanium oxide, magnesium oxide, zinc oxide, silicon oxide, diamond, etc.; materials with excellent conductivity include single metals or alloys ( For example, metal fillers and/or metal-coated fillers using iron, copper, magnesium, aluminum, gold, silver, platinum, zinc, manganese, stainless steel, etc.; Examples of materials with excellent barrier properties include mica, clay, kaolin, Minerals such as talc, zeolite, wollastonite, smectite, potassium titanate, magnesium sulfate, sepiolite, zonolite, aluminum borate, calcium carbonate, titanium oxide, barium sulfate, zinc oxide, magnesium hydroxide; materials with a high refractive index Examples include barium titanate, zirconia oxide, titanium oxide, etc.; those exhibiting photocatalytic properties include titanium, cerium, zinc, copper, aluminum, tin, indium, phosphorus, carbon, sulfur, terium, nickel, iron, cobalt, Photocatalytic metals such as silver, molybdenum, strontium, chromium, barium, and lead, composites of the above metals, and their oxides; those with excellent wear resistance include metals such as silica, alumina, zirconia, and magnesium oxide; Compounds and oxides of these materials; those with excellent conductivity include metals such as silver and copper, tin oxide, indium oxide, etc.; those with excellent insulation properties include silica; those with excellent ultraviolet shielding properties include: Titanium oxide, zinc oxide, etc.
These inorganic fine particles may be appropriately selected depending on the intended use, and may be used alone or in combination. Moreover, since the above-mentioned inorganic fine particles have various properties other than those listed in the examples, they may be selected depending on the application at the appropriate time.

例えば、無機微粒子としてシリカを用いる場合、特に限定はなく粉末状のシリカやコロイダルシリカなど公知のシリカ微粒子を使用することができる。市販の粉末状のシリカ微粒子としては、例えば、日本アエロジル(株)製アエロジル50、200、旭硝子(株)製シルデックスH31、H32、H51、H52、H121、H122、日本シリカ工業(株)製E220A、E220、富士シリシア(株)製SYLYSIA470、日本板硝子(株)製SGフレ-ク等を挙げることができる。
また、市販のコロイダルシリカとしては、例えば、日産化学工業(株)製メタノ-ルシリカゾル、IPA-ST、MEK-ST、NBA-ST、XBA-ST、DMAC-ST、ST-UP、ST-OUP、ST-20、ST-40、ST-C、ST-N、ST-O、ST-50、ST-OL等を挙げることができる。
For example, when using silica as the inorganic fine particles, there is no particular limitation, and known silica fine particles such as powdered silica and colloidal silica can be used. Examples of commercially available powdered silica fine particles include Aerosil 50 and 200 manufactured by Nippon Aerosil Co., Ltd., Sildex H31, H32, H51, H52, H121, and H122 manufactured by Asahi Glass Co., Ltd., and E220A manufactured by Nippon Silica Kogyo Co., Ltd. , E220, SYLYSIA470 manufactured by Fuji Silysia Co., Ltd., and SG flake manufactured by Nippon Sheet Glass Co., Ltd., and the like.
In addition, commercially available colloidal silica includes, for example, methanol silica sol manufactured by Nissan Chemical Industries, Ltd., IPA-ST, MEK-ST, NBA-ST, XBA-ST, DMAC-ST, ST-UP, ST-OUP, Examples include ST-20, ST-40, ST-C, ST-N, ST-O, ST-50, ST-OL, and the like.

表面修飾をしたシリカ微粒子を用いてもよく、例えば、前記シリカ微粒子を、疎水性基を有する反応性シランカップリング剤で表面処理したものや、(メタ)アクリロイル基を有する化合物で修飾したものがあげられる。(メタ)アクリロイル基を有する化合物で修飾した市販の粉末状のシリカとしては、日本アエロジル(株)製アエロジルRM50、R711等、(メタ)アクリロイル基を有する化合物で修飾した市販のコロイダルシリカとしては、日産化学工業(株)製MIBK-SD等が挙げられる。 Surface-modified silica fine particles may be used; for example, the silica fine particles may be surface-treated with a reactive silane coupling agent having a hydrophobic group, or modified with a compound having a (meth)acryloyl group. can give. Examples of commercially available powdered silica modified with a compound having a (meth)acryloyl group include Aerosil RM50 and R711 manufactured by Nippon Aerosil Co., Ltd.; commercially available colloidal silica modified with a compound having a (meth)acryloyl group include: Examples include MIBK-SD manufactured by Nissan Chemical Industries, Ltd.

前記シリカ微粒子の形状は特に限定はなく、球状、中空状、多孔質状、棒状、板状、繊維状、または不定形状のものを用いることができる。また一次粒子径は、5~200nmの範囲が好ましい。5nm未満であると、分散体中の無機微粒子の分散が不十分となり、200nmを超える径では、硬化物の十分な強度が保持できないおそれがある。 The shape of the silica fine particles is not particularly limited, and may be spherical, hollow, porous, rod-like, plate-like, fibrous, or irregularly shaped. Further, the primary particle diameter is preferably in the range of 5 to 200 nm. If the diameter is less than 5 nm, the inorganic fine particles in the dispersion will not be sufficiently dispersed, and if the diameter exceeds 200 nm, the cured product may not maintain sufficient strength.

酸化チタン微粒子としては、体質顔料のみならず紫外光応答型光触媒が使用でき、例えばアナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタンなどが使用できる。更に、酸化チタンの結晶構造中に異種元素をドーピングさせて可視光に応答させるように設計された粒子についても用いることができる。酸化チタンにドーピングさせる元素としては、窒素、硫黄、炭素、フッ素、リン等のアニオン元素や、クロム、鉄、コバルト、マンガン等のカチオン元素が好適に用いられる。また、形態としては、粉末、有機溶媒中もしくは水中に分散させたゾルもしくはスラリーを用いることができる。市販の粉末状の酸化チタン微粒子としては、例えば、日本アエロジル(株)製アエロジルP-25、テイカ(株)製ATM-100等を挙げることができる。また、市販のスラリー状の酸化チタン微粒子としては、例えば、テイカ(株)TKD-701等が挙げられる。 As the titanium oxide fine particles, not only extender pigments but also ultraviolet light-responsive photocatalysts can be used, such as anatase-type titanium oxide, rutile-type titanium oxide, brookite-type titanium oxide, and the like. Furthermore, particles designed to respond to visible light by doping a different element into the crystal structure of titanium oxide can also be used. As the element to be doped into titanium oxide, anion elements such as nitrogen, sulfur, carbon, fluorine, and phosphorus, and cation elements such as chromium, iron, cobalt, and manganese are suitably used. Moreover, as for the form, a powder, a sol or a slurry dispersed in an organic solvent or water can be used. Examples of commercially available powdered titanium oxide fine particles include Aerosil P-25 manufactured by Nippon Aerosil Co., Ltd. and ATM-100 manufactured by Teika Co., Ltd. Furthermore, examples of commercially available slurry-like titanium oxide fine particles include TKD-701 manufactured by Teika Corporation.

<反応性化合物>
本発明のガラス繊維含有樹脂組成物は、前記(メタ)アリル基含有マレイミド化合物、前記水酸基含有マレイミド化合物、前記重合性二重結合濃度を3モル%以上含有する、ポリエステル樹脂及びポリウレタン樹脂の少なくともいずれか一方を含有する樹脂組成物で被覆されたガラス繊維、更に、上述したエポキシ化合物のほかに、反応性化合物を含有してもよい。反応性化合物を添加することで、反応性や耐熱性、ハンドリング性など様々な特徴を樹脂に付与することが可能になる。
ここで言う反応性化合物とは、反応性基を有する化合物であり、モノマーであってもオリゴマーであってもポリマーであってもかまわない。
<Reactive compound>
The glass fiber-containing resin composition of the present invention includes at least one of a polyester resin and a polyurethane resin containing the (meth)allyl group-containing maleimide compound, the hydroxyl group-containing maleimide compound, and the polymerizable double bond concentration of 3 mol% or more. The glass fiber coated with a resin composition containing one of the above-mentioned epoxy compounds may further contain a reactive compound in addition to the above-mentioned epoxy compound. By adding reactive compounds, it is possible to impart various characteristics to the resin, such as reactivity, heat resistance, and handling properties.
The reactive compound referred to here is a compound having a reactive group, and may be a monomer, oligomer, or polymer.

前記反応性基としては、前記(メタ)アリル基含有マレイミド化合物、水酸基含有マレイミド化合物、前述したエポキシ化合物と反応しない官能基でも、反応する官能基でもよいが、耐熱性をより向上させるためには、前記(メタ)アリル基含有マレイミド化合物、水酸基含有マレイミド化合物、前述したエポキシ化合物と反応する官能基であることが好ましい。例えばシアナト基、マレイミド基、フェノール性水酸基、オキサジン環、アミノ基、炭素-炭素間二重結合を有する基が挙げられる。 The reactive group may be a functional group that does not react with the (meth)allyl group-containing maleimide compound, the hydroxyl group-containing maleimide compound, or the above-mentioned epoxy compound, or a functional group that does, but in order to further improve heat resistance, , the (meth)allyl group-containing maleimide compound, the hydroxyl group-containing maleimide compound, and the above-mentioned epoxy compound. Examples include a cyanato group, a maleimide group, a phenolic hydroxyl group, an oxazine ring, an amino group, and a group having a carbon-carbon double bond.

シアナト基を有する化合物としては、シアネートエステル樹脂が挙げられる。
マレイミド基を有する化合物(マレイミド化合物)としては、マレイミド樹脂、ビスマレイミド樹脂が挙げられる。
フェノール性水酸基を有する化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニルアラルキル樹脂が挙げられる。
オキサジン環を有する化合物(オキサジン化合物)としては、フェノール化合物、芳香族アミノ化合物をホルムアルデヒドとを反応させることで得られるベンゾオキサジンが挙げられる。これらのフェノール化合物、芳香族アミノ化合物は構造中に反応性官能基を有していても良い。
アミノ基を有する化合物としてはDDM(4,4’-ジアミノジフェニルメタン)やDDE(4,4’-ジアミノジフェニルエーテル)、3,4’-ジアミノジフェニルエーテル、2,2-{ビス4-(4-アミノフェノキシ)フェニル}プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル等の芳香族アミノ化合物が挙げられる。
炭素-炭素間二重結合を有する基を有する化合物としては、マレイミド化合物、ビニル系化合物、(メタ)アリル系化合物等があげられる。
Examples of compounds having a cyanato group include cyanate ester resins.
Examples of the compound having a maleimide group (maleimide compound) include maleimide resin and bismaleimide resin.
Examples of the compound having a phenolic hydroxyl group include phenol novolak resin, cresol novolak resin, dicyclopentadiene-modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, and biphenylaralkyl resin.
Examples of compounds having an oxazine ring (oxazine compounds) include benzoxazines obtained by reacting phenol compounds and aromatic amino compounds with formaldehyde. These phenol compounds and aromatic amino compounds may have a reactive functional group in their structure.
Examples of compounds having an amino group include DDM (4,4'-diaminodiphenylmethane), DDE (4,4'-diaminodiphenyl ether), 3,4'-diaminodiphenyl ether, 2,2-{bis4-(4-aminophenoxy ) phenyl}propane, 4,4'-bis(4-aminophenoxy)biphenyl, and other aromatic amino compounds.
Examples of the compound having a group having a carbon-carbon double bond include maleimide compounds, vinyl compounds, (meth)allyl compounds, and the like.

上記の反応性化合物は、反応性基を一種類だけ有していても、複数種有していてもよく、官能基数も1つであっても複数であってもかまわない。また、複数種を同時に使用してもかまわない。 The above-mentioned reactive compound may have only one type of reactive group, or may have multiple types of reactive groups, and the number of functional groups may be one or more. Moreover, multiple types may be used at the same time.

好ましい反応性化合物としては、シアネートエステル樹脂、マレイミド化合物、ビニル系化合物、芳香族アミノ化合物などが挙げられる。その中でも特に好ましくは、マレイミド化合物、シアネートエステル樹脂、芳香族アミノ化合物である。 Preferred reactive compounds include cyanate ester resins, maleimide compounds, vinyl compounds, and aromatic amino compounds. Particularly preferred among these are maleimide compounds, cyanate ester resins, and aromatic amino compounds.

マレイミド化合物は、前記(メタ)アリル基含有マレイミド化合物と、マレイミド基同士の自己付加反応やアリル基とマレイミド基のエン反応により、架橋密度が向上し、その結果、耐熱性、特にガラス転移温度が向上する。
通常、マレイミド化合物を用い、均一な硬化物を得るためには、高温かつ長時間の硬化条件が必要となるため、多くの場合、反応促進のために過酸化物系触媒が併用される。しかし、前記(メタ)アリル基含有マレイミド化合物は触媒を使用しない場合においても、硬化反応が進行し、均一な硬化物を得ることができる。過酸化物系触媒を使用することで、組成物の粘度上昇や、ポットライフの低下、また、硬化物中に微量の過酸化物が残存することによる物性低下等の課題があるが、前記(メタ)アリル基含有マレイミド化合物は過酸化物系硬化剤を使用しなくてもよいことから、それら課題を解決することができる。
The maleimide compound has an improved crosslinking density due to the self-addition reaction between the (meth)allyl group-containing maleimide compound and the maleimide groups, or the ene reaction between the allyl group and the maleimide group, resulting in improved heat resistance, especially glass transition temperature. improves.
Usually, in order to obtain a uniformly cured product using a maleimide compound, high temperature and long curing conditions are required, so in many cases, a peroxide catalyst is used in combination to promote the reaction. However, even when the (meth)allyl group-containing maleimide compound does not use a catalyst, the curing reaction proceeds and a uniform cured product can be obtained. The use of peroxide-based catalysts causes problems such as an increase in the viscosity of the composition, a decrease in pot life, and a decrease in physical properties due to trace amounts of peroxide remaining in the cured product. Since the meth)allyl group-containing maleimide compound does not require the use of a peroxide curing agent, these problems can be solved.

シアネートエステル樹脂と前記(メタ)アリル基含有マレイミド化合物との硬化物は優れた誘電特性を示す。 A cured product of a cyanate ester resin and the (meth)allyl group-containing maleimide compound exhibits excellent dielectric properties.

芳香族アミノ化合物は、アミノ基とマレイミド基とのマイケル付加反応により架橋密度が向上し、耐熱分解温度、ガラス転移温度が向上する。 Aromatic amino compounds have improved crosslinking density and improved thermal decomposition temperature and glass transition temperature due to the Michael addition reaction between amino groups and maleimide groups.

シアネートエステル樹脂としては、例えば、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂、ビスフェノールスルフィド型シアネートエステル樹脂、フェニレンエーテル型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ビフェニル型シアネートエステル樹脂、テトラメチルビフェニル型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、フェノールノボラック型シアネートエステル樹脂、クレゾールノボラック型シアネートエステル樹脂、トリフェニルメタン型シアネートエステル樹脂、テトラフェニルエタン型シアネートエステル樹脂、ジシクロペンタジエン-フェノール付加反応型シアネートエステル樹脂、フェノールアラルキル型シアネートエステル樹脂、ナフトールノボラック型シアネートエステル樹脂、ナフトールアラルキル型シアネートエステル樹脂、ナフトール-フェノール共縮ノボラック型シアネートエステル樹脂、ナフトール-クレゾール共縮ノボラック型シアネートエステル樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型シアネートエステル樹脂、ビフェニル変性ノボラック型シアネートエステル樹脂、アントラセン型シアネートエステル樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol E type cyanate ester resin, bisphenol S type cyanate ester resin, bisphenol sulfide type cyanate ester resin, phenylene ether type cyanate ester resin, Naphthylene ether type cyanate ester resin, biphenyl type cyanate ester resin, tetramethylbiphenyl type cyanate ester resin, polyhydroxynaphthalene type cyanate ester resin, phenol novolac type cyanate ester resin, cresol novolak type cyanate ester resin, triphenylmethane type cyanate ester resin Resin, tetraphenylethane type cyanate ester resin, dicyclopentadiene-phenol addition reaction type cyanate ester resin, phenol aralkyl type cyanate ester resin, naphthol novolak type cyanate ester resin, naphthol aralkyl type cyanate ester resin, naphthol-phenol condensed novolac type Examples include cyanate ester resin, naphthol-cresol cocondensed novolac type cyanate ester resin, aromatic hydrocarbon formaldehyde resin modified phenol resin type cyanate ester resin, biphenyl modified novolac type cyanate ester resin, anthracene type cyanate ester resin. Each of these may be used alone, or two or more types may be used in combination.

これらのシアネートエステル樹脂の中でも、特に耐熱性に優れる硬化物が得られる点においては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ノボラック型シアネートエステル樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン-フェノール付加反応型シアネートエステル樹脂が好ましい。 Among these cyanate ester resins, bisphenol A type cyanate ester resins, bisphenol F type cyanate ester resins, bisphenol E type cyanate ester resins, and polyhydroxynaphthalene type cyanate ester resins are preferred in that they yield cured products with particularly excellent heat resistance. It is preferable to use a naphthylene ether type cyanate ester resin, or a novolac type cyanate ester resin, and a dicyclopentadiene-phenol addition reaction type cyanate ester resin is preferable in that a cured product having excellent dielectric properties can be obtained.

マレイミド化合物としては、例えば、下記構造式(i)~(iii)のいずれかで表される各種の化合物等が挙げられる。 Examples of maleimide compounds include various compounds represented by any of the following structural formulas (i) to (iii).

Figure 0007433607000036
Figure 0007433607000036

上記式(i)中のRはm価の有機基であり、α及びβはそれぞれ水素原子、ハロゲン原子、アルキル基、アリール基のいずれかであり、sは1以上の整数である。 R in the above formula (i) is an m-valent organic group, α and β are each a hydrogen atom, a halogen atom, an alkyl group, or an aryl group, and s is an integer of 1 or more.

Figure 0007433607000037
Figure 0007433607000037

上記式(ii)中のRは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基のいずれかであり、sは1~3の整数、tは繰り返し単位の平均で0~10である。 R in the above formula (ii) is a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a halogen atom, a hydroxyl group, or an alkoxy group, s is an integer from 1 to 3, and t is an average of 0 repeating units. ~10.

Figure 0007433607000038
Figure 0007433607000038

上記式(iii)中のRは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基のいずれかであり、sは1~3の整数、tは繰り返し単位の平均で0~10である。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 R in the above formula (iii) is a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a halogen atom, a hydroxyl group, or an alkoxy group, s is an integer from 1 to 3, and t is an average of 0 repeating units. ~10. Each of these may be used alone, or two or more types may be used in combination.

オキサジン化合物としては、特に制限はないが、例えば、ビスフェノールFとホルマリンとアニリンの反応生成物(F-a型ベンゾオキサジン樹脂)や4,4’-ジアミノジフェニルメタンとホルマリンとフェノールの反応生成物(P-d型ベンゾオキサジン樹脂)、ビスフェノールAとホルマリンとアニリンの反応生成物、ジヒドロキシジフェニルエーテルとホルマリンとアニリンの反応生成物、ジアミノジフェニルエーテルとホルマリンとフェノールの反応生成物、ジシクロペンタジエン-フェノール付加型樹脂とホルマリンとアニリンの反応生成物、フェノールフタレインとホルマリンとアニリンの反応生成物、ジヒドロキシジフェニルスルフィドとホルマリンとアニリンの反応生成物などが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The oxazine compound is not particularly limited, but for example, the reaction product of bisphenol F, formalin, and aniline (Fa-type benzoxazine resin), the reaction product of 4,4'-diaminodiphenylmethane, formalin, and phenol (P -d-type benzoxazine resin), reaction product of bisphenol A, formalin and aniline, reaction product of dihydroxydiphenyl ether, formalin and aniline, reaction product of diaminodiphenyl ether, formalin and phenol, dicyclopentadiene-phenol addition type resin and Examples include reaction products of formalin and aniline, reaction products of phenolphthalein, formalin and aniline, and reaction products of dihydroxydiphenyl sulfide, formalin and aniline. Each of these may be used alone, or two or more types may be used in combination.

ビニル系化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素原子数が1~22のアルキル基を有するアルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート等のアラルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;2-メトキシエチル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート等のω-アルコキシアルキル(メタ)アクリレート類;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステル類;クロトン酸メチル、クロトン酸エチル等のクロトン酸のアルキルエステル類;ジメチルマレート、ジ-n-ブチルマレート、ジメチルフマレート、ジメチルイタコネート等の不飽和二塩基酸のジアルキルエステル類;エチレン、プロピレン等のα-オレフィン類;フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のフルオロオレフィン類;エチルビニルエーテル、n-ブチルビニルエーテル等のアルキルビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル類;N,N-ジメチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピロリジン、N-ビニルピロリドン等の3級アミド基含有モノマー類等が挙げられる。 Examples of vinyl compounds include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, - Alkyl (meth)acrylates having an alkyl group having 1 to 22 carbon atoms such as ethylhexyl (meth)acrylate and lauryl (meth)acrylate; aralkyl such as benzyl (meth)acrylate and 2-phenylethyl (meth)acrylate (Meth)acrylates; Cycloalkyl (meth)acrylates such as cyclohexyl (meth)acrylate and isobornyl (meth)acrylate; ω-alkoxyalkyl such as 2-methoxyethyl (meth)acrylate and 4-methoxybutyl (meth)acrylate (Meth)acrylates; Carboxylic acid vinyl esters such as vinyl acetate, vinyl propionate, vinyl pivalate, and vinyl benzoate; Alkyl esters of crotonic acid such as methyl crotonate and ethyl crotonate; dimethyl malate, di- Dialkyl esters of unsaturated dibasic acids such as n-butyl maleate, dimethyl fumarate, and dimethyl itaconate; α-olefins such as ethylene and propylene; vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, etc. fluoroolefins; alkyl vinyl ethers such as ethyl vinyl ether and n-butyl vinyl ether; cycloalkyl vinyl ethers such as cyclopentyl vinyl ether and cyclohexyl vinyl ether; N,N-dimethyl (meth)acrylamide, N-(meth)acryloylmorpholine, N- Examples include tertiary amide group-containing monomers such as (meth)acryloylpyrrolidine and N-vinylpyrrolidone.

(メタ)アリル系化合物としては、酢酸アリル、塩化アリル、カプロン酸アリル、カプリル酸アリル、ラウリン酸アリル、パルミチン酸アリル、ステアリン酸アリル、安息香酸アリル、アセト酢酸アリル、乳酸アリル等のアリルエステル類;アリルオキシメタノール、アリルオキシエタノール等のアリルオキシアルコール;、ジアリルフタレート、ジアリルイソフタレート、ジアリルシアヌレート、ジアリルイソシアヌレート、ペンタエリスリトールジアリルエーテル、トリメチロールプロパンジアリルエーテル、グリセリンジアリルエーテル、ビスフェノールAジアリルエーテル、ビスフェノールFジアリルエーテル、エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、トリエチレングリコールジアリルエーテル、プロピレングリコールジアリルエーテル、ジプロピレングリコールジアリルエーテル、トリプロピレングリコールジアリルエーテルなどのアリル基を2つ含有する化合物;トリアリルイソシアヌレート、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、トリメチロールプロパントリアリルエーテルなどのアリル基を3つ以上含有する化合物;等、またはこれら化合物のメタアリル体が挙げられる。 Examples of (meth)allylic compounds include allyl esters such as allyl acetate, allyl chloride, allyl caproate, allyl caprylate, allyl laurate, allyl palmitate, allyl stearate, allyl benzoate, allyl acetoacetate, and allyl lactate. ; Allyloxy alcohols such as allyloxymethanol and allyloxyethanol; diallyl phthalate, diallyl isophthalate, diallyl cyanurate, diallyl isocyanurate, pentaerythritol diallyl ether, trimethylolpropane diallyl ether, glycerin diallyl ether, bisphenol A diallyl ether, Compounds containing two allyl groups such as bisphenol F diallyl ether, ethylene glycol diallyl ether, diethylene glycol diallyl ether, triethylene glycol diallyl ether, propylene glycol diallyl ether, dipropylene glycol diallyl ether, tripropylene glycol diallyl ether; triallyl isocyanate Examples include compounds containing three or more allyl groups such as nurate, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, trimethylolpropane triallyl ether, etc., or metaallylic forms of these compounds.

本発明のガラス繊維含有樹脂組成物中には、マレイミド基と(メタ)アリル基の両方が存在する。マレイミド基と(メタ)アリル基の比率は特に限定は無いが、マレイミド基モル数:(メタ)アリル基モル数=1:10~10:1が好ましく、1:5~5:1であると耐熱性に優れるため好ましい。特に、1:2~3:1の場合、耐熱性と組成物粘度のバランスに優れるため好ましい。 Both maleimide groups and (meth)allyl groups are present in the glass fiber-containing resin composition of the present invention. The ratio of maleimide group to (meth)allyl group is not particularly limited, but the number of moles of maleimide group: the number of moles of (meth)allyl group is preferably 1:10 to 10:1, and preferably 1:5 to 5:1. It is preferable because it has excellent heat resistance. In particular, a ratio of 1:2 to 3:1 is preferred because it provides an excellent balance between heat resistance and composition viscosity.

<分散媒>
本発明のガラス繊維含有樹脂組成物は、組成物の固形分量や粘度を調整する目的として、分散媒を使用してもよい。分散媒としては、本発明の効果を損ねることのない液状媒体であればよく、各種有機溶剤、液状有機ポリマー等が挙げられる。
<Dispersion medium>
A dispersion medium may be used in the glass fiber-containing resin composition of the present invention for the purpose of adjusting the solid content and viscosity of the composition. The dispersion medium may be any liquid medium that does not impair the effects of the present invention, and includes various organic solvents, liquid organic polymers, and the like.

前記有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン類、テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の芳香族類、カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール類が挙げられ、これらを単独又は併用して使用可能であるが、中でもメチルエチルケトンが塗工時の揮発性や溶媒回収の面から好ましい。 Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK), cyclic ethers such as tetrahydrofuran (THF), and dioxolane, and esters such as methyl acetate, ethyl acetate, and butyl acetate. , aromatics such as toluene and xylene, and alcohols such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether.These can be used alone or in combination, but among them, methyl ethyl ketone is It is preferable from the viewpoint of volatility during processing and solvent recovery.

前記液状有機ポリマーとは、硬化反応に直接寄与しない液状有機ポリマーであり、例えば、カルボキシル基含有ポリマー変性物(フローレンG-900、NC-500:共栄社)、アクリルポリマー(フローレンWK-20:共栄社)、特殊変性燐酸エステルのアミン塩(HIPLAAD ED-251:楠本化成)、変性アクリル系ブロック共重合物(DISPERBYK2000:ビックケミー)などが挙げられる。 The liquid organic polymer is a liquid organic polymer that does not directly contribute to the curing reaction, such as carboxyl group-containing polymer modified products (Floren G-900, NC-500: Kyoei-sha), acrylic polymers (Floren WK-20: Kyoei-sha). , a special modified phosphoric acid ester amine salt (HIPLAAD ED-251: Kusumoto Kasei), a modified acrylic block copolymer (DISPERBYK2000: BYK-CHEMIE), and the like.

<樹脂>
また、本発明のガラス繊維含有樹脂組成物は、上述した各種化合物以外の樹脂を有していてもよい。前記樹脂としては、本発明の効果を損なわない範囲であれば公知慣用の樹脂を配合すればよく、例えば熱硬化性樹脂や熱可塑性樹脂を用いることができる。
<Resin>
Moreover, the glass fiber-containing resin composition of the present invention may contain resins other than the various compounds mentioned above. As the resin, any known and commonly used resin may be blended as long as it does not impair the effects of the present invention, and for example, thermosetting resins and thermoplastic resins can be used.

熱硬化性樹脂とは、加熱または放射線や触媒などの手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂である。その具体例としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルテレフタレート樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化性ポリイミド樹脂、ベンゾオキサジン樹脂、活性エステル樹脂、アニリン樹脂、シアネートエステル樹脂、スチレン・無水マレイン酸(SMA)樹脂、本発明により得られるアリル基含有マレイミド化合物以外のマレイミド樹脂などが挙げられる。これらの熱硬化性樹脂は1種または2種以上を併用して用いることができる。 A thermosetting resin is a resin that has the property of becoming substantially insoluble and infusible when cured by means such as heating, radiation, or a catalyst. Specific examples include phenolic resin, urea resin, melamine resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl terephthalate resin, epoxy resin, silicone resin, urethane resin, furan resin, ketone resin, xylene resin. Examples include resins, thermosetting polyimide resins, benzoxazine resins, active ester resins, aniline resins, cyanate ester resins, styrene-maleic anhydride (SMA) resins, and maleimide resins other than the allyl group-containing maleimide compound obtained by the present invention. It will be done. These thermosetting resins can be used alone or in combination of two or more.

熱可塑性樹脂とは、加熱により溶融成形可能な樹脂を言う。その具体例としてはポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ゴム変性ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、アクリロニトリル-スチレン(AS)樹脂、ポリメチルメタクリレート樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート樹脂、エチレンビニルアルコール樹脂、酢酸セルロース樹脂、アイオノマー樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリ乳酸樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリサルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリケトン樹脂、液晶ポリエステル樹脂、フッ素樹脂、シンジオタクチックポリスチレン樹脂、環状ポリオレフィン樹脂などが挙げられる。これらの熱可塑性樹脂は1種または2種以上を併用して用いることができる。 Thermoplastic resin refers to resin that can be melt-molded by heating. Specific examples include polyethylene resin, polypropylene resin, polystyrene resin, rubber-modified polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, polymethyl methacrylate resin, acrylic resin, polyvinyl chloride resin, Polyvinylidene chloride resin, polyethylene terephthalate resin, ethylene vinyl alcohol resin, cellulose acetate resin, ionomer resin, polyacrylonitrile resin, polyamide resin, polyacetal resin, polybutylene terephthalate resin, polylactic acid resin, polyphenylene ether resin, modified polyphenylene ether resin, polycarbonate Resin, polysulfone resin, polyphenylene sulfide resin, polyetherimide resin, polyethersulfone resin, polyarylate resin, thermoplastic polyimide resin, polyamideimide resin, polyether ether ketone resin, polyketone resin, liquid crystal polyester resin, fluororesin, syndication Examples include tactic polystyrene resin and cyclic polyolefin resin. These thermoplastic resins can be used alone or in combination of two or more.

<硬化剤>
本発明のガラス繊維含有樹脂組成物は、配合物に応じて硬化剤を用いてもよく、例えば、エポキシ基を有する化合物(エポキシ化合物)を配合している場合には、アミン系硬化剤、アミド系硬化剤、酸無水物系硬化剤、フェノール系硬化剤、活性エステル系硬化剤、カルボキシル基含有硬化剤、チオール系硬化剤などの各種の硬化剤を併用してもかまわない。
<Curing agent>
The glass fiber-containing resin composition of the present invention may contain a curing agent depending on the formulation. For example, when a compound having an epoxy group (epoxy compound) is blended, an amine curing agent, an amide curing agent, etc. Various curing agents such as curing agents, acid anhydride curing agents, phenol curing agents, active ester curing agents, carboxyl group-containing curing agents, and thiol curing agents may be used in combination.

アミン系硬化剤としてはジアミノジフェニルメタン、ジアミノジフェニルエタン、ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、オルトフェニレンジアミン、メタフェニレンジアミン、パラフェニレンジアミン、メタキシレンジアミン、パラキシレンジアミン、ジエチルトルエンジアミン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、イミダゾ-ル、BF3-アミン錯体、グアニジン誘導体、グアナミン誘導体等が挙げられる。 Amine-based curing agents include diaminodiphenylmethane, diaminodiphenylethane, diaminodiphenyl ether, diaminodiphenylsulfone, orthophenylenediamine, metaphenylenediamine, paraphenylenediamine, metaxylenediamine, paraxylenediamine, diethyltoluenediamine, diethylenetriamine, triethylenetetramine, Examples include isophorone diamine, imidazole, BF3-amine complex, guanidine derivative, guanamine derivative and the like.

アミド系硬化剤としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。 Examples of the amide curing agent include dicyandiamide, a polyamide resin synthesized from a dimer of linolenic acid, and ethylenediamine, and the like.

酸無水物系硬化剤としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。 Examples of acid anhydride curing agents include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. Examples include hydrophthalic anhydride.

フェノール系硬化剤としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、レゾルシン、カテコール、ハイドロキノン、フルオレンビスフェノール、4,4’-ビフェノール、4,4’,4”-トリヒドロキシトリフェニルメタン、ナフタレンジオール、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、カリックスアレーン、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
これらの硬化剤は、単独でも2種類以上の併用でも構わない。
Examples of phenolic curing agents include bisphenol A, bisphenol F, bisphenol S, resorcinol, catechol, hydroquinone, fluorene bisphenol, 4,4'-biphenol, 4,4',4''-trihydroxytriphenylmethane, naphthalene diol, 1 , 1,2,2-tetrakis(4-hydroxyphenyl)ethane, calixarene, phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyrock) resin), polyhydric phenol novolak resin synthesized from polyhydric hydroxy compounds represented by resorcinol novolak resin and formaldehyde, naphthol aralkyl resin, trimethylolmethane resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol cocondensation Novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin (polyhydric phenol compound with phenol cores linked by bismethylene groups), biphenyl-modified naphthol resin (polyhydric naphthol compound with phenol nuclei linked by bismethylene groups) , aminotriazine-modified phenolic resin (a polyhydric phenol compound in which a phenol nucleus is linked with melamine, benzoguanamine, etc.) and an alkoxy group-containing aromatic ring-modified novolac resin (a polyhydric phenol in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde) Examples include polyhydric phenol compounds such as compound).
These curing agents may be used alone or in combination of two or more types.

また、本発明のガラス繊維含有樹脂組成物にエポキシ基を有する化合物(エポキシ化合物)が含まれる場合、硬化促進剤を単独で、あるいは前記の硬化剤と併用することもできる。硬化促進剤としてエポキシ樹脂の硬化反応を促す種々の化合物が使用でき、例えば、リン系化合物、第3級アミン化合物、イミダゾール化合物、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。この中でも、イミダゾール化合物、リン系化合物、第3級アミン化合物の使用が好ましく、特に硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、イミダゾール化合物では2-エチル-4-メチル-イミダゾール、リン系化合物ではトリフェニルホスフィン、第3級アミンではN,N-ジメチル-4-アミノピリジン(DMAP)、1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)が好ましい。 Further, when the glass fiber-containing resin composition of the present invention contains a compound having an epoxy group (epoxy compound), a curing accelerator can be used alone or in combination with the above-mentioned curing agent. Various compounds that promote the curing reaction of the epoxy resin can be used as the curing accelerator, such as phosphorus compounds, tertiary amine compounds, imidazole compounds, organic acid metal salts, Lewis acids, and amine complex salts. Among these, it is preferable to use imidazole compounds, phosphorus compounds, and tertiary amine compounds. Among them, imidazole compounds are 2-ethyl-4-methyl- Preferred imidazole and phosphorus compounds include triphenylphosphine, and preferred tertiary amines include N,N-dimethyl-4-aminopyridine (DMAP) and 1,8-diazabicyclo-[5.4.0]-undecene (DBU).

<その他の配合物>
本発明のガラス繊維含有樹脂組成物は、その他の配合物を有していてもかまわない。例えば、触媒、重合開始剤、無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、カップリング剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、難燃剤、可塑剤等が挙げられる。
<Other formulations>
The glass fiber-containing resin composition of the present invention may contain other ingredients. For example, catalysts, polymerization initiators, inorganic pigments, organic pigments, extender pigments, clay minerals, waxes, surfactants, stabilizers, flow regulators, coupling agents, dyes, leveling agents, rheology control agents, ultraviolet absorbers, Examples include antioxidants, flame retardants, plasticizers, and the like.

<硬化物>
本発明の硬化物は、前記ガラス繊維含有樹脂組成物を硬化することにより得ることができる。前記硬化物は、低線膨張で、高ガラス転移温度、耐熱分解性に優れることから、耐熱部材として好適に使用可能であり、また、ガラス繊維への密着性に優れることから、機械的強度が高く、ガラス繊維で強化した成形材料にも好適に使用可能である。硬化物の成形方法は特に限定は無く、組成物単独で成形してもよいし、基材と共に硬化物からなる層を有る(積層する)ことで積層体としてもかまわない。
<Cured product>
The cured product of the present invention can be obtained by curing the glass fiber-containing resin composition. The cured product has low linear expansion, high glass transition temperature, and excellent thermal decomposition resistance, so it can be suitably used as a heat-resistant member. Also, since it has excellent adhesion to glass fibers, it has high mechanical strength. It can also be suitably used in molding materials reinforced with glass fiber. The method for molding the cured product is not particularly limited, and the composition may be molded alone, or a laminate may be formed by having (laminating) a layer made of the cured product together with the base material.

本発明のガラス繊維含有樹脂組成物を硬化させる場合には、熱硬化をおこなえばよい。熱硬化する際、公知慣用の硬化触媒を用いても良いが、前記ガラス繊維含有樹脂組成物は、マレイミド基とアリル基との反応により硬化触媒を用いなくても硬化することが可能である。
熱硬化を行う場合、1回の加熱で硬化させてもよいし、多段階の加熱工程を経て硬化させてもかまわない。
When curing the glass fiber-containing resin composition of the present invention, thermal curing may be performed. When thermally curing, a known and commonly used curing catalyst may be used, but the glass fiber-containing resin composition can be cured without using a curing catalyst due to the reaction between the maleimide group and the allyl group.
When thermal curing is performed, it may be cured by one heating process or may be cured through a multi-step heating process.

硬化触媒を用いる場合には、例えば、塩酸、硫酸、燐酸等の無機酸類;p-トルエンスルホン酸、燐酸モノイソプロピル、酢酸等の有機酸類;水酸化ナトリウム又は水酸化カリウム等の無機塩基類;テトライソプロピルチタネート、テトラブチルチタネート等のチタン酸エステル類;1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ-n-ブチルアミン、ジメチルベンジルアミン、モノエタノールアミン、イミダゾール、2-エチル-4-メチル-イミダゾール、1-メチルイミダゾール、N,N-ジメチル-4-アミノピリジン(DMAP)等の各種の塩基性窒素原子を含有する化合物類;テトラメチルアンモニウム塩、テトラブチルアンモニウム塩、ジラウリルジメチルアンモニウム塩等の各種の4級アンモニウム塩類であって、対アニオンとして、クロライド、ブロマイド、カルボキシレートもしくはハイドロオキサイドなどを有する4級アンモニウム塩類;ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジアセチルアセトナート、オクチル酸錫又はステアリン酸錫など錫カルボン酸塩、;過酸化ベンゾイル、クメンハイドロパーオキサイド、ジクミルパーオキサイド、過酸化ラウロイル、ジ-t-ブチルパーオキサイド、t-ブチルハイドロパーオキサイド、メチルエチルケトン過酸化物、t-ブチルパーベンゾエートなどの有機過酸化物等を使用することができる。触媒は単独で使用しても良いし、2種以上併用しても良い。 When using a curing catalyst, for example, inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids such as p-toluenesulfonic acid, monoisopropyl phosphate, and acetic acid; inorganic bases such as sodium hydroxide or potassium hydroxide; Titanate esters such as isopropyl titanate and tetrabutyl titanate; 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), 1,5-diazabicyclo[4.3.0]nonene-5 (DBN) , 1,4-diazabicyclo[2.2.2]octane (DABCO), tri-n-butylamine, dimethylbenzylamine, monoethanolamine, imidazole, 2-ethyl-4-methyl-imidazole, 1-methylimidazole, N , N-dimethyl-4-aminopyridine (DMAP) and other compounds containing various basic nitrogen atoms; various quaternary ammonium salts such as tetramethylammonium salt, tetrabutylammonium salt, dilauryldimethylammonium salt, etc. and quaternary ammonium salts having chloride, bromide, carboxylate or hydroxide as a counter anion; dibutyltin diacetate, dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin diacetylacetonate, tin octylate or tin stearate. Tin carboxylates, such as; benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, lauroyl peroxide, di-t-butyl peroxide, t-butyl hydroperoxide, methyl ethyl ketone peroxide, t-butyl perbenzoate Organic peroxides such as, for example, can be used. The catalysts may be used alone or in combination of two or more.

また、前記(メタ)アリル基含有マレイミド化合物は、炭素-炭素間二重結合を有することから、活性エネルギー線硬化を併用することもできる。活性エネルギー線硬化を行う場合、光重合開始剤をガラス繊維含有樹脂組成物に配合すればよい。光重合開始剤としては公知のものを使用すればよく、例えば、アセトフェノン類、ベンジルケタール類、ベンゾフェノン類からなる群から選ばれる一種以上を好ましく用いることができる。前記アセトフェノン類としては、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン等が挙げられる。前記ベンジルケタール類としては、例えば、1-ヒドロキシシクロヘキシル-フェニルケトン、ベンジルジメチルケタール等が挙げられる。前記ベンゾフェノン類としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル等が挙げられる。前記ベンゾイン類等としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。光重合開始剤は単独で使用しても良いし、2種以上を併用してもよい。 Further, since the (meth)allyl group-containing maleimide compound has a carbon-carbon double bond, it can also be cured with active energy rays. When performing active energy ray curing, a photopolymerization initiator may be added to the glass fiber-containing resin composition. Any known photopolymerization initiator may be used, and for example, one or more selected from the group consisting of acetophenones, benzyl ketals, and benzophenones can be preferably used. The acetophenones include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 4 -(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone and the like. Examples of the benzyl ketals include 1-hydroxycyclohexyl-phenyl ketone and benzyl dimethyl ketal. Examples of the benzophenones include benzophenone and methyl o-benzoylbenzoate. Examples of the benzoins include benzoin, benzoin methyl ether, benzoin isopropyl ether, and the like. The photopolymerization initiators may be used alone or in combination of two or more.

熱硬化と活性エネルギー線硬化を併用して硬化させる場合、加熱と活性エネルギー線照射を同時に行っても良いし、別々に行っても良い。例えば、活性エネルギー線照射を行った後で熱硬化を行っても良いし、熱硬化の後に活性エネルギー線硬化を行っても良い。また、それぞれの硬化方法を2回以上組み合わせて行っても良く、用途に合わせて適宜硬化方法を選択すればよい。 When curing is carried out using both thermal curing and active energy ray curing, heating and active energy ray irradiation may be performed simultaneously or separately. For example, thermal curing may be performed after active energy ray irradiation, or active energy ray curing may be performed after thermal curing. Moreover, each curing method may be combined two or more times, and the curing method may be selected as appropriate depending on the application.

<コンパウンド>
本発明は、前記ガラス繊維含有樹脂組成物を含有するコンパウンドに関する。前記コンパウンドを得る方法としては、前記ガラス繊維含有樹脂組成物、硬化促進剤、及び、その他の充填剤の配合剤とを必要に応じて押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、その他の充填剤としては、カーボンブラックなどの有機着色剤や、溶融シリカなどの無機充填剤、あるいは熱伝導率の高い結晶シリカ、アルミナ、窒化ケイ素などが用いられる。その充填率はガラス繊維含有樹脂組成物中のガラス繊維以外の成分100質量部当たり、無機充填剤を30~95質量%の範囲で用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上がより好ましく、80質量部以上であることがさらに好ましい。
<Compound>
The present invention relates to a compound containing the glass fiber-containing resin composition. The method for obtaining the compound includes uniformly mixing the glass fiber-containing resin composition, a curing accelerator, and other fillers using an extruder, kneader, roll, etc. as necessary. An example of this method is to sufficiently melt and mix the mixture until it becomes . In this case, as other fillers, organic colorants such as carbon black, inorganic fillers such as fused silica, crystalline silica, alumina, silicon nitride, etc. with high thermal conductivity are used. The filling rate of the inorganic filler is preferably 30 to 95% by mass per 100 parts by mass of components other than glass fibers in the glass fiber-containing resin composition. In order to improve cracking properties and reduce the coefficient of linear expansion, the content is more preferably 70 parts by mass or more, and even more preferably 80 parts by mass or more.

<耐熱部材>
本発明は、前記ガラス繊維含有樹脂組成物を含有する耐熱材料用組成物に関する。また、前記ガラス繊維含有樹脂組成物を硬化することにより得られる硬化物を含有する耐熱部材に関する。本発明のガラス繊維含有樹脂組成物は、その硬化物が低線膨張であって、耐熱分解性に優れることから、耐熱部材に好適に使用可能である。本発明のガラス繊維含有樹脂組成物から耐熱部材を得る成形方法としては、上記コンパウンドを注型、あるいはトランスファー成形機、射出成形機などを用いて成形し、さらに50~250℃で2~10時間加熱する方法等が挙げられる。こうして得られる耐熱部材は、各種用途に好適に使用可能であり、例えば、産業用機械部品、一般機械部品、自動車・鉄道・車両等部品、宇宙・航空関連部品、電子・電気部品、建築材料、容器・包装部材、生活用品、スポーツ・レジャー用品、風力発電用筐体部材等が挙げられるが、これらに限定される物ではない。
<Heat-resistant parts>
The present invention relates to a composition for heat-resistant materials containing the glass fiber-containing resin composition. The present invention also relates to a heat-resistant member containing a cured product obtained by curing the glass fiber-containing resin composition. The glass fiber-containing resin composition of the present invention can be suitably used for heat-resistant members because its cured product has low linear expansion and excellent thermal decomposition resistance. As a molding method for obtaining a heat-resistant member from the glass fiber-containing resin composition of the present invention, the above compound is molded using a casting, transfer molding machine, injection molding machine, etc., and then at 50 to 250°C for 2 to 10 hours. Examples include a method of heating. The heat-resistant components thus obtained can be suitably used for various purposes, such as industrial mechanical parts, general mechanical parts, automobile/railway/vehicle parts, space/aviation related parts, electronic/electrical parts, building materials, etc. Examples include, but are not limited to, containers/packaging members, daily necessities, sports/leisure goods, wind power generation casing members, etc.

次に本発明を実施例、比較例により具体的に説明するが、これらに限定解釈されるものではない。また、以下において「部」及び「%」は特に断わりのない限り質量基準である。なお、H-NMR、13C-NMR及びFD-MSスペクトルは以下の条件にて測定した。 Next, the present invention will be specifically explained using Examples and Comparative Examples, but the present invention is not limited to these. Further, in the following, "parts" and "%" are based on mass unless otherwise specified. Note that 1 H-NMR, 13 C-NMR, and FD-MS spectra were measured under the following conditions.

H-NMR:JEOL RESONANCE製「JNM-ECA600」
磁場強度:600MHz
積算回数:32回
溶媒:DMSO-d6
試料濃度:30質量%
1 H-NMR: “JNM-ECA600” manufactured by JEOL RESONANCE
Magnetic field strength: 600MHz
Total number of times: 32 times Solvent: DMSO-d6
Sample concentration: 30% by mass

13C-NMR:JEOL RESONANCE製「JNM-ECZ400S」
共鳴周波数:100MHz
積算回数:4000回
溶媒:クロロホルム-d
試料濃度:12質量%
緩和試薬 :クロム(III)アセチルアセトネート
13C -NMR: “JNM-ECZ400S” manufactured by JEOL RESONANCE
Resonance frequency: 100MHz
Accumulation count: 4000 times Solvent: Chloroform-d
Sample concentration: 12% by mass
Relaxation reagent: Chromium (III) acetylacetonate

FD-MS:日本電子株式会社製「JMS-T100GC AccuTOF」
測定範囲:m/z=50.00~2000.00
変化率:25.6mA/min
最終電流値:40mA
FD-MS: “JMS-T100GC AccuTOF” manufactured by JEOL Ltd.
Measurement range: m/z=50.00-2000.00
Rate of change: 25.6mA/min
Final current value: 40mA

製造例1 繊維集束剤(A):重合性二重結合を含有するポリエステル樹脂使用
ネオペンチルグリコール104質量部(1モル部)、ブチロラクトン172質量部(2モル部)、及びシュウ酸チタン酸カリウム2質量部を、ガラス反応容器中、230℃で0.001MPaまで減圧し水を留去しながら15時間反応させた。反応混合物に更に無水マレイン酸88質量部(0.9モル部)を加えて、150℃、常圧で2時間反応させ、ポリエステル樹脂を得た。次いで、イオン交換水1100質量部を30分かけて滴下し、更に15分間攪拌混合した。この水分散物を減圧蒸留により濃縮して、固形分30%の繊維集束剤(A)を得た。得られた集束剤中の二重結合濃度を13C-NMRの積分値より算出した値は5モル%であった。なお、二重結合濃度は13C-NMRの全シグナルの積分値と98~100ppm付近のシグナルの積分値の2分の1の割合から算出した。
Production Example 1 Fiber sizing agent (A): Use of polyester resin containing polymerizable double bonds Neopentyl glycol 104 parts by mass (1 mol part), butyrolactone 172 parts by mass (2 mol parts), and potassium oxalate titanate 2 Part by mass was reacted in a glass reaction vessel at 230° C. for 15 hours while reducing the pressure to 0.001 MPa and distilling off water. Further, 88 parts by mass (0.9 parts by mole) of maleic anhydride was added to the reaction mixture, and the mixture was reacted at 150° C. and normal pressure for 2 hours to obtain a polyester resin. Next, 1,100 parts by mass of ion-exchanged water was added dropwise over 30 minutes, and the mixture was further stirred and mixed for 15 minutes. This aqueous dispersion was concentrated by vacuum distillation to obtain a fiber sizing agent (A) with a solid content of 30%. The double bond concentration in the obtained focusing agent was calculated from the integral value of 13 C-NMR and was 5 mol%. Note that the double bond concentration was calculated from the ratio of the integral value of all the 13 C-NMR signals to the half of the integral value of the signal around 98 to 100 ppm.

製造例2 繊維集束剤(B):重合性二重結合を含有するポリウレタン樹脂使用
ポリカプロラクトンエステルポリオール(商品名:プラクセル220[PCL220]、ダイセル化学(株)製、OH価56mgKOH/g、Mw:約2000)200質量部、両末端水酸基ポリブタジエン(日本曹達株式会社製「NISSO-PB[G-2000]、数平均分子量:1900)1710質量部にメチルエチルケトン500質量部を加えて溶解し、次いで、キシレンジイソシアネート188質量部を加え、80℃で2時間反応させ、ポリウレタン樹脂溶液を得た。次いで、イオン交換水1200質量部を30分かけて滴下し、更に15分間攪拌混合した。この水分散物を減圧蒸留により濃縮して、固形分30%の繊維集束剤(B)を得た。得られた集束剤中の二重結合濃度を13C-NMRの積分値より算出した値は21モル%であった。なお、二重結合濃度は13C-NMRの全シグナルの積分値と98~100ppm付近のシグナルの積分値の2分の1の割合から算出した。
Production Example 2 Fiber sizing agent (B): Use of polyurethane resin containing polymerizable double bonds Polycaprolactone ester polyol (trade name: Plaxel 220 [PCL220], manufactured by Daicel Chemical Co., Ltd., OH value 56 mgKOH/g, Mw: 2000) and 1710 parts by mass of polybutadiene with hydroxyl groups at both ends (NISSO-PB[G-2000] manufactured by Nippon Soda Co., Ltd., number average molecular weight: 1900) were added and dissolved in 500 parts by mass of methyl ethyl ketone, and then dissolved in xylene. 188 parts by mass of diisocyanate was added and reacted at 80°C for 2 hours to obtain a polyurethane resin solution.Next, 1200 parts by mass of ion-exchanged water was added dropwise over 30 minutes, and the mixture was further stirred and mixed for 15 minutes.This aqueous dispersion was It was concentrated by vacuum distillation to obtain a fiber sizing agent (B) with a solid content of 30%.The double bond concentration in the obtained sizing agent was calculated from the integral value of 13C -NMR and was 21 mol%. Note that the double bond concentration was calculated from the ratio of the integral value of all 13 C-NMR signals to the half of the integral value of the signal around 98 to 100 ppm.

製造例3 繊維集束剤(C):重合性二重結合を含有しないポリエステル樹脂使用
ネオペンチルグリコール104質量部(1モル部)、ブチロラクトン172質量部(2モル部)、及びシュウ酸チタン酸カリウム2質量部を、ガラス反応容器中、230℃で0.001MPaまで減圧し水を留去しながら15時間反応させ、ポリエステル樹脂を得た。次いで、イオン交換水1100質量部を30分かけて滴下し、更に15分間攪拌混合した。この水分散物を減圧蒸留により濃縮して、固形分30%の繊維集束剤(C)を得た。
Production Example 3 Fiber sizing agent (C): Use of polyester resin that does not contain polymerizable double bonds Neopentyl glycol 104 parts by mass (1 mol part), butyrolactone 172 parts by mass (2 mol parts), and potassium oxalate titanate 2 Part by mass was reacted in a glass reaction vessel at 230°C for 15 hours while reducing the pressure to 0.001 MPa and distilling off water to obtain a polyester resin. Next, 1,100 parts by mass of ion-exchanged water was added dropwise over 30 minutes, and the mixture was further stirred and mixed for 15 minutes. This aqueous dispersion was concentrated by vacuum distillation to obtain a fiber sizing agent (C) with a solid content of 30%.

製造例4 繊維集束剤(D):重合性二重結合を1モルしか含有しないポリウレタン樹脂使用
ポリカプロラクトンエステルポリオール(商品名:プラクセル220[PCL220]、ダイセル化学(株)製、OH価56mgKOH/g、Mw:約2000)200質量部、両末端水酸基ポリブタジエン(日本曹達株式会社製「NISSO-PB[G-2000]、数平均分子量:1900)5.7質量部にメチルエチルケトン100質量部を加えて溶解し、次いで、キシレンジイソシアネート18質量部を加え、80℃で2時間反応させ、ポリウレタン樹脂溶液を得た。次いで、イオン交換水1200質量部を30分かけて滴下し、更に15分間攪拌混合した。この水分散物を減圧蒸留により濃縮して、固形分30%の繊維集束剤(D)を得た。得られた集束剤中の二重結合濃度を13C-NMRの積分値より算出した値は1モル%であった。なお、二重結合濃度は13C-NMRの全シグナルの積分値と98~100ppm付近のシグナルの積分値の2分の1の割合から算出した。
Production Example 4 Fiber sizing agent (D): Use of polyurethane resin containing only 1 mole of polymerizable double bonds Polycaprolactone ester polyol (trade name: Plaxel 220 [PCL220], manufactured by Daicel Chemical Co., Ltd., OH value 56 mgKOH/g , Mw: approx. 2000), 5.7 parts by mass of polybutadiene with hydroxyl groups at both ends (NISSO-PB [G-2000] manufactured by Nippon Soda Co., Ltd., number average molecular weight: 1900) and 100 parts by mass of methyl ethyl ketone were added and dissolved. Then, 18 parts by mass of xylene diisocyanate was added and reacted at 80° C. for 2 hours to obtain a polyurethane resin solution. Next, 1200 parts by mass of ion-exchanged water was added dropwise over 30 minutes, and the mixture was further stirred and mixed for 15 minutes. This aqueous dispersion was concentrated by vacuum distillation to obtain a fiber sizing agent (D) with a solid content of 30%.The double bond concentration in the obtained sizing agent was calculated from the integral value of 13 C-NMR. The double bond concentration was calculated from the ratio of the integral value of all the 13 C-NMR signals to the half of the integral value of the signal around 98 to 100 ppm.

製造例5 繊維集束剤(E):重合性二重結合を含有しないポリ酢酸ビニル樹脂使用
撹拌機付き200リットルのオートクレーブに、イオン交換水185質量部、エチルアルコール85質量部、酢酸ビニルモノマー100質量部、重合触媒としてビス(4-ターシャリブチルシクロへキシル)パーオキシジカーボネート〔化薬アクゾ社製、パーカドックス 16〕0.3質量部、懸濁安定剤として部分ケン化ポリビニルアルコール0.025質量部を仕込み、重合温度62℃で7時間重合した。次にスラリーを撹拌しながら温度65℃、減圧度-580mmHgで未反応酢酸ビニルモノマーとエチルアルコールを除去し、ポリ酢酸ビニル樹脂水溶液を得た。次いで、イオン交換水370質量部を30分かけて滴下し、更に15分間攪拌混合した。この水分散物を減圧蒸留により濃縮して、固形分30%の繊維集束剤(E)を得た。
Production Example 5 Fiber sizing agent (E): Polyvinyl acetate resin containing no polymerizable double bonds In a 200-liter autoclave equipped with a stirrer, 185 parts by mass of ion-exchanged water, 85 parts by mass of ethyl alcohol, and 100 parts by mass of vinyl acetate monomer. 0.3 parts by mass of bis(4-tert-butylcyclohexyl) peroxydicarbonate [manufactured by Kayaku Akzo Co., Ltd., Percadox 16] as a polymerization catalyst, 0.025 parts by mass of partially saponified polyvinyl alcohol as a suspension stabilizer. Parts by mass were charged, and polymerization was carried out at a polymerization temperature of 62° C. for 7 hours. Next, while stirring the slurry, unreacted vinyl acetate monomer and ethyl alcohol were removed at a temperature of 65°C and a reduced pressure of -580 mmHg to obtain an aqueous polyvinyl acetate resin solution. Next, 370 parts by mass of ion-exchanged water was added dropwise over 30 minutes, and the mixture was further stirred and mixed for 15 minutes. This aqueous dispersion was concentrated by vacuum distillation to obtain a fiber sizing agent (E) with a solid content of 30%.

〔合成例1〕マレイミド組成物(A)の合成
Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences,71(1),5-12;2001,の文献に記載の方法に従って、反応物(h-1)を合成した。
[Synthesis Example 1] Synthesis of maleimide composition (A) Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences, 71(1), 5-12; 2001, The reactants were prepared according to methods described in the literature. (h-1) was synthesized.

Figure 0007433607000039
Figure 0007433607000039

温度計、冷却管、攪拌機を取り付けた3Lフラスコに反応物(h-1)60.00g(0.232mol)、酢酸800mL、臭化水素酸(47%)800mLを仕込み攪拌しながら加熱し還流状態とした。還流下で12時間反応させた後、室温まで空冷した。反応液を20%水酸化ナトリウム水溶液で中和後、酢酸エチル600mLで抽出した。イオン交換水200mLで3回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し反応物(h-2)を43.01g(収率80.5%)得た。 60.00 g (0.232 mol) of reactant (h-1), 800 mL of acetic acid, and 800 mL of hydrobromic acid (47%) were placed in a 3 L flask equipped with a thermometer, cooling tube, and stirrer, and heated while stirring to bring the mixture to reflux. And so. After reacting under reflux for 12 hours, the mixture was air-cooled to room temperature. The reaction solution was neutralized with a 20% aqueous sodium hydroxide solution, and then extracted with 600 mL of ethyl acetate. The mixture was washed three times with 200 mL of ion-exchanged water, dried over sodium sulfate, and concentrated under reduced pressure to obtain 43.01 g (yield: 80.5%) of reaction product (h-2).

Figure 0007433607000040
Figure 0007433607000040

温度計、冷却管、攪拌機を取り付けた3Lフラスコに反応物(h-2)133.40g(0.58mol)、DMF(N,N-ジメチルホルムアミド)1L、イオン交換水0.45Lを仕込み室温で撹拌した。反応液を60℃まで加熱した後、無水酢酸148.22g(1.45mol)をゆっくりと滴下した。滴下終了後、60℃で2時間反応させた後、室温まで空冷した。析出物をろ過し、イオン交換水2Lで洗浄した後、80℃で10時間真空乾燥を行い、固体状の反応物(a-1)を162.09g(収率89.0%)得た。 133.40 g (0.58 mol) of reactant (h-2), 1 L of DMF (N,N-dimethylformamide), and 0.45 L of ion-exchanged water were placed in a 3 L flask equipped with a thermometer, cooling tube, and stirrer, and the mixture was heated at room temperature. Stirred. After heating the reaction solution to 60° C., 148.22 g (1.45 mol) of acetic anhydride was slowly added dropwise. After the dropwise addition was completed, the mixture was reacted at 60° C. for 2 hours, and then air-cooled to room temperature. The precipitate was filtered, washed with 2 L of ion-exchanged water, and then vacuum-dried at 80° C. for 10 hours to obtain 162.09 g (yield: 89.0%) of solid reaction product (a-1).

温度計、冷却管、攪拌機を取り付けた3Lフラスコに反応物(a-1)137.53g(0.438mol)、アセトン2.2Lを仕込み攪拌した。次に炭酸カリウム133.79g(0.968mol)を加え、反応液を加熱し還流状態とした。1時間還流した後、臭化アリル116.60g(0.964mol)を1時間かけて滴下した。滴下終了後、12時間還流下で反応させた後、室温まで空冷した。ろ過後、反応液を減圧濃縮し、さらに80℃で10時間真空乾燥を行い、反応物(a-2)を165.67g(収率96.0%)得た。 137.53 g (0.438 mol) of reactant (a-1) and 2.2 L of acetone were charged into a 3 L flask equipped with a thermometer, a cooling tube, and a stirrer, and the mixture was stirred. Next, 133.79 g (0.968 mol) of potassium carbonate was added, and the reaction solution was heated to a reflux state. After refluxing for 1 hour, 116.60 g (0.964 mol) of allyl bromide was added dropwise over 1 hour. After the dropwise addition was completed, the reaction mixture was allowed to react under reflux for 12 hours, and then air-cooled to room temperature. After filtration, the reaction solution was concentrated under reduced pressure and further vacuum dried at 80° C. for 10 hours to obtain 165.67 g (yield 96.0%) of reaction product (a-2).

温度計、冷却管、攪拌機を取り付けた1Lフラスコに反応物(a-2)を158.39g(0.402mol)、エタノール330mLを仕込み攪拌した。濃塩酸108.97gを加え60℃に加熱した。60℃で30時間反応後、室温まで空冷した。反応液を20%水酸化ナトリウム水溶液で中和後、酢酸エチル400mLで抽出した。イオン交換水200mLで2回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し、得られた反応物を80℃で10時間真空乾燥を行い液状の反応物(h-3)を117.14g(収率94.0%)得た。 A 1 L flask equipped with a thermometer, a cooling tube, and a stirrer was charged with 158.39 g (0.402 mol) of the reaction product (a-2) and 330 mL of ethanol and stirred. 108.97 g of concentrated hydrochloric acid was added and heated to 60°C. After reacting at 60°C for 30 hours, it was air cooled to room temperature. The reaction solution was neutralized with a 20% aqueous sodium hydroxide solution, and then extracted with 400 mL of ethyl acetate. Washed twice with 200 mL of ion-exchanged water, added sodium sulfate, dried, and concentrated under reduced pressure. The resulting reaction product was vacuum-dried at 80°C for 10 hours to obtain 117.14 g of liquid reactant (h-3). Yield: 94.0%).

温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた3Lフラスコに無水マレイン酸132.48g(1.351mol)、トルエン1.53Lを仕込み室温で攪拌した。フラスコを氷浴へ移し、反応物(h-3)を99.82g(0.322mol)、4-アミノフェノールを63.76g(0.584mol)、DMF280mLの混合溶液を滴下した。滴下終了後、室温でさらに2時間反応させた。p-トルエンスルホン酸一水和物15.27gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を9時間行った。室温まで空冷後、減圧濃縮し褐色溶液553.22gを得た。酢酸エチル1.4Lに溶解させイオン交換水400mLで4回、2%炭酸水素ナトリウム水溶液400mLで5回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し得られた反応物を80℃で11時間真空乾燥を行い、アリル基含有マレイミド化合物および水酸基含有マレイミド化合物を含有する、マレイミド組成物(A)を183.04g得た。 132.48 g (1.351 mol) of maleic anhydride and 1.53 L of toluene were charged into a 3 L flask equipped with a thermometer, a condenser, a Dean-Stark trap, and a stirrer, and the mixture was stirred at room temperature. The flask was transferred to an ice bath, and a mixed solution of 99.82 g (0.322 mol) of the reaction product (h-3), 63.76 g (0.584 mol) of 4-aminophenol, and 280 mL of DMF was added dropwise. After the dropwise addition was completed, the reaction was continued for an additional 2 hours at room temperature. 15.27 g of p-toluenesulfonic acid monohydrate was added, the reaction solution was heated, and the water and toluene that azeotroped under reflux were cooled and separated. Only the toluene was returned to the system to complete the dehydration reaction. Time went. After air cooling to room temperature, the mixture was concentrated under reduced pressure to obtain 553.22 g of a brown solution. Dissolved in 1.4 L of ethyl acetate, washed 4 times with 400 mL of ion-exchanged water and 5 times with 400 mL of 2% sodium bicarbonate aqueous solution, added with sodium sulfate, dried, and concentrated under reduced pressure. The resulting reaction product was heated at 80°C for 11 hours. Vacuum drying was performed to obtain 183.04 g of a maleimide composition (A) containing an allyl group-containing maleimide compound and a hydroxyl group-containing maleimide compound.

Figure 0007433607000041
Figure 0007433607000041

得られたマレイミド組成物(A)のマススペクトルはM=470、189のピークを示したことから、目的のマレイミド化が進行していることを確認した。また、H-NMRより、マレイミド成分の比率がアリル基含有マレイミド/水酸基含有マレイミド=72:28(重量比)であることを確認した。比率の算出には、H-NMRにおける、アリル基含有マレイミドのアリル基由来シグナル、および、水酸基含有マレイミドの芳香環由来シグナルを用いた。 The mass spectrum of the obtained maleimide composition (A) showed peaks at M + =470 and 189, confirming that the desired maleimidization was progressing. Furthermore, it was confirmed by 1 H-NMR that the ratio of maleimide components was allyl group-containing maleimide/hydroxyl group-containing maleimide = 72:28 (weight ratio). In calculating the ratio, a signal derived from the allyl group of the allyl group-containing maleimide and a signal derived from the aromatic ring of the hydroxyl group-containing maleimide in 1 H-NMR were used.

(実施例1)
[樹脂組成物で被覆したガラス繊維(被覆ガラス繊維)の調製]
製造例1で得られた繊維集束剤(A)を用いて、チョップドストランド法により直径6.5μm、長さ1.5mmの被覆ガラス繊維を製造した。この時、繊維集束剤(A)の付着(被覆)重量は、被覆ガラス繊維の合計総質量に対して固形分として1質量%であった。
(Example 1)
[Preparation of glass fiber coated with resin composition (coated glass fiber)]
Using the fiber sizing agent (A) obtained in Production Example 1, coated glass fibers having a diameter of 6.5 μm and a length of 1.5 mm were produced by the chopped strand method. At this time, the weight of the fiber sizing agent (A) attached (coated) was 1% by mass as a solid content based on the total mass of the coated glass fibers.

[ガラス繊維含有樹脂組成物(コンパウンド)の調製]
得られた被覆ガラス繊維を146質量部と、合成例1で得られたマレイミド組成物(A)を160質量部と、EPICLON HP-4700(DIC(株)製、エポキシ樹脂)を55質量部と、離型剤であるライスワックス((株)セラリカNODA製)を2質量部と、着色剤であるカーボンブラック(三菱ケミカル(株)製)を2質量部と、硬化触媒であるイミダゾール(四国化成工業(株)製、2E4MZ)を1質量部とを、φ8"×L20"両無段ロール機(関西ロール株式会社製)を用いて、100~110℃で4分間、その後140℃に10分間で昇温し、140℃で均一になるまで混錬し、ガラス繊維含有樹脂組成物を調製した。
[Preparation of glass fiber-containing resin composition (compound)]
146 parts by mass of the obtained coated glass fiber, 160 parts by mass of the maleimide composition (A) obtained in Synthesis Example 1, and 55 parts by mass of EPICLON HP-4700 (manufactured by DIC Corporation, epoxy resin). , 2 parts by mass of rice wax (manufactured by Cerarica NODA Co., Ltd.) as a mold release agent, 2 parts by mass of carbon black (manufactured by Mitsubishi Chemical Corporation) as a coloring agent, and imidazole (manufactured by Shikoku Kasei Co., Ltd.) as a curing catalyst. 1 part by mass of 2E4MZ (manufactured by Kogyo Co., Ltd.) was heated to 100 to 110°C for 4 minutes, and then heated to 140°C for 10 minutes using a φ8" x L20" continuous roll machine (manufactured by Kansai Roll Co., Ltd.). The mixture was heated to 140° C. and kneaded until uniform, thereby preparing a glass fiber-containing resin composition.

[成形体の製造]
得られたガラス繊維含有樹脂組成物について、株式会社神藤金属工業所製圧縮成型機を用いて、180℃で3分、圧力20MPaの条件にてプレス成形を行い、JIS K6911に準拠したサイズの硬化物である成形体を製造した。得られた成形体は、200℃で2時間の後加熱を行った。
[Manufacture of molded object]
The obtained glass fiber-containing resin composition was press-molded at 180°C for 3 minutes at a pressure of 20 MPa using a compression molding machine manufactured by Shindo Metal Industry Co., Ltd., and cured to a size conforming to JIS K6911. A molded object was manufactured. The obtained molded body was post-heated at 200° C. for 2 hours.

(実施例2)
実施例2については、実施例1に対し、ガラス繊維の大きさを直径11μm、長さ3mmにした以外は同様にして、ガラス繊維含有樹脂組成物および成形体を製造、評価した。
(Example 2)
In Example 2, a glass fiber-containing resin composition and a molded article were produced and evaluated in the same manner as in Example 1, except that the glass fibers were changed to a diameter of 11 μm and a length of 3 mm.

(実施例3、及び、比較例1~3)
実施例3、及び、比較例1~3については、実施例1に対し、表1に記載の通りに変更した以外は同様の条件にて、ガラス繊維含有樹脂組成物および成形体を製造し評価した。
(Example 3 and Comparative Examples 1 to 3)
For Example 3 and Comparative Examples 1 to 3, glass fiber-containing resin compositions and molded bodies were manufactured and evaluated under the same conditions as Example 1 except for the changes shown in Table 1. did.

(比較例4)
比較例4については、実施例1に対し、マレイミド樹脂組成物(A)の代わりに、フェノール樹脂(DIC(株)製、商品名:KI-9544)を用い、表1に記載の通りに変更した以外は同様の条件にて、ガラス繊維含有樹脂組成物および成形体を製造し評価した。
(Comparative example 4)
Regarding Comparative Example 4, the changes in Example 1 were made as shown in Table 1, using a phenol resin (manufactured by DIC Corporation, trade name: KI-9544) instead of the maleimide resin composition (A). A glass fiber-containing resin composition and a molded article were manufactured and evaluated under the same conditions except for the following.

(比較例5)
比較例5については、実施例1に対し、マレイミド樹脂組成物(A)の代わりに、4,4-ジフェニルメタンビスマレイミド(大和化成工業(株)製、商品名:BMI-1000)を用いた以外は同様の条件にて、ガラス繊維含有樹脂組成物を製造し、繊維分散性のみを評価した。
(Comparative example 5)
Comparative Example 5 was the same as Example 1 except that 4,4-diphenylmethane bismaleimide (manufactured by Daiwa Kasei Kogyo Co., Ltd., trade name: BMI-1000) was used instead of the maleimide resin composition (A). produced a glass fiber-containing resin composition under the same conditions and evaluated only the fiber dispersibility.

<評価>
[繊維分散性評価(ガラス繊維への濡れ性及び密着性)]
ガラス繊維含有樹脂組成物の調製において、100~110℃で4分間、その後140℃に10分間で昇温し、140℃で4分間混練を続けた際の配合物中のガラス繊維の毛羽立ちの状態を下記の基準で目視判定した。
○:毛羽発生なし、あるいは数本の毛羽は見られたものの、実用上問題ないレベルであった。
△:毛羽立ちが確認でき、繊維の露出も若干見られた。実用上問題あり。
×:毛羽立ち及び繊維の露出が非常に多く、全体とパサつき感が確認できた。実用上問題あり。
<Evaluation>
[Fiber dispersibility evaluation (wetting and adhesion to glass fiber)]
In the preparation of a glass fiber-containing resin composition, the state of fluff of the glass fibers in the compound when heated at 100 to 110 °C for 4 minutes, then raised to 140 °C for 10 minutes, and continued kneading at 140 °C for 4 minutes. was visually judged according to the following criteria.
○: No fuzz was observed, or some fuzz was observed, but the level was not a problem for practical use.
Δ: Fuzzing was observed, and some fibers were also exposed. There are practical problems.
×: Very much fluff and fibers were exposed, and a dry feeling was observed as a whole. There are practical problems.

[成形体の評価]
得られた成形体について、JIS K6911に準拠して引張強度試験・弾性率・破断伸びの機械的強度について、評価を行った。
なお、得られた硬化物である成形体の引張強度は、室温(23℃)及び150℃(高温)のいずれにおいても、好ましくは、60MPa以上であり、より好ましくは、60~80MPaであり、更に好ましくは、70~80MPaである。前記範囲内にあると実用上に優れたものとなる。
前記弾性率としては、室温(23℃)及び150℃(高温)のいずれにおいても、好ましくは、1450MPa以上であり、より好ましくは、1550~1800MPaであり、更に好ましくは、1650~1800MPaである。前記範囲内にあると実用上に優れたものとなる。
前記破断伸びとしては、室温(23℃)及び150℃(高温)のいずれにおいても、好ましくは、4%以上であり、より好ましくは、4~6%であり、更に好ましくは、4.5~6%である。前記範囲内にあると、相反する高い弾性率と高い伸び率を両立することとなり、実用上に優れたものとなる。
[Evaluation of molded object]
The obtained molded body was evaluated for mechanical strength in terms of tensile strength test, elastic modulus, and elongation at break in accordance with JIS K6911.
The tensile strength of the obtained molded product, which is the cured product, is preferably 60 MPa or more, more preferably 60 to 80 MPa, both at room temperature (23 ° C.) and 150 ° C. (high temperature). More preferably, it is 70 to 80 MPa. If it is within the above range, it will be practically excellent.
The elastic modulus is preferably 1450 MPa or more, more preferably 1550 to 1800 MPa, and still more preferably 1650 to 1800 MPa, both at room temperature (23° C.) and 150° C. (high temperature). If it is within the above range, it will be practically excellent.
The elongation at break is preferably 4% or more, more preferably 4 to 6%, even more preferably 4.5 to 6%, both at room temperature (23°C) and 150°C (high temperature). It is 6%. When it is within the above range, a high elastic modulus and a high elongation rate, which are contradictory, can be achieved at the same time, resulting in an excellent product for practical use.

Figure 0007433607000042
Figure 0007433607000042

Figure 0007433607000043
Figure 0007433607000043

上記表2の結果より、実施例1~3においては、特定構造を有するマレイミド化合物2種と共に、特定の樹脂組成物で被覆したガラス繊維を含有するガラス繊維含有樹脂組成物を使用することで、得られる硬化物である成形体は、機械的強度の目安である引張強度、弾性率、及び、破断伸びが、特定構造を有するマレイミド化合物やガラス繊維を使用しない比較例に対して、優れることが確認できた。また、比較例5においては、一般的に使用される高耐熱性のBMIを使用し、特定構造のマレイミド化合物を使用しなかったため、ガラス繊維を溶融混練(100~140℃)することが困難となり、ガラス繊維への濡れ性や密着性に劣り、低粘度化を図ることができないことも確認された。 From the results in Table 2 above, in Examples 1 to 3, by using a glass fiber-containing resin composition containing glass fibers coated with a specific resin composition together with two types of maleimide compounds having a specific structure, The obtained molded product, which is a cured product, is superior in tensile strength, elastic modulus, and elongation at break, which are indicators of mechanical strength, compared to comparative examples that do not use a maleimide compound with a specific structure or glass fiber. It could be confirmed. In addition, in Comparative Example 5, a commonly used highly heat-resistant BMI was used and a maleimide compound with a specific structure was not used, so it was difficult to melt and knead the glass fibers (100 to 140°C). It was also confirmed that the wettability and adhesion to glass fibers were poor, and that it was not possible to reduce the viscosity.

本発明のガラス繊維含有樹脂組成物は、耐熱性及び機械的強度に優れる硬化物を得られるため、前記ガラス繊維含有樹脂組成物を用いたコンパウンド、耐熱部材等に好適に使用可能である。 The glass fiber-containing resin composition of the present invention provides a cured product with excellent heat resistance and mechanical strength, so it can be suitably used for compounds, heat-resistant members, etc. using the glass fiber-containing resin composition.

Claims (7)

下記式(1)で表される(メタ)アリル基含有マレイミド化合物、
下記式(4)で表される水酸基含有マレイミド化合物、及び、
重合性二重結合濃度を3モル%以上25モル%以下含有する、ポリエステル樹脂及びポリウレタン樹脂の少なくともいずれか一方を含有する樹脂組成物で被覆されたガラス繊維、を含有し、
前記重合性二重結合濃度は、 13 C-NMRの全シグナルの積分値と98~100ppm付近のシグナルの積分値の2分の1の割合から算出したものであることを特徴とするガラス繊維含有樹脂組成物。
(上記式(1)中、n1及びm1はそれぞれ独立して1~5の整数であって、Alyは下記式(2)で表される(メタ)アリル基を有する基であって、MIは下記式(3)で表されるマレイミド基を有する基であって、A1下記式(5)で表される構造のうちのいずれかである。)
(上記式(2)中、Z1は直接結合または置換基を有していても良い炭素数1~10の炭化水素基であって、R1は水素原子またはメチル基を表す。)
(上記式(3)中、Z2は直接結合または置換基を有していても良い炭素数1または2の炭化水素基であって、R2及びR3はそれぞれ独立して水素原子またはメチル基を表す。)
(上記式(4)中、n2及びm2はそれぞれ独立して1~5の整数であって、MIは上記式(3)で表されるマレイミド基を有する基であって、A2はベンゼン環構造である。)
A (meth)allyl group-containing maleimide compound represented by the following formula (1),
A hydroxyl group-containing maleimide compound represented by the following formula (4), and
Contains a glass fiber coated with a resin composition containing at least one of a polyester resin and a polyurethane resin, containing a polymerizable double bond concentration of 3 mol% or more and 25 mol% or less ,
The glass fiber is characterized in that the polymerizable double bond concentration is calculated from the ratio of the integral value of all signals of 13 C-NMR to the integral value of a signal around 98 to 100 ppm. Containing resin composition.
(In the above formula (1), n 1 and m 1 are each independently an integer of 1 to 5, and Aly is a group having a (meth)allyl group represented by the following formula (2), MI is a group having a maleimide group represented by the following formula (3), and A 1 is any of the structures represented by the following formula (5) .)
(In the above formula (2), Z 1 is a hydrocarbon group having 1 to 10 carbon atoms which may have a direct bond or a substituent, and R 1 represents a hydrogen atom or a methyl group.)
(In the above formula (3), Z 2 is a hydrocarbon group having 1 or 2 carbon atoms which may have a direct bond or a substituent, and R 2 and R 3 are each independently a hydrogen atom or a methyl (Represents a group.)
(In the above formula (4), n 2 and m 2 are each independently an integer of 1 to 5, MI is a group having a maleimide group represented by the above formula (3), and A 2 is It is a benzene ring structure .)
上記式(4)において、n 2 及びm2がいずれも1であることを特徴とする請求項1に記載のガラス繊維含有樹脂組成物。 The glass fiber-containing resin composition according to claim 1 , wherein in the formula (4) , both n2 and m2 are 1. さらに、エポキシ化合物を含有することを特徴とする請求項1又は2に記載のガラス繊維含有樹脂組成物。 The glass fiber-containing resin composition according to claim 1 or 2, further comprising an epoxy compound. 請求項1~のいずれかに記載のガラス繊維含有樹脂組成物を含有することを特徴とするコンパウンド。 A compound comprising the glass fiber-containing resin composition according to any one of claims 1 to 3 . 請求項1~のいずれかに記載のガラス繊維含有樹脂組成物を硬化してなることを特徴とする硬化物。 A cured product obtained by curing the glass fiber-containing resin composition according to any one of claims 1 to 3 . 請求項1~のいずれかに記載のガラス繊維含有樹脂組成物を含有することを特徴とする耐熱材料用組成物。 A composition for heat-resistant materials, comprising the glass fiber-containing resin composition according to any one of claims 1 to 3 . 請求項に記載の硬化物を含有することを特徴とする耐熱部材。 A heat-resistant member comprising the cured product according to claim 5 .
JP2019228541A 2019-12-18 2019-12-18 Glass fiber-containing resin composition and cured product Active JP7433607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019228541A JP7433607B2 (en) 2019-12-18 2019-12-18 Glass fiber-containing resin composition and cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019228541A JP7433607B2 (en) 2019-12-18 2019-12-18 Glass fiber-containing resin composition and cured product

Publications (2)

Publication Number Publication Date
JP2021095532A JP2021095532A (en) 2021-06-24
JP7433607B2 true JP7433607B2 (en) 2024-02-20

Family

ID=76430633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019228541A Active JP7433607B2 (en) 2019-12-18 2019-12-18 Glass fiber-containing resin composition and cured product

Country Status (1)

Country Link
JP (1) JP7433607B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004872A1 (en) * 2020-07-03 2022-01-06 三菱ケミカル株式会社 Chopped carbon fiber bundle and production method for chopped carbon fiber bundle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209237A1 (en) 2016-06-03 2017-12-07 Dic株式会社 Substituted or unsubstituted allyl group-containing maleimide compound, production method therefor, and composition and cured product using said compound
JP2018095706A (en) 2016-12-09 2018-06-21 三菱エンジニアリングプラスチックス株式会社 Polyamide resin composition and molded article
WO2018116948A1 (en) 2016-12-20 2018-06-28 Dic株式会社 Composition, cured product and laminate
JP2018100232A (en) 2016-12-20 2018-06-28 Dic株式会社 Hydroxyl group-containing maleimide compound
JP2019065063A (en) 2017-09-28 2019-04-25 Dic株式会社 Composition and cured product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252234A (en) * 1985-05-02 1986-11-10 Mitsubishi Rayon Co Ltd Fiber-reinforced plastic intermediate material
JPH07278268A (en) * 1994-04-06 1995-10-24 Sumitomo Bakelite Co Ltd Thermosetting resin composition
JPH11236249A (en) * 1998-02-25 1999-08-31 Nitto Boseki Co Ltd Bundling agent for glass fiber and glass fiber product stuck with the bundling agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209237A1 (en) 2016-06-03 2017-12-07 Dic株式会社 Substituted or unsubstituted allyl group-containing maleimide compound, production method therefor, and composition and cured product using said compound
JP2018095706A (en) 2016-12-09 2018-06-21 三菱エンジニアリングプラスチックス株式会社 Polyamide resin composition and molded article
WO2018116948A1 (en) 2016-12-20 2018-06-28 Dic株式会社 Composition, cured product and laminate
JP2018100232A (en) 2016-12-20 2018-06-28 Dic株式会社 Hydroxyl group-containing maleimide compound
JP2019065063A (en) 2017-09-28 2019-04-25 Dic株式会社 Composition and cured product

Also Published As

Publication number Publication date
JP2021095532A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
KR102365456B1 (en) A maleimide compound containing a substituted or unsubstituted allyl group, a method for preparing the same, and a composition and cured product using the compound
US11104788B2 (en) Composition, cured product and laminate
JP7003540B2 (en) Compositions and cured products
US10981865B2 (en) Substituted or unsubstituted allyl group-containing maleimide compound, production method therefor, and composition and cured product using said compound
CN108368069B (en) Oxazine compound, composition and cured product
CN108473642B (en) Oxazine compound, composition and cured product
JP7433607B2 (en) Glass fiber-containing resin composition and cured product
JP7069618B2 (en) Maleimide compounds, and compositions and cured products using them.
CN108368218B (en) Oxazine compound, composition and cured product
JP2018100232A (en) Hydroxyl group-containing maleimide compound
CN108368216B (en) Oxazine compound, composition and cured product
CN108368217B (en) Oxazine compound, composition and cured product
JP2023180708A (en) Curable resin composition and cured product

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240130

R150 Certificate of patent or registration of utility model

Ref document number: 7433607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150