JP7433587B2 - Heater support and heating equipment - Google Patents

Heater support and heating equipment Download PDF

Info

Publication number
JP7433587B2
JP7433587B2 JP2019114334A JP2019114334A JP7433587B2 JP 7433587 B2 JP7433587 B2 JP 7433587B2 JP 2019114334 A JP2019114334 A JP 2019114334A JP 2019114334 A JP2019114334 A JP 2019114334A JP 7433587 B2 JP7433587 B2 JP 7433587B2
Authority
JP
Japan
Prior art keywords
heater
support
heater support
groove
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019114334A
Other languages
Japanese (ja)
Other versions
JP2021001087A (en
Inventor
真行 宮崎
公男 小暮
康裕 松本
良秋 風間
正浩 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orbray
Original Assignee
Orbray
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orbray filed Critical Orbray
Priority to JP2019114334A priority Critical patent/JP7433587B2/en
Priority to KR1020200063390A priority patent/KR20200145680A/en
Priority to CN202020975970.4U priority patent/CN212955442U/en
Priority to CN202010487706.0A priority patent/CN112111784A/en
Publication of JP2021001087A publication Critical patent/JP2021001087A/en
Application granted granted Critical
Publication of JP7433587B2 publication Critical patent/JP7433587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Resistance Heating (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

本発明は、ヒーターサポート及びヒーター装置に関する。 The present invention relates to a heater support and a heater device.

分子線エピタキシー(MBE:Molecular Beam Epitaxy)装置に用いられる分子線源には、蒸発させる原料を充填して加熱する為に、坩堝が用いられる。 A molecular beam source used in a molecular beam epitaxy (MBE) device uses a crucible to fill and heat raw materials to be evaporated.

その坩堝を加熱する為に、坩堝の周囲にコイル状のヒーターが巻回して配列される。そのコイル状のヒーターを定位置に保持する為に、ヒーター配列用の溝が形成されたヒーターサポートが開示されている(例えば、特許文献1参照)。 To heat the crucible, coiled heaters are arranged around the crucible. In order to hold the coiled heater in a fixed position, a heater support is disclosed in which grooves for arranging the heaters are formed (for example, see Patent Document 1).

また、このようなヒーターサポートを形成する材料として、例えばPBN(Pyrolytic Boron Nitride)が使用されている(例えば、非特許文献1参照)。 Further, as a material for forming such a heater support, for example, PBN (Pyrolytic Boron Nitride) is used (see, for example, Non-Patent Document 1).

特公平03-18734号公報Special Publication No. 03-18734

“PBNの用途例”、[online]、信越化学工業株式会社、[平成29年9月1日検索]、インターネット<URL:https://www.shinetsu.co.jp/jp/products/pdf/PBN-01_What_is_PBN.pdf>“Application examples of PBN”, [online], Shin-Etsu Chemical Co., Ltd., [searched on September 1, 2017], Internet <URL: https://www.shinetsu.co.jp/jp/products/pdf/ PBN-01_What_is_PBN.pdf>

本出願人がヒーターに電流を流し、加熱した後のヒーターサポートを確認したところ、PBN製のヒーターサポートではヒーターとの接触部分である溝部分が浸食されている事が観察された。 When the present applicant checked the heater support after heating it by applying an electric current to the heater, it was observed that the groove portion of the heater support made of PBN, which is the contact area with the heater, was eroded.

浸食が発生する明確な原理は不明だが、ヒーターがTa(タンタル),W(タングステン),Mo(モリブデン),又はこれらの合金と云った材料から製造されている場合、ヒーターに電流を流す事で、PBNの溶け又は昇華と云った化学反応が発生し、ヒーターサポートの溝部分の浸食が進行したのではないかと本出願人は推測した。 The exact principle by which erosion occurs is unknown, but if the heater is made of materials such as Ta (tantalum), W (tungsten), Mo (molybdenum), or their alloys, it is possible to The applicant speculated that a chemical reaction such as melting or sublimation of PBN occurred, and the erosion of the groove portion of the heater support progressed.

何れにしてもPBN製ヒーターサポートの溝部分の浸食に伴い、ヒーターサポートからのヒーターの脱落や、ヒーターの巻線間の短絡を招く事を、本出願人は確認した。 In any case, the applicant has confirmed that erosion of the groove portion of the PBN heater support causes the heater to fall off from the heater support and short circuit between the heater windings.

本発明は、上記課題に鑑みてなされたものであり、ヒーターと接触する部分の浸食を抑制又は防止する事で、ヒーターの脱落や、ヒーターの巻線間での短絡が抑制又は防止可能なヒーターサポート及びヒーター装置の提供を目的とする。 The present invention has been made in view of the above-mentioned problems, and provides a heater that can suppress or prevent the heater from falling off or short-circuiting between the heater windings by suppressing or preventing erosion of the part that comes into contact with the heater. The purpose is to provide support and heating equipment.

前記課題は、以下の本発明により解決される。即ち本発明のヒーターサポートはコイル状のヒーター配列用のヒーターサポートであって、前記ヒーター配列用に櫛歯状の溝が等ピッチで形成されており、前記溝を含む全体がサファイア単結晶で作製されており、前記全体の表面が、線粗さRa=0.133μm~0.557μmである事を特徴とする。
The above-mentioned problem is solved by the following present invention. That is, the heater support of the present invention is a heater support for a coil-shaped heater array, in which comb-shaped grooves are formed at equal pitches for the heater array, and the entire heater support including the grooves is made of sapphire single crystal. The entire surface has a line roughness Ra of 0.133 μm to 0.557 μm.

また本発明のヒーター装置は、タンタル、タングステン、モリブデン、又はこれらの合金から成るヒーターと前記溝で接触し、前記溝にヒーターが一定のピッチで配列されている前記ヒーターサポートを備える事を特徴とする。
Further, the heater device of the present invention is characterized in that the heater support is in contact with a heater made of tantalum, tungsten, molybdenum, or an alloy thereof at the groove , and the heater support is arranged in the groove at a constant pitch. do.

本発明のヒーターサポートに依れば、ヒーターと接触する部分の浸食が抑制又は防止可能なヒーターサポートを実現する事が出来る。従って、長時間に亘りヒーターに電流を流してヒーターを加熱させても、ヒーターの脱落や、ヒーターの巻線間での短絡が抑制又は防止可能なヒーターサポートを提供する事が可能となる。 According to the heater support of the present invention, it is possible to realize a heater support that can suppress or prevent erosion of the portion that contacts the heater. Therefore, it is possible to provide a heater support that can suppress or prevent falling of the heater and short circuit between the windings of the heater even if the heater is heated by passing a current through the heater for a long period of time.

また本発明のヒーター装置に依れば、ヒーターと接触する部分の浸食が抑制又は防止可能なヒーターサポートを備えているので、長時間に亘りヒーターに電流を流してヒーターを加熱させても、ヒーターの脱落や、ヒーターの巻線間での短絡が抑制又は防止可能なヒーター装置を提供する事が可能となる。 Further, according to the heater device of the present invention, since it is equipped with a heater support that can suppress or prevent corrosion of the part that comes into contact with the heater, even if the heater is heated by passing a current through the heater for a long time, the heater It is possible to provide a heater device that can suppress or prevent falling off of the heater and short circuit between the windings of the heater.

本発明の実施形態の一例に係るヒーターサポートを示す正面図である。FIG. 2 is a front view showing a heater support according to an example of an embodiment of the present invention. 図1のヒーターサポートの斜視図である。FIG. 2 is a perspective view of the heater support of FIG. 1; 図1の円A部分の拡大図である。2 is an enlarged view of a circle A portion in FIG. 1. FIG. 図1のヒーターサポートによるヒーターの配置状態を模式的に示す側面図である。FIG. 2 is a side view schematically showing the arrangement of heaters using the heater support of FIG. 1; 図1のヒーターサポートによるヒーターの配置状態を模式的に示す平面図である。FIG. 2 is a plan view schematically showing the arrangement of heaters using the heater support of FIG. 1; 図6のヒーターサポートとヒーターに対する、坩堝の配置状態を模式的に示す説明図である。FIG. 7 is an explanatory diagram schematically showing how the crucible is arranged with respect to the heater support and heater in FIG. 6;

本実施の形態の第一の特徴は、コイル状のヒーター配列用のヒーターサポートであって、前記ヒーター配列用に櫛歯状の溝が等ピッチで形成されており、前記溝を含む全体がサファイア単結晶で作製されており、前記全体の表面が、線粗さRa=0.133μm~0.557μmであるヒーターサポートとした事である。
The first feature of this embodiment is a heater support for a coiled heater array, in which comb-shaped grooves are formed at equal pitches for the heater array, and the entire area including the grooves is made of sapphire. The heater support is made of single crystal , and the entire surface has a line roughness Ra of 0.133 μm to 0.557 μm.

これらのヒーターサポートに依れば、ヒーターと接触する部分の浸食が抑制可能なヒーターサポートを実現する事が出来る。従って、長時間に亘りヒーターに電流を流してヒーターを加熱させても、ヒーターの脱落や、ヒーターの巻線間での短絡が抑制可能なヒーターサポートを提供する事が可能となる。
According to these heater supports, it is possible to realize a heater support that can suppress erosion of the portion that comes into contact with the heater. Therefore, it is possible to provide a heater support that can prevent the heater from falling off or short circuiting between the windings of the heater, even if the heater is heated by passing a current through the heater for a long period of time.

これらのヒーターサポートに依れば、少なくともヒーターと接触する部分をサファイア単結晶で形成する事が出来るので、ヒーターとの接触部分を高耐熱性及び高耐食性とする事が可能となる。従って長時間に亘りヒーターに電流を流してヒーターを加熱させても、ヒーターと接触する部分の浸食が防止可能なヒーターサポートを実現する事が出来る。従って、ヒーターの脱落や、ヒーターの巻線間での短絡が防止可能なヒーターサポートを提供する事が出来る。 According to these heater supports, at least the part that contacts the heater can be made of sapphire single crystal, so the part that contacts the heater can have high heat resistance and high corrosion resistance. Therefore, it is possible to realize a heater support that can prevent erosion of the part that comes into contact with the heater even if the heater is heated by passing a current through the heater for a long time. Therefore, it is possible to provide a heater support that can prevent the heater from falling off and short circuits between the heater windings.

更に、ヒーターサポート全体をサファイア単結晶で作製する事により、前記効果に加えて、ヒーターとの接触部分と非接触部分との間を同一材料で一体形成する事が可能となる。従って、前記接触部分と非接触部分との間の剥離や脱落が防止可能となり、ヒーターサポートの強度と耐久性及び信頼性をより高める事が出来る。 Furthermore, by making the entire heater support from sapphire single crystal, in addition to the above-mentioned effects, it becomes possible to integrally form the contact portion and the non-contact portion with the heater using the same material. Therefore, peeling and falling off between the contact portion and the non-contact portion can be prevented, and the strength, durability, and reliability of the heater support can be further enhanced.

の特徴は、タンタル、タングステン、モリブデン、又はこれらの合金から成るヒーターと前記溝で接触し、前記溝にヒーターが一定のピッチで配列されている前記ヒーターサポートを備えるヒーター装置であると云う事である。
The second feature is that the heater device is equipped with the heater support, which is in contact with a heater made of tantalum, tungsten, molybdenum, or an alloy thereof in the groove , and in which the heaters are arranged at a constant pitch in the groove. That's a thing.

このヒーター装置に依れば、ヒーターと接触する部分の浸食が抑制又は防止可能なヒーターサポートを備えているので、長時間に亘りヒーターに電流を流してヒーターを加熱させても、ヒーターの脱落や、ヒーターの巻線間での短絡が抑制又は防止可能なヒーター装置を提供する事が可能となる。 According to this heater device, it is equipped with a heater support that can suppress or prevent erosion of the part that comes into contact with the heater, so even if the heater is heated by passing current through it for a long time, it will not fall off or fall off. , it is possible to provide a heater device that can suppress or prevent short circuits between the windings of the heater.

以下、図1~図6を参照して本発明の第1の実施形態に係るヒーターサポートを説明する。 Hereinafter, a heater support according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 6.

第1の実施形態に於いて、例えば図1及び図2に示すように本実施形態に係るヒーターサポート1は、全体の外観形状が略長方形型の平板形状に成形されている。 In the first embodiment, for example, as shown in FIGS. 1 and 2, the heater support 1 according to the present embodiment has a flat plate shape with an approximately rectangular overall appearance.

更にヒーターの各線と接触する部分として、ヒーター配列用に櫛歯状の溝1aが等ピッチで形成されている。各溝1aにはコイル状のヒーターが一定のピッチで配列される。 Furthermore, comb-shaped grooves 1a for arranging the heaters are formed at equal pitches as parts that come into contact with the respective heater wires. Coil-shaped heaters are arranged in each groove 1a at a constant pitch.

ヒーターサポート1に於いて、少なくともヒーターと接触する部分である各溝1aの表面は、酸化アルミニウム(Al2O3)の組成を有する結晶で覆われて作製されている。更に各溝1a表面以外のヒーターサポート1の形成部分は、絶縁材料で構成される。その絶縁材料の一例としてPBNを使用する事が、ヒーターサポート1の強度確保と折れ防止が可能との点で、好ましい。 In the heater support 1, at least the surface of each groove 1a, which is the portion that comes into contact with the heater, is covered with crystals having a composition of aluminum oxide (Al 2 O 3 ). Further, the forming portion of the heater support 1 other than the surface of each groove 1a is made of an insulating material. It is preferable to use PBN as an example of the insulating material because it ensures the strength of the heater support 1 and prevents it from breaking.

又、図3の部分拡大図に示すような各溝1aに於けるヒーターとの接触部分の表面(各溝1a底部を含む表面)は、線粗さRa=0.133μm~0.557μm程度に加工されている。各溝1a表面以外のヒーターサポート1の形成部分は、予めダイヤモンドホイール等による研削加工により成形されて作製される。 Furthermore, as shown in the partially enlarged view of FIG. 3, the surface of the contact portion with the heater in each groove 1a (the surface including the bottom of each groove 1a) is processed to have a line roughness Ra of approximately 0.133 μm to 0.557 μm. ing. The forming portion of the heater support 1 other than the surface of each groove 1a is formed in advance by grinding using a diamond wheel or the like.

次に、各溝1aの表面(図3に示す表面範囲)に、酸化アルミニウム(Al2O3)の組成を有する結晶から成る膜が成膜される。その膜は、非晶質の酸化アルミニウムの蒸着膜が、大気、酸素、窒素の何れかから選択される雰囲気下で熱処理された後、単結晶化した膜とする。 Next, a film made of crystals having a composition of aluminum oxide (Al 2 O 3 ) is formed on the surface of each groove 1a (the surface area shown in FIG. 3). The film is a film obtained by heat-treating a vapor-deposited film of amorphous aluminum oxide in an atmosphere selected from air, oxygen, or nitrogen, and then turning it into a single crystal.

膜の形成方法は、次の通りである。最初に、各溝1a表面を含むヒーターサポート1全体を、絶縁材料で作製する。各溝1aの表面は、線粗さRa=0.133μm~0.557μm程度に加工しておく。次に膜を各溝1aの表面に蒸着させる。その蒸着工程として各溝1aの表面上に酸化アルミニウムを蒸着し、非晶質の酸化アルミニウムから成る蒸着膜を形成する。蒸着法は、酸化アルミニウムの蒸着膜が単結晶にならない条件であれば、真空蒸着法、スパッタ法、イオンプレーティング法、CVD法、ゾルゲル法など、何れの方法で蒸着しても良い。 The method for forming the film is as follows. First, the entire heater support 1 including the surface of each groove 1a is made of an insulating material. The surface of each groove 1a is processed to have a line roughness Ra of approximately 0.133 μm to 0.557 μm. A film is then deposited on the surface of each groove 1a. As a vapor deposition step, aluminum oxide is vapor deposited on the surface of each groove 1a to form a vapor deposited film made of amorphous aluminum oxide. The vapor deposition method may be any method such as a vacuum vapor deposition method, a sputtering method, an ion plating method, a CVD method, a sol-gel method, etc., as long as the deposited aluminum oxide film does not become a single crystal.

蒸着膜の膜厚は、1nm以上~1μm(1000nm)以下の範囲内とする。膜厚が1nm未満の場合、各溝1a表面に傷(潜傷を含む)が存在した場合に、その傷を覆うことが出来ず、良好で均一な蒸着膜を形成することが出来ない。一方で膜厚が1μmを越えると、後述する熱処理の際に蒸着膜が多結晶化してしまい、単結晶に比べて耐熱性と耐食性が低下するおそれがある。 The thickness of the deposited film is within the range of 1 nm or more and 1 μm (1000 nm) or less. When the film thickness is less than 1 nm, if there are scratches (including latent scratches) on the surface of each groove 1a, the scratches cannot be covered, and a good and uniform deposited film cannot be formed. On the other hand, if the film thickness exceeds 1 μm, the deposited film will become polycrystalline during the heat treatment described below, and there is a risk that the heat resistance and corrosion resistance will be lower than that of a single crystal.

なお蒸着膜は、10nm以上~100nm以下の範囲で形成されているのが、より好ましい。この範囲内であれば、蒸着膜を後述する熱処理により単結晶化させ易くなる。 It is more preferable that the deposited film has a thickness of 10 nm or more and 100 nm or less. Within this range, the deposited film can be easily made into a single crystal by the heat treatment described below.

次に、蒸着膜が形成されたヒーターサポート1ごと熱処理し、非晶質の酸化アルミニウムの蒸着膜を単結晶化させる。この熱処理は、大気、酸素、窒素の何れかから選択される雰囲気下で行われる。このように、非晶質の蒸着膜を単結晶化させることにより、単結晶化した酸化アルミニウムの蒸着膜が、各溝1aの表面に形成されたヒーターサポート1が得られる。 Next, the entire heater support 1 on which the vapor deposited film is formed is heat-treated to convert the amorphous aluminum oxide vapor deposit film into a single crystal. This heat treatment is performed in an atmosphere selected from air, oxygen, and nitrogen. In this way, by single-crystallizing an amorphous deposited film, a heater support 1 in which a single-crystal aluminum oxide deposited film is formed on the surface of each groove 1a is obtained.

蒸着膜の熱処理条件としては、600℃~1000℃の雰囲気中で30分~120分間程度とする。 The heat treatment conditions for the deposited film are approximately 30 minutes to 120 minutes in an atmosphere of 600°C to 1000°C.

このように、少なくともヒーターと接触する部分が、酸化アルミニウムの組成を有する結晶で作製されているヒーターサポート1に依れば、ヒーターと接触する部分の浸食が抑制可能なヒーターサポート1を実現する事が出来る。従って、長時間に亘りヒーターに電流を流してヒーターを加熱させても、ヒーターの脱落や、ヒーターの巻線間での短絡が抑制可能なヒーターサポート1を提供する事が可能となる。 As described above, by using the heater support 1 in which at least the part that contacts the heater is made of crystal having the composition of aluminum oxide, it is possible to realize the heater support 1 that can suppress corrosion of the part that contacts the heater. I can do it. Therefore, it is possible to provide the heater support 1 that can suppress falling of the heater and short circuit between the windings of the heater even if the heater is heated by passing a current through the heater for a long time.

更に、酸化アルミニウムの組成を有する結晶は、サファイア単結晶である事が好ましい。その理由は、少なくともヒーターと接触する部分をサファイア単結晶で形成する事が出来るので、ヒーターとの接触部分を高耐熱性及び高耐食性とする事が可能となる為である。従って、長時間に亘りヒーターに電流を流してヒーターを加熱させても、ヒーターと接触する部分の浸食が防止可能なヒーターサポート1を実現する事が出来る。従って、ヒーターの脱落や、ヒーターの巻線間での短絡が防止可能なヒーターサポート1を提供する事が出来る。 Further, the crystal having the composition of aluminum oxide is preferably a sapphire single crystal. The reason for this is that at least the part that contacts the heater can be made of sapphire single crystal, so the part that contacts the heater can have high heat resistance and high corrosion resistance. Therefore, it is possible to realize the heater support 1 that can prevent erosion of the portion that comes into contact with the heater even if the heater is heated by passing a current through the heater for a long period of time. Therefore, it is possible to provide the heater support 1 which can prevent the heater from falling off and short circuit between the windings of the heater.

酸化アルミニウムの組成を有する結晶がサファイア単結晶で形成される場合、ヒーターサポート1の形状に対するサファイア単結晶の面方位は、特に限定されない。単結晶化された後のサファイア単結晶は、99.995%以上の純度が好ましく、無色でドープ材が添加されていない単結晶とする。 When the crystal having the composition of aluminum oxide is formed of a sapphire single crystal, the plane orientation of the sapphire single crystal with respect to the shape of the heater support 1 is not particularly limited. The sapphire single crystal after single crystallization preferably has a purity of 99.995% or more, and is colorless and does not contain any dopants.

ヒーターサポート1が完成したら、各溝1aに図4及び図5に示すようにヒーター2の各線を配置する。ヒーター2はコイル状であり、その360度に亘って複数のヒーターサポート1で支持している。図5の形態では、90度の角度ずつ360度に亘って、4個のヒーターサポート1でヒーター2を支持する形態を図示している。 When the heater support 1 is completed, each line of the heater 2 is placed in each groove 1a as shown in FIGS. 4 and 5. The heater 2 has a coil shape and is supported over 360 degrees by a plurality of heater supports 1. In the embodiment shown in FIG. 5, the heater 2 is supported by four heater supports 1 at 90-degree angles over 360 degrees.

コイル状のヒーター2を360度に亘って複数のヒーターサポート1で支持する。このようなヒーター2及び複数のヒーターサポート1を、図6に示すように坩堝3の外周面に対して位置決め配置する。ヒーター2は、Ta(タンタル),W(タングステン),Mo(モリブデン),又はこれらの合金から成る。以上により、ヒーター2と各溝1aで接触するヒーターサポート1を備えるヒーター装置を構成する事が出来る。なお、図4及び図6ではヒーターサポート1に対するヒーター2の配置の見易さを考慮し、ヒーターサポート1は左右2つのみ図示している。 A coil-shaped heater 2 is supported over 360 degrees by a plurality of heater supports 1. Such a heater 2 and a plurality of heater supports 1 are positioned and arranged with respect to the outer peripheral surface of the crucible 3, as shown in FIG. The heater 2 is made of Ta (tantalum), W (tungsten), Mo (molybdenum), or an alloy thereof. As described above, a heater device including the heater support 1 that contacts the heater 2 at each groove 1a can be constructed. In addition, in FIG. 4 and FIG. 6, considering the ease of viewing the arrangement of the heater 2 with respect to the heater support 1, only two heater supports 1, left and right, are shown.

その後坩堝3に所望の原料を充填し、ヒーター2に電流を流して坩堝3に装填された原料を加熱する。このような各溝1aにコイル状のヒーター2を配列する事で、坩堝3の周囲の定位置に巻回するようにコイル状のヒーター2を保持する事が出来る。なおヒーターサポート1の一端は、図示しない支持台等に組み合わせて配設する。 Thereafter, the crucible 3 is filled with a desired raw material, and a current is applied to the heater 2 to heat the raw material loaded in the crucible 3. By arranging the coiled heaters 2 in each groove 1a, the coiled heaters 2 can be held so as to be wound around the crucible 3 at a fixed position. Note that one end of the heater support 1 is arranged in combination with a support stand or the like (not shown).

これらのヒーターサポート1は、分子線エピタキシー装置に用いられる分子線源等に、使用する事が出来る。このヒーター装置に依れば、ヒーター2と接触する部分(各溝1a)の浸食が抑制又は防止可能なヒーターサポート1を備えているので、長時間に亘りヒーター2に電流を流してヒーター2を加熱させても、ヒーター2の脱落や、ヒーター2の巻線間での短絡が抑制又は防止可能なヒーター装置を提供する事が可能となる。 These heater supports 1 can be used in a molecular beam source used in a molecular beam epitaxy device, etc. According to this heater device, since it is equipped with the heater support 1 that can suppress or prevent erosion of the portion (each groove 1a) that comes into contact with the heater 2, the heater 2 can be heated by applying current to the heater 2 for a long period of time. It is possible to provide a heater device that can suppress or prevent the heater 2 from falling off and short circuits between the windings of the heater 2 even when heated.

次に、図1~図6を参照して本発明に係る第2の実施形態のヒーターサポート1を説明する。なお、第1の実施形態と重複する説明は、省略又は簡略化して記載する。 Next, a heater support 1 according to a second embodiment of the present invention will be described with reference to FIGS. 1 to 6. Note that descriptions that overlap with those of the first embodiment will be omitted or simplified.

第2の実施形態が第1の実施形態と異なる箇所は、前記各溝1a表面を含むヒーターサポート1全体が、サファイア単結晶で作製されている点である。ヒーターサポート1全体をサファイア単結晶で作製する場合、ヒーターサポート1の形状に対するサファイア単結晶の面方位は、特に限定されない。第2の実施形態のサファイア単結晶も、99.995%以上の純度が好ましく、無色でドープ材が添加されていない単結晶とする。 The second embodiment differs from the first embodiment in that the entire heater support 1 including the surface of each groove 1a is made of sapphire single crystal. When the entire heater support 1 is made of sapphire single crystal, the plane orientation of the sapphire single crystal with respect to the shape of the heater support 1 is not particularly limited. The sapphire single crystal of the second embodiment also preferably has a purity of 99.995% or more, and is colorless and does not contain any dopants.

第2の実施形態に係るヒーターサポート1は、ダイヤモンドホイール等による研削加工により成形され作製される。その後、1300℃~1900℃の温度で1時間~24時間熱処理(アニール処理)して加工歪みを除去して、その後ヒーターサポート1全体をブラシ研磨し、線粗さRaが0.133μm~0.557μm程度の表面状態に仕上げる。 The heater support 1 according to the second embodiment is formed and manufactured by grinding using a diamond wheel or the like. After that, heat treatment (annealing) at a temperature of 1300℃ to 1900℃ for 1 hour to 24 hours is performed to remove processing distortion, and then the entire heater support 1 is brush-polished to achieve a line roughness Ra of about 0.133μm to 0.557μm. Finish to a surface condition of

第2の実施形態のヒーターサポート1に依れば、第1の実施形態のヒーターサポート1が有する効果に加えて、ヒーター2との接触部分と非接触部分との間を同一材料で一体形成する事が可能となる。従って、前記接触部分と非接触部分との間の剥離や脱落が防止可能となり、ヒーターサポート1の強度と耐久性及び信頼性をより高める事が出来る。 According to the heater support 1 of the second embodiment, in addition to the effects of the heater support 1 of the first embodiment, the contact portion and the non-contact portion with the heater 2 are integrally formed with the same material. things become possible. Therefore, peeling and falling off between the contact portion and the non-contact portion can be prevented, and the strength, durability, and reliability of the heater support 1 can be further enhanced.

第1の実施形態と同様、コイル状のヒーター2を360度に亘って複数のヒーターサポート1で支持する。このようなヒーター2及び複数のヒーターサポート1を、図6に示すように坩堝3の外周面に対して位置決め配置する。以上により、ヒーター2と各溝1aで接触するヒーターサポート1を備えるヒーター装置を構成する事が出来る。 Similar to the first embodiment, a coil-shaped heater 2 is supported over 360 degrees by a plurality of heater supports 1. Such a heater 2 and a plurality of heater supports 1 are positioned and arranged with respect to the outer peripheral surface of the crucible 3, as shown in FIG. As described above, a heater device including the heater support 1 that contacts the heater 2 at each groove 1a can be constructed.

また本発明の変更例として、ヒーターがリニア用ヒーターであり、ヒーターサポートが平板状の外観形状を有し、リニア用ヒーターの複数の平行箇所を、その平板の複数の溝で接触保持させても良い。この場合、最低限溝部分は酸化アルミニウム組成、好ましくはサファイア単結晶とする。最も好ましくは、平板全体をサファイア単結晶製とする形態である。 Further, as a modification of the present invention, the heater is a linear heater, the heater support has a flat plate-like external shape, and the plurality of parallel parts of the linear heater can be held in contact with each other by the plurality of grooves of the flat plate. good. In this case, at least the groove portion is made of aluminum oxide composition, preferably sapphire single crystal. Most preferably, the entire flat plate is made of sapphire single crystal.

以下に本発明の実施例を説明するが、本発明は以下の実施例にのみ限定されない。 Examples of the present invention will be described below, but the present invention is not limited only to the following examples.

本実施例に係るヒーターサポートは図1及び図2に示すような外観形状を有しており、各溝1a表面を含むヒーターサポート1全体を、サファイア単結晶で作製した。各溝1aは等ピッチに形成した。ヒーターサポート1の形状に対するサファイア単結晶の面方位は、特に限定していない。サファイア単結晶の純度は99.995%であり、無色でドープ材が添加されていない単結晶である。 The heater support according to this example has an external appearance as shown in FIGS. 1 and 2, and the entire heater support 1 including the surface of each groove 1a was made of sapphire single crystal. Each groove 1a was formed at an equal pitch. The plane orientation of the sapphire single crystal with respect to the shape of the heater support 1 is not particularly limited. The purity of sapphire single crystal is 99.995%, and it is a colorless single crystal with no dopants added.

各溝1a表面を含むヒーターサポート1を、ダイヤモンドホイール等による研削加工により成形して作製し、その後、1500℃12時間で熱処理(アニール処理)して加工歪みを除去した。 The heater support 1 including the surface of each groove 1a was formed by grinding using a diamond wheel or the like, and then heat treated (annealed) at 1500° C. for 12 hours to remove processing distortion.

熱処理(アニール処理)後にヒーターサポート1全体をブラシ研磨し、線粗さRaが0.133μm~0.557μm程度の表面状態に仕上げた。従って、各溝1aに於けるヒーター2との接触部分の表面(各溝底部を含む表面)は、線粗さRa=0.133μm~0.557μmの範囲内に加工した。 After the heat treatment (annealing treatment), the entire heater support 1 was polished with a brush, and the surface was finished with a line roughness Ra of approximately 0.133 μm to 0.557 μm. Therefore, the surface of the contact portion with the heater 2 in each groove 1a (the surface including the bottom of each groove) was processed to have a line roughness Ra in the range of 0.133 μm to 0.557 μm.

ヒーターサポート1の完成後、各溝1aにTa(ダングステン)製のヒーター2各線を配置した。ヒーター2はコイル状であり、その360度に亘って90度の角度ずつ、4個のヒーターサポート1で支持した。 After completing the heater support 1, each wire of the heater 2 made of Ta (dungsten) was placed in each groove 1a. The heater 2 was coil-shaped and supported by four heater supports 1 at 90-degree angles over its 360 degrees.

このようなヒーター2及び複数のヒーターサポート1を、坩堝3の外周面に対して位置決め配置した。その後坩堝3に所望の原料を充填し、ヒーター2に電流を流して坩堝3に装填された原料を加熱した。 Such a heater 2 and a plurality of heater supports 1 were positioned and arranged with respect to the outer peripheral surface of the crucible 3. Thereafter, the crucible 3 was filled with a desired raw material, and a current was passed through the heater 2 to heat the raw material loaded in the crucible 3.

一方比較例は、ヒーターサポート全体の構成材料を、サファイア単結晶からPBNに変更した。この変更点以外は本実施例と同一条件として、比較例のヒーターサポートを作製した。こちらもヒーターを配置後に、坩堝の外周面に対して位置決め配置し、ヒーターに電流を流して坩堝に装填された原料を加熱した。 On the other hand, in the comparative example, the constituent material of the entire heater support was changed from sapphire single crystal to PBN. A heater support of a comparative example was produced under the same conditions as the present example except for this change. In this case, too, after placing the heater, it was positioned and placed with respect to the outer peripheral surface of the crucible, and electric current was passed through the heater to heat the raw material loaded in the crucible.

以上の結果本実施例のヒーターサポート1では、ヒーター2に電流を流した後でもヒーター2と接触する部分が浸食されない事が確認された。一方、比較例のヒーターサポートでは、ヒーターと接触する部分が浸食された事が確認された。 As a result of the above, it was confirmed that in the heater support 1 of this example, the portion in contact with the heater 2 was not eroded even after electric current was passed through the heater 2. On the other hand, in the heater support of the comparative example, it was confirmed that the portion in contact with the heater was eroded.

1 ヒーターサポート
1a 溝
2 ヒーター
3 坩堝
1 Heater support
1a Groove 2 Heater 3 Crucible

Claims (2)

コイル状のヒーター配列用のヒーターサポートであって、
前記ヒーター配列用に櫛歯状の溝が等ピッチで形成されており、前記溝を含む全体がサファイア単結晶で作製されており、前記全体の表面が、線粗さRa=0.133μm~0.557μmであるヒーターサポート。
A heater support for a coiled heater array,
Comb-like grooves are formed at equal pitches for the heater array, the entire surface including the grooves is made of sapphire single crystal, and the entire surface has a line roughness Ra of 0.133 μm to 0.557 μm. Heater support.
タンタル、タングステン、モリブデン、又はこれらの合金から成るヒーターと前記溝で接触し、前記溝にヒーターが一定のピッチで配列されている請求項1に記載のヒーターサポートを備えるヒーター装置。2. A heater device comprising a heater support according to claim 1, wherein the heater support is in contact with a heater made of tantalum, tungsten, molybdenum, or an alloy thereof in the groove, and the heaters are arranged in the groove at a constant pitch.
JP2019114334A 2019-06-20 2019-06-20 Heater support and heating equipment Active JP7433587B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019114334A JP7433587B2 (en) 2019-06-20 2019-06-20 Heater support and heating equipment
KR1020200063390A KR20200145680A (en) 2019-06-20 2020-05-27 Heater support and heater apparatus
CN202020975970.4U CN212955442U (en) 2019-06-20 2020-06-02 Heater holder and heater device
CN202010487706.0A CN112111784A (en) 2019-06-20 2020-06-02 Heater holder and heater device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019114334A JP7433587B2 (en) 2019-06-20 2019-06-20 Heater support and heating equipment

Publications (2)

Publication Number Publication Date
JP2021001087A JP2021001087A (en) 2021-01-07
JP7433587B2 true JP7433587B2 (en) 2024-02-20

Family

ID=73799341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019114334A Active JP7433587B2 (en) 2019-06-20 2019-06-20 Heater support and heating equipment

Country Status (3)

Country Link
JP (1) JP7433587B2 (en)
KR (1) KR20200145680A (en)
CN (2) CN112111784A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256072A (en) 2010-06-09 2011-12-22 Ngk Spark Plug Co Ltd Ceramic substrate having heating element and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144621A (en) * 1987-11-30 1989-06-06 Daido Sanso Kk Vacuum chamber heater
JPH0318734A (en) 1989-06-16 1991-01-28 Kanto Special Steel Works Ltd Deflection shaft joint equipped with torque measuring instrument
JPH079372Y2 (en) * 1990-03-14 1995-03-06 日新電機株式会社 Molecular beam cell for high temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256072A (en) 2010-06-09 2011-12-22 Ngk Spark Plug Co Ltd Ceramic substrate having heating element and method for manufacturing the same

Also Published As

Publication number Publication date
JP2021001087A (en) 2021-01-07
CN112111784A (en) 2020-12-22
KR20200145680A (en) 2020-12-30
CN212955442U (en) 2021-04-13

Similar Documents

Publication Publication Date Title
KR101878746B1 (en) Hexagonal boron nitride sheet, process for preparing the sheet and electronic device comprising the sheet
TWI300448B (en) Method for manufacturing litheum tantalate crystal
US20160340797A1 (en) Method Of Pulsed Laser-Based Large Area Graphene Synthesis On Metallic And Crystalline Substrates
US10865498B2 (en) Polycrystalline silicon rod, method for producing polycrystalline silicon rod, and single-crystalline silicon
JP6232329B2 (en) Method for removing work-affected layer of SiC seed crystal, method for producing SiC seed crystal and SiC substrate
US20230002860A1 (en) Copper alloy, copper alloy plastic-processed material, component for electronic and electric devices, terminal, bus bar, and heat-diffusing substrate
WO2020179284A1 (en) Resistivity measuring method for silicon single crystal
CN102150235B (en) A method for producing polycrystalline layers
JP7433587B2 (en) Heater support and heating equipment
Grivel et al. Deposition of highly oriented (K, Na) NbO3 films on flexible metal substrates
JP2000208438A (en) SiC SEMICONDUCTOR DEVICE
US20060286780A1 (en) Method for forming silicon thin-film on flexible metal substrate
JP2017516918A (en) Material containing a silver functional layer crystallized on a nickel oxide layer
JP2017516918A5 (en)
TW202239981A (en) Magnetic material, laminate, laminate manufacturing method, thermoelectric conversion element, and magnetic sensor
TW200523386A (en) Metallic resistance material, sputtering target, resistance thin flim, and method for making the resistance thin film
JP2009301796A (en) Ceramic heater and its manufacturing method
JP2004076094A (en) Transparent conductive film and its production method
TW201936955A (en) Method for forming magnetic film and method for magnetic memory element
JP7095289B2 (en) Iridium heating element, surface treatment method for iridium heating element and manufacturing method for iridium afterheater
TWI827204B (en) Method for manufacturing crystallized laminated structure
JPH01226792A (en) Molecular beam source cell
JP2509441B2 (en) Sputtering target and deposition method of metal film with large grain size
WO2021193629A1 (en) Wide gap semiconductor device and method for manufacturing wide gap semiconductor device
KR20180109394A (en) Single crystal copper wire conductor, cable comprising the same, and method for preparing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240116

R150 Certificate of patent or registration of utility model

Ref document number: 7433587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150