JP7433586B2 - SiC single crystal processing method, SiC ingot manufacturing method, and SiC single crystal - Google Patents

SiC single crystal processing method, SiC ingot manufacturing method, and SiC single crystal Download PDF

Info

Publication number
JP7433586B2
JP7433586B2 JP2018152318A JP2018152318A JP7433586B2 JP 7433586 B2 JP7433586 B2 JP 7433586B2 JP 2018152318 A JP2018152318 A JP 2018152318A JP 2018152318 A JP2018152318 A JP 2018152318A JP 7433586 B2 JP7433586 B2 JP 7433586B2
Authority
JP
Japan
Prior art keywords
single crystal
sic single
atomic arrangement
sic
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018152318A
Other languages
Japanese (ja)
Other versions
JP2020026373A (en
Inventor
陽平 藤川
秀隆 鷹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2018152318A priority Critical patent/JP7433586B2/en
Priority to PCT/JP2019/031811 priority patent/WO2020036168A1/en
Publication of JP2020026373A publication Critical patent/JP2020026373A/en
Priority to JP2024002798A priority patent/JP2024032023A/en
Application granted granted Critical
Publication of JP7433586B2 publication Critical patent/JP7433586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation

Description

本発明は、SiC単結晶の加工方法、SiCインゴットの製造方法及びSiC単結晶に関する。 The present invention relates to a method for processing a SiC single crystal, a method for manufacturing a SiC ingot, and a SiC single crystal.

炭化珪素(SiC)は、シリコン(Si)に比べて絶縁破壊電界が1桁大きく、バンドギャップが3倍大きい。また、炭化珪素(SiC)は、シリコン(Si)に比べて熱伝導率が3倍程度高い。炭化珪素(SiC)は、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。 Silicon carbide (SiC) has a dielectric breakdown field one order of magnitude larger and a band gap three times larger than silicon (Si). Furthermore, silicon carbide (SiC) has a thermal conductivity that is approximately three times higher than that of silicon (Si). Silicon carbide (SiC) is expected to be applied to power devices, high-frequency devices, high-temperature operation devices, and the like.

半導体等のデバイスには、SiCウェハ上にエピタキシャル膜を形成したSiCエピタキシャルウェハが用いられる。SiCウェハ上に化学的気相成長法(Chemical Vapor Deposition:CVD)によって設けられたエピタキシャル膜が、SiC半導体デバイスの活性領域となる。 BACKGROUND ART SiC epitaxial wafers, in which an epitaxial film is formed on a SiC wafer, are used for devices such as semiconductors. An epitaxial film formed on a SiC wafer by chemical vapor deposition (CVD) becomes an active region of a SiC semiconductor device.

そのため、割れ等の破損が無く、欠陥の少ない、高品質なSiCウェハが求められている。なお、本明細書において、SiCエピタキシャルウェハはエピタキシャル膜を形成後のウェハを意味し、SiCウェハはエピタキシャル膜を形成前のウェハを意味する。 Therefore, there is a demand for high-quality SiC wafers that are free from damage such as cracks and have few defects. Note that in this specification, a SiC epitaxial wafer means a wafer after forming an epitaxial film, and a SiC wafer means a wafer before forming an epitaxial film.

例えば、特許文献1及び特許文献2には、種結晶として使用されるSiC単結晶の外形の反り及びうねりを制御することで、この種結晶を起点に得られたSiCインゴット及びSiCウェハが高品質になることが記載されている。 For example, Patent Document 1 and Patent Document 2 disclose that by controlling the warpage and waviness of the external shape of a SiC single crystal used as a seed crystal, SiC ingots and SiC wafers obtained from this seed crystal can be produced with high quality. It is stated that it will be.

特開2015-117143号公報Japanese Patent Application Publication No. 2015-117143 特許第4494856号公報Patent No. 4494856

SiCウェハのキラー欠陥の一つとして、基底面転位(BPD)がある。SiCウェハのBPDの一部はSiCエピタキシャルウェハにも引き継がれ、デバイスの順方向に電流を流した際の順方向特性の低下の要因となる。BPDは、基底面において生じるすべりが発生の原因の一つであると考えられている欠陥である。 One of the killer defects of SiC wafers is basal plane dislocation (BPD). A part of the BPD of the SiC wafer is carried over to the SiC epitaxial wafer, and becomes a factor in deterioration of forward characteristics when current is passed in the forward direction of the device. BPD is a defect that is thought to be caused by slippage occurring at the basal surface.

BPDは、特許文献1及び2に記載のように、種結晶として使用されるSiC単結晶の外形の反り及びうねりを制御しても十分抑制することができない。そのため、BPDの低減が求められている。 As described in Patent Documents 1 and 2, BPD cannot be sufficiently suppressed even if the warpage and waviness of the external shape of the SiC single crystal used as a seed crystal are controlled. Therefore, reduction of BPD is required.

本発明は上記問題に鑑みてなされたものであり、結晶成長時において原子配列面の湾曲を低減できるSiC単結晶の加工方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for processing a SiC single crystal that can reduce the curvature of the atomic arrangement plane during crystal growth.

本発明者らは、鋭意検討の結果、SiC単結晶の原子配列面(格子面)の湾曲量と、基底面転位(BPD)密度との間に、相関関係があることを見出した。そこで、種結晶裏面を原子配列面の湾曲に沿う形状に加工し、平坦な坩堝の貼付面に貼り付けることで、結晶成長時の原子配列面を平坦化できることを見出した。
すなわち、本発明は、上記課題を解決するために、以下の手段を提供する。
As a result of intensive studies, the present inventors found that there is a correlation between the amount of curvature of the atomic arrangement plane (lattice plane) of a SiC single crystal and the basal plane dislocation (BPD) density. Therefore, they discovered that by processing the back side of a seed crystal into a shape that follows the curve of the atomic arrangement plane and attaching it to the flat attachment surface of a crucible, the atomic arrangement plane during crystal growth can be flattened.
That is, the present invention provides the following means to solve the above problems.

(1)第1の態様にかかるSiC単結晶の加工方法は、SiC単結晶の原子配列面の形状を少なくとも平面視中央を通る第1の方向と前記第1の方向と直交する第2の方向に沿って測定する測定工程と、測定結果を基に、前記SiC単結晶の少なくとも第1面を前記原子配列面に沿って加工する加工工程と、前記第1面を貼り付け面として、前記SiC単結晶を設置面に貼りつける貼付工程と、を有する。 (1) The method for processing a SiC single crystal according to the first aspect includes changing the shape of the atomic arrangement plane of the SiC single crystal at least in a first direction passing through the center in plan view and in a second direction orthogonal to the first direction. a processing step of processing at least a first surface of the SiC single crystal along the atomic arrangement plane based on the measurement results; and a pasting step of pasting the single crystal onto the installation surface.

(2)上記態様にかかるSiC単結晶の加工方法における前記加工工程は、前記SiC単結晶を前記原子配列面の湾曲方向と反対方向に湾曲する湾曲面を有するスペーサに貼りつけ、前記原子配列面を平坦化する平坦化工程と、平坦化した前記原子配列面に沿って前記SiC単結晶を切断又は研削する面出し工程と、を有してもよい。 (2) The processing step in the method for processing a SiC single crystal according to the above aspect includes bonding the SiC single crystal to a spacer having a curved surface that curves in a direction opposite to the curve direction of the atomic arrangement surface. The method may include a planarization step of planarizing the SiC single crystal, and a surface-leveling step of cutting or grinding the SiC single crystal along the planarized atomic arrangement plane.

(3)上記態様にかかるSiC単結晶の加工方法における前記加工工程は、前記SiC単結晶を前記原子配列面の湾曲量に応じて吸着力の異なる吸着面に真空吸着し、前記原子配列面を平坦化する真空吸着工程と、平坦化した前記原子配列面に沿って前記SiC単結晶を切断又は研削する面出し工程と、を有してもよい。 (3) In the processing step of the SiC single crystal processing method according to the above aspect, the SiC single crystal is vacuum-adsorbed to adsorption surfaces having different adsorption forces depending on the amount of curvature of the atomic arrangement surface, and the atomic arrangement surface is The method may include a vacuum suction step for flattening the SiC single crystal, and a surface leveling step for cutting or grinding the SiC single crystal along the flattened atomic arrangement plane.

(4)上記態様にかかるSiC単結晶の加工方法における前記加工工程は、前記SiC単結晶を前記原子配列面に対応する形状の電極に近づけ、放電により前記SiC単結晶の前記第1面を加工する放電加工工程を有してもよい。 (4) In the processing step of the SiC single crystal processing method according to the above aspect, the SiC single crystal is brought close to an electrode having a shape corresponding to the atomic arrangement plane, and the first surface of the SiC single crystal is processed by electric discharge. It may also include an electrical discharge machining step.

(5)上記態様にかかるSiC単結晶の加工方法において、前記貼付工程を行う際の前記SiC単結晶の厚みが5mm以下であってもよい。 (5) In the method for processing a SiC single crystal according to the above aspect, the thickness of the SiC single crystal when performing the pasting step may be 5 mm or less.

(6)上記態様にかかるSiC単結晶の加工方法の前記貼付工程において、前記第1面が前記設置面に向って凸に湾曲する場合は、前記SiC単結晶の外周側の荷重を内側より強くし、前記第1面が前記設置面に向って凹に湾曲する場合は、前記SiC単結晶の内側の荷重を外周側より強くしてもよい。 (6) In the pasting step of the SiC single crystal processing method according to the above aspect, if the first surface is curved convexly toward the installation surface, the load on the outer peripheral side of the SiC single crystal is stronger than the inside. However, when the first surface is curved concavely toward the installation surface, the load on the inside of the SiC single crystal may be stronger than on the outer peripheral side.

(7)上記態様にかかるSiC単結晶の加工方法は、前記貼付工程中に前記SiC単結晶の周囲を減圧する減圧工程をさらに有してもよい。 (7) The method for processing a SiC single crystal according to the above aspect may further include a step of reducing pressure around the SiC single crystal during the pasting step.

(8)第2の態様にかかるSiCインゴットの製造方法は、上記態様にかかるSiC単結晶の加工方法において、前記設置面に貼り付けられた前記SiC単結晶を種結晶として結晶成長を行う。 (8) In the method for manufacturing a SiC ingot according to the second aspect, in the method for processing a SiC single crystal according to the above aspect, crystal growth is performed using the SiC single crystal attached to the installation surface as a seed crystal.

(9)第3の態様にかかるSiC単結晶は、原子配列面の湾曲量の最大値が20μm以上のSiC単結晶であり、前記SiC単結晶の反り量と前記原子配列面の湾曲量との差分の絶対値が、10μm以下である。 (9) The SiC single crystal according to the third aspect is a SiC single crystal in which the maximum value of the amount of curvature of the atomic arrangement plane is 20 μm or more, and the amount of curvature of the SiC single crystal and the amount of curvature of the atomic arrangement plane are The absolute value of the difference is 10 μm or less.

上記態様にかかるSiC単結晶の評価方法を用いると、結晶成長時の原子配列面を平坦化でき、基底面転位(BPD)の発生を抑制できる。 By using the SiC single crystal evaluation method according to the above aspect, the atomic arrangement plane during crystal growth can be flattened, and the occurrence of basal plane dislocations (BPD) can be suppressed.

SiC単結晶を平面視中心を通る第1の方向に延在する直線に沿って切断した切断面の模式図である。FIG. 2 is a schematic diagram of a cross section of a SiC single crystal cut along a straight line extending in a first direction passing through the center in plan view. SiC単結晶の原子配列面の一例を模式的に示した図である。FIG. 2 is a diagram schematically showing an example of an atomic arrangement plane of a SiC single crystal. SiC単結晶の原子配列面の別の例を模式的に示した図である。FIG. 3 is a diagram schematically showing another example of an atomic arrangement plane of a SiC single crystal. 原子配列面の形状の測定方法を具体的に説明するための図である。FIG. 3 is a diagram for specifically explaining a method of measuring the shape of an atomic arrangement surface. 原子配列面の形状の測定方法を具体的に説明するための図である。FIG. 3 is a diagram for specifically explaining a method of measuring the shape of an atomic arrangement surface. 原子配列面の形状の測定方法を具体的に説明するための図である。FIG. 3 is a diagram for specifically explaining a method of measuring the shape of an atomic arrangement surface. 原子配列面の形状の測定方法を具体的に説明するための図である。FIG. 3 is a diagram for specifically explaining a method of measuring the shape of an atomic arrangement surface. 複数のXRDの測定点から原子配列面の曲率半径を求めた例を示す。An example will be shown in which the radius of curvature of the atomic arrangement surface was determined from a plurality of XRD measurement points. 原子配列面の形状の測定方法の別の例を具体的に説明するための図である。FIG. 7 is a diagram for specifically explaining another example of a method for measuring the shape of an atomic arrangement surface. 原子配列面の形状の測定方法の別の例を具体的に説明するための図である。FIG. 7 is a diagram for specifically explaining another example of a method for measuring the shape of an atomic arrangement surface. 第1の加工方法を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a first processing method. 吸着面を平面視した模式図である。FIG. 3 is a schematic plan view of the suction surface. 第3の加工方法を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a third processing method. 貼付工程を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a pasting process. 昇華法に用いられる製造装置の一例の模式図である。1 is a schematic diagram of an example of a manufacturing apparatus used in a sublimation method. SiC単結晶の原子配列面の曲率半径と、BPD密度の関係を示すグラフである。It is a graph showing the relationship between the radius of curvature of the atomic arrangement plane of a SiC single crystal and the BPD density.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, this embodiment will be described in detail with reference to the drawings as appropriate. The drawings used in the following description may show characteristic parts enlarged for convenience, and the dimensional ratio of each component may differ from the actual one. The materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited thereto, and can be practiced with appropriate changes within the scope of the invention.

「SiC単結晶の加工方法」
本実施形態にかかるSiC単結晶の加工方法は、測定工程と、加工工程と、貼付工程とを有する。測定工程では、SiC単結晶の原子配列面の形状を、少なくとも平面視中央を通る第1の方向と、第1の方向と直交する第2の方向とに沿って測定する。また加工工程では、測定結果を基に、SiC単結晶の少なくとも第1面を原子配列面に沿って加工する。さらに貼付工程では、SiC単結晶の第1面を貼り付け面として、SiC単結晶を設置面に貼りつける。以下、各工程について具体的に説明する。
"SiC single crystal processing method"
The SiC single crystal processing method according to this embodiment includes a measurement step, a processing step, and a pasting step. In the measurement step, the shape of the atomic arrangement plane of the SiC single crystal is measured along at least a first direction passing through the center in plan view and a second direction orthogonal to the first direction. In the processing step, at least the first surface of the SiC single crystal is processed along the atomic arrangement plane based on the measurement results. Further, in the attaching step, the SiC single crystal is attached to the installation surface with the first surface of the SiC single crystal as the attaching surface. Each step will be specifically explained below.

<測定工程>
図1は、SiC単結晶1を平面視中心を通る第1の方向に延在する直線に沿って切断した切断面の模式図である。第1の方向は、任意の方向を設定できる。図1では、第1の方向を[1-100]としている。図1において上側は[000-1]方向、すなわち<0001>方向に垂直に切断をした時にカーボン面(C面、(000-1)面)が現れる方向である。以下、第1の方向を[1-100]とした場合を例に説明する。
<Measurement process>
FIG. 1 is a schematic diagram of a cut surface of a SiC single crystal 1 taken along a straight line extending in a first direction passing through the center in plan view. Any direction can be set as the first direction. In FIG. 1, the first direction is [1-100]. In FIG. 1, the upper side is the [000-1] direction, that is, the direction in which the carbon plane (C plane, (000-1) plane) appears when cutting perpendicular to the <0001> direction. An example in which the first direction is [1-100] will be described below.

ここで結晶方位及び面は、ミラー指数として以下の括弧を用いて表記される。()と{}は面を表す時に用いられる。()は特定の面を表現する際に用いられ、{}は結晶の対称性による等価な面の総称(集合面)を表現する際に用いられる。一方で、<>と[]は方向を表す特に用いられる。[]は特定の方向を表現する際に用いられ、<>は結晶の対称性による等価な方向を表現する際に用いられる。 Here, the crystal orientation and plane are expressed using the following parentheses as Miller indices. () and {} are used to represent faces. () is used to represent a specific surface, and {} is used to represent a generic term for equivalent surfaces (collective surface) due to the symmetry of the crystal. On the other hand, < > and [ ] are especially used to indicate direction. [] is used to express a specific direction, and <> is used to express an equivalent direction due to the symmetry of the crystal.

図1に示すように、SiC単結晶1は、複数の原子Aが整列してなる単結晶である。そのため図1に示すように、SiC単結晶の切断面をミクロに見ると、複数の原子Aが配列した原子配列面2が形成されている。切断面における原子配列面2は、切断面に沿って配列する原子Aを繋いで得られる切断方向と略平行な方向に延在する線として表記される。 As shown in FIG. 1, a SiC single crystal 1 is a single crystal in which a plurality of atoms A are aligned. Therefore, as shown in FIG. 1, when looking microscopically at a cut surface of a SiC single crystal, an atomic arrangement plane 2 in which a plurality of atoms A are arranged is formed. The atomic arrangement plane 2 on the cut surface is expressed as a line extending in a direction substantially parallel to the cutting direction obtained by connecting the atoms A arranged along the cut surface.

原子配列面2の形状は、SiC単結晶1の最表面の形状によらず、切断面の方向によって異なる場合がある。図2及び図3は、原子配列面2の形状を模式的に示した図である。図2に示す原子配列面2は、中心に向かって凹形状である。そのため、図2に示す原子配列面2は、[1-100]方向と、[1-100]方向に直交する[11-20]方向とで湾曲方向が一致する。これに対し図3に示す原子配列面2は、所定の切断面では凹形状、異なる切断面では凸形状のポテトチップス型(鞍型)の形状である。そのため、図3に示す原子配列面2は、[1-100]方向と、[1-100]方向に直交する[11-20]方向とで湾曲方向が異なる。 The shape of the atomic arrangement plane 2 may vary depending on the direction of the cut plane, regardless of the shape of the outermost surface of the SiC single crystal 1. 2 and 3 are diagrams schematically showing the shape of the atomic arrangement plane 2. FIG. The atomic arrangement surface 2 shown in FIG. 2 has a concave shape toward the center. Therefore, the atomic arrangement plane 2 shown in FIG. 2 has the same curved direction in the [1-100] direction and in the [11-20] direction orthogonal to the [1-100] direction. On the other hand, the atomic arrangement surface 2 shown in FIG. 3 has a potato chip-shaped (saddle-shaped) shape that is concave at a predetermined cut plane and convex at a different cut plane. Therefore, the atomic arrangement plane 2 shown in FIG. 3 has different curve directions in the [1-100] direction and in the [11-20] direction orthogonal to the [1-100] direction.

つまり、原子配列面2の形状を正確に把握するためには、少なくとも平面視中央を通り互いに直交する2方向(第1の方向及び第2の方向)に沿って、SiC単結晶の原子配列面2の形状を測定する必要がある。またSiC単結晶1の結晶構造は六方晶であり、中心に対して対称な六方向に沿って原子配列面2の形状を測定することが好ましい。中心に対して対称な六方向に沿って原子配列面2の形状を計測すれば、原子配列面2の形状をより精密に求めることができる。 In other words, in order to accurately grasp the shape of the atomic arrangement plane 2, it is necessary to examine the atomic arrangement plane of the SiC single crystal along at least two directions (first direction and second direction) passing through the center in plan view and orthogonal to each other. It is necessary to measure the shape of 2. Further, the crystal structure of the SiC single crystal 1 is hexagonal, and it is preferable to measure the shape of the atomic arrangement plane 2 along six directions symmetrical about the center. By measuring the shape of the atomic arrangement surface 2 along six directions symmetrical about the center, the shape of the atomic arrangement surface 2 can be determined more precisely.

原子配列面2の形状はX線回折(XRD)により測定できる。測定する面は測定する方向に応じて決定される。測定方向を[hkil]とすると、測定面は(mh mk mi n)の関係を満たす必要がある。ここで、mは0以上の整数であり、nは自然数である。例えば、[11-20]方向に測定する場合は、m=0、n=4として(0004)面、m=2、n=16として(22-416)面等が選択される。一方で、[11-20]方向に測定する場合は、m=0、n=4として(0004)面、m=3、n=16として(3-3016)面等が選択される。すなわち測定面は、測定方向によって異なる面であってもよく、測定される原子配列面2は必ずしも同じ面とはならなくてもよい。上記関係を満たすことで、結晶成長時に及ぼす影響の少ないa面又はm面方向の格子湾曲をc面方向の格子湾曲と誤認することを防ぐことができる。また測定はC面、Si面のいずれの面を選択してもよいが、坩堝の設置面に貼りつける貼付面(第1面)に対して行う。 The shape of the atomic arrangement plane 2 can be measured by X-ray diffraction (XRD). The surface to be measured is determined depending on the direction of measurement. When the measurement direction is [hkil], the measurement surface needs to satisfy the relationship (mh mk min). Here, m is an integer greater than or equal to 0, and n is a natural number. For example, when measuring in the [11-20] direction, the (0004) plane is selected with m=0 and n=4, the (22-416) plane is selected with m=2 and n=16, etc. On the other hand, when measuring in the [11-20] direction, the (0004) plane is selected with m=0 and n=4, the (3-3016) plane is selected with m=3 and n=16, etc. That is, the measurement plane may be a different plane depending on the measurement direction, and the atomic arrangement plane 2 to be measured does not necessarily have to be the same plane. By satisfying the above relationship, it is possible to prevent lattice curvature in the a-plane or m-plane direction, which has little effect on crystal growth, from being mistaken as lattice curvature in the c-plane direction. Further, the measurement may be performed on either the C surface or the Si surface, but it is performed on the attachment surface (first surface) that is attached to the installation surface of the crucible.

X線回折データは、所定の方向に沿って中心、端部、中心と端部との中点の5点において取得する。原子配列面2が湾曲している場合、X線の反射方向が変わるため、中心とそれ以外の部分とで出力されるX線回折像のピークのω角の位置が変動する。この回折ピークの位置変動から原子配列面2の湾曲方向を求めることができる。また回折ピークの位置変動から原子配列面2の曲率半径も求めることができ、原子配列面2の湾曲量も求めることができる。そして、原子配列面2の湾曲方向及び湾曲量から原子配列面2の形状を求めることができる。 X-ray diffraction data is acquired at five points along a predetermined direction: the center, the ends, and the midpoint between the center and the ends. When the atomic arrangement surface 2 is curved, the direction of reflection of X-rays changes, so the ω-angle position of the peak of the output X-ray diffraction image varies between the center and other parts. The direction of curvature of the atomic arrangement plane 2 can be determined from the variation in the position of this diffraction peak. Furthermore, the radius of curvature of the atomic array surface 2 can also be determined from the positional variation of the diffraction peak, and the amount of curvature of the atomic array surface 2 can also be determined. Then, the shape of the atomic arrangement surface 2 can be determined from the direction of curvature and the amount of curvature of the atomic arrangement surface 2.

(原子配列面の形状の測定方法(方法1)の具体的な説明)
SiC単結晶をスライスした試料(以下、ウェハ20と言う)の外周端部分のXRDの測定値から原子配列面の湾曲方向及び湾曲量を測定する方法について具体的に説明する。一例としてウェハ20を用いて測定方法を説明するが、スライスする前のインゴット状のSiC単結晶においても同様の方法を用いて測定できる。
(Specific explanation of the method for measuring the shape of the atomic arrangement surface (method 1))
A method for measuring the direction and amount of curvature of an atomic arrangement plane from XRD measurements of the outer peripheral edge of a sliced SiC single crystal sample (hereinafter referred to as wafer 20) will be specifically described. The measurement method will be explained using the wafer 20 as an example, but the same method can be used for measurement on an ingot-shaped SiC single crystal before slicing.

図4に平面視中心を通り原子配列面の測定の方向、例えば[1-100]方向に沿って切断した切断面を模式的に示す。ウェハ20の半径をrとすると、断面の横方向の長さは2rとなる。また図4にウェハ20における原子配列面22の形状も図示している。図4に示すように、ウェハ20自体の形状は平坦であるが、原子配列面22は湾曲している場合がある。図4に示す原子配列面22は左右対称であり、凹型に湾曲している。この対称性は、SiC単結晶(インゴット)の製造条件が通常中心に対して対称性があることに起因する。なお、この対称性とは、完全対称である必要はなく、製造条件の揺らぎ等に起因したブレを容認する近似としての対称性を意味する。 FIG. 4 schematically shows a cut plane cut along the measurement direction of the atomic arrangement plane, for example, the [1-100] direction, passing through the center in plan view. If the radius of the wafer 20 is r, then the lateral length of the cross section is 2r. FIG. 4 also shows the shape of the atomic arrangement surface 22 in the wafer 20. As shown in FIG. 4, the shape of the wafer 20 itself is flat, but the atomic arrangement surface 22 may be curved. The atomic arrangement surface 22 shown in FIG. 4 is bilaterally symmetrical and curved in a concave shape. This symmetry is due to the fact that the SiC single crystal (ingot) manufacturing conditions are usually symmetrical about the center. Note that this symmetry does not necessarily have to be complete symmetry, but means symmetry as an approximation that allows for fluctuations due to fluctuations in manufacturing conditions, etc.

次いで、図5に示すように、XRDをウェハ20の両外周端部に対して行い、測定した2点間のX線回折ピーク角度の差Δθを求める。このΔθが測定した2点の原子配列面22の傾きの差になっている。X線回折測定に用いる回折面は、上述のように切断面にあわせて適切な面を選択する。 Next, as shown in FIG. 5, XRD is performed on both outer circumferential ends of the wafer 20, and the difference Δθ in the X-ray diffraction peak angle between the two measured points is determined. This Δθ is the difference in inclination of the two measured atomic arrangement planes 22. As the diffraction surface used for X-ray diffraction measurement, an appropriate surface is selected according to the cutting surface as described above.

次に、図6に示すように、得られたΔθから湾曲した原子配列面22の曲率半径を求める。図6には、ウェハ20の原子配列面22の曲面が円の一部であると仮定して、測定した2箇所の原子配列面に接する円Cを示している。図6から幾何学的に、接点を両端とする円弧を含む扇型の中心角φは、測定したX線回折ピーク角度の差Δθと等しくなる。原子配列面22の曲率半径は、当該円弧の半径Rに対応する。円弧の半径Rは以下の関係式で求められる。 Next, as shown in FIG. 6, the radius of curvature of the curved atomic arrangement surface 22 is determined from the obtained Δθ. FIG. 6 shows a circle C that is in contact with the two measured atomic arrangement surfaces, assuming that the curved surface of the atomic arrangement surface 22 of the wafer 20 is a part of a circle. Geometrically, it can be seen from FIG. 6 that the central angle φ of the sector-shaped arc including the arc having both ends at the contact points is equal to the difference Δθ between the measured X-ray diffraction peak angles. The radius of curvature of the atomic arrangement surface 22 corresponds to the radius R of the circular arc. The radius R of the circular arc is determined by the following relational expression.

Figure 0007433586000001
Figure 0007433586000001

そして、この円弧の半径Rとウェハ20の半径rとから、原子配列面22の湾曲量dが求められる。図7に示すように、原子配列面22の湾曲量dは、円弧の半径から、円弧の中心からウェハ20に下した垂線の距離を引いたものに対応する。円弧の中心からウェハ20に下した垂線の距離は、三平方の定理から算出され、以下の式が成り立つ。なお、本明細書では曲率半径が正(凹面)の場合の湾曲量dを正の値とし、負(凸面)の場合の湾曲量dを負の値と定義する。 Then, the amount of curvature d of the atomic arrangement surface 22 is determined from the radius R of this circular arc and the radius r of the wafer 20. As shown in FIG. 7, the amount of curvature d of the atomic arrangement surface 22 corresponds to the radius of the arc minus the distance of a perpendicular line drawn from the center of the arc to the wafer 20. The distance of the perpendicular line drawn from the center of the arc to the wafer 20 is calculated from the Pythagorean theorem, and the following formula holds true. In this specification, the amount of curvature d when the radius of curvature is positive (concave surface) is defined as a positive value, and the amount of curvature d when the radius of curvature is negative (convex surface) is defined as a negative value.

Figure 0007433586000002
Figure 0007433586000002

上述のように、XRDのウェハ20の両外側端部の測定値だけからRを測定することもできる。一方で、この方法を用いると、測定箇所に局所的な歪等が存在した場合において、形状を見誤る可能性もある。その為、複数箇所でX線回折ピーク角度の測定を行って、単位長さ辺りの曲率を以下の式から換算する。 As mentioned above, R can also be measured only from the XRD measurements of both outer edges of the wafer 20. On the other hand, when this method is used, there is a possibility that the shape may be misjudged if there is local distortion or the like at the measurement location. Therefore, the X-ray diffraction peak angles are measured at multiple locations, and the curvature per unit length is calculated using the following formula.

Figure 0007433586000003
Figure 0007433586000003

図8に、複数のXRDの測定点から原子配列面の曲率半径を求めた例を示す。図8の横軸はウェハ中心からの相対位置であり、縦軸はウェハ中心回折ピーク角に対する各測定点の相対的な回折ピーク角度を示す。図8は、ウェハの[1-100]方向を測定し、測定面を(3-3016)とした例である。測定箇所は5カ所で行った。5点はほぼ直線に並んでおり、この傾きから、dθ/dr=8.69×10-4deg/mmが求められる。この結果を上式に適用することでR=66mの凹面であることが計算できる。そして、このRとウェハの半径r(75mm)から、原子配列面の湾曲量dが42.6μmと求まる。 FIG. 8 shows an example in which the radius of curvature of the atomic arrangement surface was determined from a plurality of XRD measurement points. The horizontal axis in FIG. 8 represents the relative position from the wafer center, and the vertical axis represents the relative diffraction peak angle of each measurement point with respect to the wafer center diffraction peak angle. FIG. 8 is an example in which the measurement is performed in the [1-100] direction of the wafer, and the measurement surface is set to (3-3016). Measurements were taken at five locations. The five points are almost lined up in a straight line, and from this slope, dθ/dr=8.69×10 −4 deg/mm can be determined. By applying this result to the above equation, it can be calculated that the concave surface has R=66 m. Then, from this R and the radius r (75 mm) of the wafer, the amount of curvature d of the atomic arrangement surface is found to be 42.6 μm.

ここまで原子配列面の形状が凹面である例で説明したが、凸面の場合も同様に求められる。凸面の場合は、Rはマイナスとして算出される。 Up to this point, the example in which the shape of the atomic arrangement surface is a concave surface has been described, but the calculation can be made in the same way when the shape is a convex surface. In the case of a convex surface, R is calculated as a negative value.

(原子配列面の形状の別の測定方法(方法2)の説明)
原子配列面の形状は、別の方法で求めてもよい。図9に平面視中心を通り原子配列面の測定の方向、例えば[1-100]方向に沿って切断した切断面を模式的に示す。図9では、原子配列面22の形状が凹状に湾曲している場合を例に説明する。
(Explanation of another method for measuring the shape of the atomic arrangement surface (method 2))
The shape of the atomic arrangement surface may be determined by another method. FIG. 9 schematically shows a cut plane cut along the measurement direction of the atomic arrangement plane, for example, the [1-100] direction, passing through the center in plan view. In FIG. 9, an example will be explained in which the shape of the atomic arrangement surface 22 is concavely curved.

図9に示すように、ウェハ20の中心とウェハ20の中心から距離xだけ離れた場所の2箇所で、X線回折の回折ピークを測定する。インゴットの製造条件の対称性からウェハ20の形状は、近似として左右対称とすることができ、原子配列面22はウェハ20の中央部で平坦になると仮定できる。そのため、図10に示すように測定した2点における原子配列面22の傾きの差をΔθとすると、原子配列面22の相対的な位置yは以下の式で表記できる。 As shown in FIG. 9, the diffraction peaks of X-ray diffraction are measured at two locations: the center of the wafer 20 and a location a distance x away from the center of the wafer 20. Due to the symmetry of the ingot manufacturing conditions, the shape of the wafer 20 can be approximated to be bilaterally symmetrical, and it can be assumed that the atomic arrangement plane 22 is flat at the center of the wafer 20. Therefore, if the difference in the inclination of the atomic arrangement plane 22 at two points measured as shown in FIG. 10 is Δθ, the relative position y of the atomic arrangement plane 22 can be expressed by the following formula.

Figure 0007433586000004
Figure 0007433586000004

中心からの距離xの位置を変えて複数箇所の測定をすることで、それぞれの点でウェハ中心と測定点とにおける原子配列面22の相対的な原子位置を求めることができる。
この方法は、それぞれの測定箇所で原子配列面における原子の相対位置が求められる。そのため、局所的な原子配列面の湾曲量を求めることができる。また、ウェハ20全体における原子配列面22の相対的な原子位置をグラフとして示すことができ、原子配列面22のならびを感覚的に把握するために有益である。
By performing measurements at a plurality of locations while varying the distance x from the center, the relative atomic positions of the atomic array surface 22 between the wafer center and the measurement point can be determined at each point.
In this method, the relative positions of atoms on the atomic arrangement plane are determined at each measurement location. Therefore, the amount of curvature of the local atomic arrangement plane can be determined. Furthermore, the relative atomic positions of the atomic arrangement surface 22 in the entire wafer 20 can be shown as a graph, which is useful for intuitively understanding the arrangement of the atomic arrangement surface 22.

ここでは、測定対象をウェハ20の場合を例に説明した。測定対象がSiCインゴットやSiCインゴットから切断された切断体の場合も、同様に原子配列面の湾曲量を求めることができる。 Here, the case where the measurement target is the wafer 20 has been explained as an example. Even when the measurement target is a SiC ingot or a cut body cut from a SiC ingot, the amount of curvature of the atomic arrangement plane can be similarly determined.

上述の手順で、少なくとも平面視中央を通り互いに直交する2方向(第1の方向及び第2の方向)に沿って、SiC単結晶の原子配列面2の湾曲量を測定する。それぞれの方向の湾曲量及び湾曲方向を求めることで、図2及び図3に示すような原子配列面2の概略形状を求めることができる。 According to the above-described procedure, the amount of curvature of the atomic arrangement plane 2 of the SiC single crystal is measured at least along two directions (first direction and second direction) that pass through the center in plan view and are perpendicular to each other. By determining the amount of curvature and the direction of curvature in each direction, the approximate shape of the atomic arrangement surface 2 as shown in FIGS. 2 and 3 can be determined.

<加工工程>
加工工程では、測定工程の測定結果を基に、SiC単結晶1の貼付面(第1面)を原子配列面2に沿って加工する。加工方法については特に限定するものではないが、例えば以下の3つの方法を用いることができる。
<Processing process>
In the processing step, the attachment surface (first surface) of the SiC single crystal 1 is processed along the atomic arrangement surface 2 based on the measurement results of the measurement step. Although the processing method is not particularly limited, for example, the following three methods can be used.

(第1の加工方法)
第1の加工方法は、SiC単結晶を原子配列面の湾曲方向と反対方向に湾曲する湾曲面を有するスペーサに貼りつけ、原子配列面2を平坦化する平坦化工程と、平坦化した原子配列面2に沿ってSiC単結晶を切断又は研削する面出し工程と、を有する。第1の加工方法を用いる場合は、SiC単結晶の厚みは弾性変形可能な5mm以下とすることが好ましい。
(First processing method)
The first processing method includes a flattening process in which a SiC single crystal is attached to a spacer having a curved surface that curves in the opposite direction to the curved direction of the atomic arrangement surface, and the atomic arrangement surface 2 is flattened; and a surface-leveling step of cutting or grinding the SiC single crystal along the surface 2. When using the first processing method, it is preferable that the thickness of the SiC single crystal is 5 mm or less so that it can be elastically deformed.

図11は、第1の加工方法を説明するための模式図である。図11(a)に示すように、スペーサ30と、支持台31とを準備する。スペーサ30の第1面30Aは平坦面であり、第2面30Bは原子配列面2の湾曲方向と反対方向に湾曲する湾曲面である。 FIG. 11 is a schematic diagram for explaining the first processing method. As shown in FIG. 11(a), a spacer 30 and a support base 31 are prepared. The first surface 30A of the spacer 30 is a flat surface, and the second surface 30B is a curved surface that curves in the opposite direction to the curve direction of the atomic arrangement surface 2.

スペーサ30の第2面30Bは、SiC単結晶1の原子配列面2の形状を測定してから加工してもよいし、予め事前に湾曲方向及び湾曲量の異なる複数のスペーサを準備しておき、それらの中から貼付後に原子配列面2を最も平坦化できるものを選択してもよい。 The second surface 30B of the spacer 30 may be processed after measuring the shape of the atomic arrangement surface 2 of the SiC single crystal 1, or by preparing a plurality of spacers with different curved directions and amounts in advance. , the one that can most flatten the atomic arrangement surface 2 after pasting may be selected from among them.

スペーサ30および支持台31には、ガラス、セラミックス等を用いることができる。加工性の観点からは、セラミックスを用いてスペーサ30を作製することが好ましい。支持台31は、表面の平坦性に優れ、剛性を有するものを用いることが好ましい。 Glass, ceramics, etc. can be used for the spacer 30 and the support base 31. From the viewpoint of workability, it is preferable to make the spacer 30 using ceramics. It is preferable to use a support stand 31 that has excellent surface flatness and rigidity.

次いで、図11(b)に示すように、支持台31上にスペーサ30を設置し、スペーサ30の第2面30BにSiC単結晶1を貼りあわせる。SiC単結晶1は、原子配列面2の湾曲方向が第2面30Bの湾曲方向と反対となるように貼りあわせる。貼りあわせは、例えば、接着剤を用いて行う。接着剤は、精密加工の際に通常使用される熱可塑性樹脂系の固形ワックスを使用することができ、接着力の強いものを選択することが好ましい。接着剤によりSiC単結晶に弾性変形を与えた状態で支持台31に固定しても、変形した状態で固定できる。 Next, as shown in FIG. 11(b), the spacer 30 is placed on the support stand 31, and the SiC single crystal 1 is bonded to the second surface 30B of the spacer 30. The SiC single crystals 1 are bonded together so that the direction of curvature of the atomic arrangement plane 2 is opposite to the direction of curvature of the second surface 30B. The bonding is performed using an adhesive, for example. As the adhesive, a thermoplastic resin-based solid wax commonly used in precision processing can be used, and it is preferable to select one with strong adhesive strength. Even if the SiC single crystal is elastically deformed with an adhesive and fixed to the support base 31, it can be fixed in the deformed state.

スペーサ30に貼りあわせた後のSiC単結晶1の原子配列面2は、貼りあわせ前の原子配列面2と比較して平坦化する。スペーサ30に貼りあわせ後の原子配列面2は、支持台31の表面と平行になっていることが最も好ましい。 The atomic arrangement surface 2 of the SiC single crystal 1 after bonding to the spacer 30 is flattened compared to the atomic arrangement surface 2 before bonding. It is most preferable that the atomic arrangement surface 2 after bonding to the spacer 30 is parallel to the surface of the support base 31.

次いで、図11(c)に示すように、SiC単結晶1を切断する。切断面は、支持台31の表面と平行にする。原子配列面2は、支持台31の表面に対して平坦化されているため、支持台31の表面と平行に切断すると、必然的に平坦化した原子配列面2に沿ってSiC単結晶1が切断される。切断には、例えば、ワイヤーソー等を用いることができる。また面出し工程では切断以外の方法で、原子配列面2の面出しを行ってもよい。切断以外の方法としては、例えば、SiC単結晶1を支持台31と反対側の面から研削してもよい。 Next, as shown in FIG. 11(c), the SiC single crystal 1 is cut. The cut surface is parallel to the surface of the support base 31. Since the atomic arrangement plane 2 is flattened with respect to the surface of the support stand 31, when cut parallel to the surface of the support stand 31, the SiC single crystal 1 will inevitably be cut along the flattened atomic arrangement plane 2. disconnected. For example, a wire saw or the like can be used for cutting. Further, in the surface leveling process, the surface level of the atomic arrangement surface 2 may be leveled by a method other than cutting. As a method other than cutting, for example, the SiC single crystal 1 may be ground from the surface opposite to the support base 31.

上述の過程を経ることで、図11(d)に示すように、切断後には第1面10Aが原子配列面2に沿うSiC単結晶10が得られる。 By going through the above-mentioned process, as shown in FIG. 11(d), a SiC single crystal 10 whose first surface 10A is along the atomic arrangement plane 2 after cutting is obtained.

(第2の加工方法)
第2の加工方法は、SiC単結晶1を原子配列面2の湾曲量に応じて吸着力の異なる吸着面に真空吸着し、原子配列面2を平坦化する真空吸着工程と、平坦化した原子配列面2に沿ってSiC単結晶を切断又は研削する面出し工程と、を有する。第2の加工方法は、スペーサ30を用いずに、吸着力の強度差によって原子配列面2を平坦化している点が、第1の加工方法と異なる。その他の加工手順は同じであり、説明を省く。第2の加工方法を用いる場合においても、SiC単結晶の厚みは弾性変形可能な5mm以下とすることが好ましい。
(Second processing method)
The second processing method consists of a vacuum adsorption step in which the SiC single crystal 1 is vacuum-adsorbed to an adsorption surface with different adsorption forces depending on the amount of curvature of the atomic arrangement surface 2, and the atomic arrangement surface 2 is flattened; It includes a surface-leveling step of cutting or grinding the SiC single crystal along the array plane 2. The second processing method differs from the first processing method in that the atomic arrangement surface 2 is flattened by the difference in strength of adsorption force without using the spacer 30. The other processing steps are the same and will not be explained here. Even when using the second processing method, it is preferable that the thickness of the SiC single crystal is 5 mm or less so that it can be elastically deformed.

図12は、吸着面40を平面視した模式図である。吸着面40は、複数の吸着穴41を備える。第2の加工方法は、これらの吸着穴41の吸着力の違いにより原子配列面2を平坦化する。 FIG. 12 is a schematic plan view of the suction surface 40. The suction surface 40 includes a plurality of suction holes 41 . In the second processing method, the atomic arrangement surface 2 is flattened by the difference in the adsorption force of these adsorption holes 41.

例えば、図2に示すように、SiC単結晶1の原子配列面2が中心に向かって凹形状の場合は、吸着穴41Iの吸着力を他の吸着穴41A~41Hの吸着力より小さくする。すると、原子配列面2の外周側が内側より相対的に強く吸着し、原子配列面2が平坦化する。また例えば、図3に示すように、SiC単結晶1の原子配列面2が、[1-100]方向と[11-20]方向とで湾曲方向が異なる鞍型の場合は、[11-20]方向の中心軸から離れた位置の吸着穴41ほど吸着力を大きくする。すなわち、吸着穴41G,41I,41Cの吸着力を吸着穴41H,41B,41F,41Dより小さくし、吸着穴41H,41B,41F,41Dの吸着力を吸着穴41A,41Eより小さくする。 For example, as shown in FIG. 2, when the atomic arrangement plane 2 of the SiC single crystal 1 is concave toward the center, the suction force of the suction hole 41I is made smaller than the suction force of the other suction holes 41A to 41H. Then, the outer circumferential side of the atomic array surface 2 is attracted relatively more strongly than the inner side, and the atomic array surface 2 is flattened. For example, as shown in FIG. 3, when the atomic arrangement plane 2 of the SiC single crystal 1 has a saddle shape in which the curvature directions are different in the [1-100] direction and the [11-20] direction, the [11-20] ] The suction force is increased as the position of the suction hole 41 is further away from the central axis in the direction. That is, the suction force of the suction holes 41G, 41I, 41C is made smaller than that of the suction holes 41H, 41B, 41F, 41D, and the suction force of the suction holes 41H, 41B, 41F, 41D is made smaller than that of the suction holes 41A, 41E.

上述のように、吸着穴41の吸着力の違いを用いると、原子配列面2を平坦化できる。そして原子配列面2が平坦化したSiC単結晶1を、図11(c)及び図11(d)と同様に、設置面と平行に切断する。上述の過程を経ることで、第1面10Aが原子配列面2に沿ったSiC単結晶10が得られる。 As described above, by using the difference in the adsorption force of the adsorption holes 41, the atomic arrangement surface 2 can be flattened. Then, the SiC single crystal 1 whose atomic arrangement plane 2 has been flattened is cut parallel to the installation plane as in FIGS. 11(c) and 11(d). By going through the above-described process, a SiC single crystal 10 whose first surface 10A is along the atomic arrangement plane 2 is obtained.

(第3の加工方法)
第3の加工方法は、SiC単結晶1を原子配列面2に対応する形状の電極に近づけ、放電によりSiC単結晶1の第1面1Aを加工する放電加工工程を有する。第3の加工方法を用いる場合は、第1の加工方法及び第2の加工方法と異なり、SiC単結晶1の厚みは問わない。
(Third processing method)
The third machining method includes an electrical discharge machining step in which the SiC single crystal 1 is brought close to an electrode having a shape corresponding to the atomic arrangement plane 2, and the first surface 1A of the SiC single crystal 1 is machined by electric discharge. When using the third processing method, unlike the first processing method and the second processing method, the thickness of the SiC single crystal 1 does not matter.

図13は、第3の加工方法を説明するための模式図である。図13(a)に示すように、電極50を準備する。図13(a)に示す電極50のSiC単結晶1と対向する第1面50Aは原子配列面2に沿って加工された湾曲面である。 FIG. 13 is a schematic diagram for explaining the third processing method. As shown in FIG. 13(a), an electrode 50 is prepared. A first surface 50A of the electrode 50 shown in FIG. 13A facing the SiC single crystal 1 is a curved surface processed along the atomic arrangement plane 2.

電極50の第1面50Aは、SiC単結晶1の原子配列面2の形状を測定してから加工してもよいし、予め事前に湾曲方向及び湾曲量の異なる複数の電極を準備しておき、それらの中から原子配列面2の形状に最も近いものを選択してもよい。 The first surface 50A of the electrode 50 may be processed after measuring the shape of the atomic arrangement surface 2 of the SiC single crystal 1, or by preparing a plurality of electrodes with different bending directions and amounts in advance. , the one closest to the shape of the atomic arrangement surface 2 may be selected from among them.

次いで、電極50の第1面50AをSiC単結晶1と対向させた状態で、電極50をSiC単結晶1に近づける。電極50とSiC単結晶1との距離が近いほど強く放電するため、電極50の第1面50Aの形状に沿ってSiC単結晶1の第1面1Aが蒸発する。その結果、図13(b)に示すように、第1面10Aが原子配列面2に沿ったSiC単結晶10が得られる。 Next, the electrode 50 is brought close to the SiC single crystal 1 with the first surface 50A of the electrode 50 facing the SiC single crystal 1. The shorter the distance between the electrode 50 and the SiC single crystal 1, the stronger the discharge, so the first surface 1A of the SiC single crystal 1 evaporates along the shape of the first surface 50A of the electrode 50. As a result, as shown in FIG. 13(b), a SiC single crystal 10 whose first surface 10A is along the atomic arrangement plane 2 is obtained.

<貼付工程>
図14は、貼付工程を説明するための模式図である。図14(a)に示すように、貼付工程では、加工により得られたSiC単結晶10の第1面10Aを貼り付け面として、SiC単結晶10を設置台60の設置面60Aに貼りつける。設置台60は、例えば、坩堝の単結晶設置部に対応する。
<Application process>
FIG. 14 is a schematic diagram for explaining the pasting process. As shown in FIG. 14(a), in the attaching step, the SiC single crystal 10 is attached to the installation surface 60A of the installation stand 60, using the first surface 10A of the SiC single crystal 10 obtained by processing as the attachment surface. The installation stand 60 corresponds to, for example, a single crystal installation part of a crucible.

貼付工程を行う際のSiC単結晶10の厚みは5mm以下であることが好ましい。SiC単結晶10の厚みが厚いと、貼付時にたわみが生じにくいため、台座に対して平坦に貼り付けにくくなり、SiC単結晶の原子配列面(格子面)を平坦に配置しにくい場合がある。 The thickness of the SiC single crystal 10 during the pasting process is preferably 5 mm or less. If the SiC single crystal 10 is thick, it is difficult to bend when pasting it, making it difficult to stick it flat to the pedestal, and it may be difficult to arrange the atomic arrangement plane (lattice plane) of the SiC single crystal flatly.

また貼付工程において、設置面60Aに対してSiC単結晶10を押し付ける荷重は、第1面10Aの設置面60Aに対する湾曲量に応じて変えることが好ましい。例えば、SiC単結晶10の第1面10Aが設置面60Aに向って凸に湾曲する場合は、SiC単結晶1の外周側の荷重を内側より強くすることが好ましい。またSiC単結晶10の第1面10Aが設置面60Aに向って凹に湾曲する場合は、SiC単結晶10の内側の荷重を外周側より強くすることが好ましい。 Moreover, in the pasting process, it is preferable that the load for pressing the SiC single crystal 10 against the installation surface 60A is changed depending on the amount of curvature of the first surface 10A with respect to the installation surface 60A. For example, when the first surface 10A of the SiC single crystal 10 is curved convexly toward the installation surface 60A, it is preferable to make the load on the outer peripheral side of the SiC single crystal 1 stronger than on the inside. Further, when the first surface 10A of the SiC single crystal 10 is curved concavely toward the installation surface 60A, it is preferable to make the load on the inside of the SiC single crystal 10 stronger than on the outer peripheral side.

また貼付工程は、例えば、接着剤を用いて行う。接着剤は、熱硬化性樹脂等を用いることができる。 Further, the pasting step is performed using an adhesive, for example. A thermosetting resin or the like can be used as the adhesive.

また貼付工程中、接着剤の硬化をさせる前に、SiC単結晶10の周囲を減圧する減圧工程をさらに行ってもよい。接着面に気泡等が噛みこんだ場合でも減圧環境にすることで脱泡できる。その結果、塗布時の接着剤の厚みムラをより抑制できる。 In addition, during the pasting process, before the adhesive is cured, a depressurization process of reducing the pressure around the SiC single crystal 10 may be further performed. Even if air bubbles are trapped on the adhesive surface, they can be removed by creating a reduced pressure environment. As a result, it is possible to further suppress uneven thickness of the adhesive during application.

また貼りつける設置台60の熱膨張係数は、SiC単結晶10の熱膨張係数と近いことが好ましい。具体的には、熱膨張係数差が0.3×10-6/℃以下であることが好ましい。なお、ここで示す熱膨張係数とは、SiC単結晶10を種結晶として結晶成長する温度領域における熱膨張係数を意味し、2000℃近傍の温度を意味する。例えば、黒鉛の熱膨張係数は、製造条件、含有材料等により、4.3×10-6/℃~7.1×10-6/℃の範囲で選択できる。設置台60とSiC単結晶10の熱膨張率差が近いことで、単結晶成長時に熱膨張率差によってSiC単結晶10が反り、原子配列面2が湾曲することを防ぐことができる。 Further, it is preferable that the thermal expansion coefficient of the mounting base 60 to be attached is close to that of the SiC single crystal 10. Specifically, it is preferable that the difference in thermal expansion coefficient is 0.3×10 −6 /° C. or less. Note that the thermal expansion coefficient shown here means a thermal expansion coefficient in a temperature range in which crystal growth is performed using the SiC single crystal 10 as a seed crystal, and means a temperature in the vicinity of 2000°C. For example, the thermal expansion coefficient of graphite can be selected in the range of 4.3×10 −6 /°C to 7.1× 10 −6 /°C depending on manufacturing conditions, contained materials, etc. Since the difference in thermal expansion coefficient between the installation table 60 and the SiC single crystal 10 is close, it is possible to prevent the SiC single crystal 10 from warping and the atomic arrangement plane 2 from curving due to the difference in thermal expansion coefficient during single crystal growth.

そして上述のように貼付工程を行うと、図14(b)に示すように原子配列面2が設置面60Aに対して平行な湾曲の少ないSiC単結晶10が得られる。 Then, by performing the pasting process as described above, a SiC single crystal 10 with little curvature in which the atomic arrangement plane 2 is parallel to the installation surface 60A, as shown in FIG. 14(b), is obtained.

「SiC単結晶」
上述の貼付工程の前段階まで加工されたSiC単結晶は、第1面が原子配列面の湾曲に沿う形状に加工されている。その結果、図14(a)に示すように、SiC単結晶10の第1面10Aの反り形状と、原子配列面2の湾曲形状が略平行になる。換言すると、SiC単結晶10の反り量と原子配列面2の湾曲量との差分の絶対値が10μm以下となる。ここで「反り量」とは、SiC単結晶を平坦面上に載置した際に、載置面と載置面側のSiC単結晶の第1面との距離の最大値を意味する。SiC単結晶10の原子配列面2の湾曲量の最大値が20μm以上の場合において上述のような加工を施さずに、SiC単結晶10の第1面10Aの反り形状と原子配列面2の湾曲形状が略平行にはなることは考えにくい。つまり、原子配列面の湾曲量の最大値が20μm以上であり、SiC単結晶10の反り量と原子配列面2の湾曲量との差分の絶対値が10μm以下であるSiC単結晶10は、上記の工程を経て実現できるものである。
"SiC single crystal"
The SiC single crystal that has been processed up to the stage before the above-mentioned pasting process is processed into a shape in which the first surface follows the curve of the atomic arrangement plane. As a result, as shown in FIG. 14(a), the warped shape of the first surface 10A of the SiC single crystal 10 and the curved shape of the atomic arrangement plane 2 become approximately parallel. In other words, the absolute value of the difference between the amount of warpage of SiC single crystal 10 and the amount of curvature of atomic arrangement plane 2 is 10 μm or less. Here, the "amount of warpage" means the maximum value of the distance between the mounting surface and the first surface of the SiC single crystal on the mounting surface side when the SiC single crystal is mounted on a flat surface. When the maximum amount of curvature of the atomic arrangement surface 2 of the SiC single crystal 10 is 20 μm or more, the warped shape of the first surface 10A of the SiC single crystal 10 and the curvature of the atomic arrangement surface 2 are obtained without performing the above-mentioned processing. It is difficult to imagine that the shapes will be approximately parallel. In other words, the SiC single crystal 10 in which the maximum value of the amount of curvature of the atomic arrangement plane is 20 μm or more and the absolute value of the difference between the amount of warpage of the SiC single crystal 10 and the amount of curvature of the atomic arrangement plane 2 is 10 μm or less is as described above. This can be achieved through the following steps.

「SiCインゴットの製造方法」
本実施形態にかかるSiCインゴットの製造方法は、上述のSiC単結晶の加工方法において、設置面60Aに貼り付けられたSiC単結晶10を種結晶として結晶成長を行う。SiCインゴットは、例えば昇華法を用いて製造できる。昇華法は、原料を加熱することによって生じた原料ガスを単結晶(種結晶)上で再結晶化し、大きな単結晶(インゴット)を得る方法である。
“SiC ingot manufacturing method”
In the SiC ingot manufacturing method according to the present embodiment, crystal growth is performed using the SiC single crystal 10 attached to the installation surface 60A as a seed crystal in the above-described SiC single crystal processing method. A SiC ingot can be manufactured using, for example, a sublimation method. The sublimation method is a method of recrystallizing raw material gas generated by heating the raw material on a single crystal (seed crystal) to obtain a large single crystal (ingot).

図15は、昇華法に用いられる製造装置の一例の模式図である。製造装置200は、坩堝100とコイル101とを有する。坩堝100とコイル101との間には、コイル101の誘導加熱により発熱する発熱体(図視略)を有してもよい。 FIG. 15 is a schematic diagram of an example of a manufacturing apparatus used in the sublimation method. Manufacturing apparatus 200 includes a crucible 100 and a coil 101. A heating element (not shown) that generates heat by induction heating of the coil 101 may be provided between the crucible 100 and the coil 101.

坩堝100は、原料Gと対向する位置に設けられた設置台60を有する。設置台60には、上述のSiC単結晶の加工方法によって加工されたSiC単結晶10が種結晶として貼り付けられている。また坩堝100の内部には、設置台60から原料Gに向けて拡径するテーパーガイド102が設けられている。 The crucible 100 has an installation stand 60 provided at a position facing the raw material G. A SiC single crystal 10 processed by the above-described SiC single crystal processing method is attached to the installation stand 60 as a seed crystal. Further, inside the crucible 100, a taper guide 102 whose diameter increases toward the raw material G from the installation table 60 is provided.

コイル101に交流電流を印加すると、坩堝100が加熱され、原料Gから原料ガスが生じる。発生した原料ガスは、テーパーガイド102に沿って設置台60に設置されたSiC単結晶10に供給される。SiC単結晶10に原料ガスが供給されることで、SiC単結晶10の主面にSiCインゴットIが結晶成長する。SiC単結晶10の結晶成長面は、カーボン面、又は、カーボン面から10°以下のオフ角を設けた面とすることが好ましい。 When an alternating current is applied to the coil 101, the crucible 100 is heated and raw material gas is generated from the raw material G. The generated raw material gas is supplied to the SiC single crystal 10 installed on the installation table 60 along the taper guide 102. By supplying the raw material gas to the SiC single crystal 10, a SiC ingot I is crystal-grown on the main surface of the SiC single crystal 10. The crystal growth plane of the SiC single crystal 10 is preferably a carbon plane or a plane having an off angle of 10° or less from the carbon plane.

SiCインゴットIは、SiC単結晶10の結晶情報の多くを引き継ぐ。SiC単結晶10の原子配列面2は平坦化されているため、SiCインゴットI内にBPDが発生することを抑制できる。 SiC ingot I inherits much of the crystal information of SiC single crystal 10. Since the atomic arrangement plane 2 of the SiC single crystal 10 is flattened, the occurrence of BPD within the SiC ingot I can be suppressed.

図16は、SiC単結晶の原子配列面の曲率半径と、BPD密度の関係を示すグラフである。図16に示すように、原子配列面2の曲率半径とSiCインゴットI内のBPD密度とは対応関係を有する。原子配列面2の曲率半径が大きい(原子配列面2の湾曲量が小さい)ほど、BPD密度は少なくなる傾向にある。内部に応力が残留した結晶は、結晶面のすべりを誘起させ、BPDの発生と共に原子配列面2を湾曲させると考えられる。あるいは、逆に、湾曲量が大きい原子配列面2が、ひずみを有し、BPDの原因となることも考えられる。いずれの場合においても、原子配列面の曲率半径が大きい(すなわち、原子配列面の湾曲量が小さい)ほど、BPD密度が小さくなる。 FIG. 16 is a graph showing the relationship between the radius of curvature of the atomic arrangement plane of a SiC single crystal and the BPD density. As shown in FIG. 16, the radius of curvature of the atomic arrangement plane 2 and the BPD density within the SiC ingot I have a corresponding relationship. The larger the radius of curvature of the atomic arrangement surface 2 (the smaller the amount of curvature of the atomic arrangement surface 2), the lower the BPD density tends to be. It is thought that a crystal in which stress remains inside induces crystal plane slippage, causing BPD to occur and curving the atomic arrangement plane 2. Alternatively, conversely, the atomic arrangement surface 2 having a large amount of curvature may have distortion, which may cause BPD. In either case, the larger the radius of curvature of the atomic arrangement surface (that is, the smaller the amount of curvature of the atomic arrangement surface), the smaller the BPD density becomes.

上述のように、本実施形態にかかるSiCインゴットの製造方法は、種結晶として用いられるSiC単結晶10の原子配列面2が平坦化されているため、SiCインゴットI内にBPDが生じることが抑制されている。そのため、BPD密度の少ない良質なSiCインゴットIが得られる。 As described above, in the method for manufacturing a SiC ingot according to the present embodiment, since the atomic arrangement plane 2 of the SiC single crystal 10 used as a seed crystal is flattened, the occurrence of BPD in the SiC ingot I is suppressed. has been done. Therefore, a high quality SiC ingot I with low BPD density can be obtained.

最後に得られたSiCインゴットIをスライスしてSiCウェハを作製する。切断する方向は、<0001>に垂直または0~10°のオフ角をつけた方向に切断し、C面に平行、またはC面から0~10°オフ角をつけた面をもつウェハを作製する。ウェハの表面加工は、(0001)面側すなわちSi面側に鏡面加工を施してもよい。Si面は、通常エピタキシャル成長を行う面である。SiCインゴットIはBPDが少ないため、BPDの少ないSiCウェハを得ることができる。キラー欠陥であるBPDが少ないSiCウェハを用いることで、高品質なSiCエピタキシャルウェハを得ることができ、SiCデバイスの歩留りを高めることができる。 Finally, the obtained SiC ingot I is sliced to produce a SiC wafer. The cutting direction is perpendicular to <0001> or at an off angle of 0 to 10 degrees to create a wafer with a surface parallel to the C plane or at an angle of 0 to 10 degrees from the C plane. do. The surface of the wafer may be mirror-finished on the (0001) side, that is, on the Si side. The Si plane is the plane on which epitaxial growth is normally performed. Since SiC ingot I has less BPD, it is possible to obtain a SiC wafer with less BPD. By using a SiC wafer with less BPD, which is a killer defect, a high quality SiC epitaxial wafer can be obtained and the yield of SiC devices can be increased.

また坩堝100を加熱し原料Gを昇華させる際に、周方向の異方性が生じないように、坩堝100を回転させることが好ましい。回転速度は、0.1rpm以上とすることが好ましい。また成長時の成長面における温度変化は少なくすることが好ましい。 Further, when heating the crucible 100 to sublimate the raw material G, it is preferable to rotate the crucible 100 so that anisotropy in the circumferential direction does not occur. The rotation speed is preferably 0.1 rpm or more. Further, it is preferable to minimize temperature changes on the growth surface during growth.

以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various modifications may be made within the scope of the gist of the present invention described within the scope of the claims. It is possible to transform and change.

1,10 SiC単結晶
10A 第1面
2,22 原子配列面
20 ウェハ
30 スペーサ
30A 第1面
30B 第2面
31 支持台
40 吸着面
41 吸着穴
50 電極
50A 第1面
60 設置台
60A 設置面
100 坩堝
101 コイル
102 テーパーガイド
A 原子
I SiCインゴット
G 原料
1,10 SiC single crystal 10A First surface 2,22 Atomic arrangement surface 20 Wafer 30 Spacer 30A First surface 30B Second surface 31 Support stand 40 Adsorption surface 41 Adsorption hole 50 Electrode 50A First surface 60 Installation stand 60A Installation surface 100 Crucible 101 Coil 102 Taper guide A Atom I SiC ingot G Raw material

Claims (7)

SiC単結晶の原子配列面の形状を少なくとも平面視中央を通る第1の方向と前記第1の方向と直交する第2の方向に沿って測定する測定工程と、
測定結果を基に、前記SiC単結晶の少なくとも第1面を前記原子配列面に沿って加工する加工工程と、
前記第1面を貼り付け面として、前記SiC単結晶を設置面に貼りつける貼付工程と、を有し、
前記加工工程は、
前記SiC単結晶を前記原子配列面の湾曲量に応じて吸着力の異なる吸着面に真空吸着し、前記原子配列面を平坦化する真空吸着工程と、
平坦化した前記原子配列面に沿って前記SiC単結晶を切断又は研削する面出し工程と、
を有する、SiC単結晶の加工方法。
a measuring step of measuring the shape of the atomic arrangement plane of the SiC single crystal along at least a first direction passing through the center in plan view and a second direction orthogonal to the first direction;
a processing step of processing at least a first surface of the SiC single crystal along the atomic arrangement plane based on the measurement results;
an attaching step of attaching the SiC single crystal to an installation surface using the first surface as an attaching surface;
The processing step is
a vacuum adsorption step of flattening the atomic arrangement surface by vacuum adsorbing the SiC single crystal to an adsorption surface having different adsorption forces depending on the amount of curvature of the atomic arrangement surface;
a surface-leveling step of cutting or grinding the SiC single crystal along the flattened atomic arrangement plane;
A method for processing a SiC single crystal, comprising:
SiC単結晶の原子配列面の形状を少なくとも平面視中央を通る第1の方向と前記第1の方向と直交する第2の方向に沿って測定する測定工程と、
測定結果を基に、前記SiC単結晶の少なくとも第1面を前記原子配列面に沿って加工する加工工程と、
前記第1面を貼り付け面として、前記SiC単結晶を設置面に貼りつける貼付工程と、を有し、
前記加工工程は、
前記SiC単結晶を前記原子配列面に対応する形状の電極に近づけ、放電により前記SiC単結晶の前記第1面を加工する放電加工工程を有する、SiC単結晶の加工方法。
a measuring step of measuring the shape of the atomic arrangement plane of the SiC single crystal along at least a first direction passing through the center in plan view and a second direction orthogonal to the first direction;
a processing step of processing at least a first surface of the SiC single crystal along the atomic arrangement plane based on the measurement results;
an attaching step of attaching the SiC single crystal to an installation surface using the first surface as an attaching surface;
The processing step is
A method for processing a SiC single crystal, comprising an electric discharge machining step of bringing the SiC single crystal close to an electrode having a shape corresponding to the atomic arrangement plane, and machining the first surface of the SiC single crystal by electric discharge.
前記貼付工程を行う際の前記SiC単結晶の厚みが5mm以下である、請求項1又は2に記載のSiC単結晶の加工方法。 The method for processing a SiC single crystal according to claim 1 or 2 , wherein the thickness of the SiC single crystal when performing the pasting step is 5 mm or less. 前記貼付工程において、前記第1面が前記設置面に向って凸に湾曲する場合は、前記SiC単結晶の外周側の荷重を内側より強くし、前記第1面が前記設置面に向って凹に湾曲する場合は、前記SiC単結晶の内側の荷重を外周側より強くする、請求項1~のいずれか一項に記載のSiC単結晶の加工方法。 In the pasting step, if the first surface curves convexly toward the installation surface, the load on the outer peripheral side of the SiC single crystal is made stronger than the inside, and the first surface curves convexly toward the installation surface. 4. The method for processing a SiC single crystal according to claim 1 , wherein when the SiC single crystal is curved, the load on the inner side of the SiC single crystal is made stronger than on the outer peripheral side. SiC単結晶の原子配列面の形状を少なくとも平面視中央を通る第1の方向と前記第1の方向と直交する第2の方向に沿って測定する測定工程と、
測定結果を基に、前記SiC単結晶の少なくとも第1面を前記原子配列面に沿って加工する加工工程と、
前記第1面を貼り付け面として、前記SiC単結晶を設置面に貼りつける貼付工程と、
前記貼付工程中に前記SiC単結晶の周囲を減圧する減圧工程と、を有する、SiC単結晶の加工方法。
a measuring step of measuring the shape of the atomic arrangement plane of the SiC single crystal along at least a first direction passing through the center in plan view and a second direction orthogonal to the first direction;
a processing step of processing at least a first surface of the SiC single crystal along the atomic arrangement plane based on the measurement results;
an attaching step of attaching the SiC single crystal to an installation surface using the first surface as an attaching surface;
A method for processing a SiC single crystal, comprising a step of reducing pressure around the SiC single crystal during the pasting step.
請求項1~のいずれか一項に記載のSiC単結晶の加工方法において、前記設置面に貼り付けられた前記SiC単結晶を種結晶として結晶成長を行う、SiCインゴットの製造方法。 The method for manufacturing a SiC ingot according to any one of claims 1 to 5 , wherein crystal growth is performed using the SiC single crystal attached to the installation surface as a seed crystal. 原子配列面の湾曲量の最大値が20μm以上のSiC単結晶であり、
前記SiC単結晶の反り量と前記原子配列面の湾曲量との差分の絶対値が、10μm以下であり、
他の部材に貼り付けられていない、SiC単結晶。
A SiC single crystal in which the maximum amount of curvature of the atomic arrangement plane is 20 μm or more,
The absolute value of the difference between the amount of warpage of the SiC single crystal and the amount of curvature of the atomic arrangement plane is 10 μm or less,
SiC single crystal that is not attached to other parts.
JP2018152318A 2018-08-13 2018-08-13 SiC single crystal processing method, SiC ingot manufacturing method, and SiC single crystal Active JP7433586B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018152318A JP7433586B2 (en) 2018-08-13 2018-08-13 SiC single crystal processing method, SiC ingot manufacturing method, and SiC single crystal
PCT/JP2019/031811 WO2020036168A1 (en) 2018-08-13 2019-08-13 Method for processing sic single crystal, method for producing sic ingot and sic single crystal
JP2024002798A JP2024032023A (en) 2018-08-13 2024-01-11 Method for producing SiC single crystal, SiC seed crystal and SiC ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152318A JP7433586B2 (en) 2018-08-13 2018-08-13 SiC single crystal processing method, SiC ingot manufacturing method, and SiC single crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024002798A Division JP2024032023A (en) 2018-08-13 2024-01-11 Method for producing SiC single crystal, SiC seed crystal and SiC ingot

Publications (2)

Publication Number Publication Date
JP2020026373A JP2020026373A (en) 2020-02-20
JP7433586B2 true JP7433586B2 (en) 2024-02-20

Family

ID=69525410

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018152318A Active JP7433586B2 (en) 2018-08-13 2018-08-13 SiC single crystal processing method, SiC ingot manufacturing method, and SiC single crystal
JP2024002798A Pending JP2024032023A (en) 2018-08-13 2024-01-11 Method for producing SiC single crystal, SiC seed crystal and SiC ingot

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024002798A Pending JP2024032023A (en) 2018-08-13 2024-01-11 Method for producing SiC single crystal, SiC seed crystal and SiC ingot

Country Status (2)

Country Link
JP (2) JP7433586B2 (en)
WO (1) WO2020036168A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149767B2 (en) * 2018-08-13 2022-10-07 昭和電工株式会社 SiC Single Crystal Bonding Method, SiC Ingot Manufacturing Method, and SiC Single Crystal Growth Pedestal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269297A (en) 2003-03-06 2004-09-30 Toyota Central Res & Dev Lab Inc SiC SINGLE CRYSTAL AND ITS MANUFACTURING METHOD
JP2011111372A (en) 2009-11-27 2011-06-09 Showa Denko Kk Silicon carbide single crystal, method for producing the same, silicon carbide single crystal wafer, and silicon carbide single crystal ingot
JP2013117143A (en) 2011-12-05 2013-06-13 Ykk Ap株式会社 Joint structure of molded member and fitting
JP2015117143A (en) 2013-12-17 2015-06-25 住友電気工業株式会社 Production method of single crystal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808668B2 (en) * 2011-12-28 2015-11-10 株式会社豊田中央研究所 Single crystal manufacturing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269297A (en) 2003-03-06 2004-09-30 Toyota Central Res & Dev Lab Inc SiC SINGLE CRYSTAL AND ITS MANUFACTURING METHOD
JP2011111372A (en) 2009-11-27 2011-06-09 Showa Denko Kk Silicon carbide single crystal, method for producing the same, silicon carbide single crystal wafer, and silicon carbide single crystal ingot
JP2013117143A (en) 2011-12-05 2013-06-13 Ykk Ap株式会社 Joint structure of molded member and fitting
JP2015117143A (en) 2013-12-17 2015-06-25 住友電気工業株式会社 Production method of single crystal

Also Published As

Publication number Publication date
JP2020026373A (en) 2020-02-20
JP2024032023A (en) 2024-03-08
WO2020036168A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US11242618B2 (en) Silicon carbide substrate and method of manufacturing the same
JP2024032023A (en) Method for producing SiC single crystal, SiC seed crystal and SiC ingot
JP7002932B2 (en) Manufacturing method of SiC ingot
JP6916835B2 (en) Chamfering Silicon Carbide Substrate and Chamfering Method
JP7030260B2 (en) Silicon Carbide Ingot, Its Manufacturing Method and Silicon Carbide Wafer Manufacturing Method
US11905621B2 (en) SiC single crystal, method of manufacturing SiC ingot, and method of manufacturing SiC wafer
JP6579889B2 (en) Method for manufacturing silicon carbide single crystal substrate
KR102610099B1 (en) SiC SUBSTRATE AND SiC EPITAXIAL WAFER
JP6722578B2 (en) Method for manufacturing SiC wafer
JP7149767B2 (en) SiC Single Crystal Bonding Method, SiC Ingot Manufacturing Method, and SiC Single Crystal Growth Pedestal
US10844517B2 (en) Method of processing SiC single crystal and method of manufacturing SiC ingot
WO2020036170A1 (en) Sic single crystal, method for producing sic ingot and method for producing sic wafer
JP7117938B2 (en) SiC single crystal evaluation method and SiC wafer manufacturing method
WO2020036163A1 (en) METHOD FOR EVALUATING SiC SINGLE CRYSTAL AND QUALITY INSPECTION METHOD
JP2023070126A (en) Silicon carbide wafer and method of manufacturing same
KR20240023994A (en) Ceramic wafer with surface shape and manufacturing thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20231222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231222

R150 Certificate of patent or registration of utility model

Ref document number: 7433586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150