JP7430503B2 - Manufacturing method of epoxy compound - Google Patents

Manufacturing method of epoxy compound Download PDF

Info

Publication number
JP7430503B2
JP7430503B2 JP2019172124A JP2019172124A JP7430503B2 JP 7430503 B2 JP7430503 B2 JP 7430503B2 JP 2019172124 A JP2019172124 A JP 2019172124A JP 2019172124 A JP2019172124 A JP 2019172124A JP 7430503 B2 JP7430503 B2 JP 7430503B2
Authority
JP
Japan
Prior art keywords
group
compound
epoxy compound
producing
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019172124A
Other languages
Japanese (ja)
Other versions
JP2021050143A (en
Inventor
寛子 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2019172124A priority Critical patent/JP7430503B2/en
Priority to PCT/JP2020/034146 priority patent/WO2021054224A1/en
Priority to CN202080065366.0A priority patent/CN114423744A/en
Publication of JP2021050143A publication Critical patent/JP2021050143A/en
Application granted granted Critical
Publication of JP7430503B2 publication Critical patent/JP7430503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/14Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/48Compounds containing oxirane rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/022Polycondensates containing more than one epoxy group per molecule characterised by the preparation process or apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Epoxy Compounds (AREA)
  • Epoxy Resins (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、エポキシ化合物を製造する方法、及びエポキシ化合物を含む組成物に関する。 The present invention relates to a method for producing an epoxy compound and a composition containing the epoxy compound.

エポキシ化合物は種々の硬化剤や硬化触媒と反応させることにより、高い強度を有し、耐熱性、透明性等に優れる硬化物を形成することができる。そのため、封止材、コーティング剤、接着剤、インキ、シーラント等の原料として極めて有用である。 Epoxy compounds can be reacted with various curing agents and curing catalysts to form cured products that have high strength, excellent heat resistance, transparency, and the like. Therefore, it is extremely useful as a raw material for sealants, coating agents, adhesives, inks, sealants, etc.

このようなエポキシ化合物の製造方法として、特許文献1には、1,3,5-シクロヘキサントリオールにシクロヘキセンカルボン酸クロライドを反応させて、1,3,5-トリス(3-シクロヘキセンカルボニルオキシ)シクロヘキサンを生成させ、生成した前記化合物に、塩素系溶媒の存在下、メタクロロ過安息香酸を反応させて、1,3,5-トリス(3,4-エポキシシクロヘキサンカルボニルオキシ)シクロヘキサンを得る方法が記載されている。 As a method for producing such an epoxy compound, Patent Document 1 discloses that 1,3,5-tris(3-cyclohexenecarbonyloxy)cyclohexane is produced by reacting 1,3,5-cyclohexanetriol with cyclohexenecarboxylic acid chloride. A method is described in which 1,3,5-tris(3,4-epoxycyclohexanecarbonyloxy)cyclohexane is obtained by reacting the resulting compound with metachloroperbenzoic acid in the presence of a chlorinated solvent. There is.

特開平11-71363号公報Japanese Patent Application Publication No. 11-71363

しかし、前記方法では、エポキシ化合物に塩素化合物が混入することが避けられず、例えばエポキシ化合物に塩素化合物が混入したものを、プリント基板の封止材等に使用すれば、塩素化合物によってプリント基板の配線(特に、銅配線)が腐食されるため、長期信頼性が低下することが問題である。また、前記問題は、電子部品の小型化、高密度化に伴い、より顕著化している。 However, with the above method, it is unavoidable that chlorine compounds are mixed into the epoxy compound. For example, if an epoxy compound mixed with chlorine compounds is used as a sealant for printed circuit boards, the chlorine compounds will cause the printed circuit board to The problem is that long-term reliability is reduced because the wiring (especially copper wiring) is corroded. Moreover, the above-mentioned problem is becoming more prominent as electronic components become smaller and more dense.

従って、本発明の目的は、塩素含有量が少ない1,3,5-トリス(3,4-エポキシシクロヘキサンカルボニルオキシ)シクロヘキサンを効率よく製造する方法を提供することにある。 Therefore, an object of the present invention is to provide a method for efficiently producing 1,3,5-tris(3,4-epoxycyclohexanecarbonyloxy)cyclohexane with a low chlorine content.

本発明者は上記課題を解決するため鋭意検討した結果、エステル交換反応を利用して、1,3,5-トリス(3-シクロヘキセンカルボニルオキシ)シクロヘキサン(下記式(2)で表される化合物)を生成させ、生成した1,3,5-トリス(3-シクロヘキセンカルボニルオキシ)シクロヘキサンに過酢酸を反応させれば、効率よく、1,3,5-トリス(3,4-エポキシシクロヘキサンカルボニルオキシ)シクロヘキサン(下記式(3)で表されるエポキシ化合物)を製造できること、反応に塩素化合物を使用する必要がないため、塩素含有量が少ないエポキシ化合物を製造できることを見いだした。本発明はこれらの知見に基づいて完成させたものである。 As a result of intensive studies to solve the above problems, the present inventors obtained 1,3,5-tris(3-cyclohexenecarbonyloxy)cyclohexane (a compound represented by the following formula (2)) by utilizing a transesterification reaction. If the generated 1,3,5-tris(3-cyclohexenecarbonyloxy)cyclohexane is reacted with peracetic acid, 1,3,5-tris(3,4-epoxycyclohexanecarbonyloxy) can be efficiently produced. It was discovered that cyclohexane (an epoxy compound represented by the following formula (3)) can be produced, and since it is not necessary to use a chlorine compound in the reaction, an epoxy compound with a low chlorine content can be produced. The present invention was completed based on these findings.

すなわち、本発明は下記式(1)

Figure 0007430503000001
(式(1)中、R1はアルキル基を示す)
で表される化合物と、1,3,5-シクロヘキサントリオールとのエステル交換反応により、下記式(2)
Figure 0007430503000002
で表される化合物を生成させる工程1と、
生成した前記式(2)で表される化合物に過酸を反応させて、下記式(3)
Figure 0007430503000003
で表されるエポキシ化合物を得る工程2を含むエポキシ化合物の製造方法を提供する。 That is, the present invention is based on the following formula (1)
Figure 0007430503000001
(In formula (1), R 1 represents an alkyl group)
By the transesterification reaction between the compound represented by and 1,3,5-cyclohexanetriol, the following formula (2) is obtained.
Figure 0007430503000002
Step 1 of producing a compound represented by
The generated compound represented by the above formula (2) is reacted with a peracid to form the following formula (3).
Figure 0007430503000003
Provided is a method for producing an epoxy compound, which includes Step 2 of obtaining an epoxy compound represented by:

本発明は、また、過酸が過ギ酸及び/又は過酢酸である、前記エポキシ化合物の製造方法を提供する。 The present invention also provides a method for producing the epoxy compound, wherein the peracid is performic acid and/or peracetic acid.

本発明は、また、工程2の反応を酢酸エステル系溶媒の存在下で行う、前記エポキシ化合物の製造方法を提供する。 The present invention also provides a method for producing the epoxy compound, wherein the reaction in Step 2 is carried out in the presence of an acetate-based solvent.

本発明は、また、工程1の反応をアルカリ金属アミド及び/又はアルキルアルカリ金属の存在下で行う、前記エポキシ化合物の製造方法を提供する。 The present invention also provides a method for producing the epoxy compound, wherein the reaction in Step 1 is carried out in the presence of an alkali metal amide and/or an alkali alkali metal.

本発明は、また、前記式(3)で表されるエポキシ化合物の塩素含有量が1000ppm以下である、前記エポキシ化合物の製造方法を提供する。 The present invention also provides a method for producing the epoxy compound represented by the formula (3), wherein the chlorine content of the epoxy compound is 1000 ppm or less.

本発明は、また、下記式(e)で表される化合物と下記式(3)で表されるエポキシ化合物を、前者/後者(重量比)が90/10~1/99の範囲で含有する組成物を提供する。

Figure 0007430503000004
(式(e)中、Xは単結合又は連結基を示す)
Figure 0007430503000005
The present invention also contains a compound represented by the following formula (e) and an epoxy compound represented by the following formula (3) in a ratio of the former/latter (weight ratio) in the range of 90/10 to 1/99. A composition is provided.
Figure 0007430503000004
(In formula (e), X represents a single bond or a connecting group)
Figure 0007430503000005

本発明は、また、トランスファー成形用である前記組成物を提供する。 The present invention also provides the composition for transfer molding.

本発明のエポキシ化合物の製造方法によれば、従来法に比べて、効率よく1,3,5-トリス(3,4-エポキシシクロヘキサンカルボニルオキシ)シクロヘキサンを製造することができる。
また、本発明のエポキシ化合物の製造方法では、塩素系溶媒等の塩素含有化合物を使用する必要がないため、得られるエポキシ化合物の塩素含有量を極めて低い値とすることができる。そのため、前記エポキシ化合物は半導体等の封止材料として好適に使用することができ、前記エポキシ化合物を用いて封止された半導体は、塩素による配線の腐食が抑制され、配線が腐食されることによる断線や絶縁不良等の発生が抑制される。
従って、本発明のエポキシ化合物の製造方法によって得られるエポキシ化合物を使用すれば、電子部品のより一層の小型化、高密度化、高信頼化、及び長寿命化を実現することができる。
According to the method for producing an epoxy compound of the present invention, 1,3,5-tris(3,4-epoxycyclohexanecarbonyloxy)cyclohexane can be produced more efficiently than conventional methods.
Further, in the method for producing an epoxy compound of the present invention, there is no need to use a chlorine-containing compound such as a chlorine-based solvent, so the chlorine content of the obtained epoxy compound can be made to an extremely low value. Therefore, the epoxy compound can be suitably used as a encapsulation material for semiconductors, etc., and the semiconductor encapsulated using the epoxy compound suppresses corrosion of the wiring due to chlorine, and prevents corrosion of the wiring. The occurrence of wire breaks, insulation defects, etc. is suppressed.
Therefore, by using the epoxy compound obtained by the epoxy compound manufacturing method of the present invention, it is possible to realize further miniaturization, higher density, higher reliability, and longer life of electronic components.

[エポキシ化合物の製造方法]
本発明のエポキシ化合物の製造方法は、下記式(1)

Figure 0007430503000006
(式(1)中、R1はアルキル基を示す)
で表される化合物(=化合物(1))と、1,3,5-シクロヘキサントリオールとのエステル交換反応により、下記式(2)
Figure 0007430503000007
で表される化合物を生成させる工程1と、
生成した前記式(2)で表される化合物(=化合物(2))に過酸を反応させて、下記式(3)
Figure 0007430503000008
で表されるエポキシ化合物(=化合物(3))を得る工程2を含む。 [Production method of epoxy compound]
The method for producing the epoxy compound of the present invention is represented by the following formula (1):
Figure 0007430503000006
(In formula (1), R 1 represents an alkyl group)
By the transesterification reaction between the compound represented by (=compound (1)) and 1,3,5-cyclohexanetriol, the following formula (2) is obtained.
Figure 0007430503000007
Step 1 of producing a compound represented by
The generated compound represented by the formula (2) (=compound (2)) is reacted with peracid to form the following formula (3).
Figure 0007430503000008
It includes step 2 of obtaining an epoxy compound (=compound (3)) represented by:

式(1)中、R1はアルキル基を示す。前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基等の炭素数1~8(好ましくは1~6、特に好ましくは1~3)程度の直鎖状又は分岐鎖状アルキル基が挙げられる。 In formula (1), R 1 represents an alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, a hexyl group, and the like having 1 to 8 carbon atoms (preferably is a straight-chain or branched alkyl group of about 1 to 6, particularly preferably about 1 to 3).

(工程1)
工程1は上記化合物(1)と、1,3,5-シクロヘキサントリオールとのエステル交換反応により、上記式(2)で表される化合物を生成させる工程である。
(Step 1)
Step 1 is a step of producing a compound represented by the above formula (2) by transesterifying the above compound (1) with 1,3,5-cyclohexanetriol.

上記化合物(1)の使用量は、1,3,5-シクロヘキサントリオール1molに対して、例えば3~7mol、好ましくは4~6molである。 The amount of the compound (1) used is, for example, 3 to 7 mol, preferably 4 to 6 mol, per 1 mol of 1,3,5-cyclohexanetriol.

エステル交換反応は、強塩基性触媒の存在下で行うことが好ましい。強塩基性触媒としては、例えば、アルカリ金属アミド、アルキルアルカリ金属が挙げられる。 The transesterification reaction is preferably carried out in the presence of a strong basic catalyst. Examples of strong basic catalysts include alkali metal amides and alkyl alkali metals.

前記アルカリ金属アミドは、例えば、下記式(c1)で表される。

Figure 0007430503000009
(式中、Mはアルカリ金属を示し、R2、R3は同一又は異なって、水素原子、アルキル基、又はトリアルキルシリル基を示す。R2、R3がアルキル基である場合、これらの基は互いに連結して隣接する窒素原子と共に環を形成していてもよい) The alkali metal amide is represented by the following formula (c1), for example.
Figure 0007430503000009
(In the formula, M represents an alkali metal, and R 2 and R 3 are the same or different and represent a hydrogen atom, an alkyl group, or a trialkylsilyl group. When R 2 and R 3 are an alkyl group, these (The groups may be linked to each other to form a ring with adjacent nitrogen atoms)

Mはアルカリ金属を示し、例えば、Li、Na、K、Cs等が挙げられる。 M represents an alkali metal, such as Li, Na, K, and Cs.

2、R3におけるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、デシル基、ドデシル基等の炭素数1~20(好ましくは1~10、特に好ましくは1~3)程度の直鎖状又は分岐鎖状アルキル基が挙げられる。 Examples of the alkyl group for R 2 and R 3 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, decyl group, Examples include straight-chain or branched alkyl groups having about 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms, particularly preferably 1 to 3 carbon atoms) such as dodecyl group.

2、R3におけるトリアルキルシリル基としては、例えば、トリメチルシリル、t-ブチルジメチルシリル基等の、炭素数1~20(好ましくは1~10、特に好ましくは1~3)程度の直鎖状又は分岐鎖状アルキル基置換シリル基が挙げられる。 Examples of the trialkylsilyl group for R 2 and R 3 include linear groups having about 1 to 20 carbon atoms (preferably 1 to 10, particularly preferably 1 to 3), such as trimethylsilyl and t-butyldimethylsilyl groups. or a branched alkyl group-substituted silyl group.

2、R3が互いに連結して隣接する窒素原子と共に形成していてもよい環としては、例えば、ピロリジン環、ピペリジン環等の5~6員環の、ヘテロ原子として窒素原子を含有する複素環が挙げられる。 Examples of the ring that R 2 and R 3 may be connected to each other to form with an adjacent nitrogen atom include a 5- to 6-membered ring containing a nitrogen atom as a heteroatom, such as a pyrrolidine ring or a piperidine ring. Examples include rings.

前記アルカリ金属アミドとしては、例えば、リチウムアミド、リチウムジイソプロピルアミド、リチウム2,2,6,6-テトラメチルピペリジン、リチウムヘキサメチルジシラジド等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the alkali metal amide include lithium amide, lithium diisopropylamide, lithium 2,2,6,6-tetramethylpiperidine, and lithium hexamethyldisilazide. These can be used alone or in combination of two or more.

前記アルキルアルカリ金属は、例えば、下記式(c2)で表される。
4-M (c2)
(式中、Mはアルカリ金属を示し、R4はアルキル基を示す)
The alkyl alkali metal is represented by the following formula (c2), for example.
R 4 -M (c2)
(In the formula, M represents an alkali metal and R 4 represents an alkyl group)

式(c2)中のMは、上記式(c1)中のMに同じである。 M in formula (c2) is the same as M in formula (c1) above.

4におけるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、デシル基、ドデシル基等の炭素数1~20(好ましくは1~10、特に好ましくは1~5)の直鎖状又は分岐鎖状アルキル基が挙げられる。 Examples of the alkyl group for R 4 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, decyl group, dodecyl group, etc. Examples include straight-chain or branched alkyl groups having 1 to 20 carbon atoms (preferably 1 to 10, particularly preferably 1 to 5).

前記アルキルアルカリ金属としては、例えば、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the alkyl alkali metal include methyllithium, n-butyllithium, sec-butyllithium, and t-butyllithium. These can be used alone or in combination of two or more.

強塩基性触媒としては、なかでも、エステル交換反応を促進する効果に優れる点で、アルカリ金属アミドが好ましく、特にリチウムアミドが好ましい。 Among the strong basic catalysts, alkali metal amides are preferred, and lithium amide is particularly preferred, since they are excellent in promoting the transesterification reaction.

強塩基性触媒の使用量は、上記化合物(1)100molに対して、例えば10~50mol程度、好ましくは15~35molである。 The amount of the strong basic catalyst used is, for example, about 10 to 50 mol, preferably 15 to 35 mol, per 100 mol of the above compound (1).

エステル交換反応は、溶媒の存在下で行うことが好ましい。前記溶媒としては、常圧下における沸点が140℃以上(すなわち、1,3,5-シクロヘキサントリオールの融点以上)の溶剤を使用することが、1,3,5-シクロヘキサントリオールを良好に溶解させることができる点で好ましい。また、前記溶剤は疎水性溶媒(すなわち、低極性溶媒)であることが好ましい。このような溶媒としては、例えば、t-ブチルアルコール等のアルコール;オクタン等の脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ベンゾニトリル等のニトリル等を挙げることができる。これらの溶媒は1種を単独で又は2種以上を混合して用いられる。 The transesterification reaction is preferably carried out in the presence of a solvent. As the solvent, it is preferable to use a solvent with a boiling point of 140° C. or higher under normal pressure (that is, higher than the melting point of 1,3,5-cyclohexanetriol) to dissolve 1,3,5-cyclohexanetriol well. This is preferable because it allows for Further, it is preferable that the solvent is a hydrophobic solvent (ie, a low polarity solvent). Examples of such solvents include alcohols such as t-butyl alcohol; aliphatic hydrocarbons such as octane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; Examples include nitrile. These solvents may be used alone or in combination of two or more.

溶媒の使用量としては、上記化合物(1)と、1,3,5-シクロヘキサントリオールの合計量の、例えば1~10重量倍、好ましくは1~3重量倍である。 The amount of the solvent used is, for example, 1 to 10 times by weight, preferably 1 to 3 times by weight the total amount of the above compound (1) and 1,3,5-cyclohexanetriol.

エステル交換反応の反応温度は、例えば150~250℃、好ましくは170~200℃である。反応時間は、例えば1~4時間程度である。エステル交換反応は常圧下で行ってもよく、減圧下又は加圧下で行ってもよい。エステル交換反応の雰囲気は反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。 The reaction temperature for the transesterification is, for example, 150 to 250°C, preferably 170 to 200°C. The reaction time is, for example, about 1 to 4 hours. The transesterification reaction may be carried out under normal pressure, reduced pressure or increased pressure. The atmosphere for the transesterification reaction is not particularly limited as long as it does not inhibit the reaction, and may be, for example, an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or the like.

また、反応の進行に伴い、R1OH(R1は上記式(1)中のR1に同じ)が生成するが、生成したR1OHは、反応系外に除去することが、反応の進行を促進する上で好ましい。 In addition, as the reaction progresses, R 1 OH (R 1 is the same as R 1 in the above formula (1)) is generated, but the generated R 1 OH must be removed from the reaction system in order to proceed with the reaction. This is preferable for promoting progress.

エステル交換反応終了後、反応生成物は、酸で中和処理を行い、更に水洗するのが好ましい。 After the transesterification reaction is completed, the reaction product is preferably neutralized with an acid and further washed with water.

エステル交換反応終了後、得られた反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、吸着、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により、分離精製できる。これにより、上記式(2)で表される化合物が得られる。 After completion of the transesterification reaction, the obtained reaction product is separated by a separation method such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these methods. Can be purified. Thereby, a compound represented by the above formula (2) is obtained.

(工程2)
工程2は、上記式(2)で表される化合物に過酸を反応させて、上記式(3)で表されるエポキシ化合物を得る工程(エポキシ化反応工程)である。
(Step 2)
Step 2 is a step (epoxidation reaction step) in which the compound represented by the above formula (2) is reacted with a peracid to obtain the epoxy compound represented by the above formula (3).

前記過酸は、例えば下記式(a)で表される。
5-C(=O)OOH (a)
(式中、R5は水素原子又は炭化水素基を示す)
The peracid is represented by the following formula (a), for example.
R 5 -C(=O)OOH (a)
(In the formula, R 5 represents a hydrogen atom or a hydrocarbon group)

前記R5における炭化水素基には、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びこれらの結合した基が含まれる。 The hydrocarbon group for R 5 includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a bonded group thereof.

前記脂肪族炭化水素基としては、炭素数1~20の脂肪族炭化水素基が好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、デシル基、ドデシル基等の炭素数1~20(好ましくは1~10、特に好ましくは1~3)程度のアルキル基;ビニル基、アリル基、1-ブテニル基等の炭素数2~20(好ましくは2~10、特に好ましくは2~3)程度のアルケニル基;エチニル基、プロピニル基等の炭素数2~20(好ましくは2~10、特に好ましくは2~3)程度のアルキニル基等を挙げることができる。 The aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 20 carbon atoms, such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t- Alkyl groups having about 1 to 20 carbon atoms (preferably 1 to 10, particularly preferably 1 to 3) carbon atoms such as butyl group, pentyl group, hexyl group, decyl group, dodecyl group; vinyl group, allyl group, 1-butenyl group Alkenyl groups having about 2 to 20 carbon atoms (preferably 2 to 10, particularly preferably 2 to 3) carbon atoms; such as ethynyl groups, propynyl groups, etc.; Examples include alkynyl groups of the order of 3).

前記脂環式炭化水素基としては、3~20員の脂環式炭化水素基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の3~20員(好ましくは3~15員、特に好ましくは5~8員)程度のシクロアルキル基;シクロペンテニル基、シクロへキセニル基等の3~20員(好ましくは3~15員、特に好ましくは5~8員)程度のシクロアルケニル基;パーヒドロナフタレン-1-イル基、ノルボルニル基、アダマンチル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、テトラシクロ[4.4.0.12,5.17,10]ドデカン-3-イル基等の橋かけ環式炭化水素基等を挙げることができる。 The alicyclic hydrocarbon group is preferably a 3- to 20-membered alicyclic hydrocarbon group, such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, etc. is a 3- to 15-membered, particularly preferably 5 to 8-membered) cycloalkyl group; a 3- to 20-membered (preferably 3 to 15-membered, particularly preferably 5 to 8-membered) cyclopentenyl group, cyclohexenyl group, etc. cycloalkenyl group; perhydronaphthalen-1-yl group, norbornyl group, adamantyl group, tricyclo[5.2.1.0 2,6 ]decane-8-yl group, tetracyclo[4.4.0.1 2,5 . Examples include bridged cyclic hydrocarbon groups such as 1 7,10 ]dodecane-3-yl group.

前記芳香族炭化水素基としては、炭素数6~14(好ましくは6~10)の芳香族炭化水素基が好ましく、例えば、フェニル基、ナフチル基等を挙げることができる。 The aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 14 carbon atoms (preferably 6 to 10 carbon atoms), such as a phenyl group, a naphthyl group, and the like.

上記式(a)で表される過酸のうち、R5が水素原子である過酸としては、例えば、過酸化水素が挙げられる。 Among the peracids represented by the above formula (a), examples of peracids in which R 5 is a hydrogen atom include hydrogen peroxide.

上記式(a)で表される過酸のうち、R5が脂肪族炭化水素基である過酸としては、例えば、過ギ酸、過酢酸等が挙げられる。 Among the peracids represented by the above formula (a), examples of the peracids in which R 5 is an aliphatic hydrocarbon group include performic acid and peracetic acid.

上記式(a)で表される過酸のうち、R5が芳香族炭化水素基である過酸としては、例えば、過安息香酸等が挙げられる。 Among the peracids represented by the above formula (a), examples of the peracid in which R 5 is an aromatic hydrocarbon group include perbenzoic acid.

前記過酸としては、なかでも、上記式(a)で表される過酸のうち、R5が脂肪族炭化水素基である過酸(特に、過ギ酸及び/又は過酢酸)を使用することが、酸化力に優れると共に、溶媒として塩素系溶媒を使用する必要がなく、目的物であるエポキシ化合物に塩素含有化合物の混入を抑制することができる点で好ましい。 As the peracid, among the peracids represented by the above formula (a), peracids in which R 5 is an aliphatic hydrocarbon group (particularly performic acid and/or peracetic acid) may be used. However, it is preferable because it has excellent oxidizing power, does not require the use of a chlorine-based solvent as a solvent, and can suppress the mixing of chlorine-containing compounds into the target epoxy compound.

前記過酸の使用量は、式(2)で表される化合物1molに対して、例えば3~6mol程度、好ましくは3~4.5molである。 The amount of the peracid used is, for example, about 3 to 6 mol, preferably 3 to 4.5 mol, per 1 mol of the compound represented by formula (2).

前記エポキシ化反応は、溶媒の存在下で行うことが好ましい。前記溶媒としては、疎水性溶媒(すなわち、低極性溶媒)が好ましい。このような溶媒としては、例えば、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒;シクロヘキサン等の脂環式炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶媒;エチルエーテル、テトラヒドロフラン等の鎖状又は環状エーテル系溶媒;酢酸エチル等の酢酸エステル系溶媒等が挙げられる。これらの溶媒は1種を単独で又は2種以上を混合して用いられる。 The epoxidation reaction is preferably performed in the presence of a solvent. The solvent is preferably a hydrophobic solvent (ie, a low polarity solvent). Such solvents include, for example, aliphatic hydrocarbon solvents such as hexane, heptane, and octane; alicyclic hydrocarbon solvents such as cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene; Examples include chain or cyclic ether solvents such as ethyl ether and tetrahydrofuran; acetate ester solvents such as ethyl acetate. These solvents may be used alone or in combination of two or more.

前記溶媒としては、なかでも、常圧下における沸点が、反応温度より高く、しかも前記沸点が高すぎないため、留去しやすく取り扱いやすい点で、酢酸エステル系溶媒を使用することが好ましい。 Among these, it is preferable to use an acetate-based solvent as the solvent, since the boiling point under normal pressure is higher than the reaction temperature, and the boiling point is not too high, so it is easy to distill off and handle.

溶媒の使用量としては、式(2)で表される化合物の、例えば1~10重量倍、好ましくは2~5重量倍である。 The amount of the solvent used is, for example, 1 to 10 times, preferably 2 to 5 times the weight of the compound represented by formula (2).

前記エポキシ化反応の反応温度は、例えば20~50℃である。反応時間は、例えば0.5~12時間程度である。エステル交換反応は常圧下で行ってもよく、減圧下又は加圧下で行ってもよい。エポキシ化反応の雰囲気は反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。 The reaction temperature of the epoxidation reaction is, for example, 20 to 50°C. The reaction time is, for example, about 0.5 to 12 hours. The transesterification reaction may be carried out under normal pressure, reduced pressure or increased pressure. The atmosphere for the epoxidation reaction is not particularly limited as long as it does not inhibit the reaction, and may be, for example, any of air atmosphere, nitrogen atmosphere, argon atmosphere, etc.

前記エポキシ化反応終了後、反応生成物は、水洗し、更に塩基で中和処理を行うのが好ましい。 After the epoxidation reaction is completed, the reaction product is preferably washed with water and further neutralized with a base.

前記エポキシ化反応終了後、得られた反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、吸着、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により、分離精製できる。これにより、化合物(3)が得られる。 After the completion of the epoxidation reaction, the obtained reaction product is separated by a separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these. Can be separated and purified. This yields compound (3).

本発明のエポキシ化合物の製造方法によれば、エステル交換反応及びエポキシ化反応が速やかに進行して、化合物(3)を高い収率(収率は、例えば60%以上、好ましくは70%以上、特に好ましくは80%以上、最も好ましくは85%以上)で製造することができる。 According to the method for producing an epoxy compound of the present invention, the transesterification reaction and the epoxidation reaction proceed rapidly to produce compound (3) in a high yield (the yield is, for example, 60% or more, preferably 70% or more, Particularly preferably 80% or more, most preferably 85% or more).

本発明のエポキシ化合物の製造方法により得られる化合物(3)は、揮発性が低く、取扱性に優れる。また、硬化により耐熱性に優れた硬化物を形成することができる。 Compound (3) obtained by the method for producing an epoxy compound of the present invention has low volatility and is excellent in handleability. Further, by curing, a cured product with excellent heat resistance can be formed.

また、本発明のエポキシ化合物の製造方法によれば、塩素含有量が少ないエポキシ化合物を製造することができる。塩素含有量は、エポキシ化合物全量の例えば1000ppm以下、好ましくは100ppm以下、特に好ましくは10ppm以下である。 Moreover, according to the method for producing an epoxy compound of the present invention, an epoxy compound with a low chlorine content can be produced. The chlorine content is, for example, 1000 ppm or less, preferably 100 ppm or less, particularly preferably 10 ppm or less based on the total amount of the epoxy compound.

本発明の製造方法により得られるエポキシ化合物は上記の通り塩素含有量が少ないので、プリント基板の封止材等として好適に使用することができる。 Since the epoxy compound obtained by the production method of the present invention has a low chlorine content as described above, it can be suitably used as a sealing material for printed circuit boards.

そして、本発明の製造方法で得られたエポキシ化合物を封止材として使用すれば、塩素により配線が腐食する問題が生じないので、電子部品の一層の小型化、高密度化、高信頼化、及び長寿命化を実現することができる。 If the epoxy compound obtained by the manufacturing method of the present invention is used as a sealing material, the problem of corrosion of wiring due to chlorine will not occur, so electronic components can be further miniaturized, densified, and highly reliable. and a longer life can be achieved.

[組成物]
本発明の組成物(例えば、硬化性組成物)は、下記式(e)で表される化合物(=化合物(e))と、下記式(3)で表されるエポキシ化合物(=化合物(3))を含有する。

Figure 0007430503000010
(式(e)中、Xは単結合又は連結基を示す)
Figure 0007430503000011
[Composition]
The composition of the present invention (for example, a curable composition) comprises a compound represented by the following formula (e) (=compound (e)) and an epoxy compound represented by the following formula (3) (=compound (3)). )).
Figure 0007430503000010
(In formula (e), X represents a single bond or a connecting group)
Figure 0007430503000011

(化合物(e))
本発明における化合物(e)は、上記式(e)で表される化合物である。式(e)中、Xは単結合又は連結基を示す。式(e)中のシクロヘキセンオキシド基は置換基を有していても良く、前記置換基としては、例えば、C1-3アルキル基等が挙げられる。
(Compound (e))
Compound (e) in the present invention is a compound represented by the above formula (e). In formula (e), X represents a single bond or a connecting group. The cyclohexene oxide group in formula (e) may have a substituent, and examples of the substituent include a C 1-3 alkyl group.

前記連結基としては、例えば、二価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基(-CO-)、エーテル結合(-O-)、エステル結合(-COO-)、カーボネート基(-O-CO-O-)、アミド基(-CONH-)、及びこれらが複数個連結した基等を挙げることができる。 Examples of the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of the carbon-carbon double bond is epoxidized, a carbonyl group (-CO-), an ether bond (-O-), Examples include an ester bond (-COO-), a carbonate group (-O-CO-O-), an amide group (-CONH-), and a group in which a plurality of these are linked.

上記二価の炭化水素基としては、例えば、炭素数1~18の直鎖状又は分岐鎖状のアルキレン基、炭素数3~18の二価の脂環式炭化水素基等を挙げることができる。炭素数1~18の直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等を挙げることができる。炭素数3~18の二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基等のシクロアルキレン基等を挙げることができる。 Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms, and the like. . Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group. Examples of the divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms include 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, and 1,3-cyclopentylene group. Examples include cycloalkylene groups such as cyclohexylene group and 1,4-cyclohexylene group.

上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2~8の直鎖又は分岐鎖状のアルケニレン基等が挙げられる。特に、上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素-炭素二重結合の全部がエポキシ化された炭素数2~4のアルケニレン基である。 Examples of the alkenylene group in which part or all of the carbon-carbon double bond is epoxidized (sometimes referred to as an "epoxidized alkenylene group") include a vinylene group, a propenylene group, and a 1-butenylene group. , 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group, and other straight or branched alkenylene groups having 2 to 8 carbon atoms. In particular, the epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, more preferably an alkenylene group having 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. It is an alkenylene group.

上記式(e)で表される化合物としては、例えば、(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパン、1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタンや、下記式(e-1)~(e-10)で表される化合物等が挙げられる。尚、下記式(e-5)中のLは炭素数1~8のアルキレン基であり、なかでも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。また、下記式(e-5)、(e-7)、(e-9)、(e-10)中のn1~n8は、それぞれ1~30の整数を示す。 Examples of the compound represented by the above formula (e) include (3,4,3',4'-diepoxy)bicyclohexyl, bis(3,4-epoxycyclohexylmethyl)ether, 1,2-epoxy-1 , 2-bis(3,4-epoxycyclohexan-1-yl)ethane, 2,2-bis(3,4-epoxycyclohexan-1-yl)propane, 1,2-bis(3,4-epoxycyclohexane-1-yl) Examples include 1-yl)ethane and compounds represented by the following formulas (e-1) to (e-10). In addition, L in the following formula (e-5) is an alkylene group having 1 to 8 carbon atoms, and among them, a linear or A branched alkylene group is preferred. Furthermore, n 1 to n 8 in the following formulas (e-5), (e-7), (e-9), and (e-10) each represent an integer from 1 to 30.

Figure 0007430503000012
Figure 0007430503000012

Figure 0007430503000013
Figure 0007430503000013

本発明の組成物に含有される前記化合物(e)と前記化合物(3)の重量比(前者/後者)は90/10~1/99の範囲であり、なかでも、適度な粘度を有し、且つ耐熱性に優れた硬化物が得られる点において、前記重量比は、好ましくは60/40~10/90、特に好ましくは50/50~10/90、最も好ましくは40/60~20/80である。化合物(e)の含有量が過剰になると、前記組成物の100~150℃における粘度が低くなりすぎて金型の外に漏れ出しやすくなり、漏れ出した組成物によりバリが形成され易くなる傾向がある。尚、前記組成物の100~150℃における粘度は、例えば100~2500mPa・sの範囲が好ましい。また、化合物(e)の含有量が過剰になると、得られる硬化物の耐熱性が低下する傾向がある。一方、化合物(e)の含有量が過少になると、組成物の粘度が高くなりすぎて、例えば、トランスファー成形に使用することは困難となる傾向がある。 The weight ratio (former/latter) of the compound (e) and the compound (3) contained in the composition of the present invention is in the range of 90/10 to 1/99. , and in that a cured product with excellent heat resistance is obtained, the weight ratio is preferably 60/40 to 10/90, particularly preferably 50/50 to 10/90, and most preferably 40/60 to 20/90. It is 80. When the content of compound (e) is excessive, the viscosity of the composition at 100 to 150°C becomes too low, making it easy to leak out of the mold, and the leaked composition tends to form burrs. There is. The viscosity of the composition at 100 to 150° C. is preferably in the range of, for example, 100 to 2,500 mPa·s. Moreover, when the content of compound (e) becomes excessive, the heat resistance of the obtained cured product tends to decrease. On the other hand, if the content of compound (e) is too low, the viscosity of the composition tends to become too high, making it difficult to use it, for example, in transfer molding.

本発明の組成物の、25℃、せん断速度3.1(1/s)における粘度は、例えば500~32000mPa・sであり、なかでも、トランスファー成形のし易さの点において、好ましくは1000~32000mPa・s、特に好ましくは2000~25000mPa・s、最も好ましくは2000~10000mPa・s、とりわけ好ましくは2000~5000mPa・sである。前記スラリーの粘度は、前記化合物(e)と前記化合物(3)の配合割合を調整することでコントロールすることができる。 The viscosity of the composition of the present invention at 25° C. and a shear rate of 3.1 (1/s) is, for example, 500 to 32,000 mPa·s, and preferably 1,000 to 32,000 mPa·s in terms of ease of transfer molding. 32,000 mPa·s, particularly preferably 2,000 to 25,000 mPa·s, most preferably 2,000 to 10,000 mPa·s, particularly preferably 2,000 to 5,000 mPa·s. The viscosity of the slurry can be controlled by adjusting the blending ratio of the compound (e) and the compound (3).

本発明の組成物は、前記化合物(e)と前記化合物(3)以外にも他の成分を含有していても良く、例えば、硬化触媒、硬化剤、硬化促進剤、溶剤等が挙げられる。 The composition of the present invention may contain other components in addition to the compound (e) and the compound (3), such as a curing catalyst, a curing agent, a curing accelerator, and a solvent.

前記硬化触媒の使用量としては、前記化合物(e)と前記化合物(3)の合計100重量部に対して、例えば0.1~3.0重量部程度、好ましくは0.3~1.5重量部である。 The amount of the curing catalyst used is, for example, about 0.1 to 3.0 parts by weight, preferably 0.3 to 1.5 parts by weight, based on the total of 100 parts by weight of the compound (e) and the compound (3). Parts by weight.

前記硬化剤の使用量としては、前記化合物(e)と前記化合物(3)の合計100重量部に対して、例えば80~130重量部程度である。 The amount of the curing agent used is, for example, about 80 to 130 parts by weight, based on the total of 100 parts by weight of the compound (e) and the compound (3).

前記硬化促進剤の使用量としては、前記化合物(e)と前記化合物(3)の合計100重量部に対して、例えば0.1~3.0重量部程度、好ましくは0.3~1.5重量部である。 The amount of the curing accelerator to be used is, for example, about 0.1 to 3.0 parts by weight, preferably 0.3 to 1.0 parts by weight, based on the total of 100 parts by weight of the compound (e) and the compound (3). 5 parts by weight.

本発明の組成物は、前記化合物(e)と前記化合物(3)と、必要に応じて他の成分を配合し、混合することにより調製することができる。 The composition of the present invention can be prepared by blending and mixing the compound (e), the compound (3), and other components as needed.

本発明の組成物は、加熱処理及び/又は光照射を行うことにより、組成物中に含まれる前記化合物(e)と前記化合物(3)の重合反応を進行させて硬化物を得ることができる。 The composition of the present invention can be subjected to heat treatment and/or light irradiation to advance the polymerization reaction of the compound (e) and the compound (3) contained in the composition to obtain a cured product. .

前記組成物の硬化物は耐熱性に優れ、Tg(DMA-tanδ)、すなわち、動的粘弾性測定装置(DMA)測定により求められるtanδのピークトップ温度は、例えば180℃以上、好ましくは200℃以上、特に好ましくは210℃以上である。また、Tg(TMA)、すなわち、TMA測定により求められる熱膨張率の変曲点は、例えば190℃以上、好ましくは200℃以上、特に好ましくは210℃以上、最も好ましくは220℃以上である。 The cured product of the composition has excellent heat resistance, and the Tg (DMA-tan δ), that is, the peak top temperature of tan δ determined by dynamic mechanical analysis (DMA) measurement is, for example, 180°C or higher, preferably 200°C. The temperature is particularly preferably 210°C or higher. Further, Tg (TMA), that is, the inflection point of the coefficient of thermal expansion determined by TMA measurement, is, for example, 190°C or higher, preferably 200°C or higher, particularly preferably 210°C or higher, and most preferably 220°C or higher.

また、前記化合物(3)として、上記エポキシ化合物の製造方法により得られたものを使用すれば、塩素含有量が少ない組成物が得られる。組成物中に塩素が含まれる場合、前記化合物(e)や前記化合物(3)のエポキシ基が塩素によって開環することによって、硬化反応が進行し難くなるため、耐熱性に優れた硬化物を得ることは困難となるが、塩素含有量が少ない組成物であれば、優れた硬化性を発揮することができ、耐熱性に優れた硬化物を形成することができる。 Moreover, if the compound (3) obtained by the above-described method for producing an epoxy compound is used, a composition with a low chlorine content can be obtained. When chlorine is contained in the composition, the epoxy groups of the compound (e) and the compound (3) are ring-opened by chlorine, making it difficult for the curing reaction to proceed. Although it is difficult to obtain, a composition with a low chlorine content can exhibit excellent curability and form a cured product with excellent heat resistance.

本発明の組成物の塩素含有量は、例えば1000ppm以下、好ましくは100ppm以下、特に好ましくは10ppm以下である。 The chlorine content of the composition of the invention is, for example, 1000 ppm or less, preferably 100 ppm or less, particularly preferably 10 ppm or less.

本発明の組成物は、上記の通り優れた耐熱性を有する硬化物を形成することができる。そのため、本発明の組成物は、例えば、光半導体装置の(透明)封止材や、光反射用リフレクタ等を製造する原料として好適である。 The composition of the present invention can form a cured product having excellent heat resistance as described above. Therefore, the composition of the present invention is suitable as a raw material for producing, for example, a (transparent) sealing material for an optical semiconductor device, a light reflector, and the like.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1
1Lのステンレス製反応器に、1,3,5-シクロヘキサントリオール[東京化成工業(株)製]51.0gと3-シクロヘキセン-1-カルボン酸メチル[東京化成工業(株)製]275.9g、キシレン326.9g、及びリチウムアミド[LiNH2、MERCK社製]1.24gを仕込み、反応器内温度を190℃まで昇温した。また、反応途中から留出したメタノールを除去した。
このようにして得られた反応液を酢酸エチル345gで希釈し、酢酸6.4gを添加して中和した。その後、水洗を行い、反応液の溶媒を留去して、化合物(2)を170.0g得た(収率:96%)。
次に、得られた化合物(2)170.0gを酢酸エチル510gで希釈し、40℃の条件下、28%過酢酸364.1gを1時間かけて滴下した。滴下終了後、7時間反応させた。得られた反応液を水洗し、さらに10%水酸化ナトリウム水溶液で中和した。その後、溶媒を留去して、化合物(3)を177.8g得た(収率:95%)。得られた化合物(3)の塩素含有量は検出限界以下(すなわち、10ppm以下)であった。
Example 1
In a 1L stainless steel reactor, 51.0 g of 1,3,5-cyclohexanetriol [manufactured by Tokyo Kasei Kogyo Co., Ltd.] and 275.9 g of methyl 3-cyclohexene-1-carboxylate [manufactured by Tokyo Kasei Kogyo Co., Ltd.] , 326.9 g of xylene, and 1.24 g of lithium amide [LiNH 2 , manufactured by MERCK] were charged, and the temperature inside the reactor was raised to 190°C. Additionally, methanol distilled out during the reaction was removed.
The reaction solution thus obtained was diluted with 345 g of ethyl acetate and neutralized by adding 6.4 g of acetic acid. Thereafter, the reaction solution was washed with water, and the solvent of the reaction solution was distilled off to obtain 170.0 g of compound (2) (yield: 96%).
Next, 170.0 g of the obtained compound (2) was diluted with 510 g of ethyl acetate, and 364.1 g of 28% peracetic acid was added dropwise at 40° C. over 1 hour. After the dropwise addition was completed, the reaction was continued for 7 hours. The resulting reaction solution was washed with water and further neutralized with a 10% aqueous sodium hydroxide solution. Thereafter, the solvent was distilled off to obtain 177.8 g of compound (3) (yield: 95%). The chlorine content of the obtained compound (3) was below the detection limit (ie, below 10 ppm).

実施例2(組成物の調製)
下記表1に記載の処方で各成分を配合し、自公転式撹拌装置(商品名「あわとり錬太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して組成物を得た。得られた組成物の、25℃、せん断速度3.1(1/s)における粘度は、31400mPa・sであった。
Example 2 (Preparation of composition)
Each component was blended according to the recipe shown in Table 1 below, mixed uniformly using a revolution-revolution type stirring device (trade name "Awatori Rentaro AR-250", manufactured by Thinky Co., Ltd.), and defoamed. A composition was obtained. The viscosity of the obtained composition at 25° C. and a shear rate of 3.1 (1/s) was 31,400 mPa·s.

尚、組成物の粘度は、レオメーター(商品名「PHYSICA UDS200」、Anton Paar社製)を用い、温度25℃、回転速度186rpmの条件で測定した。 The viscosity of the composition was measured using a rheometer (trade name "PHYSICA UDS200", manufactured by Anton Paar) at a temperature of 25° C. and a rotation speed of 186 rpm.

(組成物の硬化)
得られた組成物を成型機に充填し、80℃で3時間、続いて180℃で2時間加熱することによって硬化物を得た。そして、得られた硬化物について、下記硬化物の耐熱性評価1を行った。
(Curing of composition)
The obtained composition was filled into a molding machine and heated at 80°C for 3 hours and then at 180°C for 2 hours to obtain a cured product. Then, the following heat resistance evaluation 1 of the cured product was performed on the obtained cured product.

実施例3~4(実施例4は参考例とする)、比較例1
下記表1に記載の通りに処方を変更した以外は実施例2と同様にして、組成物及びその硬化物を得、得られた硬化物の耐熱性を評価した。
Examples 3 to 4 (Example 4 is a reference example) , Comparative Example 1
A composition and a cured product thereof were obtained in the same manner as in Example 2 except that the formulation was changed as shown in Table 1 below, and the heat resistance of the obtained cured product was evaluated.

実施例5(組成物の調製)
下記表2に記載の処方で各成分を配合し、自公転式撹拌装置を使用して均一に混合し、脱泡して組成物を得た。
Example 5 (Preparation of composition)
Each component was blended according to the formulation shown in Table 2 below, mixed uniformly using a rotation-revolution stirring device, and defoamed to obtain a composition.

(組成物の硬化)
得られた組成物を成型機に充填し、100℃で2時間、続いて150℃で2時間、更に180℃で1時間加熱することによって、硬化物を得た。また、得られた硬化物について、下記硬化物の耐熱性評価1,2を行った。
(Curing of composition)
The resulting composition was filled into a molding machine and heated at 100°C for 2 hours, then at 150°C for 2 hours, and further at 180°C for 1 hour to obtain a cured product. Moreover, the following heat resistance evaluations 1 and 2 of the cured product were performed on the obtained cured product.

比較例2(組成物の調製)
下記表2に記載の通りに処方を変更した以外は実施例5と同様にして、組成物及びその硬化物を得、得られた硬化物の耐熱性を評価した。
Comparative example 2 (preparation of composition)
A composition and a cured product thereof were obtained in the same manner as in Example 5 except that the formulation was changed as shown in Table 2 below, and the heat resistance of the obtained cured product was evaluated.

(硬化物の耐熱性評価1)
得られた硬化物から、厚さ0.5mm×幅8mm×長さ40mmのサイズの試験片を切り出した。動的粘弾性測定装置(DMA)(セイコーインスツルメント(株)製)を用いて、上記試験片の損失正接(tanδ)のピークトップ温度(Tg(DMA-tanδ))を測定した。
尚、測定は以下の条件で実施した。
測定雰囲気:窒素気流下
測定温度範囲:-50~300℃
昇温速度:2℃/分
変形モード:引張モード
(Evaluation of heat resistance of cured product 1)
A test piece with a size of 0.5 mm thickness x 8 mm width x 40 mm length was cut out from the obtained cured product. The peak top temperature of loss tangent (tan δ) (Tg (DMA-tan δ)) of the test piece was measured using a dynamic viscoelasticity measuring device (DMA) (manufactured by Seiko Instruments Inc.).
Note that the measurements were carried out under the following conditions.
Measurement atmosphere: Under nitrogen flow Measurement temperature range: -50 to 300℃
Heating rate: 2℃/min Deformation mode: Tensile mode

(硬化物の耐熱性評価2)
得られた硬化物のガラス転移温度(Tg(TMA))を、TMA測定装置(商品名「TMA/SS100」、エスアイアイ・ナノテクノロジー社製)を使用し、JIS K7197に準拠した方法により、窒素雰囲気下にて、昇温速度5℃/分で、測定温度範囲30~300℃における熱膨張率を測定した後、ガラス転移温度以下及びガラス転移温度以上の曲線にそれぞれ接線を引き、これらの接線の交点から求めた。
尚、ガラス転移温度以下での線膨張係数(ppm/℃)をα1、ガラス転移温度以上での線膨張係数(ppm/℃)をα2とする。
(Evaluation of heat resistance of cured product 2)
The glass transition temperature (Tg (TMA)) of the obtained cured product was measured using a TMA measurement device (trade name "TMA/SS100", manufactured by SII Nanotechnology) using a method based on JIS K7197. After measuring the thermal expansion coefficient in the measurement temperature range of 30 to 300 °C in an atmosphere at a heating rate of 5 °C/min, draw tangents to the curves below the glass transition temperature and above the glass transition temperature, and It was found from the intersection of
The coefficient of linear expansion (ppm/°C) below the glass transition temperature is α1, and the coefficient of linear expansion (ppm/°C) above the glass transition temperature is α2.

Figure 0007430503000014
Figure 0007430503000014

Figure 0007430503000015
Figure 0007430503000015

セロキサイド2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
SI-100L:硬化触媒、サンアプロ(株)製
リカシッドMH700F:硬化剤、4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30、新日本理化(株)製
U-CAT 12XD:硬化促進剤、サンアプロ(株)製
Celloxide 2021P: 3,4-epoxycyclohexylmethyl (3,4-epoxy)cyclohexanecarboxylate, SI-100L manufactured by Daicel Corporation: Curing catalyst, Rikacid MH700F manufactured by San-Apro Corporation: Curing agent, 4-methylhexahydro anhydride Phthalic acid/hexahydrophthalic anhydride = 70/30, manufactured by Shin Nippon Chemical Co., Ltd. U-CAT 12XD: Curing accelerator, manufactured by San-Apro Co., Ltd.

Claims (10)

下記式(1)
Figure 0007430503000016
(式(1)中、R1はアルキル基を示す)
で表される化合物と、1,3,5-シクロヘキサントリオールとのエステル交換反応により、下記式(2)
Figure 0007430503000017
で表される化合物を生成させる工程1と、
生成した前記式(2)で表される化合物に過酸を反応させて、下記式(3)
Figure 0007430503000018
で表されるエポキシ化合物を得る工程2を含むエポキシ化合物の製造方法。
The following formula (1)
Figure 0007430503000016
(In formula (1), R 1 represents an alkyl group)
By the transesterification reaction between the compound represented by and 1,3,5-cyclohexanetriol, the following formula (2) is obtained.
Figure 0007430503000017
Step 1 of producing a compound represented by
The generated compound represented by the above formula (2) is reacted with a peracid to form the following formula (3).
Figure 0007430503000018
A method for producing an epoxy compound, comprising step 2 of obtaining an epoxy compound represented by:
過酸が過ギ酸及び/又は過酢酸である、請求項1に記載のエポキシ化合物の製造方法。 The method for producing an epoxy compound according to claim 1, wherein the peracid is performic acid and/or peracetic acid. 工程2の反応を酢酸エステル系溶媒の存在下で行う、請求項1又は2に記載のエポキシ化合物の製造方法。 The method for producing an epoxy compound according to claim 1 or 2, wherein the reaction in step 2 is carried out in the presence of an acetate-based solvent. 工程1の反応をアルカリ金属アミド及び/又はアルキルアルカリ金属の存在下で行う、請求項1~3の何れか1項に記載のエポキシ化合物の製造方法。 The method for producing an epoxy compound according to any one of claims 1 to 3, wherein the reaction in step 1 is carried out in the presence of an alkali metal amide and/or an alkyl alkali metal. 前記式(3)で表されるエポキシ化合物の塩素含有量が1000ppm以下である、請求項1~4の何れか1項に記載のエポキシ化合物の製造方法。 The method for producing an epoxy compound according to any one of claims 1 to 4, wherein the epoxy compound represented by formula (3) has a chlorine content of 1000 ppm or less. 下記化合物(e)と下記エポキシ化合物(3)を、前者/後者(重量比)が60/40~10/90の範囲で含有する組成物。
化合物(e):(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパン、1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、及び下記式(e-1)~(e-10)で表される化合物から選択される少なくとも1種の化合物
Figure 0007430503000019
Figure 0007430503000020
(式中、Lは炭素数1~3のアルキレン基を示し、n 1 ~n 8 はそれぞれ1~30の整数を示す)
エポキシ化合物(3):下記式(3)で表される化合物
Figure 0007430503000021
A composition containing the following compound (e) and the following epoxy compound (3) in a former/latter ratio (weight ratio) in the range of 60/40 to 10/90 .
Compound (e): (3,4,3',4'-diepoxy)bicyclohexyl, bis(3,4-epoxycyclohexylmethyl)ether, 1,2-epoxy-1,2-bis(3,4-epoxy) cyclohexan-1-yl)ethane, 2,2-bis(3,4-epoxycyclohexan-1-yl)propane, 1,2-bis(3,4-epoxycyclohexan-1-yl)ethane, and the following formula ( At least one compound selected from the compounds represented by e-1) to (e-10)
Figure 0007430503000019
Figure 0007430503000020
(In the formula, L represents an alkylene group having 1 to 3 carbon atoms, and n 1 to n 8 each represent an integer of 1 to 30.)
Epoxy compound (3): Compound represented by the following formula (3)
Figure 0007430503000021
25℃、せん断速度3.1(1/s)における粘度が2000~32000mPa・sである、請求項6に記載の組成物 The composition according to claim 6, which has a viscosity of 2000 to 32000 mPa·s at 25° C. and a shear rate of 3.1 (1/s) . トランスファー成形用である、請求項6又は7に記載の組成物。 The composition according to claim 6 or 7 , which is used for transfer molding. 封止材である、請求項6又は7に記載の組成物。The composition according to claim 6 or 7, which is a sealant. リフレクタ形成用組成物である、請求項6~8の何れか1項に記載の組成物。The composition according to any one of claims 6 to 8, which is a composition for forming a reflector.
JP2019172124A 2019-09-20 2019-09-20 Manufacturing method of epoxy compound Active JP7430503B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019172124A JP7430503B2 (en) 2019-09-20 2019-09-20 Manufacturing method of epoxy compound
PCT/JP2020/034146 WO2021054224A1 (en) 2019-09-20 2020-09-09 Epoxy compound production method
CN202080065366.0A CN114423744A (en) 2019-09-20 2020-09-09 Method for producing epoxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019172124A JP7430503B2 (en) 2019-09-20 2019-09-20 Manufacturing method of epoxy compound

Publications (2)

Publication Number Publication Date
JP2021050143A JP2021050143A (en) 2021-04-01
JP7430503B2 true JP7430503B2 (en) 2024-02-13

Family

ID=74884509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019172124A Active JP7430503B2 (en) 2019-09-20 2019-09-20 Manufacturing method of epoxy compound

Country Status (3)

Country Link
JP (1) JP7430503B2 (en)
CN (1) CN114423744A (en)
WO (1) WO2021054224A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087776A1 (en) 2004-03-18 2005-09-22 The University Of Hong Kong Diastereoselective epoxidation of allylically substituted alkenes using metalloporphyrin catalysts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887706A1 (en) * 1997-06-25 1998-12-30 Wako Pure Chemical Industries Ltd Resist composition containing specific cross-linking agent
JPH1171363A (en) * 1997-06-25 1999-03-16 Wako Pure Chem Ind Ltd Resist composition and formation of pattern with the same and cross-linking agent for resist agent
JP2006052187A (en) * 2004-08-16 2006-02-23 Daicel Chem Ind Ltd Methods for producing alicyclic olefin compound and alicyclic epoxy compound
JP2012036320A (en) * 2010-08-10 2012-02-23 Daicel Corp Curable resin composition and cured article thereof
EP3112389B1 (en) * 2014-02-28 2019-06-05 Daicel Corporation Curable composition, cured product thereof, and wafer level lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087776A1 (en) 2004-03-18 2005-09-22 The University Of Hong Kong Diastereoselective epoxidation of allylically substituted alkenes using metalloporphyrin catalysts

Also Published As

Publication number Publication date
CN114423744A (en) 2022-04-29
WO2021054224A1 (en) 2021-03-25
JP2021050143A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US7781543B2 (en) Curable alicyclic diepoxy resin composition
JP5226162B2 (en) Liquid epoxy resin composition and use thereof
JP6397823B2 (en) Silicone-modified epoxy resin and composition and cured product thereof
KR101144420B1 (en) High-purity alicyclic epoxy compound, process for producing the same, curable epoxy resin composition, cured article thereof, and use
JP7273603B2 (en) Alicyclic epoxy compound products
WO2014181787A1 (en) Curable epoxy resin composition and cured product thereof, diolefin compound and production method therefor, and production method for diepoxy compound
JP7430503B2 (en) Manufacturing method of epoxy compound
JP7171619B2 (en) Method for producing alicyclic epoxy compound product
JP6514685B2 (en) Silicone modified epoxy resin, composition containing the epoxy resin, and cured product thereof
JPWO2020153329A1 (en) Aliphatic polycarbonate
JP5899226B2 (en) Triepoxy compound and method for producing the same
WO2021230335A1 (en) Novel epoxy resin and epoxy resin composition
WO2021230336A1 (en) Novel epoxy resin and epoxy resin composition
JPWO2004078821A1 (en) Fluorocarbon-modified epoxy resin
JP2884255B2 (en) Curable resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240131

R150 Certificate of patent or registration of utility model

Ref document number: 7430503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150