JP7429547B2 - heat utilization system - Google Patents

heat utilization system Download PDF

Info

Publication number
JP7429547B2
JP7429547B2 JP2020007694A JP2020007694A JP7429547B2 JP 7429547 B2 JP7429547 B2 JP 7429547B2 JP 2020007694 A JP2020007694 A JP 2020007694A JP 2020007694 A JP2020007694 A JP 2020007694A JP 7429547 B2 JP7429547 B2 JP 7429547B2
Authority
JP
Japan
Prior art keywords
groundwater
water
heat
utilization system
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020007694A
Other languages
Japanese (ja)
Other versions
JP2021113662A (en
Inventor
啓佑 田嶋
丈夫 山東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Mitsubishi Chemical Aqua Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Aqua Solutions Co Ltd filed Critical Mitsubishi Chemical Aqua Solutions Co Ltd
Priority to JP2020007694A priority Critical patent/JP7429547B2/en
Publication of JP2021113662A publication Critical patent/JP2021113662A/en
Application granted granted Critical
Publication of JP7429547B2 publication Critical patent/JP7429547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、熱利用システムに関する。 The present invention relates to a heat utilization system.

地下水の熱を利用するシステムが知られている(例えば、特許文献1、2)。
特許文献1に開示の地下水の利用システムは、地下水の汲み上げ供給手段と熱交換器と逆浸透膜浄化装置と浄水受けタンクを備える。特許文献1に開示の地下水の利用システムは、第1流路系統と第2流路系統をさらに備え、これらの流路系統の切り換えが可能である。第1流路系統では、熱交換器を通過した後の地下水が逆浸透膜浄化装置に供給され、逆浸透膜の透過水が浄水受けタンクに貯留される。第2流路系統では、地下水がそのまま直接的に逆浸透膜浄化装置に供給され、逆浸透膜の透過水が浄水受けタンクに貯留される。
Systems that utilize heat from groundwater are known (for example, Patent Documents 1 and 2).
The underground water utilization system disclosed in Patent Document 1 includes a means for pumping up and supplying underground water, a heat exchanger, a reverse osmosis membrane purification device, and a purified water receiving tank. The groundwater utilization system disclosed in Patent Document 1 further includes a first flow path system and a second flow path system, and these flow path systems can be switched. In the first flow path system, the groundwater after passing through the heat exchanger is supplied to the reverse osmosis membrane purification device, and the permeated water of the reverse osmosis membrane is stored in the purified water receiving tank. In the second channel system, groundwater is directly supplied as it is to the reverse osmosis membrane purification device, and permeated water from the reverse osmosis membrane is stored in the purified water receiving tank.

特許文献2に開示の地中熱利用システムは、揚水井と軟水化装置と外気処理用ヒートポンプと地下水利用水冷式ヒートポンプと脱気装置と注入井を備える。特許文献2に開示の地中熱利用システムは、Na型イオン交換樹脂を充填した軟水化装置で地下水から鉄、マンガンを除去した後、外気処理用ヒートポンプ、地下水利用水冷式ヒートポンプに地下水を熱源として供給する。これらのヒートポンプの熱源として供給された地下水は、脱気装置で後処理され、注入井に還流されて、地中に戻される。 The geothermal heat utilization system disclosed in Patent Document 2 includes a pumping well, a water softening device, an outside air processing heat pump, a water-cooled heat pump using groundwater, a deaeration device, and an injection well. The geothermal heat utilization system disclosed in Patent Document 2 removes iron and manganese from groundwater using a water softening device filled with Na-type ion exchange resin, and then uses the groundwater as a heat source in a heat pump for outside air processing and a water-cooled heat pump that uses groundwater. supply The groundwater supplied as a heat source for these heat pumps is post-treated in a deaerator, returned to an injection well, and returned to the ground.

特開2006-46677号公報Japanese Patent Application Publication No. 2006-46677 特開2012-233636号公報JP2012-233636A

図2は、逆浸透膜等の分離膜に供給される水の温度と分離膜の透過水の量との関係の一例を示すグラフである。図2のグラフでは分離膜に供給される水の温度を横軸にプロットし、15℃における透過水の量に対する透過水の量の比を縦軸にプロットしている。図2に示すように、分離膜に供給される水の温度が高いほど透過水の量は多くなり、分離膜に供給される水の温度が低いほど、透過水の量は少なくなる。
したがって、分離膜による水処理の最中に分離膜に供給される水の温度が仮に変動した場合には、透過水の量も同様に変動すると考えられる。
FIG. 2 is a graph showing an example of the relationship between the temperature of water supplied to a separation membrane such as a reverse osmosis membrane and the amount of water permeated through the separation membrane. In the graph of FIG. 2, the temperature of water supplied to the separation membrane is plotted on the horizontal axis, and the ratio of the amount of permeated water to the amount of permeated water at 15° C. is plotted on the vertical axis. As shown in FIG. 2, the higher the temperature of the water supplied to the separation membrane, the greater the amount of permeated water, and the lower the temperature of the water supplied to the separation membrane, the lower the amount of permeated water.
Therefore, if the temperature of water supplied to the separation membrane changes during water treatment by the separation membrane, it is thought that the amount of permeated water will change as well.

図3は、従来の熱利用システムの概略模式図である。図3に示す熱利用システム101は、原水槽111と熱交換器117と膜分離装置115と薬剤添加手段118とミネライザ119と処理水槽120を地下水側(原水槽111側)からこの順で備える。また、膜分離装置115は、分離膜モジュール116、116’、116’’を備える。
熱利用システム101では、図示略の井戸から地下水が流路121を流れ、原水槽111に供給される。原水槽111内の地下水は、ポンプ112によって送液されて流路122を流れ、プレフィルター113を通過した後、熱交換器117に通水される。熱交換器117では、熱交換の対象物と地下水との間で熱交換が行われ、地下水の熱が利用される。その後、地下水は流路122を流れ、膜分離装置115に供給され、透過水と濃縮水とに分離される。透過水は流路123を流れ、透過水中の塩素等の成分濃度、pH値、硬度等が、薬剤添加手段118、ミネライザ119によって必要に応じて調整され、処理水槽120に貯留される。
FIG. 3 is a schematic diagram of a conventional heat utilization system. The heat utilization system 101 shown in FIG. 3 includes a raw water tank 111, a heat exchanger 117, a membrane separation device 115, a drug addition means 118, a mineralizer 119, and a treated water tank 120 in this order from the groundwater side (raw water tank 111 side). The membrane separation device 115 also includes separation membrane modules 116, 116', and 116''.
In the heat utilization system 101, groundwater flows through a channel 121 from a well (not shown) and is supplied to a raw water tank 111. The groundwater in the raw water tank 111 is pumped by the pump 112 and flows through the channel 122, passes through the pre-filter 113, and then flows into the heat exchanger 117. In the heat exchanger 117, heat exchange is performed between the object of heat exchange and groundwater, and the heat of the groundwater is utilized. Thereafter, the groundwater flows through the channel 122, is supplied to the membrane separation device 115, and is separated into permeated water and concentrated water. The permeated water flows through a channel 123, and the concentration of components such as chlorine, pH value, hardness, etc. in the permeated water are adjusted as necessary by the chemical addition means 118 and the mineralizer 119, and stored in the treated water tank 120.

このように処理システム101にあっては、熱交換器117を通過して熱交換が行われた後の地下水が膜分離装置115に供給される。しかし、熱交換器117を通過した後の地下水の温度は、熱交換器117の稼働率等の影響を受けて変動しやすい。そのため、図2に示す水の温度と透過水の量との関係によれば、熱利用システム101では膜分離装置115の透過水の量が変動してしまう。
したがって、熱利用システム101にあっては、膜分離装置115に供給される水の温度や透過水の量が変動しやすいことから、処理水槽120における透過水中の塩素や有機物等の成分濃度、pH値、硬度等の水質が安定しない。加えて、薬剤添加手段118、ミネライザ119を用いて、透過水の水質を制御しようとしても、制御のための操作の負荷がきわめて大きく、水質の制御が困難である。さらに、熱利用システム101において冬季に地下水から熱を回収して利用する場合には、熱交換器を通過した後の水温が低下するため、膜分離装置115の透過水の量が減少するため、水を安定的に利用することができない。
As described above, in the treatment system 101, the groundwater after passing through the heat exchanger 117 and undergoing heat exchange is supplied to the membrane separation device 115. However, the temperature of the groundwater after passing through the heat exchanger 117 tends to fluctuate under the influence of the operating rate of the heat exchanger 117 and the like. Therefore, according to the relationship between the water temperature and the amount of permeated water shown in FIG. 2, in the heat utilization system 101, the amount of permeated water in the membrane separation device 115 fluctuates.
Therefore, in the heat utilization system 101, since the temperature of the water supplied to the membrane separation device 115 and the amount of permeated water are likely to fluctuate, the concentration of components such as chlorine and organic matter in the permeated water in the treated water tank 120, and the pH Water quality such as value and hardness is unstable. In addition, even if an attempt is made to control the water quality of permeated water using the chemical addition means 118 and the mineralizer 119, the operational load for control is extremely large, making it difficult to control the water quality. Furthermore, when the heat utilization system 101 recovers and uses heat from groundwater in the winter, the water temperature after passing through the heat exchanger decreases, so the amount of permeated water in the membrane separation device 115 decreases. Unable to use water stably.

特許文献1に記載の第1流路系統を経由した逆浸透膜の透過水にあっては、熱交換器を通過した後の地下水が逆浸透膜浄化装置に供給される。そのため、図3に示す熱利用システム101と同様の理由から、逆浸透膜浄化装置に供給される水の温度や逆浸透膜の透過水の量が熱交換器における熱交換に起因して変動しやすい。したがって、透過水の水質が安定せず、水質の制御が困難である。
特許文献2に開示の地中熱利用システムの軟水化装置では、Na型イオン交換樹脂を充填した塔内に地下水を通水し、地下水中のCa,Mg,Fe,Mnイオンを除去している。しかし、Na型イオン交換樹脂を用いる軟水化装置では、クリプトスポリジウム等の原虫や、細菌、溶存有機物等を除去できず、地下水の前処理としては不十分であり、地下水を水資源として利用できない。
本発明は、地下水を水資源として利用可能であり、地下水を分離膜で処理して得られる透過水の水質が安定し、透過水の水質の制御が容易である、熱利用システムを提供する。
In the permeated water of the reverse osmosis membrane that passes through the first flow path system described in Patent Document 1, the groundwater after passing through the heat exchanger is supplied to the reverse osmosis membrane purification device. Therefore, for the same reason as the heat utilization system 101 shown in FIG. 3, the temperature of water supplied to the reverse osmosis membrane purification device and the amount of water permeated through the reverse osmosis membrane fluctuate due to heat exchange in the heat exchanger. Cheap. Therefore, the quality of the permeated water is not stable and it is difficult to control the water quality.
In the water softening device for the geothermal heat utilization system disclosed in Patent Document 2, groundwater is passed through a tower filled with Na-type ion exchange resin to remove Ca, Mg, Fe, and Mn ions from the groundwater. . However, water softening devices using Na-type ion exchange resin cannot remove protozoa such as Cryptosporidium, bacteria, dissolved organic matter, etc., and are insufficient as a pretreatment of groundwater, making it impossible to use groundwater as a water resource.
The present invention provides a heat utilization system in which groundwater can be used as a water resource, the quality of permeated water obtained by treating groundwater with a separation membrane is stable, and the quality of permeated water can be easily controlled.

本発明は下記の態様を有する。
[1] 地下水の熱を利用する熱利用システムであって、前記地下水を、分離膜を用いて処理する前処理手段と、前記前処理手段の後段に設けられ、かつ、前記前処理手段によって処理された前記地下水を用いて熱交換を行う熱交換器と、を備える、熱利用システム。
[2] 前記分離膜が、逆浸透膜又は限外ろ過膜である、[1]の熱利用システム。
[3] 前記前処理手段によって処理された前記地下水を貯留する処理水槽をさらに備える、[1]又は[2]の熱利用システム。
[4] 前記処理水槽に貯留された処理水を飲料水とする、[3]の熱利用システム。
[5] 前記前処理手段によって処理された前記地下水を、薬剤を用いて処理する後処理手段をさらに備える、[1]~[4]のいずれかの熱利用システム。
[6] 前記前処理手段によって処理された前記地下水の硬度を調整するミネライザをさらに備える、[1]~[5]のいずれかの熱利用システム。
The present invention has the following aspects.
[1] A heat utilization system that utilizes heat from groundwater, including a pretreatment means for treating the groundwater using a separation membrane, and a system provided after the pretreatment means and for treating the groundwater by the pretreatment means. A heat utilization system, comprising: a heat exchanger that performs heat exchange using the groundwater that has been collected.
[2] The heat utilization system according to [1], wherein the separation membrane is a reverse osmosis membrane or an ultrafiltration membrane.
[3] The heat utilization system according to [1] or [2], further comprising a treated water tank that stores the groundwater treated by the pretreatment means.
[4] The heat utilization system according to [3], wherein the treated water stored in the treated water tank is used as drinking water.
[5] The heat utilization system according to any one of [1] to [4], further comprising post-treatment means for treating the groundwater treated by the pre-treatment means with a chemical.
[6] The heat utilization system according to any one of [1] to [5], further comprising a mineralizer that adjusts the hardness of the groundwater treated by the pretreatment means.

本発明によれば、地下水を水資源として利用可能であり、地下水を分離膜で処理して得られる透過水の水質が安定し、透過水の水質の制御が容易である、熱利用システムが提供される。 According to the present invention, there is provided a heat utilization system in which groundwater can be used as a water resource, the quality of permeated water obtained by treating groundwater with a separation membrane is stable, and the quality of permeated water can be easily controlled. be done.

一実施形態に係る熱利用システムの概略模式図である。1 is a schematic diagram of a heat utilization system according to an embodiment. 分離膜に供給される水の温度と透過水の量との関係の一例を示すグラフである。It is a graph showing an example of the relationship between the temperature of water supplied to a separation membrane and the amount of permeated water. 従来の熱利用システムの概略模式図である。1 is a schematic diagram of a conventional heat utilization system.

以下、本発明の逆浸透膜の運転方法について、実施形態例を示して説明する。ただし、本発明は以下の実施形態例に限定されない。
図1は、本発明の一実施形態に係る熱利用システム1の概略模式図である。熱利用システム1は、地下水の熱を利用するシステムである。熱利用システム1は、原水槽11と膜分離装置15と熱交換器17と薬剤添加手段18とミネライザ19と処理水槽20を地下水側(原水槽11側)からこの順で備える。
EMBODIMENT OF THE INVENTION Hereinafter, the operating method of the reverse osmosis membrane of this invention is demonstrated by showing the embodiment example. However, the present invention is not limited to the following embodiments.
FIG. 1 is a schematic diagram of a heat utilization system 1 according to an embodiment of the present invention. The heat utilization system 1 is a system that utilizes heat from groundwater. The heat utilization system 1 includes a raw water tank 11, a membrane separation device 15, a heat exchanger 17, a chemical addition means 18, a mineralizer 19, and a treated water tank 20 in this order from the groundwater side (raw water tank 11 side).

原水槽11は、地下水を原水として貯留する槽である。原水槽11には原水流路21と地下水流路22が接続されている。
原水流路21は、図示略の井戸から地下水を原水槽11に供給するための流路である。原水流路21には図示略の揚水装置が設けられている。図示略の揚水装置は、図示略の井戸等から地下水を汲み上げ、原水流路21を介して原水槽11に地下水を供給する。
地下水流路22は、原水槽11内の地下水を膜分離装置15に供給するための流路である。地下水流路22には、ポンプ12、プレフィルター13が地下水側からこの順に設けられている。そのため、原水槽11内の地下水は、ポンプ12、プレフィルター13の順に地下水流路22を通過する。
このように、地下水流路22は、揚水された地下水を熱交換器17に供給する前に膜分離装置15に供給できる。そのため、地下水流路22は、熱交換器をまったく介在させずに、地下水の温度を維持したまま、地下水を膜分離装置15に供給できる。
The raw water tank 11 is a tank that stores groundwater as raw water. A raw water channel 21 and an underground water channel 22 are connected to the raw water tank 11 .
The raw water flow path 21 is a flow path for supplying groundwater to the raw water tank 11 from a well (not shown). The raw water channel 21 is provided with a pumping device (not shown). A water pumping device (not shown) pumps up groundwater from a well or the like (not shown) and supplies the groundwater to the raw water tank 11 via the raw water channel 21 .
The groundwater channel 22 is a channel for supplying groundwater in the raw water tank 11 to the membrane separation device 15. In the groundwater channel 22, a pump 12 and a pre-filter 13 are provided in this order from the groundwater side. Therefore, the groundwater in the raw water tank 11 passes through the groundwater channel 22 through the pump 12 and the prefilter 13 in this order.
In this way, the groundwater channel 22 can supply pumped groundwater to the membrane separation device 15 before supplying it to the heat exchanger 17 . Therefore, the groundwater channel 22 can supply groundwater to the membrane separation device 15 while maintaining the temperature of the groundwater without intervening any heat exchanger.

ポンプ12は、地下水を加圧して膜分離装置15に供給するためのものである。ポンプ12によって地下水を加圧して膜分離装置15に供給することで、分離膜を用いる地下水の前処理が可能となる。
プレフィルター13は、膜分離装置15の地下水側に設けられており、葉や砂利等のサイズの大きな不純物を除去し、膜分離装置15の分離膜を閉塞や損傷等から保護している。
The pump 12 is for pressurizing groundwater and supplying it to the membrane separation device 15. By pressurizing groundwater using the pump 12 and supplying it to the membrane separation device 15, pretreatment of groundwater using a separation membrane becomes possible.
The pre-filter 13 is provided on the groundwater side of the membrane separator 15, and removes large impurities such as leaves and gravel, and protects the separation membrane of the membrane separator 15 from clogging, damage, etc.

膜分離装置15は、地下水を、分離膜を用いて処理する前処理手段の一例である。
膜分離装置15は、分離膜モジュール16、16’、16’’を備える。そして、分離膜モジュール16、16’、16’’は、分離膜をそれぞれ内部に有する。分離膜としては、処理水槽20の処理水を飲料水として好適に利用しやすいことから、逆浸透膜又は限外ろ過膜が好ましい。
膜分離装置15は、分離膜モジュール16、16’、16’’の分離膜に地下水を透過させて、透過水と濃縮水とに分離する装置である。分離膜モジュール16、16’、16’’のそれぞれには、分岐した地下水流路22のそれぞれの端部が接続されている。そのため、分離膜モジュール16、16’、16’’の分離膜の一次側には地下水流路22の地下水が供給される。
The membrane separation device 15 is an example of a pretreatment means for treating groundwater using a separation membrane.
The membrane separation device 15 includes separation membrane modules 16, 16', and 16''. The separation membrane modules 16, 16', and 16'' each have a separation membrane therein. As the separation membrane, a reverse osmosis membrane or an ultrafiltration membrane is preferable because the treated water in the treated water tank 20 can be easily used as drinking water.
The membrane separation device 15 is a device that allows groundwater to permeate through the separation membranes of the separation membrane modules 16, 16', and 16'' and separates it into permeated water and concentrated water. Each of the separation membrane modules 16, 16', and 16'' is connected to each end of a branched underground water channel 22. Therefore, the groundwater in the groundwater channel 22 is supplied to the primary side of the separation membranes of the separation membrane modules 16, 16', 16''.

熱利用システム1においては、熱交換器17の前段に膜分離装置15が設けられており、膜分離装置15の前段には熱交換器が設けられていない。そのため、揚水された地下水の温度をそのまま維持して膜分離装置15に地下水を供給できる。通常、地下水の温度は変動が少ない。よって、熱利用システム1においては、膜分離装置15に供給される地下水の温度の変動が少なく、膜分離装置15の透過水の流量の変動が従来のシステムと比較して非常に少なくなる。 In the heat utilization system 1, the membrane separation device 15 is provided upstream of the heat exchanger 17, and no heat exchanger is provided upstream of the membrane separation device 15. Therefore, the groundwater can be supplied to the membrane separation device 15 while maintaining the temperature of the pumped groundwater. Normally, groundwater temperature does not fluctuate much. Therefore, in the heat utilization system 1, fluctuations in the temperature of the groundwater supplied to the membrane separator 15 are small, and fluctuations in the flow rate of permeated water in the membrane separator 15 are extremely small compared to conventional systems.

さらに、分離膜モジュール16、16’、16’’には、透過水流路23の分岐したそれぞれの端部と、濃縮水流路24がそれぞれ接続されている。
透過水流路23は、膜分離装置15の透過水を処理水槽20に供給して貯留するための流路である。透過水流路23には、膜分離装置15によって処理された地下水、すなわち透過水が流れる。透過水流路23には、熱交換器17、薬剤添加手段18、ミネライザ19がこの順に設けられている。そのため、膜分離装置15によって処理された地下水は、熱交換器17、薬剤添加手段18、ミネライザ19の順に透過水流路23を通過する。
濃縮水流路24は、分離膜モジュール16、16’、16’’の濃縮水を集め、処理システム1の外部に排出するための流路である。濃縮水流路24には膜分離装置15の濃縮水が流れる。
他の実施形態においては、処理水の回収率を上げるために、一部の濃縮水を地下水流路に戻したのち、再び分離膜モジュールで処理を行うことができるように濃縮水流路を構成してもよい。また、濃縮水を出さずに全量を透過水として処理してもよい。
Furthermore, the separation membrane modules 16, 16', and 16'' are connected to each branched end of the permeated water flow path 23 and a concentrated water flow path 24, respectively.
The permeated water flow path 23 is a flow path for supplying permeated water from the membrane separation device 15 to the treated water tank 20 and storing it therein. Groundwater treated by the membrane separator 15, that is, permeated water flows through the permeated water channel 23. The permeated water channel 23 is provided with a heat exchanger 17, a chemical addition means 18, and a mineralizer 19 in this order. Therefore, the groundwater treated by the membrane separation device 15 passes through the permeated water flow path 23 through the heat exchanger 17 , the drug addition means 18 , and the mineralizer 19 in this order.
The concentrated water flow path 24 is a flow path for collecting the concentrated water of the separation membrane modules 16 , 16 ′, and 16 ″ and discharging it to the outside of the treatment system 1 . Concentrated water from the membrane separation device 15 flows into the concentrated water channel 24 .
In another embodiment, in order to increase the recovery rate of treated water, the concentrated water flow path is configured so that some of the concentrated water can be returned to the groundwater flow path and then processed again in the separation membrane module. You can. Alternatively, the entire amount may be treated as permeated water without producing concentrated water.

熱交換器17は、膜分離装置15の後段に設けられている。加えて、熱交換器17は、膜分離装置15によって処理された地下水を用いて熱交換を行う。具体的には、熱交換器17は、膜分離装置15によって処理された地下水と熱交換の対象物との間で熱交換を行う。熱交換の対象物は特に限定されないが、一般住宅、病院、工場、学校、オフィスビル、農業施設、畜産施設、水族館、植物園、ショッピングモール、介護施設等の種々の建物、施設等が挙げられる。ただし、熱交換の対象物は、これらの例示に限定されない。
例えば、熱交換器17を建物の暖房、建物内の水の加温、融雪等の用途に使用する場合、熱交換器17は、膜分離装置15によって処理された地下水から熱を回収し、回収した熱を用いて建物等の熱交換の対象物を暖める。
例えば、熱交換器17を建物の冷房、建物内の水の冷却、冷媒の冷却等の用途に使用する場合、熱交換器17は、膜分離装置15によって処理された地下水に建物内等の熱を奪わせて、建物等の熱交換の対象物を冷却する。
The heat exchanger 17 is provided downstream of the membrane separation device 15. In addition, the heat exchanger 17 performs heat exchange using the groundwater treated by the membrane separation device 15. Specifically, the heat exchanger 17 performs heat exchange between the groundwater treated by the membrane separation device 15 and the object to be heat exchanged. The objects to be heat exchanged are not particularly limited, but include various buildings and facilities such as general houses, hospitals, factories, schools, office buildings, agricultural facilities, livestock facilities, aquariums, botanical gardens, shopping malls, and nursing care facilities. However, the object of heat exchange is not limited to these examples.
For example, when the heat exchanger 17 is used for heating a building, heating water in a building, melting snow, etc., the heat exchanger 17 recovers heat from the groundwater treated by the membrane separation device 15 and recovers it. The generated heat is used to heat buildings and other objects subject to heat exchange.
For example, when the heat exchanger 17 is used for purposes such as cooling a building, cooling water inside a building, or cooling a refrigerant, the heat exchanger 17 supplies groundwater treated by the membrane separation device 15 with heat inside the building, etc. , which cools buildings and other objects that undergo heat exchange.

薬剤添加手段18は、前処理手段によって処理された後の地下水を、薬剤を用いて処理する後処理手段の一例である。例えば、薬剤添加手段18は、熱交換器17によって熱交換が行われた後の地下水と薬剤とを混合することで、塩素濃度、pH、遊離炭酸濃度、硫酸イオン濃度、アンモニア性窒素濃度等を調整する態様のものが挙げられる。
薬剤としては、例えば、次亜塩素酸ナトリウム、亜塩素酸ナトリウム等の殺菌剤;水酸化ナトリウム、塩酸、硫酸等のpH調整剤が挙げられる。ただし、薬剤はこれらの例示に限定されない。薬剤は1種を単独で使用してもよく、2種以上を併用してもよい。
本実施形態では、薬剤添加手段は熱交換器の前(一次側)にあるが、他の実施形態においては、薬剤添加手段は、熱交換器の後(二次側)にあってもよく、熱交換器の前後の両方(一次側及び二次側の両方)にあってもよい。
The chemical addition means 18 is an example of a post-treatment means that uses a chemical to treat groundwater that has been treated by the pre-treatment means. For example, the chemical addition means 18 mixes the underground water and the chemical after heat exchange has been performed by the heat exchanger 17 to adjust the chlorine concentration, pH, free carbonate concentration, sulfate ion concentration, ammonia nitrogen concentration, etc. Examples include modes of adjustment.
Examples of the drug include disinfectants such as sodium hypochlorite and sodium chlorite; pH adjusters such as sodium hydroxide, hydrochloric acid, and sulfuric acid. However, the drugs are not limited to these examples. One type of drug may be used alone, or two or more types may be used in combination.
In this embodiment, the drug addition means is located before the heat exchanger (primary side), but in other embodiments, the drug addition means may be located after the heat exchanger (secondary side). It may be located both before and after the heat exchanger (both the primary side and the secondary side).

ミネライザ19は、前処理手段によって処理された後の地下水の硬度を調整する。ミネライザ19としては、例えば、カルシウム及びマグネシウムの少なくとも一方と、膜分離装置15によって処理された後の地下水とを混合することで、地下水の硬度を調整する態様のものが挙げられる。ミネライザによる硬度の調整は、通水する地下水のpHや遊離炭酸濃度、通水速度に依存して実施してもよい。 The mineralizer 19 adjusts the hardness of groundwater after being treated by the pretreatment means. Examples of the mineralizer 19 include one that adjusts the hardness of groundwater by mixing at least one of calcium and magnesium with groundwater that has been treated by the membrane separation device 15. Hardness adjustment using a mineralizer may be performed depending on the pH, free carbonate concentration, and water flow rate of the underground water flowing through the water.

処理水槽20は、膜分離装置15によって処理された地下水を処理水として貯留する槽である。処理水槽20内の処理水は、建物の飲料水として利用可能である。この場合、熱利用システム1は、処理水槽20に貯留された処理水を飲料水とすることになる。
処理水槽20内の処理水は、他にも、例えば、入浴用の水源、動植物用の水源、トイレ用の水源、散水用の水源等の雑用水としても利用可能であり、透過水の利用目的及び用途は、これらの例示に制限されない。
The treated water tank 20 is a tank that stores groundwater treated by the membrane separation device 15 as treated water. The treated water in the treated water tank 20 can be used as drinking water for the building. In this case, the heat utilization system 1 uses the treated water stored in the treated water tank 20 as drinking water.
The treated water in the treated water tank 20 can also be used as miscellaneous water, such as a water source for bathing, a water source for animals and plants, a water source for toilets, a water source for watering, and other purposes for which permeated water is used. and uses are not limited to these examples.

(作用効果)
以上説明した熱利用システム1においては、熱交換器17が膜分離装置15の後段に設けられている。そのため、膜分離装置15の分離膜に供給される地下水の温度は、熱交換器17における熱交換の影響を受けず、変動しにくい。したがって、膜分離装置15の分離膜の透過水の量も変動しにくくなる。その結果、膜分離装置15の分離膜の透過水の量が変動しにくくなり、処理水槽20における透過水中の塩素やアンモニア性窒素、有機物等の成分濃度、pH値、硬度等の水質が安定する。
さらに熱利用システム1によれば、分離膜の透過水の水質、水量が安定することから、ミネラルの添加、塩素等の薬剤による水質の制御も容易となる。
また、熱利用システム1は、分離膜を用いて地下水を処理する膜分離装置15を備える。そのため熱利用システム1によれば、地下水からクリプトスポリジウム等の原虫や、細菌、溶存有機物等を除去でき、地下水に対して充分な前処理を施すことができ、地下水を水資源として充分に利用可能となる。
したがって、熱利用システム1によれば、地下水を水資源として利用可能であり、地下水を分離膜で処理して得られる透過水の水質が安定し、透過水の水質の制御が容易となる。
(effect)
In the heat utilization system 1 described above, the heat exchanger 17 is provided after the membrane separation device 15. Therefore, the temperature of the groundwater supplied to the separation membrane of the membrane separation device 15 is not affected by the heat exchange in the heat exchanger 17 and does not easily fluctuate. Therefore, the amount of water permeated through the separation membrane of the membrane separation device 15 also becomes less likely to fluctuate. As a result, the amount of permeated water through the separation membrane of the membrane separation device 15 becomes difficult to fluctuate, and the water quality such as the concentration of components such as chlorine, ammonia nitrogen, and organic matter, pH value, and hardness in the permeated water in the treated water tank 20 is stabilized. .
Furthermore, according to the heat utilization system 1, since the quality and amount of water permeated through the separation membrane are stabilized, it becomes easy to control the water quality by adding minerals and using chemicals such as chlorine.
The heat utilization system 1 also includes a membrane separation device 15 that processes groundwater using a separation membrane. Therefore, according to heat utilization system 1, protozoa such as Cryptosporidium, bacteria, dissolved organic matter, etc. can be removed from groundwater, sufficient pretreatment can be performed on groundwater, and groundwater can be fully utilized as a water resource. becomes.
Therefore, according to the heat utilization system 1, groundwater can be used as a water resource, the quality of permeated water obtained by treating groundwater with a separation membrane is stabilized, and the quality of permeated water can be easily controlled.

以上説明した熱利用システム1は、処理水槽20をさらに備えるため、処理水槽20内の処理水を種々の利用目的及び用途に応じて利用でき、例えば、処理水を飲料水としても利用できる。
以上説明した熱利用システム1は、薬剤添加手段18、ミネライザ19をさらに備える。熱利用システム1にあっては、分離膜の透過水の流量が変動しにくく、水質も安定することから、ミネラルの添加、塩素等の薬剤による水質の制御も容易である。したがって、熱利用システム1によれば、薬剤添加手段18、ミネライザ19を用いて、透過水の水質を制御する際の負荷が低減される。
Since the heat utilization system 1 described above further includes the treated water tank 20, the treated water in the treated water tank 20 can be used for various purposes and uses, for example, the treated water can be used as drinking water.
The heat utilization system 1 described above further includes a drug addition means 18 and a mineralizer 19. In the heat utilization system 1, the flow rate of water permeated through the separation membrane is less likely to fluctuate and the water quality is stable, so it is easy to control the water quality by adding minerals or using chemicals such as chlorine. Therefore, according to the heat utilization system 1, the load when controlling the quality of permeated water using the chemical addition means 18 and the mineralizer 19 is reduced.

(使用方法)
熱利用システム1は、例えば、井戸水、伏流水等の任意の地下水に対して適用可能である。以下は、熱利用システム1の使用方法の一例である。まず、図示略の井戸等から地下水を原水槽11に供給し、ポンプ12によって地下水を送液して、プレフィルター13を経由させ、膜分離装置15の分離膜モジュール16、16’、16’’に供給する。次いで、膜分離装置15の後段に設けられた熱交換器17によって、膜分離装置15の透過水、すなわち、膜分離装置15によって処理された地下水を用いて熱交換の対象物との間で熱交換を行う。その後、必要に応じて薬剤添加手段18、ミネライザ19を用いて熱交換後の透過水の水質を調整する。
(how to use)
The heat utilization system 1 is applicable to, for example, any groundwater such as well water and underground water. The following is an example of how to use the heat utilization system 1. First, groundwater is supplied from a well or the like (not shown) to the raw water tank 11, and the pump 12 sends the groundwater through the pre-filter 13, and the separation membrane modules 16, 16', 16'' of the membrane separation device 15. supply to. Next, a heat exchanger 17 provided after the membrane separator 15 exchanges heat with the target object using the permeated water of the membrane separator 15, that is, the groundwater treated by the membrane separator 15. Make an exchange. Thereafter, the quality of the permeated water after heat exchange is adjusted using the chemical addition means 18 and the mineralizer 19 as necessary.

熱利用システム1においては、膜分離装置15の後段に熱交換器17が設けられている。そのため、熱利用システム1を暖房に利用する際でも、膜分離装置15に供給される地下水の温度が低下せず、その透過水の量も低下しない。したがって、膜分離装置15の透過水の水量が低下しない。
このように、熱利用システム1によれば、暖房利用時において地下水から熱を回収する場合であっても、透過水の水量が低下しない。したがって、熱利用システム1によれば、従来の熱利用システム101、特許文献1に開示の第1流路系統等と比較して、暖房利用時において地下水を処理して効率的に透過水を得ることができ、水資源として有効に利用できるという効果も得られる。
以上説明したように、熱利用システム1によれば、地下水を水資源として利用可能であり、地下水を分離膜で処理して得られる透過水の水質が安定し、透過水の水質の制御が容易である、熱利用システムを提供できる。
In the heat utilization system 1 , a heat exchanger 17 is provided downstream of the membrane separation device 15 . Therefore, even when the heat utilization system 1 is used for heating, the temperature of the groundwater supplied to the membrane separator 15 does not decrease, and the amount of permeated water does not decrease either. Therefore, the amount of permeated water in the membrane separator 15 does not decrease.
In this way, according to the heat utilization system 1, even when heat is recovered from groundwater during heating use, the amount of permeated water does not decrease. Therefore, according to the heat utilization system 1, compared with the conventional heat utilization system 101, the first channel system disclosed in Patent Document 1, etc., groundwater is treated and permeated water is obtained efficiently during heating use. It also has the effect of being able to be used effectively as a water resource.
As explained above, according to the heat utilization system 1, groundwater can be used as a water resource, the quality of permeated water obtained by treating groundwater with a separation membrane is stable, and the quality of permeated water can be easily controlled. It is possible to provide a heat utilization system.

1 熱利用システム
11 原水槽
12 ポンプ
13 プレフィルター
15 膜分離装置
16、16’、16’’ 分離膜モジュール
17 熱交換器
18 薬剤添加手段
19 ミネライザ
20 処理水槽
21 原水流路
22 地下水流路
23 透過水流路
24 濃縮水流路
1 Heat utilization system 11 Raw water tank 12 Pump 13 Prefilter 15 Membrane separation device 16, 16', 16'' Separation membrane module 17 Heat exchanger 18 Chemical addition means 19 Mineralizer 20 Treated water tank 21 Raw water channel 22 Groundwater channel 23 Permeation Water flow path 24 Concentrated water flow path

Claims (6)

地下水の熱を利用し、かつ、前記地下水を飲料水とする熱利用システムであって、
前記地下水を、分離膜を用いて処理する前処理手段と、
前記前処理手段の後段に設けられ、かつ、前記前処理手段によって処理された前記地下水を用いて建物または施設との間で熱交換を行う熱交換器と、
を備え、
前記熱交換器は、前記分離膜によって処理された前記地下水から熱を回収し、回収した熱を用いて前記建物または施設を暖めるか、または、
前記熱交換器は、前記分離膜によって処理された前記地下水に熱交換の対象物の熱を奪わせ、前記建物または施設を冷却する、熱利用システム(ただし、前記前処理手段によって処理された前記地下水が、前記熱交換器を一度通った後に再び前記熱交換器に戻る場合を除く。)
A heat utilization system that utilizes heat from groundwater and uses the groundwater as drinking water ,
Pretreatment means for treating the groundwater using a separation membrane;
a heat exchanger that is provided after the pretreatment means and exchanges heat with a building or facility using the groundwater treated by the pretreatment means;
Equipped with
The heat exchanger recovers heat from the groundwater treated by the separation membrane and uses the recovered heat to heat the building or facility , or
The heat exchanger is a heat utilization system (provided that the groundwater treated by the pretreatment means) cools the building or facility by causing the groundwater treated by the separation membrane to remove heat from the object to be heat exchanged. (Excluding cases where groundwater returns to the heat exchanger after passing through the heat exchanger once.)
前記分離膜が、逆浸透膜又は限外ろ過膜である、請求項1に記載の熱利用システム。 The heat utilization system according to claim 1, wherein the separation membrane is a reverse osmosis membrane or an ultrafiltration membrane. 前記前処理手段によって処理された前記地下水を貯留する処理水槽をさらに備える、請求項1又は2に記載の熱利用システム。 The heat utilization system according to claim 1 or 2, further comprising a treated water tank that stores the groundwater treated by the pretreatment means. 前記処理水槽に貯留された処理水を前記飲料水とする、請求項3に記載の熱利用システム。 The heat utilization system according to claim 3, wherein the treated water stored in the treated water tank is used as the drinking water. 前記前処理手段によって処理された前記地下水を、薬剤を用いて処理する後処理手段をさらに備える、請求項1~4のいずれか一項に記載の熱利用システム。 The heat utilization system according to any one of claims 1 to 4, further comprising post-treatment means for treating the groundwater treated by the pre-treatment means using a chemical. 前記前処理手段によって処理された前記地下水の硬度を調整するミネライザをさらに備える、請求項1~5のいずれか一項に記載の熱利用システム。 The heat utilization system according to any one of claims 1 to 5, further comprising a mineralizer that adjusts the hardness of the groundwater treated by the pretreatment means.
JP2020007694A 2020-01-21 2020-01-21 heat utilization system Active JP7429547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020007694A JP7429547B2 (en) 2020-01-21 2020-01-21 heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020007694A JP7429547B2 (en) 2020-01-21 2020-01-21 heat utilization system

Publications (2)

Publication Number Publication Date
JP2021113662A JP2021113662A (en) 2021-08-05
JP7429547B2 true JP7429547B2 (en) 2024-02-08

Family

ID=77076840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020007694A Active JP7429547B2 (en) 2020-01-21 2020-01-21 heat utilization system

Country Status (1)

Country Link
JP (1) JP7429547B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118645A (en) 2018-01-05 2019-07-22 ダイセン・メンブレン・システムズ株式会社 Manufacturing apparatus of medical pure water and manufacturing method of medical pure water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3101831B2 (en) * 1991-07-04 2000-10-23 清水建設株式会社 Water supply device for drinking water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118645A (en) 2018-01-05 2019-07-22 ダイセン・メンブレン・システムズ株式会社 Manufacturing apparatus of medical pure water and manufacturing method of medical pure water

Also Published As

Publication number Publication date
JP2021113662A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
US20200086274A1 (en) Advancements in osmotically driven membrane systems including multi-stage purification
CA2663906C (en) Method and apparatus for desalination
US7097769B2 (en) Method of boron removal in presence of magnesium ions
Turek et al. Energy consumption and gypsum scaling assessment in a hybrid nanofiltration‐reverse osmosis‐electrodialysis system
US11655166B2 (en) Water treatment of sodic, high salinity, or high sodium waters for agricultural application
CN112805247B (en) Water treatment device, water treatment method, forward osmosis membrane treatment system, and water treatment system
US20090039020A1 (en) Methods for reducing boron concentration in high salinity liquid
KR100874269B1 (en) High efficiency seawater electrolysis apparatus and electrolysis method including pretreatment process
US11406940B2 (en) Method for reducing monovalent ions in concentrate of nanofiltration system and the nanofiltration system
EP2526066A1 (en) Method for treating an aqueous fluid
CN106315935B (en) Water quality desalting plant and the method for desalinating water quality using the device
US20130233797A1 (en) Methods for osmotic concentration of hyper saline streams
JP2002306118A (en) Method for producing health salt from ocean deep water and device therefor
US20200189941A1 (en) Method and System for Treating Agricultural or Industrial Recirculation Water
KR20100057425A (en) Preparation method of high concentrated mineral water using deep-sea water
JP5953726B2 (en) Ultrapure water production method and apparatus
CN111094191A (en) Treatment of brines for agricultural and potable use
US20140102980A1 (en) Process and apparatus for treating perchlorate in drinking water supplies
Bartels et al. Operational performance and optimization of RO wastewater treatment plants
KR101344784B1 (en) Seawater desalination method and apparatus combining forward osmosis, precipitation and reverse osmosis
IE20140128A1 (en) Rainwater purification system
Wittmann et al. Water treatment
JP7429547B2 (en) heat utilization system
JP5238778B2 (en) Desalination system
JPH07124559A (en) Sterilization of water to be treated in seawater desalting process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R150 Certificate of patent or registration of utility model

Ref document number: 7429547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150