JP7428690B2 - gear - Google Patents

gear Download PDF

Info

Publication number
JP7428690B2
JP7428690B2 JP2021210889A JP2021210889A JP7428690B2 JP 7428690 B2 JP7428690 B2 JP 7428690B2 JP 2021210889 A JP2021210889 A JP 2021210889A JP 2021210889 A JP2021210889 A JP 2021210889A JP 7428690 B2 JP7428690 B2 JP 7428690B2
Authority
JP
Japan
Prior art keywords
gear
teeth
tooth
pitch
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021210889A
Other languages
Japanese (ja)
Other versions
JP2023095160A (en
Inventor
雅博 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASANO GEAR CO Ltd
Original Assignee
ASANO GEAR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASANO GEAR CO Ltd filed Critical ASANO GEAR CO Ltd
Priority to JP2021210889A priority Critical patent/JP7428690B2/en
Publication of JP2023095160A publication Critical patent/JP2023095160A/en
Application granted granted Critical
Publication of JP7428690B2 publication Critical patent/JP7428690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、歯車に関し、特に歯の形状および歯のピッチに関する。 The present invention relates to gears, and in particular to tooth shape and tooth pitch.

歯車同士が噛合する際の騒音を低減する技術として、例えば、特許文献1が知られている。特許文献1では、歯面精度を向上させることで、静粛性を満足するというものである。 For example, Patent Document 1 is known as a technique for reducing noise when gears mesh with each other. In Patent Document 1, quietness is satisfied by improving tooth surface accuracy.

特開2012-096251号公報JP2012-096251A

ところで従来、特許文献1の他、歯の形状に関する寸法の仕上げ精度を向上させることが、噛合時の騒音および振動を低減するために良いと考えられている。この点につき概略説明すると、図10は、従来の歯車の噛合音(ギヤノイズ)を模式的に示すグラフであり、横軸が周波数を、縦軸が音振(振動および振動音)の大きさを表す。図10を参照して、一定間隔の周波数で音振が大きくなることが理解される。これは各歯が順番にかみ合う時間差に均一性があるためであり、この周波数は歯車のかみ合い周波数fと呼ばれ、歯車の歯数zに依存し、次式で求められる。この周波数の整数倍の周波数の音振を整数次ノイズといい、非整数倍の周波数の音振を非整数次ノイズという。
[式1] f =N/60×z
f:歯車のかみ合い周波数[Hz] N:歯車の回転数[rpm] z:歯車の歯数[枚]
By the way, in addition to Patent Document 1, it has been conventionally believed that improving the finishing accuracy of dimensions related to the shape of teeth is good for reducing noise and vibration during meshing. To briefly explain this point, Fig. 10 is a graph schematically showing the meshing sound (gear noise) of conventional gears, where the horizontal axis represents the frequency and the vertical axis represents the magnitude of sound vibration (vibration and vibration noise). represent. Referring to FIG. 10, it is understood that sound vibration increases at frequencies at regular intervals. This is because there is uniformity in the time difference between each tooth meshing in sequence, and this frequency is called the meshing frequency f of the gear, and depends on the number of teeth z of the gear, and is determined by the following equation. Sound vibrations with frequencies that are integral multiples of this frequency are called integer-order noise, and sound vibrations with frequencies that are non-integer multiples of this frequency are called non-integer-order noise.
[Formula 1] f =N/60×z
f: Gear mesh frequency [Hz] N: Gear rotation speed [rpm] z: Number of gear teeth [number of teeth]

図10に示すギヤノイズが人の耳に入力される場合において、その人がギヤノイズを不快な騒音として知覚するか否かは、環境ないし個人差等、複雑な要因があるため一概には言えないものの、少なくとも図10に示す整数次音は、人の脳に知覚されて、騒音と認識され易いものと思われる。この理由として整数次ノイズのノイズピークと、非整数次ノイズのノイズボトムのギャップが大きいためと考えられる。 When the gear noise shown in Figure 10 is input to a person's ears, it is difficult to say whether or not the person perceives the gear noise as unpleasant noise due to complex factors such as environmental and individual differences. It seems that at least the integer-order sounds shown in FIG. 10 are easily perceived by the human brain and recognized as noise. The reason for this is thought to be that the gap between the noise peak of integer-order noise and the noise bottom of non-integer-order noise is large.

本発明者は、人が知覚しにくいギヤノイズを目指し、整数次ノイズのノイズピークと、非整数次音のノイズボトムのギャップ(以下、ノイズギャップともいう)に着目して、ノイズギャップを小さくするために本発明をするに至った。 The present inventor aims to reduce the noise gap by focusing on the gap between the noise peak of integer-order noise and the noise bottom of non-integer-order noise (hereinafter also referred to as noise gap), aiming at gear noise that is difficult for humans to perceive. This led us to the present invention.

この目的のため本発明は、複数の歯を備える歯車であって、連続して配列される複数の歯を1セットとし、かかるセットは隣り合う歯の形状および/またはピッチに差異を有し、かかるセットを1または複数繰り返し有する。 To this end, the present invention provides a gear equipped with a plurality of teeth, in which a plurality of teeth are arranged in series as one set, and the set has a difference in the shape and/or pitch of adjacent teeth, It has one or more repetitions of such a set.

かかる本発明によれば、複数の歯が従来のように均一形状、均一ピッチではなく、セットを構成する歯同士に有意差があるので、相手歯車とかみ合わせて回転させたときに各歯が順番にかみ合う時間差に不均一性が生じる。これにより図9に示すように非整数次ノイズが大きくなり、ノイズギャップが小さくなる。そして、本発明の歯車が相手歯車と噛み合いながら回転する際に生じる噛合音は、人間の耳に入っても従来のように騒音として知覚され難くなる。本発明の歯車に関し、セットを構成する複数の歯のパターンは特に限定されない。当該セットは歯車の周方向に繰り返される。 According to the present invention, the plurality of teeth do not have a uniform shape and a uniform pitch as in the past, but there are significant differences between the teeth that make up the set, so when the teeth are meshed with the mating gear and rotated, each tooth is arranged in the same order. Non-uniformity occurs in the time difference between the two. As a result, as shown in FIG. 9, the non-integer order noise increases and the noise gap decreases. Furthermore, the meshing sound generated when the gear of the present invention rotates while meshing with a mating gear is difficult to be perceived as noise by the human ear, unlike conventional gears. Regarding the gear of the present invention, the pattern of the plurality of teeth constituting the set is not particularly limited. The set is repeated in the circumferential direction of the gear.

セットを構成する複数の歯同士の差異は、様々な管理項目のうちの少なくとも1つである。例えば、セットを構成する複数の歯同士は、歯面の歯形の差異を有してもよいし、あるいは、歯すじ形状の差異を有してもよい。具体的には例えば、歯面の歯形における歯形勾配、歯形凹凸、あるいは他の形状のうち少なくとも1つで差異を有してもよい。あるいは例えば、歯すじ形状における歯すじ傾斜、クラウニング中心位置、クラウニング量、あるいは他の形状のうち少なくとも1つで差異を有してもよい。またセットを構成する歯と歯のピッチに差異を有してもよく、具体的には例えば、単一ピッチ、隣接ピッチ、累積ピッチのいずれかの管理項目で差異を有していてもよい。なお歯面の歯形における歯形凹凸とは、歯車の軸線方向に歯をみて、例えば丸みを帯びるように歯面を形成することをいい、歯形丸み、あるいは歯形クラウニングともいう。歯すじ形状におけるクラウニングとは、歯車の軸線方向一端から他端へ延びる歯すじにおいて、歯すじ中央領域が歯すじの両端からみて膨らみ形状にされることをいう。本発明による歯車は、1セットを構成する複数の歯が、互いに差異を有するため、1セット内で差異がパターン化され、このパターン化された差異が再現性を有する。本発明によれば、歯車の製造工程において、当該セットを繰り返すことで、セット同士が同一の規則性を持つように再現性を有することから、歯車を効率的に生産することができる。 The difference between the plurality of teeth constituting the set is at least one of various management items. For example, the plurality of teeth constituting the set may have different tooth profiles on their tooth surfaces, or may have different tooth trace shapes. Specifically, for example, there may be a difference in at least one of the tooth profile gradient, tooth profile unevenness, or other shapes in the tooth profile of the tooth surface. Alternatively, for example, there may be a difference in at least one of the tooth trace inclination, crowning center position, crowning amount, or other shapes in the tooth trace shape. Further, there may be a difference in the pitch between the teeth constituting the set, and specifically, for example, there may be a difference in the management item of single pitch, adjacent pitch, or cumulative pitch. Note that the tooth profile unevenness in the tooth profile of the tooth surface refers to forming the tooth surface so that it is rounded, for example, when looking at the tooth in the axial direction of the gear, and is also referred to as tooth profile rounding or tooth profile crowning. Crowning in a tooth trace shape refers to a tooth trace extending from one end to the other end in the axial direction of a gear, in which the central region of the tooth trace is bulged when viewed from both ends of the tooth trace. In the gear according to the present invention, since the plurality of teeth constituting one set have differences from each other, the differences are patterned within one set, and this patterned difference has reproducibility. According to the present invention, by repeating the set in the gear manufacturing process, the sets have reproducibility such that the sets have the same regularity, so that the gear can be efficiently produced.

また本発明は、複数の切削歯を備える歯車形状の切削工具であって、連続して配列される複数の切削歯を1セットとし、かかるセットは隣り合う切削歯の形状および/またはピッチに差異を有し、かかるセットを1または複数繰り返し有する。 The present invention also provides a gear-shaped cutting tool having a plurality of cutting teeth, in which the plurality of cutting teeth arranged in succession constitute one set, and the set has different shapes and/or pitches between adjacent cutting teeth. and one or more repetitions of such a set.

切削工具におけるセットを構成する複数の切削歯の各形状や各ピッチは、上述した歯車と同様の管理項目で管理される。 The shapes and pitches of the plurality of cutting teeth constituting the set of the cutting tool are managed using the same management items as the gears described above.

本発明の切削工具によれば、周方向に配列される歯同士が差異を有する歯車を、ホーニング加工、スカイビング加工、ギヤシェーパー加工、またはシェービング加工によって、効率良く製造することができる。 According to the cutting tool of the present invention, a gear in which the teeth arranged in the circumferential direction are different from each other can be efficiently manufactured by honing, skiving, gear shaper, or shaving.

このように本発明によれば、整数次ノイズのノイズピークと、非整数次ノイズのノイズボトムとのギャップが、従来よりも小さくなり、整数次ノイズのノイズピークがマスキングされて、回転する歯車対の噛合音が人間の耳に入っても騒音および振動として知覚し難くされる。またかかる本発明の切削工具により、本発明の歯車の大量生産が可能になる。本発明の歯車は、電気自動車のように静粛性能の高い乗用車に好適に使用される。 As described above, according to the present invention, the gap between the noise peak of integer-order noise and the noise bottom of non-integer-order noise becomes smaller than before, the noise peak of integer-order noise is masked, and the rotating gear pair Even if the meshing sound reaches the human ear, it is difficult to perceive as noise or vibration. Furthermore, the cutting tool of the present invention enables mass production of the gear of the present invention. The gear of the present invention is suitably used in passenger cars with high quiet performance, such as electric cars.

本発明の第1実施形態になる歯車を示す正面図である。FIG. 1 is a front view showing a gear according to a first embodiment of the present invention. 同実施形態の歯のセットを取り出して示す拡大図である。It is an enlarged view showing a set of teeth of the same embodiment. 同実施形態の累積ピッチ有意差を示すグラフである。It is a graph which shows the cumulative pitch significant difference of the same embodiment. 同実施形態の歯のセットを取り出して示す拡大図である。It is an enlarged view showing a set of teeth of the same embodiment. 実施例1および対比例1につき、音振の大きさの試験結果を示すグラフである。2 is a graph showing test results of sound vibration magnitude for Example 1 and Comparative Example 1. 本発明の第2実施形態に関し、歯ひとつ分の輪郭形状および管理寸法を取り出して示す拡大図である。FIG. 7 is an enlarged view showing the contour shape and management dimensions of one tooth in the second embodiment of the present invention. 実施例2および対比例2につき、音振の大きさの試験結果を示すグラフである。3 is a graph showing the test results of the magnitude of sound vibration for Example 2 and Comparative Example 2. 本発明の一実施形態になる切削工具を示す正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a front view which shows the cutting tool which becomes one embodiment of this invention. 本発明の音振の大きさを示すグラフである。It is a graph showing the magnitude of sound vibration of the present invention. 従来技術の音振の大きさを示すグラフである。It is a graph which shows the magnitude|size of the sound vibration of a prior art.

以下、本発明の実施の形態を、図面に基づき詳細に説明する。図1は、本発明の一実施形態になる歯車を示す正面図である。本発明の歯車10は外周に複数の歯11を備える、外歯歯車である。歯11の歯数は40であり、歯数の約数として8を含む。そして当該約数に対応して、連続する8個の歯が1セットを構成する。かかる1セットを、歯車10は周方向に5セット繰り返す。なお図示しない変形例として、本発明の歯車は内歯歯車であってもよい。また、セットを構成する歯数と歯車を構成するセット数は任意に変更されてもよい。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 is a front view showing a gear according to an embodiment of the present invention. The gear 10 of the present invention is an external gear having a plurality of teeth 11 on its outer periphery. The number of teeth 11 is 40, and 8 is included as a divisor of the number of teeth. Eight consecutive teeth constitute one set corresponding to the divisor. The gear 10 repeats this one set five times in the circumferential direction. In addition, as a modification not shown, the gear of the present invention may be an internal gear. Further, the number of teeth constituting a set and the number of sets constituting a gear may be changed arbitrarily.

ここで附言すると、一般的な歯車では、互いに噛合する一方の歯車の歯と他方の歯車の歯が総当たりとなるよう歯数は互いの歯車の歯数について1以外の公約数を持たないことが好ましく、歯数に素数を用いられることが多い。本発明は歯車の歯数に1セットを構成する歯数を約数としてもち、加えて、歯車を構成するセット数を歯車の歯数の約数としてもつ。 I would like to add here that in general gears, the number of teeth does not have a common divisor other than 1, so that the teeth of one gear and the teeth of the other gear that mesh with each other are round robin. is preferable, and prime numbers are often used for the number of teeth. In the present invention, the number of teeth constituting one set is a divisor of the number of teeth of a gear, and in addition, the number of sets constituting a gear is a divisor of the number of teeth of the gear.

図2は、図1に示す歯車に含まれる歯のセットを取り出して示す拡大図である。上述したように約数である8と同じ8個分の歯が1つのセットGを構成する。1セットG中の歯のピッチは、全て均一にされるのではなく、肉眼で認識できない程度の寸法差で僅かに異なるよう、製造公差を超える意図的な差異(有意差)を含む。発明の理解を容易にするため、図2と、後述する他の実施形態(図4および図6)で有意差が誇張して描かれる。なお図2には、従来の歯車のピッチの歯を破線で描く。従来の歯車の歯のピッチは所定の公差内で全て等しくされる。 FIG. 2 is an enlarged view showing a set of teeth included in the gear shown in FIG. 1. As described above, one set G includes eight teeth, which is the divisor 8. The pitches of the teeth in one set G are not all uniform, but include intentional differences (significant differences) that exceed manufacturing tolerances so that they differ slightly with dimensional differences that are not perceivable to the naked eye. To facilitate understanding of the invention, significant differences are exaggerated in FIG. 2 and other embodiments (FIGS. 4 and 6) described below. In addition, in FIG. 2, the pitch teeth of a conventional gear are drawn with broken lines. The tooth pitches of conventional gears are all equal within predetermined tolerances.

図2に示すように、1つのセットGを構成する歯11、11・・・内で、歯11同士を比べると、全て歯11が均一ではなく、意図的な差異を有する。具体的には歯11のピッチに有意差がある。図2を参照して、周方向に隣り合う歯111,112,113のピッチ同士を対比すると、両者には寸法上の有意差があることがわかる。本実施形態では累積ピッチで管理される。本実施形態の累積ピッチ有意差は、累積ピッチ有意差が0となる1つの歯を基準とし、累積ピッチ有意差Pa、Pb、Pc、Pz、Py、Px、Pwで表される。図2を参照して、累積ピッチは、ピッチ測定円Csの円周上において、基準となる1つの歯11の周方向一方の歯面とピッチ測定円Csの交差点から各歯11の周方向一方の歯面とピッチ測定円Csの交差点までの円弧距離であり、累積ピッチ有意差は標準累積ピッチからどれだけ異なるかを示す数値である。標準累積ピッチとは、隣り合う歯のピッチが全て等しい場合の累積ピッチである。ピッチ測定円Csとは、歯先円よりも小径かつ歯底円よりも大径であって、歯11の配列と同軸の円である。なお破線で表される従来の歯は、標準累積ピッチで配列される。なお図示しない変形例として、累積ピッチ有意差の基準となる1歯は他の歯でもよい。 As shown in FIG. 2, when the teeth 11 are compared among the teeth 11 constituting one set G, all the teeth 11 are not uniform but have intentional differences. Specifically, there is a significant difference in the pitch of the teeth 11. Referring to FIG. 2, when the pitches of the circumferentially adjacent teeth 111, 112, 113 are compared, it can be seen that there is a significant dimensional difference between the two. In this embodiment, management is performed using cumulative pitch. The cumulative pitch significant difference in this embodiment is expressed by cumulative pitch significant differences Pa, Pb, Pc, Pz, Py, Px, and Pw, with one tooth for which the cumulative pitch significant difference is 0 as a reference. Referring to FIG. 2, the cumulative pitch is calculated from the intersection of one tooth surface of one reference tooth 11 in the circumferential direction and the pitch measurement circle Cs on the circumference of the pitch measurement circle Cs. The cumulative pitch significant difference is a numerical value indicating how much it differs from the standard cumulative pitch. The standard cumulative pitch is the cumulative pitch when the pitches of adjacent teeth are all equal. The pitch measurement circle Cs is a circle that is smaller in diameter than the tip circle and larger in diameter than the root circle, and is coaxial with the arrangement of the teeth 11. It should be noted that the conventional teeth, represented by dashed lines, are arranged at a standard cumulative pitch. Note that as a modification (not shown), the one tooth serving as the reference for the cumulative pitch significant difference may be another tooth.

本実施形態において累積ピッチ有意差は、意図的に調整された規則性を有する。具体的に説明すると図3のグラフに示すように、周方向に連続して配列される歯11,11・・・の累積ピッチ有意差Pc、Pb、Pa、0、Pz、Py、Px、Pwが任意の関数に則ってパターン化される。そして歯車10の全ての歯11は、このパターンを1セットとして、複数セット(例えば5セット)を繰り返すよう配列される。本実施形態の累積ピッチ有意差は、図3のグラフに示すように正弦波に基づく規則的なものである。パターン化の形態は自由に設定される。Pc、Pb、Pa、0、Pz、Py、Px、Pwの大小関係は最大値と最小値の間で自由に決定される。例えばPc、Pb、Pa、0、Pz、Py、Px、Pwの中の幾つかの数値は等しくてもよい。例えばPc=Pa、Pw=0、Pz=Pxであってもよい。パターン化された差異の当該パターンは、図3に図示される正弦波に限らず、図示しない三角波、四角波、多角形波、その他の規則波、あるいは1セット内の複数のピッチ有意差が不規則でランダムな差異を有し、あるいは他のパターンであってもよい。 In this embodiment, the cumulative pitch significant difference has a regularity that is intentionally adjusted. Specifically, as shown in the graph of FIG. 3, the cumulative pitch significant difference Pc, Pb, Pa, 0, Pz, Py, Px, Pw of the teeth 11, 11, etc. arranged continuously in the circumferential direction is patterned according to an arbitrary function. All the teeth 11 of the gear 10 are arranged so as to repeat a plurality of sets (for example, five sets) with this pattern as one set. The cumulative pitch significant difference in this embodiment is regular based on a sine wave, as shown in the graph of FIG. The form of patterning can be freely set. The magnitude relationship of Pc, Pb, Pa, 0, Pz, Py, Px, and Pw is freely determined between the maximum value and the minimum value. For example, some numerical values among Pc, Pb, Pa, 0, Pz, Py, Px, and Pw may be equal. For example, Pc=Pa, Pw=0, and Pz=Px. The pattern of the patterned difference is not limited to the sine wave shown in FIG. It may have random variations in the rules or other patterns.

本発明の歯車10は、上述した図3に示す累積ピッチで管理されてもよい他、図4に示す単一ピッチ、あるいは図示しない隣接ピッチで管理されてもよい。図4は、1つのセットGを構成する歯11、11・・・の単一ピッチPe、Pf、Pg、Ph、Pi、Pj、Pk、Plを表す図であって、図2に対応する。図4を参照して、単一ピッチは、ピッチ測定円Csの円周上において、周方向に隣り合う歯11の周方向一方の歯面とピッチ測定円Csの交差点同士の円弧距離であり、単一ピッチ有意差は均一な標準単一ピッチPsからどれだけ異なるかを示す数値である。均一な標準単一ピッチとは、ピッチ測定円Csの全周距離を歯数で除算した数値をいう。なお破線で表される従来の歯車の歯は、均一な標準単一ピッチで配列される。 The gear 10 of the present invention may be managed by the cumulative pitch shown in FIG. 3 described above, a single pitch shown in FIG. 4, or adjacent pitches not shown. FIG. 4 is a diagram showing the single pitches Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl of the teeth 11, 11, . . . constituting one set G, and corresponds to FIG. 2. With reference to FIG. 4, the single pitch is the arcuate distance between the intersections of one circumferential tooth surface of the circumferentially adjacent teeth 11 and the pitch measurement circle Cs on the circumference of the pitch measurement circle Cs, The single pitch significant difference is a numerical value indicating how much it differs from the uniform standard single pitch Ps. A uniform standard single pitch is a value obtained by dividing the entire circumferential distance of the pitch measurement circle Cs by the number of teeth. It should be noted that the teeth of the conventional gear represented by the dashed lines are arranged at a uniform standard single pitch.

単一ピッチPe、Pf、Pg、Ph、Pi、Pj、Pk、Plも、意図的に調整された規則性を有する。例えば図3に示すように正弦波とされ、隣り合う単一ピッチ同士を比べると差異を有する。図4を参照して、本実形態の歯11には従来の歯車とは異なり、均一な標準単一ピッチとは寸法上の有意差があることがわかる。 The single pitches Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl also have a deliberately adjusted regularity. For example, as shown in FIG. 3, the pitch is a sine wave, and when adjacent single pitches are compared, there is a difference. Referring to FIG. 4, it can be seen that, unlike conventional gears, the teeth 11 of this embodiment have a significant dimensional difference from the uniform standard single pitch.

図4に示す実施形態において、最大値と最小値の差は5~100μmの範囲に含まれる所定値である。かかる差は、歯車10の製作上許容される公差よりも大きいこと勿論である。図2および後述する図6に示す実施形態における最大値と最小値の差も、同様である。なお最大値と最小値の差が100μmを超える場合、摩耗等の耐久性の問題から好ましくない。また最大値と最小値の差が5μmを下回る場合、ノイズギャップが大きくなってしまう、つまり従来と略同じになってしまうので好ましくない。 In the embodiment shown in FIG. 4, the difference between the maximum value and the minimum value is a predetermined value within the range of 5 to 100 μm. Of course, this difference is larger than the tolerance allowed in manufacturing the gear 10. The same applies to the difference between the maximum value and the minimum value in the embodiments shown in FIG. 2 and FIG. 6, which will be described later. Note that if the difference between the maximum value and the minimum value exceeds 100 μm, it is not preferable because of durability problems such as wear. Further, if the difference between the maximum value and the minimum value is less than 5 μm, the noise gap becomes large, that is, becomes substantially the same as the conventional one, which is not preferable.

図2に実線で示す本発明の実施形態を試作した(実施例1)。また図2に破線で示す均一なピッチの歯車を準備した(対比例1)。そして実施例1および対比例1の音振レベルの対比試験を行った。実施例1の歯の累積ピッチに関し、最大値と最小値の差は30μmである。対比例1の歯の累積ピッチに関し、全ての歯の累積ピッチは全て標準累積ピッチである。実施例1および対比例1の共通事項として、歯車の歯先円の直径は85mm、歯底円の直径は73mm、歯幅は20mm、製作上の目標値になる累積ピッチと実物の累積ピッチとの誤差量(公差)は10μm以下である。実施例1が噛み合う相手歯車と、対比例1が噛み合う相手歯車は、共通する歯車であり、従来の一般的な標準累積ピッチの歯車である。相手歯車に噛み合わせた状態で、回転数を500rpmで回転させ、噛合音振を計測した。また同時に、人間の耳で噛合音を確認した。 An embodiment of the present invention shown by a solid line in FIG. 2 was prototyped (Example 1). In addition, gears with a uniform pitch shown by broken lines in FIG. 2 were prepared (Comparative Example 1). A comparative test of the sound vibration levels of Example 1 and Comparative Example 1 was then conducted. Regarding the cumulative pitch of the teeth in Example 1, the difference between the maximum value and the minimum value is 30 μm. Regarding the cumulative pitch of teeth with a ratio of 1, the cumulative pitches of all teeth are all standard cumulative pitches. Common points between Example 1 and Comparative Example 1 are that the diameter of the gear tip circle is 85 mm, the diameter of the root circle is 73 mm, the tooth width is 20 mm, and the cumulative pitch that is the target value for manufacturing and the actual cumulative pitch. The amount of error (tolerance) is 10 μm or less. The mating gear with which Example 1 meshes and the mating gear with which Comparative Example 1 meshes are common gears, and are conventional general gears with a standard cumulative pitch. With the gear meshed with the mating gear, it was rotated at a rotational speed of 500 rpm and the meshing sound vibration was measured. At the same time, the meshing sound was confirmed with the human ear.

図5は噛合音振の測定結果を表すグラフであり、実線が実施例1、破線が対比例1を表す。グラフ中、横軸が周波数[Hz]を、縦軸が噛合音振の大きさ[dB]を表す。実施例1(実線)では対比例1よりも非整数次ノイズが大きくなっており、ノイズギャップが小さくなっていることが理解される。人間の耳で確認したところ、実施例1よりも対比例1の方が騒々しく聞こえた。 FIG. 5 is a graph showing the measurement results of meshing sound vibration, where the solid line represents Example 1 and the broken line represents Comparative Example 1. In the graph, the horizontal axis represents the frequency [Hz], and the vertical axis represents the magnitude [dB] of the meshing sound vibration. It is understood that in Example 1 (solid line), the non-integer order noise is larger than in Comparative Example 1, and the noise gap is smaller. When confirmed with human ears, Comparative Example 1 sounded louder than Example 1.

次に本発明の第2実施形態を説明する。図6は第2実施形態を示す正面図であって、1セットを構成する歯を取り出して示す拡大図である。図6中、(A)は一揃えの歯11を表し、(B)は各歯11の差異を対比して表す。第2実施形態では、歯車10を構成する複数の歯11に関し、各歯11の歯形形状に僅かなばらつき、つまりは有意差を持たせる。 Next, a second embodiment of the present invention will be described. FIG. 6 is a front view showing the second embodiment, and is an enlarged view showing extracted teeth constituting one set. In FIG. 6, (A) represents a set of teeth 11, and (B) represents a contrast between the teeth 11. In the second embodiment, regarding the plurality of teeth 11 constituting the gear 10, the tooth profile shape of each tooth 11 is made to have a slight variation, that is, a significant difference.

具体的な例示として、歯形形状に差異をもたせる管理項目は、歯11の歯面の歯形12の歯形勾配を互いに異ならせるものであって、理論的歯形曲線において計算される無修正の形状、または理論的歯形曲線に基づき設計者が設定する修正量が加えられた形状である基準歯形12sに対して、実物の歯形12を有意差Sb、Sc、あるいはSaだけ歯形勾配を急傾斜にしたり、有意差Sb、Sz、あるいはSyだけ歯形勾配を緩傾斜にしたりというような設計歯形形状である。そして各歯11の歯形12の差異を、1つのセットGにおいてパターン化する。 As a specific example, the management item that causes a difference in the tooth profile shape is to make the tooth profile gradient of the tooth profile 12 on the tooth surface of the tooth 11 different from each other, and is an unmodified shape calculated on a theoretical tooth profile curve, or With respect to the standard tooth profile 12s, which is a shape to which a modification amount set by the designer has been added based on the theoretical tooth profile curve, the actual tooth profile 12 is made to have a steeper tooth profile slope by a significant difference Sb, Sc, or Sa. The designed tooth profile is such that the tooth profile slope is made gentle by the difference Sb, Sz, or Sy. Then, the differences in the tooth profile 12 of each tooth 11 are patterned into one set G.

歯面の歯形勾配の有意差は、意図的に調整された規則性を有する。図6(A)を参照して、周方向に連続して配列される歯11,11・・・の歯面の歯形における歯形勾配の有意差Sc、Sb、Sa、0、Sz、Sy、Sx、Swが任意の関数に則ってパターン化される。そして歯車10の全ての歯11は、このパターンを1セットとして、複数セット(例えば5セット)を繰り返すよう配列される。本実施形態の歯面の歯形における歯形勾配の有意差は、図3のグラフに示すように正弦波に基づく規則的なものであってもよい。図3中、Pc、Pb、Pa、0、Pz、Py、Px、Pwはそれぞれ、Sc、Sb、Sa、0、Sz、Sy、Sx、Swと読替えられる。なおSc、Sb、Sa、0、Sz、Sy、Sx、Swの中の幾つかの数値は等しくてもよい。例えばSc=Sa、Sw=0、Sz=Sxであってもよい。パターン化された差異の当該パターンは図3に図示される正弦波に限らず、図示しない三角波、四角波、多角形波、その他の規則波、あるいは1セット内の複数の歯形形状有意差がランダムな差異を有するランダム歯形形状、あるいは他のパターンであってもよい。 Significant differences in tooth profile gradients on tooth surfaces have a deliberately adjusted regularity. With reference to FIG. 6(A), significant differences in tooth profile gradients Sc, Sb, Sa, 0, Sz, Sy, Sx in the tooth profiles of the tooth surfaces of the teeth 11, 11, etc. that are continuously arranged in the circumferential direction , Sw are patterned according to an arbitrary function. All the teeth 11 of the gear 10 are arranged so as to repeat a plurality of sets (for example, five sets) with this pattern as one set. The significant difference in the tooth profile gradient in the tooth profile of the tooth surface of this embodiment may be regular based on a sine wave, as shown in the graph of FIG. In FIG. 3, Pc, Pb, Pa, 0, Pz, Py, Px, and Pw can be read as Sc, Sb, Sa, 0, Sz, Sy, Sx, and Sw, respectively. Note that some numerical values among Sc, Sb, Sa, 0, Sz, Sy, Sx, and Sw may be equal. For example, Sc=Sa, Sw=0, and Sz=Sx. The pattern of patterned differences is not limited to the sine wave shown in FIG. 3, but may also include triangular waves, square waves, polygonal waves, other regular waves (not shown), or random significant differences in tooth profile shapes within one set. It may also be a random tooth profile with significant differences or other patterns.

管理上、有意差Sc、Sb、Sa、0、Sz、Sy、Sx、Swは、歯先円Ctおよび歯形管理円Cdの中間にある測定円Crにおける周方向寸法(直線長さあるいは円弧長)である。測定円Crは例えば、歯先円Ctと歯形管理円Cdの半径差を100%とし、歯形管理円Cdより外径側50~95%の範囲に含まれる所定値を半径とする円である。1つのセットGにおける有意差Sb,Sa,Sz,Syのパターンは、図3に準じる。なお発明の理解を容易にするため図6では、歯形形状の有意差が誇張して描かれ、測定円Crを100%とする。 For management purposes, the significant differences Sc, Sb, Sa, 0, Sz, Sy, Sx, and Sw are circumferential dimensions (linear length or circular arc length) in the measurement circle Cr located between the tooth tip circle Ct and the tooth profile control circle Cd. It is. The measurement circle Cr is, for example, a circle whose radius is a predetermined value included in the range of 50 to 95% on the outer diameter side of the tooth profile management circle Cd, where the difference in radius between the tooth tip circle Ct and the tooth profile management circle Cd is 100%. The pattern of significant differences Sb, Sa, Sz, and Sy in one set G conforms to FIG. 3. In order to facilitate understanding of the invention, in FIG. 6, significant differences in tooth profile shapes are exaggerated and the measurement circle Cr is set to 100%.

ここで附言すると、下限値50%を下回る場合、管理範囲が小さすぎて、本発明の課題になるノイズギャップが十分に減少しない。また上限値95%を上回る場合、管理が現物に反映されず、本発明の課題になるノイズギャップが十分に減少しない。 It should be noted here that if the lower limit is less than 50%, the control range is too small and the noise gap, which is an issue of the present invention, cannot be sufficiently reduced. Moreover, if the upper limit value exceeds 95%, the management will not be reflected in the actual product, and the noise gap, which is a problem of the present invention, will not be sufficiently reduced.

有意差Sb,Sa,Sc,Sz, Sx,Syは2~40μmの範囲に含まれる所定値である。かかる差は、歯車10の製作上許容される公差よりも大きいこと勿論である。なお有意差Sb,Sa,Sz,Syが所定の範囲を上回る場合、摩耗等の耐久性の問題から好ましくなく、所定の範囲を下回る場合、ノイズギャップが大きくなってしまう、つまり従来の歯車と略同じになってしまうので好ましくない。 The significant differences Sb, Sa, Sc, Sz, Sx, and Sy are predetermined values within the range of 2 to 40 μm. Of course, this difference is larger than the tolerance allowed in manufacturing the gear 10. If the significant difference Sb, Sa, Sz, Sy exceeds a predetermined range, it is undesirable due to durability issues such as wear, and if it falls below the predetermined range, the noise gap becomes large, which means that it is not suitable for conventional gears. I don't like this because they end up being the same.

なお図示しない変形例として、歯形形状に差異をもたせる管理項目は、歯11の歯形勾配や、JISB1702「歯形誤差」に分類されるその他もろもろの歯形に関する管理項目であってもよい。あるいは図示しない他の変形例として、歯11の歯すじ形状に差異をもたせてもよい。歯すじ形状に差異をもたせる管理項目は例えば、クラウニング中心位置であったり、あるいは歯すじ傾斜であったり、あるいは他のクラウニング、あるいはJISB1702「歯すじ誤差」に分類されるその他もろもろの歯すじに関する管理項目であってもよい。 As a modification (not shown), the management item that causes a difference in the tooth profile shape may be the tooth profile slope of the tooth 11, or other management items related to the tooth profile classified under JISB1702 "tooth profile error". Alternatively, as another modification (not shown), the tooth trace shapes of the teeth 11 may be made different. Management items that cause differences in tooth trace shape include, for example, crowning center position, tooth trace inclination, other crowning, and various other tooth trace-related management items classified under JISB1702 "tooth trace error". It may be an item.

図6(A)に実線で示す本発明の実施形態を試作した(実施例2)。また図6(A)に破線で示す均一歯形の歯車を準備した(対比例2)。そして実施例2および対比例2の音振レベルの対比試験を行った。実施例2および対比例2の共通事項として、歯車の歯先円の直径は85mm、歯底円の直径は73mm、歯幅は20mm、製作上の目標値になる歯形と実物の歯形との誤差量(公差)は10μm以下である。実施例2が噛み合う相手歯車と、対比例2が噛み合う相手歯車は、共通する歯車であり、従来の一般的な均一歯形の歯車である。相手歯車に噛み合わせた状態で、回転数を500rpmで回転させ、噛合音振を計測した。また同時に、人間の耳で噛合音を確認した。 An embodiment of the present invention shown by a solid line in FIG. 6(A) was prototyped (Example 2). In addition, a gear with a uniform tooth profile indicated by a broken line in FIG. 6(A) was prepared (Comparative Example 2). A comparative test of the sound vibration levels of Example 2 and Comparative Example 2 was then conducted. Common points between Example 2 and Comparative Example 2 are that the diameter of the gear tip circle is 85 mm, the diameter of the root circle is 73 mm, the tooth width is 20 mm, and the error between the tooth profile that becomes the target value for manufacturing and the actual tooth profile. The amount (tolerance) is 10 μm or less. The mating gear with which Example 2 meshes and the mating gear with which Comparative Example 2 meshes are common gears, and are conventional general gears with a uniform tooth profile. With the gear meshed with the mating gear, it was rotated at a rotational speed of 500 rpm and the meshing sound vibration was measured. At the same time, the meshing sound was confirmed with the human ear.

図7は噛合音振の測定結果を表すグラフであり、実線が実施例2、破線が対比例2を表す。グラフ中、横軸が周波数[Hz]を、縦軸が噛合音振の大きさ[dB]を表す。実施例2(実線)では対比例2よりも非整数次ノイズが大きくなっており、ノイズギャップが小さくなっていることが理解される。人間の耳で確認したところ、実施例2よりも対比例2の方が騒々しく聞こえた。 FIG. 7 is a graph showing the measurement results of meshing sound vibration, where the solid line represents Example 2 and the broken line represents Comparative Example 2. In the graph, the horizontal axis represents the frequency [Hz], and the vertical axis represents the magnitude [dB] of the meshing sound vibration. It is understood that in Example 2 (solid line), the non-integer order noise is larger than in Comparative Example 2, and the noise gap is smaller. When confirmed with the human ear, Comparative Example 2 sounded louder than Example 2.

次に、本実施形態の歯車を作成するための切削工具につき説明する。 Next, a cutting tool for producing the gear of this embodiment will be explained.

図8は、図1に示す歯車10を切削する切削工具60である。切削工具60は、外歯車形状をしており、歯車の歯と同等の形状である切削歯61を有する。なお図示しない変形例として、本発明の切削工具は内歯歯車形状であってもよい。 FIG. 8 shows a cutting tool 60 for cutting the gear 10 shown in FIG. The cutting tool 60 is in the shape of an external gear, and has cutting teeth 61 having the same shape as the teeth of a gear. In addition, as a modification not shown, the cutting tool of the present invention may have an internal gear shape.

図8に示す切削工具60も、前述した歯車10と同様、図2、図4、または図6に示すように所定個数の切削歯を1セットとし、1セットないし複数セットの歯を周方向に繰り返す。図8に示す実施形態では、歯数は総数40であり、1セットの歯数は8であり、5セット繰り返す。歯車10の製造において、仕上げ段階の高精度の切削・研削において使用される切削工具60は、歯車10が有するセット内の歯数と同一の数量の切削歯61のセットを有し、1セットないし複数セットの切削部を周方向に繰り返す。 Similarly to the gear 10 described above, the cutting tool 60 shown in FIG. repeat. In the embodiment shown in FIG. 8, the total number of teeth is 40, the number of teeth in one set is 8, and 5 sets are repeated. In manufacturing the gear 10, the cutting tool 60 used in high-precision cutting and grinding in the finishing stage has a set of cutting teeth 61 in the same number as the number of teeth in the set that the gear 10 has, and has one or more sets of cutting teeth 61. Multiple sets of cutting sections are repeated in the circumferential direction.

切削歯61の輪郭形状は、上述した歯11に対応する。つまり互いに噛合する歯車対のように切削歯61は、切削歯61が歯車を加工する際に描く軌跡の輪郭形状が歯11と一致するように作られた歯車の歯の形状をしている。そして全ての切削歯61が、図3に示す規則的な差異にパターン化され、隣り合う切削歯61,61同士が少しずつ異なる形状にされる。 The contour shape of the cutting tooth 61 corresponds to the tooth 11 described above. In other words, like a pair of gears meshing with each other, the cutting teeth 61 have the shape of the teeth of a gear made so that the contour shape of the locus drawn by the cutting teeth 61 when machining the gear matches that of the teeth 11. All of the cutting teeth 61 are patterned with regular differences as shown in FIG. 3, so that adjacent cutting teeth 61, 61 have slightly different shapes.

切削工具60は、被加工歯車に圧接されながら被加工歯車とともに回転する。かかる際に、切削工具60は被加工歯車の表面から余分な肉を除去し、具体的には仕上げ切削・研削・研磨・ドレスすることにより、セットGの歯11を成形する。切削工具60は、歯車のホーニング加工、スカイビング加工、ギヤシェーパー加工またはシェービング加工に使用されることから、ドレッサー、砥石、ピニオンカッターまたはシェービングカッターともいう。 The cutting tool 60 rotates together with the gear to be machined while being pressed against the gear to be machined. At this time, the cutting tool 60 removes excess meat from the surface of the gear to be machined, and specifically performs finish cutting, grinding, polishing, and dressing to form the teeth 11 of set G. The cutting tool 60 is also called a dresser, a grindstone, a pinion cutter, or a shaving cutter because it is used for gear honing, skiving, gear shaping, or shaving.

以上、図面を参照して本発明の実施の形態を説明したが、本発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、本発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。例えば上述した1の実施形態から一部の構成を抜き出し、上述した他の実施形態から他の一部の構成を抜き出し、これら抜き出された構成を組み合わせてもよい。 Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to the illustrated embodiments. Various modifications and variations can be made to the illustrated embodiment within the same scope as the present invention or within an equivalent scope. For example, some configurations may be extracted from one embodiment described above, some other configurations may be extracted from other embodiments described above, and these extracted configurations may be combined.

本発明は、機械要素において有利に利用される。 The invention is advantageously used in machine elements.

10 歯車、 12 歯面の実際の歯形(歯形勾配)、 12s 基準歯形、 60 切削工具、 61 切削歯、 Cs 中間円、 G 歯の1セット。 10 Gear, 12 Actual tooth profile of tooth surface (tooth profile gradient), 12s Standard tooth profile, 60 Cutting tool, 61 Cutting tooth, Cs Intermediate circle, G 1 set of teeth.

Claims (3)

複数の歯を備える歯車であって、
連続して配列される複数の前記歯を1セットとし、
前記セットは、隣り合う前記歯の形状および/またはピッチに製造公差を超える差異を有し、
前記セットを複数繰り返し有する歯車。
A gear having a plurality of teeth,
A plurality of teeth arranged in succession constitute one set,
The set has a difference in shape and/or pitch of the adjacent teeth that exceeds a manufacturing tolerance,
A gear having a plurality of repetitions of the set.
前記差異は、
前記形状にあっては、歯面の歯形における歯形勾配、歯形凹凸、歯すじ形状における歯すじ傾斜、クラウニング中心位置、クラウニング量、
前記ピッチにあっては、単一ピッチ、隣接ピッチ、累積ピッチ、
の中から選択される少なくとも1つにおける差異である、請求項1に記載の歯車。
The difference is
Regarding the shape, the tooth profile slope in the tooth profile of the tooth surface, the tooth profile unevenness, the tooth trace inclination in the tooth trace shape, the crowning center position, the crowning amount,
The pitches include single pitch, adjacent pitch, cumulative pitch,
The gear according to claim 1, wherein the difference is in at least one selected from:
前記セット内において周方向に連続する複数の前記差異は、パターン化された規則性を有する、請求項1または2に記載の歯車。 The gear according to claim 1 or 2, wherein the plurality of circumferentially continuous differences within the set have patterned regularity.
JP2021210889A 2021-12-24 2021-12-24 gear Active JP7428690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021210889A JP7428690B2 (en) 2021-12-24 2021-12-24 gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021210889A JP7428690B2 (en) 2021-12-24 2021-12-24 gear

Publications (2)

Publication Number Publication Date
JP2023095160A JP2023095160A (en) 2023-07-06
JP7428690B2 true JP7428690B2 (en) 2024-02-06

Family

ID=87002113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021210889A Active JP7428690B2 (en) 2021-12-24 2021-12-24 gear

Country Status (1)

Country Link
JP (1) JP7428690B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125054A (en) 2002-10-02 2004-04-22 Toyota Motor Corp Forging gear, method of manufacturing the same, and mould for forging gear
JP2018001340A (en) 2016-07-01 2018-01-11 トヨタ自動車株式会社 Method of manufacturing gear
JP2021091061A (en) 2019-12-12 2021-06-17 株式会社不二越 Skiving cutter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125054A (en) 2002-10-02 2004-04-22 Toyota Motor Corp Forging gear, method of manufacturing the same, and mould for forging gear
JP2018001340A (en) 2016-07-01 2018-01-11 トヨタ自動車株式会社 Method of manufacturing gear
JP2021091061A (en) 2019-12-12 2021-06-17 株式会社不二越 Skiving cutter

Also Published As

Publication number Publication date
JP2023095160A (en) 2023-07-06

Similar Documents

Publication Publication Date Title
JP6466523B2 (en) Workpiece manufacturing method, and tool, gear cutting device and computer program for executing the manufacturing method
JP6235050B2 (en) Workpiece machining method, gear manufacturing machine and computer system having corrected gear tooth shape and / or modified surface structure
JP2005305645A (en) Grinding worm and profiling gear and profiling method to profile grinding worm
CN101870009A (en) Be used to remove the method and apparatus of the secondary burr on the workpiece gear of end face cutting
JP7009050B2 (en) Tool dressing method, software program and gear making machine
JP6936103B2 (en) Gear manufacturing method
US2304586A (en) Hob for generating crown gears
KR20160091274A (en) Method for the gear manufacturing machining of a workpiece by a diagonal generating method
JP6780969B2 (en) How to manufacture a toothed workpiece with a modified surface shape
KR102599064B1 (en) Method for topological generating grinding of gear workpieces and grinding machine with a control system for topological generating grinding of gear workpieces
WO2016197905A1 (en) Gear-cutting hob and designing method therefor, and non-fully-symmetric involute gear and machining method therefor
WO1994016245A1 (en) Gear tooth topological modification
KR20160091272A (en) Method and apparatus for the gear manufacturing machining of a workpiece by a diagonal generating method
US20200306851A1 (en) Power skiving tool
JP2013193203A (en) Machining method for workpiece using spiral machining tool
JP7428690B2 (en) gear
JP3665874B2 (en) Work tool for producing a crown gear that can mesh with a small gear having oblique teeth and a method for producing such a crown gear
JP2018058208A (en) Spur gear or helical gear
US9962783B2 (en) Gear hobbing cutter with non-constant whole depths
Kimme et al. Simulation of error-prone continuous generating production processes of helical gears and the influence on the vibration excitation in gear mesh
CN112989523A (en) Involute gear design method and device, electronic device and storage medium
CN114423555A (en) Method for grinding a gear wheel by means of a worm grinding wheel and dressing roller for dressing a worm grinding wheel
JP6297074B2 (en) Workpiece gear machining method, tool, and gear manufacturing machine by oblique generation method
JP6867759B2 (en) How to manufacture a toothed workpiece with a modified surface shape
US2338366A (en) Hob

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230120

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240125

R150 Certificate of patent or registration of utility model

Ref document number: 7428690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150