JP7426770B2 - composite powder - Google Patents

composite powder Download PDF

Info

Publication number
JP7426770B2
JP7426770B2 JP2018056291A JP2018056291A JP7426770B2 JP 7426770 B2 JP7426770 B2 JP 7426770B2 JP 2018056291 A JP2018056291 A JP 2018056291A JP 2018056291 A JP2018056291 A JP 2018056291A JP 7426770 B2 JP7426770 B2 JP 7426770B2
Authority
JP
Japan
Prior art keywords
powder
metal oxide
water
composite powder
hydrophobized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018056291A
Other languages
Japanese (ja)
Other versions
JP2019167308A (en
Inventor
聡子 石津
忠弘 福寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2018056291A priority Critical patent/JP7426770B2/en
Publication of JP2019167308A publication Critical patent/JP2019167308A/en
Priority to JP2022154425A priority patent/JP7436595B2/en
Application granted granted Critical
Publication of JP7426770B2 publication Critical patent/JP7426770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、新規な複合粉体に関する。詳しくは、特定の物性を有する疎水化金属酸化物エアロゲル粉体の細孔内に水親和性の機能性成分を融液の状態で担持することにより、例えば、化粧料への添加物として、従来に無い機能を発揮することが可能な複合粉体を提供するものである。 The present invention relates to a novel composite powder. Specifically, by supporting a water-friendly functional component in the form of a melt within the pores of a hydrophobized metal oxide airgel powder having specific physical properties, it can be used, for example, as an additive to cosmetics. The purpose of the present invention is to provide a composite powder that can exhibit functions not found in conventional powders.

ゲル化体に含まれる液体の乾燥を、乾燥によって生じる収縮(乾燥収縮)を抑制しながら行ったものはエアロゲルと呼ばれ、空隙率60%以上の高い空隙率を有する材料であり、その特性を利用して各種用途に用いられる。 Airgel is a material in which the liquid contained in the gel is dried while suppressing the shrinkage caused by drying (drying shrinkage).It is a material with a high porosity of 60% or more, and its characteristics are It is used for various purposes.

例えば、金属酸化物、例えば、シリカを骨格としたシリカエアロゲルの製法としては、アルコキシシランの加水分解生成物を重縮合させて得られるヒドロゲル、或いは、ケイ酸アルカリ金属塩を中和して形成されるゾルをゲル化して得られるヒドロゲルを、分散媒の超臨界条件下での乾燥の如き、収縮(乾燥収縮)を抑制しながら乾燥する方法が知られている(特許文献1~4)。 For example, as a method for producing silica airgel having a metal oxide, for example, silica, as a skeleton, a hydrogel obtained by polycondensing a hydrolysis product of an alkoxysilane, or a hydrogel formed by neutralizing an alkali metal silicate. There are known methods of drying a hydrogel obtained by gelling a sol while suppressing shrinkage (drying shrinkage), such as drying a dispersion medium under supercritical conditions (Patent Documents 1 to 4).

このようにして得られる金属酸化物エアロゲルの用途は様々であるが、その一つとして化粧料材料としての用途がある(特許文献5参照)。例えば、ファンデーションの材料として、粉体の状態で使用される。この用途において、高い吸油量を有するエアロゲルは、上記テカリの原因となる皮脂を大量に吸収できるため、化粧仕上がり時の外観を長時間にわたって持続させることができることが記載されている。 The metal oxide airgel thus obtained has various uses, one of which is as a cosmetic material (see Patent Document 5). For example, it is used in powder form as a foundation material. In this application, it is stated that airgel having a high oil absorption capacity can absorb a large amount of sebum, which causes shine, so that the appearance of makeup can be maintained for a long time.

一方、化粧料用途において、機能性の追求は永遠のテーマであり、高い吸油特性を有する疎水化金属酸化物エアロゲル粉体においても、皮脂の除去機能を超えた機能が求められる。 On the other hand, in cosmetic applications, the pursuit of functionality is an eternal theme, and even hydrophobized metal oxide airgel powders with high oil-absorbing properties are required to have functions that go beyond the ability to remove sebum.

米国特許第4402927号公報US Patent No. 4402927 特開平10-236817号公報Japanese Patent Application Publication No. 10-236817 特開平06-040714号公報Japanese Patent Application Publication No. 06-040714 特開平07-257918号公報Japanese Patent Application Publication No. 07-257918 特開2014-88307号公報Japanese Patent Application Publication No. 2014-88307

従って、本発明の目的は、疎水化金属酸化物エアロゲル粉体における皮脂等の油分の吸収機能と共に、従来に無い機能を発揮することが可能な複合粉体を提供することにある。 Therefore, an object of the present invention is to provide a composite powder that is capable of exhibiting an unprecedented function in addition to the function of absorbing oil such as sebum in a hydrophobized metal oxide airgel powder.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、金属酸化物エアロゲル粉体を特定の疎水化度に調整した疎水化金属酸化物エアロゲル粉体の細孔中に、水親和性の液を担持した複合粉体が、皮脂等の油分と接触することにより、上記油分を吸収すると共に、細孔内部に存在する水親和性の液を放出するという現象を見出した。そして、前記細孔に存在させる液として、常温で液状を呈する水親和性の機能性成分、例えば、保湿効果のあるグリセリンを融液の状態で担持させることにより、疎水化金属酸化物エアロゲル粉体の疎水性相互作用とそれに伴う細孔内部の置換作用により、皮膚から分泌される油分(皮脂)を吸収し、保湿成分であるグリセリンを放出する機能を発揮するという従来に無い機能を発現することを確認し、本発明を完成させるに至った。 As a result of extensive research to achieve the above object, the present inventors have discovered that water is present in the pores of a hydrophobized metal oxide airgel powder that has been adjusted to a specific degree of hydrophobization. We have discovered a phenomenon in which, when a composite powder carrying an affinity liquid comes into contact with oil such as sebum, it absorbs the oil and releases the water-affinity liquid present inside the pores. Hydrophobized metal oxide airgel powder is then prepared by supporting a water-friendly functional component that is liquid at room temperature, such as glycerin, which has a moisturizing effect, in the form of a melt as the liquid present in the pores. Due to the hydrophobic interaction and the resulting displacement inside the pores, it exhibits an unprecedented function of absorbing oil (sebum) secreted from the skin and releasing glycerin, a moisturizing ingredient. This led to the completion of the present invention.

即ち、本発明によれば、平均粒子径1~30μm、M値が20~60の疎水化金属酸化物エアロゲル粉体の細孔中に、常温で液状を呈する水親和性の機能性成分が融液の状態で担持されていることを特徴とする複合粉体が提供される。 That is, according to the present invention, a water-friendly functional component that is liquid at room temperature is melted into the pores of a hydrophobized metal oxide airgel powder having an average particle size of 1 to 30 μm and an M value of 20 to 60. A composite powder is provided which is characterized in that it is supported in a liquid state.

上記疎水化金属酸化物エアロゲル粉体は、前記疎水化金属酸化物エアロゲル粉体の細孔容積が0.5~8ml/g、細孔半径のピーク値が10~40nm、比表面積が350~1000m/gであるものが好適である。 The hydrophobized metal oxide airgel powder has a pore volume of 0.5 to 8 ml/g, a peak value of pore radius of 10 to 40 nm, and a specific surface area of 350 to 1000 m 2 /g is preferred.

また、上記疎水化金属酸化物は、シリカであることが好ましい。 Moreover, it is preferable that the hydrophobized metal oxide is silica.

更に、上記疎水化金属酸化物エアロゲル粉体の平均円形度は、0.8以上の球状であることが好ましい。
Furthermore, it is preferable that the average circularity of the hydrophobized metal oxide airgel powder is spherical with an average circularity of 0.8 or more.

本発明において、機能性成分の放出効果を十分発揮するためには、疎水化金属酸化物エアロゲル粉体の細孔への融液の担持量が、全細孔容積の10容量%以上であることが好ましい。 In the present invention, in order to fully exhibit the release effect of the functional component, the amount of the melt supported in the pores of the hydrophobized metal oxide airgel powder should be 10% by volume or more of the total pore volume. is preferred.

以上の特性を有する本発明の複合粉体は、粉体化粧料の添加剤として有用であり、特に、機能性成分として保湿機能を有する保湿成分を選択することにより、肌への塗布後、皮脂の吸収と同時に上記保湿成分を放出するという特性を発揮することができる。 The composite powder of the present invention having the above characteristics is useful as an additive for powder cosmetics, and in particular, by selecting a moisturizing ingredient that has a moisturizing function as a functional ingredient, the composite powder of the present invention can be used as an additive for powder cosmetics. It can exhibit the property of releasing the above-mentioned moisturizing ingredients at the same time as it absorbs the water.

本発明の複合粉体は、特定の疎水性を有する疎水化金属酸化物エアロゲル粉体の細孔内に前記水親和性の機能性成分の融液を担持させることにより、油分の吸収と同時に機能性成分の融液を放出するという従来に無い機能を発現する。 The composite powder of the present invention has a function of absorbing oil and simultaneously absorbing oil by supporting the melt of the water-friendly functional component in the pores of the hydrophobized metal oxide airgel powder having specific hydrophobicity. It exhibits an unprecedented function of releasing a melt of sexual components.

そのため、例えば、粉体化粧料、より具体的には、固形ファンデーションの一成分として使用し、上記機能性成分として、例えば、保湿効果のあるグリセリンを担持せしめておくことにより、ファンデーションを皮膚に塗布した後、皮膚からの皮脂を吸収して塗布後のベタつきを抑えると共に、グリセリンを放出し、皮膚の潤いを長時間持続可能な、機能性化粧料を実現することができる。 Therefore, for example, it can be used as a component of powder cosmetics, more specifically solid foundations, and loaded with glycerin, which has a moisturizing effect, as the above-mentioned functional ingredient, so that the foundation can be applied to the skin. After that, it is possible to realize a functional cosmetic that absorbs sebum from the skin to suppress stickiness after application, and releases glycerin to keep the skin moisturized for a long time.

以下に示す形態は本発明の例示であり、本発明がこれらの形態に限定されるものではない。また、特に断らない限り、数値範囲について「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。 The forms shown below are examples of the present invention, and the present invention is not limited to these forms. Furthermore, unless otherwise specified, the notation "A to B" in a numerical range means "above A and below B." In such a notation, if a unit is attached only to the numerical value B, the unit shall also be applied to the numerical value A.

[複合粉体]
本発明の複合粉体において、疎水化金属酸化物エアロゲル粉体を構成する金属元素は特に限定されることなく、常温・常圧、大気中で安定な酸化物を構成する金属元素であればよい。このような金属酸化物を具体的に例示すると、シリカ(二酸化ケイ素)、アルミナ、チタニア、ジルコニア、マグネシア(MgO)、酸化鉄、酸化銅、酸化亜鉛、酸化錫、酸化タングステン、酸化バナジウム等の単独酸化物、及びこれらのうちの2種以上の金属元素を含む複合酸化物(例えばシリカ-アルミナ、シリカ-チタニア、シリカ-チタニア-ジルコニア等。)が挙げられる。また複合酸化物の場合、単独酸化物が水分に対して比較的敏感なアルカリ金属やアルカリ土類金属(周期律第4周期(Ca)以降)を構成金属元素として含むことも可能である。
[Composite powder]
In the composite powder of the present invention, the metal element constituting the hydrophobized metal oxide airgel powder is not particularly limited, and may be any metal element that constitutes an oxide that is stable at room temperature, normal pressure, and in the atmosphere. . Specific examples of such metal oxides include silica (silicon dioxide), alumina, titania, zirconia, magnesia (MgO), iron oxide, copper oxide, zinc oxide, tin oxide, tungsten oxide, vanadium oxide, etc. Examples include oxides and composite oxides containing two or more of these metal elements (eg, silica-alumina, silica-titania, silica-titania-zirconia, etc.). Further, in the case of a composite oxide, it is also possible for the single oxide to contain an alkali metal or an alkaline earth metal (from the fourth period (Ca) of the periodic rule), which are relatively sensitive to moisture, as a constituent metal element.

本発明において使用可能な金属酸化物の中でも、軽量なため嵩密度をより小さくできる点、及び、安価で入手しやすい点から、シリカ、又はシリカを主成分とする複合酸化物が好ましい。ある複合酸化物が「シリカを主成分とする」とは、当該複合酸化物が含む酸素以外の元素群に占めるケイ素(Si)のモル比率が50%以上100%未満であることを意味する。当該モル比率は好ましくは65%以上であり、より好ましくは75%以上であり、さらに好ましくは80%以上である。 Among the metal oxides that can be used in the present invention, silica or a composite oxide containing silica as a main component is preferred because it is lightweight and can have a lower bulk density, and is inexpensive and easily available. When a certain composite oxide "mainly contains silica", it means that the molar ratio of silicon (Si) in the group of elements other than oxygen contained in the composite oxide is 50% or more and less than 100%. The molar ratio is preferably 65% or more, more preferably 75% or more, and still more preferably 80% or more.

シリカを主成分とする複合酸化物を用いる場合、ケイ素以外に含有される金属元素として好ましいものとしては、マグネシウム、カルシウム、ストロンチウム、バリウム等の周期律表第II族金属;アルミニウム、イットリウム、インジウム、ホウ素、ランタン等の周期律表第III族金属(なお、ホウ素は金属元素として扱うものとする。);及び、チタニウム、ジルコニウム、ゲルマニウム、スズ等の周期律表第IV族金属等を例示でき、これらの中でも、Al、Ti、及びZrを特に好ましく採用できる。シリカを主成分とする複合酸化物は、ケイ素以外に2種以上の金属元素を含有していてもよい。 When using a composite oxide containing silica as a main component, preferred metal elements other than silicon include Group II metals of the periodic table such as magnesium, calcium, strontium, and barium; aluminum, yttrium, indium, Examples include Group III metals of the periodic table such as boron and lanthanum (boron is treated as a metal element); and metals of Group IV of the periodic table such as titanium, zirconium, germanium, and tin. Among these, Al, Ti, and Zr can be particularly preferably employed. The composite oxide containing silica as a main component may contain two or more metal elements in addition to silicon.

本発明の疎水化金属酸化物エアロゲル粉体は、レーザー回折式測定による粒度分布におけるメジアン径(D50)が1~30μmの範囲にある。そのため、化粧料の添加剤として利用した時の外観保持性が良く、滑らかな触感を得ることができる。当該メジアン径が、1~20μmの範囲にあることがより好ましく、5~20μmが特に好ましい。 The hydrophobized metal oxide airgel powder of the present invention has a median diameter (D50) in the range of 1 to 30 μm in particle size distribution measured by laser diffraction. Therefore, when used as an additive in cosmetics, it retains its appearance well and provides a smooth texture. The median diameter is more preferably in the range of 1 to 20 μm, particularly preferably 5 to 20 μm.

本発明における疎水化金属酸化物エアロゲル粉体は、疎水化されていることが重要である。そして、上記疎水化金属酸化物エアロゲル粉体の疎水化の程度は、M値によって特定される。 It is important that the hydrophobized metal oxide airgel powder in the present invention is hydrophobized. The degree of hydrophobization of the hydrophobized metal oxide airgel powder is specified by the M value.

ここで、M値は、疎水化金属酸化物エアロゲル粉体は水には浮遊するが、メタノールには完全に懸濁することを利用し、以下の方法によって測定されるものである。 Here, the M value is measured by the following method, taking advantage of the fact that the hydrophobized metal oxide airgel powder floats in water but is completely suspended in methanol.

即ち、疎水化金属酸化物エアロゲル粉体0.2gを容量250mLのビーカー中の50mLの水に添加した。次いで、メタノールをビュレットからシリカの全量が懸濁するまで滴下した。この際、メタノールが直接粉体に触れないようにチューブを用いて液の中に導き、ビーカー内の溶液をマグネティックスターラーで常時攪拌した。疎水化金属酸化物エアロゲル粉体の全量が溶液中に懸濁された時点を終点とし、終点におけるビーカーの液体混合物のメタノールの容量百分率の値をM値とした。 That is, 0.2 g of hydrophobized metal oxide airgel powder was added to 50 mL of water in a 250 mL beaker. Then, methanol was added dropwise from a buret until the entire amount of silica was suspended. At this time, methanol was introduced into the liquid using a tube so as not to come into direct contact with the powder, and the solution in the beaker was constantly stirred with a magnetic stirrer. The time point when the entire amount of the hydrophobized metal oxide airgel powder was suspended in the solution was defined as the end point, and the value of the volume percentage of methanol in the liquid mixture in the beaker at the end point was defined as the M value.

本発明において、疎水化金属酸化物エアロゲル粉体の上記M値は、20~60、好ましくは、30~50であることが重要である。即ち、上記疎水化金属酸化物エアロゲル粉体のM値が、20より小さい場合、疎水性(親油性)の低下により、油分との接触において油分の吸収性が低下し、本発明の目的を達成することが困難となる。また、M値が60を超える場合、水親和性の機能性成分の融液を細孔内に充分な量で担持することが困難となり、また、担持できたとしても、かかる融液を細孔内に安定して保持することも困難となる。
In the present invention, it is important that the M value of the hydrophobized metal oxide airgel powder is from 20 to 60 , preferably from 30 to 50. That is, when the M value of the hydrophobized metal oxide airgel powder is less than 20 , the hydrophobicity (oleophilicity) decreases, and the oil absorbency decreases upon contact with oil, and the object of the present invention is becomes difficult to achieve. Furthermore, if the M value exceeds 60 , it will be difficult to support a sufficient amount of the melt of the water-affinitive functional component in the pores, and even if it is possible to support the melt, the melt will not be supported in the pores. It is also difficult to hold it stably within the hole.

前記疎水化金属酸化物エアロゲル粉体において、疎水性が付与される態様の具体例としては、シリル化剤により処理されていることにより、表面に有機シリル基が導入された態様を挙げることができる。上記シリル化剤の具体例は後述の製造方法に示す。 A specific example of a mode in which hydrophobicity is imparted to the hydrophobized metal oxide airgel powder is a mode in which an organic silyl group is introduced to the surface by being treated with a silylating agent. . Specific examples of the above-mentioned silylating agent are shown in the manufacturing method described below.

本発明の疎水化金属酸化物エアロゲル粉体は、細孔容積が0.5~8mL/gであることが好ましい。下限値は、2.5mL/g以上、特に、3mL/g以上であることがより好ましい。また、上限は6mL/g以下であることがより好ましい。上記細孔容積が0.5mL/g未満の場合には、水親和性の機能性成分の融液を充分な量で担持することができず、かかる機能性成分の放出効果が低下する傾向がある。また、細孔容積は高いほど好ましいが、8mL/gを超えて大きいものを得ることは困難である。 The hydrophobized metal oxide airgel powder of the present invention preferably has a pore volume of 0.5 to 8 mL/g. The lower limit is more preferably 2.5 mL/g or more, particularly 3 mL/g or more. Moreover, it is more preferable that the upper limit is 6 mL/g or less. If the pore volume is less than 0.5 mL/g, a sufficient amount of the melted water-compatible functional component cannot be supported, and the release effect of the functional component tends to decrease. be. Further, although a higher pore volume is preferable, it is difficult to obtain a pore volume larger than 8 mL/g.

上記細孔容積は、吸着等温線を取得し、BJH法(Barrett,E.P.;Joyner,L.G.;Halenda,P.P.,J.Am.Chem.Soc.73,373(1951)により解析して得られたものである(以下、「BJH細孔容積」ということがある。)。当該方法により測定される細孔は、半径1~100nmの細孔であり、この範囲の細孔の容積の積算値が本発明における細孔容積となる。 The above pore volume was determined by obtaining an adsorption isotherm and using the BJH method (Barrett, E.P.; Joyner, L.G.; Halenda, P.P., J. Am. Chem. Soc. 73, 373 (1951 ) (hereinafter sometimes referred to as "BJH pore volume").The pores measured by this method are pores with a radius of 1 to 100 nm, and the pores in this range are The integrated value of the pore volume is the pore volume in the present invention.

本発明の疎水化金属酸化物エアロゲル粉体の細孔半径のピークは10~40nm、好ましくは、10~30nmのものが推奨される。即ち、細孔半径が5nmより小さい場合は、水親和性の機能性成分の担持が困難となる傾向があり、また、細孔半径が50nmを超える場合は、細孔への油分の吸収力が低下し、その結果、水親和性の機能性成分の融液の放出を充分行うことが困難となる傾向がある。 It is recommended that the hydrophobized metal oxide airgel powder of the present invention has a peak pore radius of 10 to 40 nm, preferably 10 to 30 nm. In other words, when the pore radius is smaller than 5 nm, it tends to be difficult to support water-compatible functional components, and when the pore radius exceeds 50 nm, the ability of the pores to absorb oil tends to be difficult. As a result, it tends to be difficult to sufficiently release the melt of the water-compatible functional component.

上記細孔径の分布がシャープである本発明の疎水化金属酸化物エアロゲル粉体は、一般に、細孔半径が5~50nm、特に、10~40nmの範囲内に全細孔容積の70容量%以上の細孔が存在する。 The hydrophobized metal oxide airgel powder of the present invention having a sharp pore size distribution generally has a pore radius of 5 to 50 nm, particularly 70% or more by volume of the total pore volume within the range of 10 to 40 nm. There are pores.

尚、本発明において、細孔半径のピーク、及び範囲は、前記と同様に取得した吸着側の吸着等温性をBJH法によって解析して得られる、細孔半径の対数による累積細孔容積(体積分布曲線)より求めたものである。 In the present invention, the peak and range of the pore radius are determined by the cumulative pore volume (volume) obtained by analyzing the adsorption isotherm on the adsorption side obtained in the same manner as above using the BJH method. distribution curve).

本発明において、上記特徴的細孔を有する疎水化金属酸化物エアロゲル粉体のBET法による比表面積(BET比表面積)は、一般に、350~1000m/gであり、好ましくは、400~850m/gであることが好ましい。 In the present invention, the specific surface area (BET specific surface area) measured by the BET method of the hydrophobized metal oxide airgel powder having the above-mentioned characteristic pores is generally 350 to 1000 m 2 /g, preferably 400 to 850 m 2 /g is preferable.

ここで、上記BET法による比表面積は、測定対象のサンプルを、1kPa以下の真空下において、200℃の温度で3時間以上乾燥させ、その後、液体窒素温度における窒素の吸着側のみの吸着等温線を取得し、BET法により解析して求めた値である。 Here, the specific surface area by the above BET method is determined by drying the sample to be measured at a temperature of 200°C for 3 hours or more under a vacuum of 1 kPa or less, and then applying an adsorption isotherm of only the nitrogen adsorption side at liquid nitrogen temperature. This is the value obtained by acquiring and analyzing it using the BET method.

本発明において、前記疎水化金属酸化物エアロゲル粉体は、前述のとおり比表面積、細孔容積共に大きいため、その吸油量は、通常、200mL/100g以上を有する。より好ましい吸油量は300mL/100g以上であり、さらには350mL/100g以上、特に好ましくは400mL/100g以上である。上限は特に限定されるものではないが、粒子強度を考慮すると800mL/100g以下であることが好ましく、700mL/100g以下であることがより好ましい。当該吸油量は、JIS K5101-13-1「精製あまに油法」記載の方法により測定した値である。 In the present invention, since the hydrophobized metal oxide airgel powder has a large specific surface area and pore volume as described above, its oil absorption amount is usually 200 mL/100 g or more. A more preferable oil absorption amount is 300 mL/100 g or more, further preferably 350 mL/100 g or more, and particularly preferably 400 mL/100 g or more. The upper limit is not particularly limited, but in consideration of particle strength, it is preferably 800 mL/100 g or less, more preferably 700 mL/100 g or less. The oil absorption amount is a value measured by the method described in JIS K5101-13-1 "Refined linseed oil method".

本発明において、疎水化金属酸化物エアロゲル粉体を構成する粒子の形状は特に制限されないが、その平均円形度が0.8以上であることが好ましく、特に、0.85以上であることが好ましい。 In the present invention, the shape of the particles constituting the hydrophobized metal oxide airgel powder is not particularly limited, but the average circularity is preferably 0.8 or more, particularly preferably 0.85 or more. .

上記「平均円形度」とは、走査型電子顕微鏡(SEM)を用いて、二次電子検出、低加速電圧(1kV~3kV)、倍率1000倍で観察したSEM像を得、個々の粒子について下記式(1)によって定義される値C(円形度)を求め(画像解析)、この円形度Cを2000個以上の粒子について相加平均値として出した値である(画像解析法)。この際、一個の凝集粒子を形成している粒子群は1粒子として計数する。 The above-mentioned "average circularity" refers to the following for each particle, using a scanning electron microscope (SEM) to obtain an SEM image with secondary electron detection, low accelerating voltage (1 kV to 3 kV), and 1000x magnification. A value C (circularity) defined by formula (1) is obtained (image analysis), and this circularity C is calculated as an arithmetic average value for 2000 or more particles (image analysis method). At this time, a particle group forming one aggregated particle is counted as one particle.

C=4πS/L (1)
上記式(1)において、Sは当該粒子が画像中に占める面積(投影面積)を表す。Lは画像中における当該粒子の外周部の長さ(周囲長)を表す。
C=4πS/L 2 (1)
In the above formula (1), S represents the area (projected area) that the particle occupies in the image. L represents the length of the outer periphery (perimeter length) of the particle in the image.

上記平均円形度が0.8より大きくなって1に近くなるほど、個々の粒子は真球に近い形状となり、凝集粒子も少なくなる。よって平均円形度が高ければ化粧料添加剤として利用したときにローリング性が良くなり、優れた触感が得られる。 As the average circularity becomes larger than 0.8 and approaches 1, each particle becomes closer to a perfect sphere, and the number of aggregated particles decreases. Therefore, if the average circularity is high, the rolling properties will be better when used as a cosmetic additive, and an excellent texture will be obtained.

[常温で液状を呈する水親和性の機能性成分の融液]
本発明の複合粉体において、疎水化金属酸化物エアロゲル粉体の細孔に、常温で液状を呈する水親和性の機能性成分を融液の状態で担持させることが最大の特徴である。即ち、従来の疎水化金属酸化物エアロゲル粉体の使用態様は、高い吸油性を有する粉としての特性を利用したものが殆どであったが、本発明の複合粉体は、前記特定の疎水化金属酸化物エアロゲル粉体の細孔に、機能性成分の融液を担持しておくことにより、油分との接触によりこれを吸収し、担持により内在している上記融液を放出するという従来に無い機能を発揮する。
[Melted solution of water-friendly functional ingredients that is liquid at room temperature]
The most important feature of the composite powder of the present invention is that the pores of the hydrophobized metal oxide airgel powder support a water-friendly functional component that is liquid at room temperature in the form of a melt. That is, most of the conventional usage modes of hydrophobized metal oxide airgel powder utilized the characteristics of the powder having high oil absorption, but the composite powder of the present invention uses the specific hydrophobization By supporting the melt of the functional component in the pores of the metal oxide airgel powder, it is absorbed by contact with oil, and the above-mentioned melt contained within the support is released. Demonstrates a function that does not exist.

従って、常温で液状を呈する水親和性の機能性成分は、用途に応じて適宜決定される。例えば、化粧料の用途において、上記水親和性の機能成分としては、肌荒れ防止、老化防止、美白、育毛、にきびケア、紫外線障害予防、スリミング、刺激緩和・抗炎症等を目的としたものが挙げられる。 Therefore, the water-friendly functional component that is liquid at room temperature is appropriately determined depending on the application. For example, in the application of cosmetics, the above-mentioned water-friendly functional ingredients include those for the purpose of preventing skin roughness, anti-aging, whitening, hair growth, acne care, prevention of UV damage, slimming, irritation relief, anti-inflammation, etc. It will be done.

尚、本発明において、以下に具体的に示す機能性成分は融液の状態で使用するものであればよく、機能性成分の融液をそのまま使用することは勿論、常温で固体の機能性成分については、機能性成分の融液、例えば、多価アルコール等に溶解させた状態の融液として使用することも可能である。 In the present invention, the functional components specifically shown below may be used in the form of a melt, and it is of course possible to use the melt of the functional component as it is, or to use a functional component that is solid at room temperature. It is also possible to use it as a melt of the functional component, for example, a melt of the functional component dissolved in polyhydric alcohol or the like.

前記機能性成分において、肌荒れ防止を目的としたものとしては、保湿剤、ビタミン類、上記老化防止を目的としたものとしては、紫外線吸収剤、抗酸化剤、保湿剤、細胞賦活剤、血流促進剤、真皮マトリックス再生成分、α-ヒドロキシ酸、上記美白を目的としたものとしては、メラニン生成抑制剤、エンドセリン作用抑制剤、メラニン色素生成誘導因子抑制剤、メラニン還元作用剤、ターンオーバー促進剤、上記育毛を目的としたものとしては、血行促進剤、毛包賦活剤、フケ防止剤、かゆみ改善剤、上記にきびケアを目的としたものとしては、角層溶解剤、皮脂腺機能亢進抑制剤、活性酸素消去剤、抗菌・殺菌剤、上記紫外線障害予防を目的としたものとしては、紫外線吸収剤、活性酸素生成抑制剤、しわ抑制剤、上記スリミングを目的としたものとしては、脂肪分解促進剤、血行促進剤、ファーミング剤、上記刺激緩和・抗炎症を目的としたものとしては、界面活性剤による刺激緩和剤、バリア機能維持剤等が挙げられる。 Among the above functional ingredients, those intended to prevent rough skin include moisturizers and vitamins, and those intended to prevent aging include ultraviolet absorbers, antioxidants, humectants, cell activators, and blood flow. Accelerators, dermal matrix regeneration components, α-hydroxy acids, and the above-mentioned whitening agents include melanin production inhibitors, endothelin action inhibitors, melanin pigment production inducing factor inhibitors, melanin reduction agents, and turnover promoters. Those aimed at hair growth include blood circulation promoters, hair follicle activators, anti-dandruff agents, and itch improving agents; those aimed at acne care include keratolytic agents, sebaceous gland hyperfunction inhibitors, Active oxygen scavengers, antibacterial/sterilizing agents, ultraviolet absorbers, active oxygen generation inhibitors, wrinkle inhibitors for the purpose of preventing UV damage, and lipolysis promoters for slimming. , blood circulation promoters, firming agents, and those aimed at alleviating irritation and anti-inflammation include surfactant-based irritation alleviating agents, barrier function maintaining agents, and the like.

上記機能性成分を更に具体的に例示すれば、以下のものが挙げられ、これらの成分により融液を構成して使用すればよい。 More specific examples of the above functional components include the following, and these components may be used to form a melt.

[保湿剤] エチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、1,3-ブチレングリコール、グリセリン、ポリグリセリン等の1,2-アルカンジオール以外の多価アルコール類;グルコース、マルトース、マルチトール、スクロール、マンニトール、ソルビトール、キシリトール等の糖類;ポリオキシエチレンメチルグルコシド、ポリオキシプロピレンメチルグルコシド等の糖誘導体;デキストリン、ヒアルロン酸、コンドロイチン硫酸等の多糖類;グリシン、アラニン、セリン、アルギニン、グルタミン酸等のアミノ酸類;コラーゲン等のポリペプタイド類;クエン酸ナトリウム、乳酸ナトリウム、リンゴ酸ナトリウム等の有機酸塩等。 [Moisturizer] Polyhydric alcohols other than 1,2-alkanediol such as ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3-butylene glycol, glycerin, polyglycerin; glucose, maltose, maltitol, scroll , mannitol, sorbitol, xylitol, etc.; sugar derivatives such as polyoxyethylene methyl glucoside, polyoxypropylene methyl glucoside; polysaccharides such as dextrin, hyaluronic acid, chondroitin sulfate; amino acids such as glycine, alanine, serine, arginine, glutamic acid, etc. Polypeptides such as collagen; Organic acid salts such as sodium citrate, sodium lactate, sodium malate, etc.

[ビタミン類] ビタミンB6群、ニコチン酸アミド、パントテン酸カルシウム、ビオチン、ビタミンC群、等。 [Vitamins] Vitamin B6 group, nicotinamide, calcium pantothenate, biotin, vitamin C group, etc.

[紫外線吸収剤] サリチル酸グリコール、ヒドロキシメトキシベンゾフェノンスルホン酸、ヒドロキシメトキシベンゾフェノンスルホン酸ナトリウム、ジヒドロキシジメトキシベンゾフェノンジスルホン酸ナトリウム、テレフタリリデンジカンフルスルホン酸、メチレンビスベンゾトリアゾリルテトラメチルブチルフェノール、フェニルベンズイミダゾールスルホン酸等。 [UV absorbers] Glycol salicylate, hydroxymethoxybenzophenone sulfonic acid, sodium hydroxymethoxybenzophenone sulfonate, sodium dihydroxydimethoxybenzophenone disulfonate, terephthalylidene dicanfursulfonic acid, methylenebisbenzotriazolyltetramethylbutylphenol, phenylbenzimidazole sulfone acids etc.

[抗酸化剤] ビタミン(B2,C)、カロチノイド(α-カロチン、β-カロチン、アスタキサンチン)、ポリフェノール(フロロタンニン、アントシアニン等)、各種植物成分のほか、ラクトフェリン、エルゴチオネイン等。 [Antioxidants] Vitamins (B2, C), carotenoids (α-carotene, β-carotene, astaxanthin), polyphenols (phlorotannin, anthocyanin, etc.), various plant ingredients, as well as lactoferrin, ergothioneine, etc.

[抗酸化剤] アスコルビン酸、没食子酸エステル類等。 [Antioxidants] Ascorbic acid, gallic acid esters, etc.

[細胞賦活剤] コラーゲン、エラスチン、酵母エキス、乳酸菌エキス、霊芝エキス等。 [Cell activators] Collagen, elastin, yeast extract, lactic acid bacteria extract, reishi extract, etc.

[血流促進剤] イチョウエキス、センブリエキス、マロニエエキス等の植物抽出物、塩化カルプロニウム、セファランチン等、ビタミンEおよびその誘導体、トウガラシチンキ、デキストラン硫酸ナトリウム、ニンジンエキスや海藻等のエキス等。 [Blood flow promoters] Plant extracts such as ginkgo biloba extract, Japanese cabbage extract, horse chestnut extract, etc., carpronium chloride, cephalanthine, etc., vitamin E and its derivatives, capsicum tincture, dextran sodium sulfate, extracts such as carrot extract and seaweed, etc.

[真皮マトリックス再生成分] ビタミンC誘導体、ショウキョウエキス等。 [Dermal matrix regeneration ingredients] Vitamin C derivatives, ginger extract, etc.

[α-ヒドロキシ酸] グリコール酸、乳酸、サリチル酸、酢酸、ピルビン酸、クエン酸等が挙げられる。 [α-Hydroxy acid] Examples include glycolic acid, lactic acid, salicylic acid, acetic acid, pyruvic acid, and citric acid.

[メラニン生成抑制剤] アルブチン、ソウハクヒエキス、シャクヤク根エキス、カンゾウ根エキス、コウジ酸、プラセンタエキス、4-メトキシサリチル酸カリウム等。 [Melanin production inhibitors] Arbutin, sagebrush extract, peony root extract, licorice root extract, kojic acid, placenta extract, potassium 4-methoxysalicylate, etc.

[エンドセリン作用抑制剤] カミツレエキス等。 [Endothelin action inhibitor] Chamomile extract, etc.

[メラニン色素生成誘導因子抑制剤] トラネキサム酸、トラネキサム酸セチルHCL等。 [Melanin pigment production inducing factor inhibitor] Tranexamic acid, cetyl tranexamate HCL, etc.

[メラニン還元作用剤] アスコルビン酸、ハイドロキノン等。 [Melanin reducing agent] Ascorbic acid, hydroquinone, etc.

[ターンオーバー促進剤] アスコルビン酸グルコシド、リン酸アスコルビルMg,アスコルビルリン酸Na,アスコルビルエチル、アスコルビン酸硫酸2Na,グリセリルアスコルビン酸、アデノシン1リン酸2ナトリウムOT、プロテオグリカン等。 [Turnover accelerator] Ascorbic acid glucoside, ascorbyl Mg phosphate, sodium ascorbyl phosphate, ascorbyl ethyl, disodium ascorbic acid sulfate, glyceryl ascorbic acid, adenosine monophosphate disodium OT, proteoglycan, etc.

[毛包賦活剤] パントテン酸およびその誘導体、プラセンタエキス、ビオチン、感光素301、6-ベンジルアミノプリン等。 [Hair follicle activator] Pantothenic acid and its derivatives, placenta extract, biotin, photosensitizer 301, 6-benzylaminopurine, etc.

[フケ防止剤] 塩化ベンザルコニウム、塩化ベンゼトニウム、ピロクトンオラミン等。 [Anti-dandruff agents] Benzalkonium chloride, benzethonium chloride, piroctone olamine, etc.

[かゆみ改善剤] グリチルリチン酸ジカリウム等。 [Itch improving agent] Dipotassium glycyrrhizinate, etc.

[角層溶解剤] イオウ、サリチル酸、グリコール酸、レゾルシン等。 [Stratum corneum solubilizer] Sulfur, salicylic acid, glycolic acid, resorcinol, etc.

[皮脂腺機能亢進抑制剤] アロエ、カンゾウ、サンショウ、ローズマリー等植物由来成分、ニコチン酸、ビタミンB6等。 [Sebaceous gland hyperfunction suppressant] Plant-derived ingredients such as aloe, licorice, salamander, and rosemary, nicotinic acid, vitamin B6, etc.

[活性酸素消去剤] リン酸アスコルビルマグネシウム、テトラ2-ヘキシルデカン酸アスコルビル等。 [Active oxygen scavenger] Magnesium ascorbyl phosphate, ascorbyl tetra-2-hexyldecanoate, etc.

[抗菌・殺菌剤] 塩化ベンゼルコニウム、塩化ベンゼトニウム、フェノール等。 [Antibacterial/sterilizing agents] Benzelkonium chloride, benzethonium chloride, phenol, etc.

[紫外線による活性酸素生成の抑制剤] ビタミンCとビタミンEの併用、チオタウリン、グルタチオン、温泉中のセレン等。 [Inhibitor of active oxygen generation due to ultraviolet rays] Combination of vitamin C and vitamin E, thiotaurine, glutathione, selenium in hot springs, etc.

[紫外線によるしわ抑制剤] 前述の抗酸化剤、α-ヒドロキシ酸、ビタミンC誘導体、植物エキス、グリシン亜鉛等。 [Ultraviolet ray-induced wrinkle inhibitor] The aforementioned antioxidants, α-hydroxy acids, vitamin C derivatives, plant extracts, glycine zinc, etc.

[脂肪分解促進剤] タイソウエキス、カフェイン、アミノフィリン、ローズマリー、グレープフルーツ等の精油、スファセラリアスコパリアのエキス等。 [Lipolysis accelerator] Lipolysis extract, caffeine, aminophylline, essential oils such as rosemary, grapefruit, Sphacellaria scoparia extract, etc.

[ファーミング剤] イチョウエキス、アルニカエキス、赤ブドウエキス、茶葉エキス、柑橘類の果実および葉のエキス、セイヨウキズタエキス、シモツケソウエキス、ラベンダーエキス等。 [Firming agents] Ginkgo biloba extract, arnica extract, red grape extract, tea leaf extract, citrus fruit and leaf extract, Ivy extract, meadowsweet extract, lavender extract, etc.

[刺激緩和剤] セラミド、セラミド類似成分、セラミド合成促進物質(N-アセチルシステイン、ニコチン酸誘導体、酵母エキス)等。 [Irritation reliever] Ceramide, ceramide-like components, ceramide synthesis promoting substances (N-acetylcysteine, nicotinic acid derivatives, yeast extract), etc.

[抗炎症剤] ε-アミノカプロン酸、塩化リゾチーム、グアイアズレン、グリチルレチン酸およびその誘導体、甘草エキス、カミツレエキス、シコンエキス、シソエキス、ソウハクヒエキス、トウキエキス、モモ葉エキス、ポリフェノール含有植物エキス等。 [Anti-inflammatory agents] ε-aminocaproic acid, lysozyme chloride, guaiazulene, glycyrrhetinic acid and its derivatives, licorice extract, chamomile extract, rhododendron extract, perilla extract, sorcery extract, canker extract, peach leaf extract, polyphenol-containing plant extract, etc.

水親和性の機能成分の水への親和性の程度は、特に限定されないが、20℃において水50mlとオレイン酸50mlの2相に分かれた溶液に対象となる有効成分を1g添加した際に、90%以上、好ましくは95%以上、更に好ましくは99%以上が、水中に存在する程度であることが、機能性成分の効力を十分に発揮する上で好ましい。 The degree of affinity for water of a water-friendly functional ingredient is not particularly limited, but when 1 g of the target active ingredient is added to a solution separated into two phases of 50 ml of water and 50 ml of oleic acid at 20°C, It is preferable that 90% or more, preferably 95% or more, and more preferably 99% or more of the functional component be present in water in order to fully exhibit the effectiveness of the functional component.

更に、疎水化金属酸化物エアロゲル粉体への水親和性の機能性成分の融液の担持量の範囲は、通常10~90質量%、好ましくは20~90質量%、更に好ましくは50~90質量%である。当該担持量は多い程水親和性の機能性成分の放出量を確保できるため好ましいが、当該担持量がこの範囲を超えて多い場合には、複合粉体が粉体の性状を保てなくなる可能性がある。 Furthermore, the range of the amount of the melt of the water-compatible functional component supported on the hydrophobized metal oxide airgel powder is usually 10 to 90% by mass, preferably 20 to 90% by mass, and more preferably 50 to 90% by mass. Mass%. The larger the supported amount is, the more preferable it is since the amount of water-compatible functional components released can be ensured, but if the supported amount exceeds this range, the composite powder may not be able to maintain its powder properties. There is sex.

上記粉体の性状を表す指標としては、ホソカワミクロン製のパウダテスタ(PT-X)で篩の目開き(上段より150,75,45μm)、振幅(1mm)、振動時間(60s)にて測定した際の凝集度で表すことができる。この凝集度が、通常90%以下であり、50%以下であることが好ましく、20%以下であることが更に好ましい。 The properties of the above powder are measured using a Hosokawa Micron Powder Tester (PT-X) using sieve openings (150, 75, 45 μm from the top), amplitude (1 mm), and vibration time (60 s). It can be expressed as the degree of cohesion. This degree of aggregation is usually 90% or less, preferably 50% or less, and more preferably 20% or less.

以下、本発明の複合粉体の使用態様を、代表的な使用態様である粉体化粧料を例に挙げて具体的に説明する。 Hereinafter, the usage mode of the composite powder of the present invention will be specifically explained using a powder cosmetic as an example, which is a typical usage mode.

本発明の複合粉体は、粉体化粧料の1成分として配合して使用する場合、その配合量は、粉体化粧料の種類に応じて適宜決定すればよいが、粉体化粧料中に5~50質量%、好ましくは、10~30質量%の割合で存在させることが好ましい。 When the composite powder of the present invention is used as a component of a powder cosmetic, the amount to be blended may be determined as appropriate depending on the type of powder cosmetic. It is preferably present in a proportion of 5 to 50% by weight, preferably 10 to 30% by weight.

また、本発明の複合粉体を配合する粉体化粧料の組成は、公知の組成が特に制限無く採用される。例えばフェイスパウダーの場合、タルク、カオリン、マイカ、セリサイト、硫酸バリウム、炭酸カルシウム、無水ケイ酸、ケイ酸マグネシウム等の体質顔料、酸化チタン、酸化亜鉛等の白色顔料、赤色酸化鉄、黄色酸化鉄、黒色酸化鉄、群青、紺青等の有色顔料、雲母チタン、着色雲母チタン等のパール顔料、ポリエチレンフタレート、ポリエチレン、ナイロン等の高分子等を適宜選択して配合された組成が一般的であり、更に、シリカやポリメタクリル酸メチルなどの増粘剤、安定剤等、ジメチコンなどの処理剤等、さらにコラーゲンやヒアルロン酸等の保湿剤、ハイドロキノンやトラネキサム酸等の美白剤等の添加剤が使用されることもある。 In addition, the composition of the powder cosmetic containing the composite powder of the present invention may be any known composition without any particular limitation. For example, in the case of face powder, extender pigments such as talc, kaolin, mica, sericite, barium sulfate, calcium carbonate, anhydrous silicic acid, magnesium silicate, white pigments such as titanium oxide, zinc oxide, red iron oxide, yellow iron oxide, etc. , colored pigments such as black iron oxide, ultramarine, and navy blue, pearl pigments such as titanium mica and colored titanium mica, and polymers such as polyethylene phthalate, polyethylene, and nylon are generally selected as appropriate. Furthermore, additives such as thickeners and stabilizers such as silica and polymethyl methacrylate, processing agents such as dimethicone, humectants such as collagen and hyaluronic acid, and skin whitening agents such as hydroquinone and tranexamic acid are used. Sometimes.

上記粉体化粧料への複合粉体の配合は、前記成分の粉体同士を乾式混合することにより行うことができる。尚、保湿剤などの液状成分を使用する場合は、予め疎水性粉体と混合し、機能成分を含侵させた状態として上記乾式混合することが好ましい。 The composite powder can be blended into the powder cosmetic by dry mixing the powders of the components. In addition, when using a liquid component such as a humectant, it is preferable to mix it with a hydrophobic powder in advance and dry-mix it in a state in which it is impregnated with a functional component.

前記粉体化粧料が保湿剤などの水親和性の機能性成分をフリーで含有する場合、本発明の複合粉体に担持される水親和性の機能性成分はそれと同じ成分であってもよいが、各成分が粉体状で存在するため、複合粉体に担持した機能成分とフェイスパウダーにフリーで配合された上記水親和性の機能性成分が接触する可能性は低いことから、異なる成分とすることも可能である。 When the powder cosmetic contains a water-friendly functional ingredient such as a humectant free of charge, the water-friendly functional ingredient carried by the composite powder of the present invention may be the same ingredient. However, since each component exists in powder form, there is a low possibility that the functional component supported on the composite powder will come into contact with the above-mentioned water-compatible functional component that is freely blended into the face powder. It is also possible to do this.

本発明の複合粉体を配合したフェイスパウダーは、球状である複合粉体のローリング効果により滑らかな塗り心地が得られ、塗布から長時間経過後も、皮脂を吸収する機能により塗布部位のテカリを抑えつつ、皮脂の吸収と同時に放出される水親和性の機能成分、例えば保湿成分の水溶液により、持続的にスキンケア効果が得られる。 The face powder containing the composite powder of the present invention provides a smooth application feeling due to the rolling effect of the spherical composite powder, and its ability to absorb sebum prevents shine at the application site even after a long period of time has passed since application. The aqueous solution of water-friendly functional ingredients, such as moisturizing ingredients, which is released simultaneously with the absorption of sebum while suppressing sebum, provides a sustained skin care effect.

[複合粉体の製造方法]
本発明の複合粉体の製造方法は特に制限されないが、以下の方法により疎水化金属酸化物エアロゲル粉体を製造し、その後、或いは、その製造過程において水親和性の機能性成分の融液を、疎水化金属酸化物エアロゲル粉体の細孔に担持する方法が挙げられる。
[Method for manufacturing composite powder]
Although the method for producing the composite powder of the present invention is not particularly limited, a hydrophobized metal oxide airgel powder is produced by the following method, and then or during the production process, a melt of a water-philic functional component is added. , a method in which the metal oxide is supported in the pores of a hydrophobized metal oxide airgel powder.

<球状疎水化金属酸化物エアロゲル粉体の製造方法>
本発明に使用する疎水化金属酸化物エアロゲル粉体の製造方法は特に制限されないが、例えば、前記球状の疎水化金属酸化物エアロゲル粉体は、以下に述べる方法により好ましく製造することができる。
<Method for producing spherical hydrophobized metal oxide airgel powder>
Although the method for producing the hydrophobized metal oxide airgel powder used in the present invention is not particularly limited, for example, the spherical hydrophobized metal oxide airgel powder can be preferably produced by the method described below.

即ち、水性の金属酸化物ゾルをW相(水相)とするO/W/O型エマルションもしくはW/O型エマルションを形成させ、その後、該エマルション中で該金属酸化物ゾルをゲル化させ、シリル化処理に代表される疎水化処理を施した後に、疎水性有機溶媒中にゲルを抽出することにより製造することができる。 That is, an O/W/O emulsion or a W/O emulsion having an aqueous metal oxide sol as the W phase (aqueous phase) is formed, and then the metal oxide sol is gelled in the emulsion. It can be produced by extracting the gel into a hydrophobic organic solvent after performing a hydrophobic treatment such as silylation treatment.

上記水性の金属酸化物ゾルは、水性の金属酸化物ゾルの公知の調整方法を適宜選択して実施すればよい(以下、水性の金属酸化物ゾルを単に「金属酸化物ゾル」という)。該金属酸化物ゾル作成の原料としては、金属アルコキシド;ケイ酸アルカリ金属塩等の金属オキソ酸アルカリ金属塩;無機酸又は有機酸の水溶性塩等の各種水溶性金属塩;等を使用することができる。 The aqueous metal oxide sol may be prepared by appropriately selecting a known method for preparing an aqueous metal oxide sol (hereinafter, the aqueous metal oxide sol will be simply referred to as "metal oxide sol"). As raw materials for producing the metal oxide sol, metal alkoxides; alkali metal salts of metal oxoacids such as alkali metal silicates; various water-soluble metal salts such as water-soluble salts of inorganic acids or organic acids; etc. may be used. I can do it.

上記の金属酸化物ゾル作成の原料のなかでも、安価な点でケイ酸アルカリ金属塩を好適に用いることができ、更には入手が容易であるケイ酸ナトリウムが好適である。以下、金属酸化物ゾル作成の原料としてケイ酸ナトリウムを用い、金属酸化物としてシリカを製造する形態を代表例として説明するが、他の金属源を用いた場合でも、公知の方法で水性ゾルの作成及びゲル化を行うことにより、同様にして本発明の疎水化金属酸化物エアロゲル粉体を得ることができる。 Among the raw materials for producing the metal oxide sol described above, alkali metal silicate salts can be suitably used because they are inexpensive, and sodium silicate is more suitable because it is easily available. In the following, a typical example will be explained in which sodium silicate is used as a raw material for producing metal oxide sol, and silica is produced as a metal oxide. However, even when other metal sources are used, known methods can be used to produce aqueous sol By performing the preparation and gelation, the hydrophobized metal oxide airgel powder of the present invention can be obtained in the same manner.

ケイ酸ナトリウム等のケイ酸アルカリ金属塩を用いる場合には、塩酸、硫酸等の鉱酸で中和する方法や、あるいは対イオンが水素イオン(H)とされている陽イオン交換樹脂(以下、「酸型陽イオン交換樹脂」ということがある。)を用いる方法によって、ケイ酸アルカリ金属塩中のアルカリ金属原子を水素原子で置換することで、シリカゾルを調製することができる。 When using an alkali metal silicate such as sodium silicate, neutralization with mineral acids such as hydrochloric acid or sulfuric acid, or cation exchange resin (hereinafter referred to as Silica sol can be prepared by substituting alkali metal atoms in an alkali metal silicate salt with hydrogen atoms by a method using an alkali metal silicate.

上記の方法により作成したシリカゾルの濃度としては、シリカ分の濃度(SiO換算濃度)として50g/L以上とすることが好ましい。その一方で、シリカ粒子の密度を相対的に小さくして、良好な細孔容積を得、また吸油量を多くでき易い点で、160g/L以下とすることが好ましく、100g/L以下とすることがより好ましい。 The concentration of the silica sol prepared by the above method is preferably 50 g/L or more in terms of silica content (SiO 2 equivalent concentration). On the other hand, it is preferably 160 g/L or less, and 100 g/L or less, since the density of the silica particles can be relatively small to obtain a good pore volume and increase oil absorption. It is more preferable.

先ず、上記方法で得られた水性金属酸化物ゾル(ここではシリカゾル)をW相(水相)、水と混和しない液体をO相(有機相)とする、W/O型エマルション、若しくはO/W/O型エマルション(以下、両者を合わせて単にエマルションと呼ぶ場合もある。)を形成する。該エマルションの形成方法としては、公知の方法を適宜選択して実施することができる。そして、分散しているW相の粒径が概ね、金属酸化物粒子の粒径になるため、所望のメジアン径になるように、分散強度、分散時間、界面活性剤の添加量を調整すればよい。 First, a W/O type emulsion or an O/O emulsion is prepared, in which the aqueous metal oxide sol (here, silica sol) obtained by the above method is used as the W phase (aqueous phase), and the liquid immiscible with water is used as the O phase (organic phase). A W/O emulsion (hereinafter, both may be simply referred to as an emulsion) is formed. As a method for forming the emulsion, a known method can be appropriately selected and carried out. Since the particle size of the dispersed W phase is approximately the particle size of the metal oxide particles, the dispersion strength, dispersion time, and amount of surfactant added can be adjusted to obtain the desired median size. good.

上記O/Wエマルションの形成に引き続き、該O/W型エマルションのW相と混和しない溶媒(第2のO相)を用いてO/W/O型のエマルションを形成することもできる。この場合にも、該溶媒に加えてさらに界面活性剤を添加することが好ましい。 Following the formation of the O/W emulsion, an O/W/O emulsion can also be formed using a solvent (second O phase) that is immiscible with the W phase of the O/W emulsion. Also in this case, it is preferable to further add a surfactant in addition to the solvent.

上記のO/W/O型エマルションを形成する際に、水と混和しない液体中にゾルを分散させる方法としては、前述のO/W型エマルションの形成方法を採用すればよい。分散している金属酸化物ゾル(W相)の粒径が概ね、製造される本発明の疎水化金属酸化物エアロゲル粉体を構成する粒子の粒径となる。従って、所望のメジアン粒径になるように、分散強度、分散時間及び界面活性剤の添加量を調整すればよい。すなわち、該ゾルの粒径をレーザー回折式測定による粒度分布におけるメジアン径が1~50μmの範囲にすることが好ましく、1~30μmの範囲にすることがより好ましい。前述のとおり、当該W相の粒径を顕微鏡で観察した場合には1~50μm、特に1~30μmが好ましい。 When forming the above O/W/O type emulsion, the above-described method for forming an O/W type emulsion may be adopted as a method for dispersing the sol in a liquid that is immiscible with water. The particle size of the dispersed metal oxide sol (W phase) is approximately the particle size of the particles constituting the hydrophobized metal oxide airgel powder of the present invention to be produced. Therefore, the dispersion strength, dispersion time, and amount of surfactant added may be adjusted to obtain the desired median particle size. That is, the particle size of the sol is preferably such that the median diameter in the particle size distribution determined by laser diffraction measurement is in the range of 1 to 50 μm, more preferably in the range of 1 to 30 μm. As mentioned above, when the particle size of the W phase is observed under a microscope, it is preferably 1 to 50 μm, particularly 1 to 30 μm.

前述の操作によってエマルションを形成させた後、金属酸化物ゾルのゲル化を行う。当該ゲル化は、エマルションの状態が崩れない限り公知のゲル化の方法を特に制限なく採用できる。 After forming an emulsion by the above-described operation, the metal oxide sol is gelled. For the gelation, any known gelation method can be used without any particular restriction as long as the state of the emulsion is not disrupted.

第1の好ましい方法としては、金属酸化物ゾル形成時にゲル化までの時間がある程度長くなるようにpH調整を行っておく方法を例示できる。すなわち、前述の金属酸化物ゾルの形成時にエマルション形成中はゲル化せず、その後30分程度一定温度で保持することでゲル化が起こる程度のpHに調整しておく方法である。具体的には、各操作を室温において行う場合、シリカ濃度が上記範囲内であれば、pHを2~5の範囲内にしておくことが好ましく、2.5~4.5の範囲内としておくことがより好ましい。 An example of a first preferred method is a method in which the pH is adjusted during formation of the metal oxide sol so that it takes a certain amount of time to gel. That is, in the formation of the metal oxide sol described above, gelation does not occur during emulsion formation, and then the pH is adjusted to such a level that gelation occurs by holding the emulsion at a constant temperature for about 30 minutes. Specifically, when performing each operation at room temperature, if the silica concentration is within the above range, the pH is preferably within the range of 2 to 5, and preferably within the range of 2.5 to 4.5. It is more preferable.

また、第2の好ましい方法としては、エマルションに対して塩基性物質を加えることによって、W相のpHを上昇させて弱酸性ないし塩基性にする方法を例示できる。この場合、金属酸化物ゾルを調製する際に該ゾルが比較的安定である低いpH(0.5~2.5程度)に調製しておくことが好ましい。W相のpHを上昇させる具体的な方法としては、W相が目的のpHになる塩基の量を予め決定しておき、その量の塩基をエマルションに加えることにより行うことが好ましい。目的のpHとなる塩基の量の決定は、エマルションに用いる金属酸化物ゾルを一定量分取し、該分取した金属酸化物ゾルのpHをpHメーターにより測定しながら、ゲル化に用いる塩基を該分取した金属酸化物ゾルに加え、目的のpHが達成される塩基の量を測定することにより、行うことができる。 A second preferred method is a method of increasing the pH of the W phase to make it weakly acidic or basic by adding a basic substance to the emulsion. In this case, when preparing the metal oxide sol, it is preferable to adjust the pH to a low level (about 0.5 to 2.5) so that the sol is relatively stable. As a specific method for increasing the pH of the W phase, it is preferable to determine in advance the amount of base that will bring the W phase to the desired pH, and to add that amount of base to the emulsion. To determine the amount of base that will give the desired pH, take a certain amount of the metal oxide sol used for the emulsion, measure the pH of the separated metal oxide sol with a pH meter, and add the base used for gelation. This can be done by measuring the amount of base that achieves the desired pH in addition to the fractionated metal oxide sol.

尚、塩基性物質としては、例えばアンモニア、苛性ソーダ、アルカリ金属ケイ酸塩等が挙げられる。 Note that examples of the basic substance include ammonia, caustic soda, and alkali metal silicates.

上記のゲル化にかかる時間は、温度やシリカゾルの濃度にもよるが、pH5、温度50℃、シリカゾル中のシリカ濃度(SiO換算)が80g/Lの場合には、数分後にはゲル化が起こる。 The time required for the gelation described above depends on the temperature and concentration of the silica sol, but when the pH is 5, the temperature is 50°C, and the silica concentration in the silica sol is 80g/L (SiO 2 equivalent), the gelation will occur after a few minutes. happens.

上記方法に次いで、前記分散溶媒をO相とW相の2層に分離する操作を行う。この操作は、一般的には解乳とも呼ばれている操作であり、上記方法により得られるゲル化体は、分離して得られたW相側に存在している。 Following the above method, an operation is performed to separate the dispersion solvent into two layers, an O phase and a W phase. This operation is generally referred to as defrosting, and the gelled product obtained by the above method is present on the W phase side obtained by separation.

当該W相分離方法としては、公知の方法を採用することが可能であるが、具体的には、水溶性有機溶媒の添加、塩の添加、遠心力の付与、酸の添加、濾過、容積比の変化(水又は疎水性溶媒の添加)等から選ばれる一つ、あるいは複数を組み合わせて実施することができる。好適には、一定量の水溶性有機溶媒をエマルション中に加えてO相とW相の2層に分離することができる。この工程を経ると、一般に、上層がO相(有機層)、下層がW相(水層)となる。 As the W phase separation method, it is possible to adopt a known method, but specifically, addition of a water-soluble organic solvent, addition of a salt, application of centrifugal force, addition of an acid, filtration, volume ratio. (addition of water or a hydrophobic solvent), etc., or a combination of them can be carried out. Preferably, a certain amount of a water-soluble organic solvent is added to the emulsion to separate it into two layers, an O phase and a W phase. After this step, the upper layer generally becomes an O phase (organic layer) and the lower layer becomes a W phase (aqueous layer).

上記の水溶性有機溶媒としては、アセトン、メタノール、エタノール、イソプロピルアルコール等が挙げられる。このうち、イソプロピルアルコールは、後述のシリル化処理の際にも、処理の効率を高める上で効果があるため、好適に用いることができる。
本発明の疎水化金属酸化物エアロゲル粉体を構成する粒子を高強度にするという観点から、解乳後に0.5~24時間程度、熟成(エージング(aging))を行うことによってゲル化反応(脱水縮合反応)をさらに進行させることも好ましい。当該熟成は室温~80℃程度で保持することによって行うことができる。
Examples of the water-soluble organic solvent include acetone, methanol, ethanol, isopropyl alcohol, and the like. Among these, isopropyl alcohol can be preferably used in the silylation treatment described below since it is effective in increasing the efficiency of the treatment.
From the viewpoint of increasing the strength of the particles constituting the hydrophobized metal oxide airgel powder of the present invention, gelation reaction (aging) is carried out for about 0.5 to 24 hours after milking. It is also preferable to allow the dehydration condensation reaction to proceed further. The ripening can be carried out by maintaining the temperature between room temperature and about 80°C.

引き続き行われるゲル化体のシリル化処理の処理効率を向上させるため、上記操作で得られたO相とW相の2層分離液から、例えば、デカンテーション等によりO相を除去し、W相を回収することができる。 In order to improve the processing efficiency of the subsequent silylation treatment of the gelled product, the O phase is removed by decantation etc. from the two-layer separated liquid of O phase and W phase obtained in the above operation, and the W phase is can be recovered.

本発明において、疎水化金属酸化物エアロゲル粉体を得るため、上記W相を分離後、シリル化剤を用いてゲル化体をシリル化処理する。使用されるシリル化剤としては金属酸化物(ここではシリカである。)表面に存在するヒドロキシ基と反応して該表面に疎水基を付与する公知のシリルカ剤が特に制限無く使用される。 In the present invention, in order to obtain a hydrophobized metal oxide airgel powder, after separating the W phase, the gelled product is silylated using a silylating agent. As the silylating agent to be used, any known silyl agent that reacts with the hydroxyl group present on the surface of the metal oxide (silica in this case) to impart a hydrophobic group to the surface can be used without particular limitation.

上記のシリル化剤を具体的に示せば、クロロトリメチルシラン、ジクロロジメチルシラン、トリクロロメチルシラン等のクロロシラン類、モノメチルトリメトキシシラン、モノメチルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン等のシラザン類、ヘキサメチルシロキサン、オクタメチルトリシロキサン等のシロキサン類、シロキサンオクタメチルシクロテトラシラザン、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等の環状シロキサンなどが挙げられる。そのうち、反応性が良好である点で、クロロトリメチルシラン、ジクロロジメチルシラン、トリクロロメチルシラン、オクタメチルシクロテトラシロキサン、ヘキサメチルジシラザン、ヘキサメチルジシロキサンが特に好ましい。 Specifically, the above silylating agents include chlorosilanes such as chlorotrimethylsilane, dichlorodimethylsilane, and trichloromethylsilane, alkoxysilanes such as monomethyltrimethoxysilane and monomethyltriethoxysilane, hexamethyldisilazane, and hexamethyl Silazane such as cyclotrisilazane, siloxane such as hexamethylsiloxane, octamethyltrisiloxane, cyclic siloxane such as siloxane octamethylcyclotetrasilazane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, etc. can be mentioned. Among them, chlorotrimethylsilane, dichlorodimethylsilane, trichloromethylsilane, octamethylcyclotetrasiloxane, hexamethyldisilazane, and hexamethyldisiloxane are particularly preferred in terms of good reactivity.

このようなシリル化剤を用いてシリル化処理を行うことにより、金属酸化物表面のヒドロキシ基が疎水性のシリル基でエンドキャッピングされて不活性化されるので、表面ヒドロキシ基相互間での脱水縮合反応を抑制できる。よって、臨界点未満の条件で乾燥を行っても乾燥収縮を抑制できるので、0.5L/g以上、特に2mL/g以上の細孔容積を有する疎水化金属酸化物エアロゲル粉体を得ることが可能になる。 By performing silylation treatment using such a silylation agent, the hydroxyl groups on the surface of the metal oxide are end-capped with hydrophobic silyl groups and inactivated, so that dehydration between surface hydroxyl groups can occur. Condensation reactions can be suppressed. Therefore, drying shrinkage can be suppressed even when drying is performed under conditions below the critical point, so it is possible to obtain a hydrophobized metal oxide airgel powder having a pore volume of 0.5 L/g or more, particularly 2 mL/g or more. It becomes possible.

上記のシリル化処理の際に使用する処理剤の量としては、処理剤の種類にもよるが、例えば金属酸化物がシリカであり、ジメチルジクロロシランを処理剤として用いる場合には、金属酸化物(シリカ)100重量部に対して30~150重量部が好適である。 The amount of treatment agent used in the above silylation treatment depends on the type of treatment agent, but for example, if the metal oxide is silica and dimethyldichlorosilane is used as the treatment agent, the metal oxide (Silica) 30 to 150 parts by weight per 100 parts by weight is suitable.

上記のシリル化処理の条件は、上記解乳操作で分離したW相に対して、シリル化処理剤を加え、一定時間反応させることにより行うことができる。例えば金属酸化物がシリカであり、シリル化処理剤としてジメチルジクロロシランを用い、処理温度を50℃とした場合には、4~12時間程度以上保持することで行うことでき、また、ヘキサメチルジシロキサンを用い、処理温度を70℃とした場合には6~12時間程度以上保持することで行うことができる。 The conditions for the silylation treatment described above can be carried out by adding a silylation treatment agent to the W phase separated in the demulsification operation and allowing the mixture to react for a certain period of time. For example, when the metal oxide is silica, dimethyldichlorosilane is used as the silylation treatment agent, and the treatment temperature is 50°C, the treatment can be carried out by holding it for about 4 to 12 hours or more. When siloxane is used and the treatment temperature is 70° C., the treatment can be carried out by holding the treatment for about 6 to 12 hours or more.

また、シリル化処理剤としてオクタメチルシロクテトラシロキサン等の環状シロキサン類やヘキサメチルジシロキサン等のシロキサンを用いる場合には、塩酸を添加することで溶液のpHを0.3~1.0とすることが、反応の効率を高める上で好ましい。 In addition, when using cyclic siloxanes such as octamethylsiloctetrasiloxane or siloxanes such as hexamethyldisiloxane as the silylation treatment agent, the pH of the solution is adjusted to 0.3 to 1.0 by adding hydrochloric acid. This is preferable in terms of increasing reaction efficiency.

当該シリル化処理工程においては、W相中への処理剤の溶解度を高めて、反応の効率を高める目的で、水溶性有機溶媒を加えることが好ましい。この水溶性有機溶媒としては、アセトン、メタノール、エタノール、イソプロピルアルコール等が挙げられる。このうち、イソプロピルアルコールを好適に用いることができる。 In the silylation treatment step, a water-soluble organic solvent is preferably added for the purpose of increasing the solubility of the treatment agent in the W phase and increasing the efficiency of the reaction. Examples of the water-soluble organic solvent include acetone, methanol, ethanol, isopropyl alcohol, and the like. Among these, isopropyl alcohol can be preferably used.

上記水溶性有機溶媒は、W相中の濃度が、20~80質量%程度になるように加えることが好ましい。 The water-soluble organic solvent is preferably added so that the concentration in the W phase is approximately 20 to 80% by mass.

上記シリル化処理の後にゲル化体を疎水性有機溶媒中に抽出する。ゲル化体抽出に用いる疎水性有機溶媒の選定基準としては、後の乾燥工程の際、乾燥収縮を起こさないために表面張力が小さいことが挙げられる。具体的にはヘキサン、ヘプタン、ジクロロメタン、メチルエチルケトン、トルエン等を用いることができ、好適にはヘキサン、ヘプタン、トルエンを用いることが出来る。 After the silylation treatment, the gelled product is extracted into a hydrophobic organic solvent. The criteria for selecting a hydrophobic organic solvent for use in extracting the gelled product is that it should have a low surface tension so as not to cause drying shrinkage during the subsequent drying step. Specifically, hexane, heptane, dichloromethane, methyl ethyl ketone, toluene, etc. can be used, and preferably hexane, heptane, toluene can be used.

上記の疎水性有機溶媒への抽出を行った後に、ゲル化体に含まれる塩分や、疎水性有機溶媒中に含まれる硫酸塩等を除去するために、当該有機溶媒を水或いはアルコールの水溶液で洗浄を行うことが好ましい。この洗浄操作は、公知の方法で行うことができる。洗浄効率を上げる上では、数十質量%程度のイソプロピルアルコールの水溶液を用いることが好ましい。また、疎水性有機溶媒の沸点を超えない範囲で、高温にすることが洗浄効率を高める上では好ましい。通常は、50~70℃の範囲で行うことができる。 After extraction into the hydrophobic organic solvent described above, in order to remove salts contained in the gelled product and sulfates contained in the hydrophobic organic solvent, the organic solvent is diluted with water or an aqueous alcohol solution. It is preferable to perform washing. This washing operation can be performed by a known method. In order to increase the cleaning efficiency, it is preferable to use an aqueous solution of isopropyl alcohol of about several tens of mass %. Further, in order to improve the cleaning efficiency, it is preferable to raise the temperature to a high temperature within a range that does not exceed the boiling point of the hydrophobic organic solvent. Usually, it can be carried out at a temperature in the range of 50 to 70°C.

上記ゲル化体抽出を行った後、疎水性有機溶媒に分散しているゲルを濾別等により溶媒と分離し、疎水性有機溶媒を除去(すなわち乾燥)する。乾燥する際の温度は、溶媒の沸点以上で、表面処理剤の分解温度以下であることが好ましく、圧力は常圧ないし減圧下で行うことが好ましい。 After performing the gelled product extraction described above, the gel dispersed in the hydrophobic organic solvent is separated from the solvent by filtration or the like, and the hydrophobic organic solvent is removed (ie, dried). The temperature during drying is preferably higher than the boiling point of the solvent and lower than the decomposition temperature of the surface treatment agent, and the pressure is preferably normal pressure to reduced pressure.

以上の方法を行うことにより、疎水化金属酸化物エアロゲル粉体を得ることができる。 By performing the above method, a hydrophobized metal oxide airgel powder can be obtained.

上記疎水化金属酸化物エアロゲル粉体の製造方法は、例えば、特開2014-218433号公報に詳細に記載されており、かかる方法に準じて目的とする疎水化金属酸化物エアロゲル粉体を製造すればよい。 The method for producing the hydrophobized metal oxide airgel powder is described in detail in, for example, JP-A-2014-218433, and the desired hydrophobized metal oxide airgel powder can be produced according to this method. Bye.

本発明において、前記方法によって得られる疎水化金属酸化物エアロゲル粉体に水親和性の機能性成分を担持させる方法は特に制限されない。代表的な方法を例示すれば、次の方法が挙げられる。 In the present invention, there is no particular restriction on the method for supporting a water-affinity functional component on the hydrophobized metal oxide airgel powder obtained by the above method. Typical examples include the following methods.

一つの態様としては、前記乾燥処理により得られた疎水化金属酸化物エアロゲル粉体を、水親和性の機能性成分を含むアルコールなどの極性有機溶媒に分散させることにより、極性有機溶媒と共に水親和性の機能性成分を疎水化金属酸化物エアロゲル粉体の細孔内に浸透させた後、濾別、乾燥により極性溶媒を除去する方法が挙げられる。上記方法により、細孔内に水親和性の機能性成分の融液が担持された複合粉体が得られる。 In one embodiment, the hydrophobized metal oxide airgel powder obtained by the drying process is dispersed in a polar organic solvent such as alcohol that contains a water-friendly functional component, so that the water-friendly metal oxide airgel powder is dispersed together with the polar organic solvent. An example of this method is to infiltrate a polar functional component into the pores of the hydrophobized metal oxide airgel powder, and then remove the polar solvent by filtration and drying. By the above method, a composite powder in which a melt of a water-compatible functional component is supported in the pores can be obtained.

他の態様としては、前記製造方法におけるシリル化処理後、乾燥することなく、疎水化金属酸化物エアロゲル粉体を水親和性の機能性成分を溶解し得る有機溶媒に分散させ、これに水親和性の機能性成分を混合溶解して、疎水化金属酸化物エアロゲル粉体の細孔に上記水親和性の機能性成分を含有する有機溶媒を浸透させた後、濾別し、乾燥する方法が挙げられる。この方法によっても、水親和性の機能性成分の融液が細孔内に担持された疎水化金属酸化物エアロゲル粉体よりなる複合粉体を得ることができる。 In another embodiment, after the silylation treatment in the above production method, the hydrophobized metal oxide airgel powder is dispersed in an organic solvent capable of dissolving water-compatible functional components without drying, and the water-compatible functional components are dispersed in the organic solvent. There is a method of mixing and dissolving the water-friendly functional ingredients, infiltrating the pores of the hydrophobized metal oxide airgel powder with an organic solvent containing the water-friendly functional ingredients, and then filtering and drying. Can be mentioned. Also by this method, it is possible to obtain a composite powder consisting of a hydrophobized metal oxide airgel powder in which a melt of a water-affinity functional component is supported within the pores.

上記方法によれば、一連の製造工程において、乾燥時に水が存在しないことにより、得られる乾燥粉体の固着が効果的に防止され、高い流動性を有する粉体となる。 According to the above method, the absence of water during drying in a series of manufacturing steps effectively prevents the resulting dry powder from sticking, resulting in a powder with high fluidity.

また、乾燥時に水が存在しないことにより、水が存在する系では加水分解されやすく不安定である成分、例えばビタミンAやビタミンCなどを安定に配合することが容易になる。 Furthermore, the absence of water during drying makes it easy to stably incorporate ingredients that are easily hydrolyzed and unstable in systems where water is present, such as vitamin A and vitamin C.

本発明の複合粉体は、融液が吸湿性の場合に多少の吸湿が起きることに備えて、透湿性の低い容器に充填することが好ましい。ただし、吸湿した場合においても粉体としての流動性が損なわれることは無い。 The composite powder of the present invention is preferably packed in a container with low moisture permeability in case the melt is hygroscopic, in preparation for some moisture absorption. However, even when it absorbs moisture, its fluidity as a powder is not impaired.

尚、上記態様における疎水性金属酸化物エアロゲル粉体の物性は、得られた複合粉体をヘプタン中に分散させることで、細孔内の担持物をヘプタン中に抽出し、その後、ヘプタンを除去して乾燥することで、疎水性金属酸化物エアロゲル粉体とし、上記粉体について比表面積、細孔容積等の測定を行うことで確認することができる。 In addition, the physical properties of the hydrophobic metal oxide airgel powder in the above embodiment are such that by dispersing the obtained composite powder in heptane, the supported substances in the pores are extracted into heptane, and then the heptane is removed. By drying, a hydrophobic metal oxide airgel powder is obtained, and the powder can be confirmed by measuring the specific surface area, pore volume, etc. of the powder.

以下、本発明を具体的に説明するため、実施例を示すが、本発明はこれらの実施例のみに制限されるものではない。実施例及び比較例において、洗浄水の電気伝導度の測定は、電気伝導度計により行った。また、実施例及び比較例において得られた複合粉体のグリセリン濃度は、エタノールに抽出後、ガスクロマトグラフィーにより測定した。複合粉体の水分量はカールフィッシャールフィッシャー法により測定した。 EXAMPLES Hereinafter, Examples will be shown to specifically explain the present invention, but the present invention is not limited only to these Examples. In Examples and Comparative Examples, the electrical conductivity of the wash water was measured using an electrical conductivity meter. Furthermore, the glycerin concentration of the composite powders obtained in Examples and Comparative Examples was measured by gas chromatography after extraction with ethanol. The moisture content of the composite powder was measured by the Karl Fischer method.

<評価方法>
実施例及び比較例で製造した疎水化金属酸化物エアロゲル粉体及び複合粉体に対して、以下の項目について試験を行った。
<Evaluation method>
The hydrophobized metal oxide airgel powders and composite powders produced in Examples and Comparative Examples were tested for the following items.

(平均円形度の測定)
2000個以上の疎水化金属酸化物エアロゲル粉体粒子についてSEM(日立ハイテクノロジーズ製S-5500、加速電圧3.0kV、二次電子検出)を用いて倍率1000倍で観察したSEM像を画像解析し、上述の定義に従って平均円形度を算出した。
(Measurement of average circularity)
Image analysis was performed on SEM images of more than 2000 hydrophobized metal oxide airgel powder particles observed at a magnification of 1000 times using a SEM (S-5500 manufactured by Hitachi High Technologies, acceleration voltage 3.0 kV, secondary electron detection). , the average circularity was calculated according to the definition above.

(レーザー回折による粒度分布、メジアン径の測定)
40mlのエタノールに対して当該疎水化金属酸化物エアロゲル粉体を0.3g添加し、シャープマニュファクチュアリング株式会社製の超音波洗浄機UT-105Sを用いて、出力100wで5分間分散させた。尚、上記分散は、外径35mmΦ、容量50mlのラボランスクリュー管瓶を使用し、適正量の水を入れた洗浄槽内に設置して行った。
(Measurement of particle size distribution and median diameter by laser diffraction)
0.3 g of the hydrophobized metal oxide airgel powder was added to 40 ml of ethanol, and dispersed for 5 minutes at an output of 100 W using an ultrasonic cleaner UT-105S manufactured by Sharp Manufacturing Co., Ltd. The above-mentioned dispersion was carried out using a Labouran screw tube bottle with an outer diameter of 35 mmΦ and a capacity of 50 ml, which was placed in a washing tank containing an appropriate amount of water.

その分散液の粒度分布を日揮装置株式会社社製 Microtrac MT3000を用いて測定を行った。溶媒の屈折率は1.38とし、粒子の屈折率は1.46とした。得られた粒度分布から、体積分布に対するメジアン径を評価した。 The particle size distribution of the dispersion liquid was measured using Microtrac MT3000 manufactured by JGC Instruments Co., Ltd. The refractive index of the solvent was 1.38 and the refractive index of the particles was 1.46. From the obtained particle size distribution, the median diameter with respect to the volume distribution was evaluated.

(その他の物性値の測定)
BET比表面積、及びBJH細孔容積の測定は、上述の定義に従って日本ベル株式会社製BELSORP-maxにより行った。吸油量の測定は、JIS K5101-13-1に規定されている「精製あまに油法」により行った。
(Measurement of other physical property values)
The BET specific surface area and BJH pore volume were measured using BELSORP-max manufactured by Bell Japan Co., Ltd. according to the above definitions. The oil absorption was measured by the "refined linseed oil method" specified in JIS K5101-13-1.

(複合粉体の皮脂との接触試験)
複合粉体の機能を確認するために、実施例、比較例において得られた複合粉体を用いて、以下の試験を行った。複合粉体1gにエタノール10g添加し、撹拌子を用いて1000rpmで30分間混合し、複合粉体に坦持したグリセリンをエタノールに抽出した。0.45μmのフィルターで濾別し、エタノール中のグリセリン濃度をガスクロマトグラフィーにより測定することで複合粉体のグリセリン濃度を算出し、この値を接触試験の初期値とした。次に、複合粉体1gにオレイン酸6gを添加し十分に混合した。さらに精製水6gを加えて、複合粉体から放出されたグリセリンを精製水に抽出した。水層を0.45μmのフィルターで濾別後、水層中のグリセリン濃度をガスクロマトグラフィーにより測定し、初期値との比により放出率rを算出した。
(Contact test of composite powder with sebum)
In order to confirm the function of the composite powder, the following tests were conducted using the composite powder obtained in Examples and Comparative Examples. 10 g of ethanol was added to 1 g of the composite powder and mixed for 30 minutes at 1000 rpm using a stirrer to extract the glycerin supported on the composite powder into ethanol. The glycerin concentration of the composite powder was calculated by filtering it with a 0.45 μm filter and measuring the glycerin concentration in the ethanol by gas chromatography, and this value was used as the initial value for the contact test. Next, 6 g of oleic acid was added to 1 g of the composite powder and thoroughly mixed. Further, 6 g of purified water was added to extract the glycerin released from the composite powder into the purified water. After the aqueous layer was filtered through a 0.45 μm filter, the glycerin concentration in the aqueous layer was measured by gas chromatography, and the release rate r was calculated from the ratio to the initial value.

また、トラネキサム酸を担持した複合粉体については、複合粉体1gにエタノール10g添加し、撹拌子を用いて1000rpmで30分間混合し、複合粉体に坦持したグリセリンをエタノールに抽出した。0.45μmのフィルターで濾別し、エタノール中のトラネキサム酸濃度をHPLCにより測定することで、複合粉体のHPLC濃度を算出し、この値を接触試験の初期値とした。次に、複合粉体1gに、オレイン酸6gを添加し十分に混合後、精製水6gを加えて、複合粉体から放出された水親和性の機能成分を精製水に抽出した。水層中のトラネキサム酸はHPLCにて測定し、初期値との比により放出率rを算出した。 Regarding the composite powder supporting tranexamic acid, 10 g of ethanol was added to 1 g of the composite powder, and the mixture was mixed using a stirrer at 1000 rpm for 30 minutes to extract the glycerin supported on the composite powder into ethanol. The HPLC concentration of the composite powder was calculated by filtering it with a 0.45 μm filter and measuring the tranexamic acid concentration in ethanol by HPLC, and this value was used as the initial value for the contact test. Next, 6 g of oleic acid was added to 1 g of the composite powder, and after thorough mixing, 6 g of purified water was added to extract the water-compatible functional component released from the composite powder into the purified water. Tranexamic acid in the aqueous layer was measured by HPLC, and the release rate r was calculated from the ratio to the initial value.

(複合粉体の官能評価)
実施例、比較例において得られた複合粉体を75メッシュのふるいを通した後、容器に担持した。次に、試験者10名により、得られた複合粉体を実際に顔に塗布してもらい、塗布時の「滑らかさ」、「ソフトフォーカス効果」、「ひんやり感」、塗布後の「テカリの無さ」「しっとり感」について評価した。
(Sensory evaluation of composite powder)
The composite powders obtained in Examples and Comparative Examples were passed through a 75-mesh sieve and then supported in a container. Next, 10 testers actually applied the obtained composite powder to their faces. Evaluations were made regarding "freeness" and "moist feeling."

<実施例1>
以下の方法により、疎水化金属酸化物エアロゲル粉体を製造した。
<Example 1>
Hydrophobized metal oxide airgel powder was manufactured by the following method.

SiO:191g/L、NaO:62g/Lの濃度のケイ酸ソーダの溶液を調整した。また、88g/Lに濃度調整した硫酸を準備した。pH3になるように、上記調製したケイ酸ソーダに硫酸を加えて、SiO:80g/Lのシリカゾルを調製した。このシリカゾル108gを分取し、160mlのヘプタンを加え、ソルビタンモノオレエートを1.2g添加し、ホモジナイザー(IKA製、T25DS1)を用いて、9000回転/分の条件で2.5分間攪拌することで、O/Wエマルションを形成させた。 A sodium silicate solution having a concentration of 191 g/L for SiO 2 and 62 g/L for Na 2 O was prepared. In addition, sulfuric acid whose concentration was adjusted to 88 g/L was prepared. Sulfuric acid was added to the sodium silicate prepared above to adjust the pH to 3 to prepare a silica sol containing 80 g/L of SiO 2 . Separate 108 g of this silica sol, add 160 ml of heptane, add 1.2 g of sorbitan monooleate, and stir for 2.5 minutes at 9000 rpm using a homogenizer (manufactured by IKA, T25DS1). An O/W emulsion was formed.

70℃の恒温槽内で撹拌羽を使用して1時間撹拌し、水性シリカゾルをゲル化させた。
イソプロピルアルコールを40g、イオン交換水を60g加えて攪拌羽で攪拌し、同時に2%水酸化ナトリウムを2.5g加えて、2.5時間W相を熟成させた。その後、静置することによりO相を上層、W相を下層とする2層に分離した。
The aqueous silica sol was stirred for 1 hour using a stirring blade in a constant temperature bath at 70°C to gelatinize the aqueous silica sol.
40 g of isopropyl alcohol and 60 g of ion-exchanged water were added and stirred with a stirring blade, and at the same time, 2.5 g of 2% sodium hydroxide was added to age the W phase for 2.5 hours. Thereafter, by allowing the mixture to stand still, it was separated into two layers, the O phase as an upper layer and the W phase as a lower layer.

デカンテーションにより、上層のO相を除去することで、下層のW相を回収した。 By removing the upper O phase by decantation, the lower W phase was recovered.

得られたW相に、イソプロピルアルコール30g,イオン交換水45g、ヘキサメチルジシロキサンを6g、35%塩酸を25g添加し、攪拌しながら70℃のウォーターバスで12時間以上保持することにより、シリル化処理を行った。 To the obtained W phase, 30 g of isopropyl alcohol, 45 g of ion-exchanged water, 6 g of hexamethyldisiloxane, and 25 g of 35% hydrochloric acid were added, and the mixture was kept in a water bath at 70° C. for 12 hours or more while stirring to perform silylation. processed.

上記処理後、48%水酸化ナトリウムを18.5g、イオン交換水18.5g加え、攪拌羽で攪拌しながら30分間中和処理を行った。 After the above treatment, 18.5 g of 48% sodium hydroxide and 18.5 g of ion-exchanged water were added, and neutralization treatment was performed for 30 minutes while stirring with a stirring blade.

シリル化処理後、撹拌羽で撹拌しながら ヘプタン100mLを加え、ゲル化体を抽出し、イオン交換水100mLで3回洗浄を行った。得られたシリル化後のゲル化体を吸引濾過機により濾別した。ゲル化体の乾燥を常圧下、窒素を流通させながら行うことにより、本発明の疎水化金属酸化物エアロゲル粉体を得た。乾燥の温度及び時間は150℃で12時間とした。得られたエアロゲル粉体10gにイソプロピルアルコール100g加えて、疎水化金属エアロゲル粉体を分散させた。さらにグリセリン10gを加えた後、ロータリーエバポレーターを用いて温度70℃、真空度100hpa以下としてイソプロピルアルコールおよび水を除去し、疎水化金属酸化物エアロゲル粉体が47量%、グリセリン52質量%、水1質量%の複合粉体を得た。この複合粉体は、疎水化金属酸化物エアロゲル粉体と同等の流動性を維持した。 After the silylation treatment, 100 mL of heptane was added while stirring with a stirring blade to extract the gelled product, and the gel was washed three times with 100 mL of ion-exchanged water. The resulting gelled product after silylation was filtered off using a suction filter. The hydrophobized metal oxide airgel powder of the present invention was obtained by drying the gelled product under normal pressure while flowing nitrogen. The drying temperature and time were 150° C. for 12 hours. 100 g of isopropyl alcohol was added to 10 g of the obtained airgel powder to disperse the hydrophobized metal airgel powder. After further adding 10 g of glycerin, isopropyl alcohol and water were removed using a rotary evaporator at a temperature of 70°C and a vacuum of 100 hpa or less, and the hydrophobized metal oxide airgel powder was 47% by mass, 52% by mass of glycerin, and 1% by mass of water. A composite powder of % by mass was obtained. This composite powder maintained fluidity comparable to that of the hydrophobized metal oxide airgel powder.

また、その複合粉体をヘプタンに抽出後、ヘプタンを乾燥させることで得られた疎水化金属酸化物エアロゲル粉体の物性を及び複合粉体の物性を表1に示す。 Further, Table 1 shows the physical properties of the hydrophobized metal oxide airgel powder obtained by extracting the composite powder into heptane and then drying the heptane, and the physical properties of the composite powder.

得られた複合粉体の皮脂との接触試験を実施した結果、放出率r=100%となり、皮脂との接触により、細孔への皮脂の確実な吸収と共に、細孔内に担持された水親和性の機能性成分の放出を確実に行うことができた。 As a result of conducting a contact test of the obtained composite powder with sebum, the release rate r = 100%, and due to contact with sebum, the sebum is surely absorbed into the pores, and the water supported in the pores is We were able to reliably release the compatible functional ingredients.

また、上記複合粉体を顔面に塗布した結果、滑らかな感触で、ソフトフォーカス効果が高く、塗布後にテカリが生じないのに、しっとり感が得られ、使用感は良好であることが認められた。 In addition, when the above composite powder was applied to the face, it was found to have a smooth feel, a high soft focus effect, and a moisturized feeling without causing shine after application, giving a good feeling of use. .

<実施例2>
実施例1のシリル化処理におけるシリル化剤の使用量を4gとしてシリル化処理後、48%水酸化ナトリウムを18.5g、イオン交換水18.5g加え、攪拌羽で攪拌しながら30分間中和処理を行った。その後、硫酸塩等を除去するためにイオン交換水100mLで3回洗浄後し、濾別した。得られた湿潤ケーク50gに、IPA400g、グリセリン2.5gを加えた後、ロータリーエバポレーターを用いて温度70℃、真空度100hpa以下としてIPAおよび水を除去し、疎水化金属酸化物エアロゲル粉体が19質量%、グリセリン80質量%、水1質量%の複合粉体を得た。
また、その複合粉体をヘプタンに抽出後、ヘプタンを乾燥させることで得られた疎水化金属酸化物エアロゲル粉体の物性を及び複合粉体の物性を表1に示す。
<Example 2>
The amount of silylating agent used in the silylation treatment of Example 1 was 4 g, and after the silylation treatment, 18.5 g of 48% sodium hydroxide and 18.5 g of ion-exchanged water were added, and neutralized for 30 minutes while stirring with a stirring blade. processed. Thereafter, in order to remove sulfates and the like, the mixture was washed three times with 100 mL of ion-exchanged water, and then filtered. After adding 400 g of IPA and 2.5 g of glycerin to 50 g of the obtained wet cake, IPA and water were removed using a rotary evaporator at a temperature of 70°C and a vacuum of 100 hpa or less, and the hydrophobized metal oxide airgel powder was A composite powder containing 80% by mass of glycerin and 1% by mass of water was obtained.
Further, Table 1 shows the physical properties of the hydrophobized metal oxide airgel powder obtained by extracting the composite powder into heptane and then drying the heptane, and the physical properties of the composite powder.

得られた複合粉体の皮脂との接触試験を実施した結果、放出率r=94%となり、皮脂との接触により、細孔への皮脂の確実な吸収と共に、細孔内に担持された水親和性の機能性成分の放出を確実に行うことができた。 As a result of conducting a contact test of the obtained composite powder with sebum, the release rate r = 94%, and due to contact with sebum, the sebum was surely absorbed into the pores, and the water supported in the pores was We were able to reliably release the compatible functional ingredients.

また、上記複合粉体を顔面に塗布した結果、ソフトフォーカス効果が高く、テカらないのに肌上がしっとりし、使用感は良好であった。 Furthermore, when the above composite powder was applied to the face, the soft focus effect was high, the skin was moisturized without shine, and the feeling of use was good.

<実施例3>
実施例1の方法で得られたM値が47の疎水化金属酸化物エアロゲル粉体10gにイソプロピルアルコール100g、グリセリン2gを加えた後、ロータリーエバポレーターを用いて温度70℃、真空度50hpa以下としてIPAおよび水を除去し、疎水化金属酸化物エアロゲル粉体が83質量%、グリセリン16質量%、水1質量%の複合粉体を得た。
<Example 3>
After adding 100 g of isopropyl alcohol and 2 g of glycerin to 10 g of the hydrophobized metal oxide airgel powder with an M value of 47 obtained by the method of Example 1, IPA was added using a rotary evaporator at a temperature of 70° C. and a vacuum of 50 hpa or less. And water was removed to obtain a composite powder containing 83% by mass of hydrophobized metal oxide airgel powder, 16% by mass of glycerin, and 1% by mass of water.

得られた複合粉体の皮脂との接触試験を実施した結果、放出率r=98%となり、皮脂との接触により、細孔への皮脂の確実な吸収と共に、細孔内に担持された水親和性の機能性成分の放出を確実に行うことができた。 As a result of conducting a contact test of the obtained composite powder with sebum, the release rate r = 98%, and due to contact with sebum, the sebum is surely absorbed into the pores, and the water supported in the pores is We were able to reliably release the compatible functional ingredients.

また、上記複合粉体を顔面に塗布した結果、滑らかな感触で、ソフトフォーカス効果が高く、テカらないのに肌上がしっとりし、使用感は良好であった。 Furthermore, when the above composite powder was applied to the face, it had a smooth feel, had a high soft focus effect, was not shiny, but had a moisturizing effect on the skin, and had a good feeling of use.

<実施例4>
実施例1の方法で得られたM値が47の疎水化金属酸化物エアロゲル粉体5gにイソプロピルアルコール50g、グリセリン5g、表3記載の処方により調製したパウダーファンデーション40gを加えた。その後、ロータリーエバポレーターを用いて温度70℃、真空度50hpa以下としてIPAを除去し、疎水化金属酸化物エアロゲル粉体が10質量%、グリセリン78質量%、その他の粉体11質量%、水1質量%のパウダーファンデーションを得た。
<Example 4>
To 5 g of the hydrophobized metal oxide airgel powder with an M value of 47 obtained by the method of Example 1, 50 g of isopropyl alcohol, 5 g of glycerin, and 40 g of a powder foundation prepared according to the formulation shown in Table 3 were added. After that, IPA was removed using a rotary evaporator at a temperature of 70°C and a vacuum of 50 hpa or less, and the hydrophobized metal oxide airgel powder was 10% by mass, glycerin 78% by mass, other powders 11% by mass, and water 1%. % powder foundation was obtained.

得られた複合粉体の皮脂との接触試験を実施した結果、放出率r=99%となり、皮脂との接触により、細孔への皮脂の確実な吸収と共に、細孔内に担持された水親和性の機能性成分の放出を確実に行うことができた。 As a result of conducting a contact test with sebum of the obtained composite powder, the release rate r = 99%, and due to contact with sebum, the sebum is surely absorbed into the pores, and the water supported in the pores is We were able to reliably release the compatible functional ingredients.

また、上記複合粉体を使用して調製したパウダーファンデーションを顔面に塗布した結果、肌上へのフィット感がありこすれにも強く、ソフトフォーカス効果が高かった。また、テカらないのに肌上がしっとりし、使用感は良好であった。 Furthermore, when the powder foundation prepared using the above composite powder was applied to the face, it had a good fit on the skin, was resistant to rubbing, and had a high soft focus effect. In addition, the skin was moisturized without being shiny, and the feeling of use was good.

<実施例5>
実施例1の方法で得られたM値が47の疎水化金属酸化物エアロゲル粉体5gに、イソプロピルアルコール50gを加えた後、予めトラネキサム酸(trans-4-アミノメチル-1-シクロヘキサンカルボン酸)が20質量%となるようにグリセリンを用いて調製しておいた融液40gを加え、ロータリーエバポレーターを用いて、温度70℃、真空度70hpa以下としてIPAを除去し、疎水化金属酸化物エアロゲル粉体が50質量%、グリセリン41質量%、トラネキサム酸9質量%となる複合粉体を得た。
<Example 5>
After adding 50 g of isopropyl alcohol to 5 g of hydrophobized metal oxide airgel powder with an M value of 47 obtained by the method of Example 1, tranexamic acid (trans-4-aminomethyl-1-cyclohexanecarboxylic acid) was added in advance. Add 40 g of a melt prepared using glycerin so that the concentration is 20% by mass, and remove IPA using a rotary evaporator at a temperature of 70°C and a vacuum of 70 hpa or less to obtain hydrophobized metal oxide airgel powder. A composite powder containing 50% by mass of body, 41% by mass of glycerin, and 9% by mass of tranexamic acid was obtained.

得られた複合粉体の皮脂との接触試験を実施した結果、放出率r=96%となり、皮脂との接触により、細孔への皮脂の確実な吸収と共に、細孔内に担持された水親和性の機能性成分の放出を確実に行うことができた。 As a result of conducting a contact test of the obtained composite powder with sebum, the release rate r = 96%, and the contact with sebum ensured absorption of sebum into the pores and increased the amount of water supported within the pores. We were able to reliably release the compatible functional ingredients.

また、上記複合粉体を顔面に塗布した結果、ひんやりとして肌上へのフィット感がありこすれにも強く、ソフトフォーカス効果が高かった。また、テカらないのに肌上がしっとりし、使用感は良好であった。 Furthermore, when the composite powder was applied to the face, it felt cool and fit onto the skin, was resistant to rubbing, and had a high soft focus effect. In addition, the skin was moisturized without being shiny, and the feeling of use was good.

<比較例1>
M値が62の疎水化金属酸化物エアロゲル粉体の物性及び複合粉体の物性を表2に示す。この疎水化金属酸化物エアロゲル粉体は細孔内に水親和性の機能性成分の融液を担持することができなかった。
<Comparative example 1>
Table 2 shows the physical properties of the hydrophobized metal oxide airgel powder with an M value of 62 and the physical properties of the composite powder. This hydrophobized metal oxide airgel powder was unable to support the melt of the water-philic functional component within its pores.

<比較例2>
M値が15の疎水化金属酸化物エアロゲル粉体の物性及びこれを使用して、実施例1と同様の方法により得られた複合粉体の物性を表2に示す。得られた複合粉体の皮脂との接触試験を実施した結果、放出率r=5%となり、水親和性の機能性成分の放出は極めて少なかった。
<Comparative example 2>
Table 2 shows the physical properties of a hydrophobized metal oxide airgel powder with an M value of 15 and the physical properties of a composite powder obtained using the same in the same manner as in Example 1. As a result of conducting a contact test of the obtained composite powder with sebum, the release rate r was 5%, and the release of the water-compatible functional component was extremely small.

また、得られたM値が15の複合粉体を顔面に塗布した結果、べたっとした重い感触でテカリも抑制されなかった。また、塗布後のしっとり感が無く、皮脂の吸収に伴って水親和性の機能性成分が放出される効果が得られなかった。 Furthermore, when the obtained composite powder with an M value of 15 was applied to the face, it felt sticky and heavy, and the shine was not suppressed. In addition, there was no moist feeling after application, and the effect of releasing water-compatible functional ingredients with absorption of sebum could not be obtained.

<比較例3>
M値が0の疎水化金属酸化物エアロゲル粉体の物性及びこれを使用して、実施例1と同様の方法により得られた複合粉体の物性を表2に示す。得られた複合粉体の皮脂との接触試験を実施した結果、放出率r=0%となり、皮脂との接触による水親和性の機能性成分は放出されなかった。
<Comparative example 3>
Table 2 shows the physical properties of the hydrophobized metal oxide airgel powder with an M value of 0 and the physical properties of the composite powder obtained using the same in the same manner as in Example 1. As a result of conducting a contact test of the obtained composite powder with sebum, the release rate r=0%, and no water-compatible functional component was released by contact with sebum.

また、上記複合粉体を使用したルースパウダーを顔面に塗布した結果、べたついてテカリも抑制されなかった。また、塗布後のしっとり感が無く、皮脂の吸収に伴って水親和性の機能性成分が放出される効果が得られなかった。 Furthermore, when a loose powder using the above-mentioned composite powder was applied to the face, stickiness and shine were not suppressed. In addition, there was no moist feeling after application, and the effect of releasing water-compatible functional ingredients with absorption of sebum could not be obtained.

Figure 0007426770000001
Figure 0007426770000001

Figure 0007426770000002
Figure 0007426770000002

Figure 0007426770000003
Figure 0007426770000003

Claims (7)

平均粒子径1~30μm、M値が20~60の疎水化金属酸化物エアロゲル粉体の細孔中に、常温で液状を呈する水親和性の機能性成分が融液の状態で担持されていることを特徴とする複合粉体。 In the pores of the hydrophobized metal oxide airgel powder with an average particle size of 1 to 30 μm and an M value of 20 to 60, a water-friendly functional component that is liquid at room temperature is supported in the form of a melt. A composite powder characterized by: 前記疎水化金属酸化物エアロゲル粉体の細孔容積が0.5~8ml/g、細孔半径のピーク値が10~40nm、比表面積が350~1000m2/gである、請求項1に記載の複合粉体。 The hydrophobized metal oxide airgel powder has a pore volume of 0.5 to 8 ml/g, a peak pore radius of 10 to 40 nm, and a specific surface area of 350 to 1000 m2/g. Composite powder. 前記金属酸化物がシリカである請求項1又は2に記載の複合粉体。 The composite powder according to claim 1 or 2, wherein the metal oxide is silica. 前記疎水化金属酸化物エアロゲル粉体の平均円形度が0.8以上の球状である、請求項1~3のいずれか一項に記載の複合粉体。 The composite powder according to any one of claims 1 to 3, wherein the hydrophobized metal oxide airgel powder has a spherical shape with an average circularity of 0.8 or more. 前記疎水化金属酸化物エアロゲル粉体の細孔への担持量が、全細孔容積の10容量%以上の割合である請求項1~4のいずれか一項に記載の複合粉体。 The composite powder according to any one of claims 1 to 4, wherein the amount of the hydrophobized metal oxide airgel powder supported in the pores is 10% by volume or more of the total pore volume. 請求項1~5のいずれか一項に記載の複合粉体を含む粉体化粧料。 A powder cosmetic comprising the composite powder according to any one of claims 1 to 5. 水親和性の機能性成分が保湿剤である請求項6記載の粉体化粧料。 The powder cosmetic according to claim 6, wherein the water-friendly functional ingredient is a humectant.
JP2018056291A 2018-03-23 2018-03-23 composite powder Active JP7426770B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018056291A JP7426770B2 (en) 2018-03-23 2018-03-23 composite powder
JP2022154425A JP7436595B2 (en) 2018-03-23 2022-09-28 Composite powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018056291A JP7426770B2 (en) 2018-03-23 2018-03-23 composite powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022154425A Division JP7436595B2 (en) 2018-03-23 2022-09-28 Composite powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019167308A JP2019167308A (en) 2019-10-03
JP7426770B2 true JP7426770B2 (en) 2024-02-02

Family

ID=68106239

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018056291A Active JP7426770B2 (en) 2018-03-23 2018-03-23 composite powder
JP2022154425A Active JP7436595B2 (en) 2018-03-23 2022-09-28 Composite powder and its manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022154425A Active JP7436595B2 (en) 2018-03-23 2022-09-28 Composite powder and its manufacturing method

Country Status (1)

Country Link
JP (2) JP7426770B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368874B1 (en) * 2022-04-12 2023-10-25 株式会社第一精工舎 Resin molded body for skin, method for producing the same, skin contact type beauty device, and skin application type beauty device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157311A (en) 2010-02-02 2011-08-18 San Nopco Ltd Emulsified dispersion composition, method for producing the same, and aqueous dispersion of amphiphilic particle
WO2012147812A1 (en) 2011-04-28 2012-11-01 株式会社トクヤマ Metal oxide powder and method for producing same
JP2015229621A (en) 2014-06-06 2015-12-21 株式会社トクヤマ Hydrophobic aerogel powder, method of manufacturing thereof, and filler using thereof
JP2017145225A (en) 2016-02-19 2017-08-24 日本メナード化粧品株式会社 Cosmetic

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165219A (en) * 1994-12-09 1996-06-25 Procter & Gamble Co:The Solid make-up material
JP3669241B2 (en) 1999-02-26 2005-07-06 株式会社資生堂 Powder cosmetics
JP3908889B2 (en) 2000-03-31 2007-04-25 株式会社資生堂 Powder cosmetics
JP2002265388A (en) 2001-03-06 2002-09-18 Shiseido Co Ltd Transdermal absorption promoting agent
WO2004104154A2 (en) 2003-05-23 2004-12-02 Degussa Ag Pulverulent mixture comprising hydrogen peroxide and hydrophobized silicon dioxide
JP2007161764A (en) 2005-12-09 2007-06-28 Sakura Color Prod Corp Powdery colorant composition
JP5433135B2 (en) 2007-03-05 2014-03-05 株式会社日本色材工業研究所 Oily cosmetics for lips
JP2012056916A (en) 2010-09-13 2012-03-22 Mandom Corp Powdery cosmetic
JP6124662B2 (en) * 2012-10-03 2017-05-10 株式会社トクヤマ Spherical metal oxide powder and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157311A (en) 2010-02-02 2011-08-18 San Nopco Ltd Emulsified dispersion composition, method for producing the same, and aqueous dispersion of amphiphilic particle
WO2012147812A1 (en) 2011-04-28 2012-11-01 株式会社トクヤマ Metal oxide powder and method for producing same
JP2015229621A (en) 2014-06-06 2015-12-21 株式会社トクヤマ Hydrophobic aerogel powder, method of manufacturing thereof, and filler using thereof
JP2017145225A (en) 2016-02-19 2017-08-24 日本メナード化粧品株式会社 Cosmetic

Also Published As

Publication number Publication date
JP2022191287A (en) 2022-12-27
JP7436595B2 (en) 2024-02-21
JP2019167308A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
US9327258B2 (en) Porous silica-based particles having smooth surface, method for production thereof and cosmetic comprising such particles
RU2591813C2 (en) Cosmetic composition containing particles of silicon dioxide and oil aerogels based on hydrocarbons
JP6812105B2 (en) A composition with a matting effect containing hydrophobic airgel particles and silica particles
KR20160148724A (en) Porous silica particles, method for producing same, and cosmetic compounded with same
CN110603223B (en) Hollow particles and cosmetics
KR102630762B1 (en) Organic-inorganic composite particles and cosmetic product
BR112015009105B1 (en) BALL, COSMETIC OR DERMATOLOGICAL COMPOSITION FOR TOPICAL ADMINISTRATION, PROCESS TO SYNTHESIZE A BALL, AND USE OF A BALL
CN108350012A (en) New sugar derivatives gelling agent
JP6352252B2 (en) Matting effect composition comprising hydrophobic airgel particles and pearlite particles
JP6812106B2 (en) A composition with a matting effect containing hydrophobic airgel particles and silicone elastomer particles
JP7436595B2 (en) Composite powder and its manufacturing method
JP7403593B2 (en) Composite powder and its manufacturing method
JP5791771B2 (en) Porous silica-based particles having excellent surface smoothness and cosmetics comprising the porous silica-based particles
ES2811061T3 (en) Cosmetic composition of hydrophobic silica airgel particles and an acrylic thickening polymer
EP3366275B1 (en) Externally-applied dermal preparation or paste containing aerogel having both hydrophilicity and hydrophobicity
JP7019460B2 (en) Water-based cosmetics
JP3670183B2 (en) Cosmetics
JP2015163600A (en) Surface-treated porous inorganic oxide particles, production method thereof, and cosmetic comprising particles thereof
EP3653674A1 (en) Process for manufacturing omniphobic cosmetic pigments
JP2015214506A (en) Solid powder cosmetic molded into three-dimensional shape
TW201922198A (en) Powdered composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220628

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220928

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20221011

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240123

R150 Certificate of patent or registration of utility model

Ref document number: 7426770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150