JP7426264B2 - Molded insulation material and its manufacturing method - Google Patents

Molded insulation material and its manufacturing method Download PDF

Info

Publication number
JP7426264B2
JP7426264B2 JP2020046703A JP2020046703A JP7426264B2 JP 7426264 B2 JP7426264 B2 JP 7426264B2 JP 2020046703 A JP2020046703 A JP 2020046703A JP 2020046703 A JP2020046703 A JP 2020046703A JP 7426264 B2 JP7426264 B2 JP 7426264B2
Authority
JP
Japan
Prior art keywords
heat insulating
thermosetting resin
insulating material
resin particles
surface coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020046703A
Other languages
Japanese (ja)
Other versions
JP2021147258A (en
Inventor
直人 惟高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2020046703A priority Critical patent/JP7426264B2/en
Publication of JP2021147258A publication Critical patent/JP2021147258A/en
Application granted granted Critical
Publication of JP7426264B2 publication Critical patent/JP7426264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は炭素繊維を用いた成形断熱材及びその製造方法に関し、詳しくは耐久性を高めるための表面層が形成された成形断熱材及びその製造方法に関する。 The present invention relates to a molded heat insulating material using carbon fibers and a method for manufacturing the same, and more particularly to a molded heat insulating material on which a surface layer is formed to improve durability and a method for manufacturing the same.

炭素繊維系の断熱材は、熱的安定性や断熱性能に優れ且つ軽量であることから、種々の用途で使用されている。このような断熱材には、炭素繊維を交絡してなる炭素繊維フェルトや、炭素繊維フェルトに樹脂材料を含浸させ炭素化させた炭素繊維成形断熱材がある。炭素繊維フェルトは可とう性に優れるという長所を有し、炭素繊維成形断熱材は、形状安定性に優れ、微細な加工が可能であるという長所を有する。 Carbon fiber-based heat insulating materials are used in a variety of applications because they have excellent thermal stability and heat insulation performance, and are lightweight. Such heat insulating materials include carbon fiber felt made by intertwining carbon fibers, and carbon fiber molded heat insulating material made by impregnating carbon fiber felt with a resin material and carbonizing it. Carbon fiber felt has the advantage of being excellent in flexibility, and carbon fiber molded heat insulating material has the advantage of having excellent shape stability and being capable of fine processing.

何れの断熱材を使用するかは、使用目的や用途に応じて適宜選択される。後者の炭素繊維成形断熱材は、熱的安定性、断熱性能に優れ且つ形状安定性に優れることから、単結晶シリコン引き上げ装置、多結晶シリコンキャスト炉、金属やセラミックスの焼結炉、真空蒸着炉等の高温炉の断熱材として使用されている。 Which heat insulating material to use is appropriately selected depending on the purpose and application. The latter carbon fiber molded insulation material has excellent thermal stability, insulation performance, and shape stability, so it is used in single-crystal silicon pulling equipment, polycrystalline silicon casting furnaces, metal and ceramic sintering furnaces, and vacuum deposition furnaces. It is used as a heat insulating material for high-temperature furnaces such as

ところが、単結晶や多結晶シリコンなどの製造装置においては、高温炉内でSiOガスが発生したり、酸素ガスが不純物ガスとして製造雰囲気に混入したりする。SiOガスや酸素ガスは活性(反応性)が高く、炭素繊維成形断熱材とSiOガスとが反応するとSiCが生じ、炭素繊維成形断熱材と酸素ガスとが反応すると炭素酸化物(一酸化炭素、二酸化炭素等)が生じる。これにより特に炭素繊維が劣化し、炭素繊維により構成される骨格構造が崩れ、当該骨格構造が多数の空間を形成することにより得られる断熱作用が低下する。また、この劣化により特に炭素繊維が粉化して炉内雰囲気中に放出されて、製品品質を低下させるというおそれもある。 However, in equipment for manufacturing single crystal or polycrystalline silicon, SiO gas is generated in a high-temperature furnace, and oxygen gas is mixed into the manufacturing atmosphere as an impurity gas. SiO gas and oxygen gas have high activity (reactivity), and when carbon fiber molded insulation material and SiO gas react, SiC is produced, and when carbon fiber molded insulation material and oxygen gas react, carbon oxides (carbon monoxide, carbon dioxide, etc.) are generated. As a result, the carbon fibers in particular deteriorate, the skeletal structure constituted by the carbon fibers collapses, and the heat insulating effect obtained by the skeletal structure forming a large number of spaces is reduced. Further, due to this deterioration, there is a fear that the carbon fibers in particular are pulverized and released into the atmosphere in the furnace, reducing product quality.

また、工業炉においては、炉内の気圧が大気圧よりも大きくなることがある。このような場合、圧力差によって炉内雰囲気ガス(窒素ガスやアルゴンガス)の気流が生じるが、活性の高い雰囲気ガスが成形断熱材の内部空間に浸透すると、成形断熱材の内部組織が劣化して断熱性能が低下してしまう。 Furthermore, in industrial furnaces, the pressure inside the furnace may be higher than atmospheric pressure. In such cases, the pressure difference causes a flow of atmospheric gas (nitrogen gas or argon gas) in the furnace, but if the highly active atmospheric gas penetrates into the internal space of the molded insulation, the internal structure of the molded insulation deteriorates. The insulation performance will deteriorate.

この問題に対して、本発明者らは、成形断熱材の少なくとも一つの表面に、緻密下地層、表面被覆層を順次形成してなる表面層を形成する技術を提案している(特許文献1)。 To address this problem, the present inventors have proposed a technique for forming a surface layer by sequentially forming a dense base layer and a surface coating layer on at least one surface of a molded heat insulating material (Patent Document 1 ).

特開2018-158874JP2018-158874

この技術によると、耐久性を犠牲にすることなく、成形断熱材内部へのガスの浸透を抑制し得た成形断熱材を実現できるとされる。 According to this technology, it is possible to create a molded insulation material that can suppress gas penetration into the molded insulation material without sacrificing durability.

本発明者が成形断熱材について鋭意研究した結果、上記特許文献1の技術を高周波誘導加熱方式の炉に使用する際には、次のような問題が生じることを知った。 As a result of intensive research into molded heat insulating materials, the present inventor found that the following problem occurs when the technique of Patent Document 1 is used in a high-frequency induction heating type furnace.

表面層の表面抵抗率が低い場合、表面層において高周波誘導加熱の誘導電流が発生してしまい、これにより発熱する。このため、表面層が高温となってしまい、断熱効果が低減し、表面層の劣化が生じやすくなるとともに、無用な電流の発生によりエネルギーコストも増大してしまう。上記特許文献1の技術では、表面層が導電性の高い炭素による緻密な層であるために表面抵抗率が低く、高周波誘導加熱方式の炉に使用することは不適である。なお、高周波誘導加熱は、非接触で自己発熱させるため、加熱効率が良い、作業性が良いなどの利点がある。 When the surface resistivity of the surface layer is low, an induced current for high frequency induction heating is generated in the surface layer, thereby generating heat. As a result, the surface layer becomes hot, the heat insulating effect is reduced, the surface layer is more likely to deteriorate, and energy costs also increase due to the generation of unnecessary current. In the technique of Patent Document 1, the surface layer is a dense layer made of highly conductive carbon, so the surface resistivity is low, and it is not suitable for use in a high-frequency induction heating type furnace. Note that high-frequency induction heating generates heat by itself in a non-contact manner, so it has advantages such as high heating efficiency and good workability.

表面層を設けない場合には、誘導電流が流れにくいのでこのような問題は生じないが、高周波誘導加熱方式の炉に適用する場合において、ガスの透過阻止機能、粉落ち防止機能などが求められることは多い。 If no surface layer is provided, this problem will not occur because the induced current will hardly flow, but when applied to a high-frequency induction heating furnace, functions such as gas permeation blocking function and powder falling prevention function are required. There are many things.

本発明は上記の課題を解決するためになされたものであり、高周波誘導加熱方式の炉に使用することに適し、且つ、成形断熱材内部へのガスの浸透を抑制し得た成形断熱材を提供することを目的とする。 The present invention was made to solve the above problems, and provides a molded insulation material that is suitable for use in a high-frequency induction heating type furnace and that can suppress gas penetration into the molded insulation material. The purpose is to provide.

本発明にかかる成形断熱材の製造方法は、次のとおりである。
炭素繊維を交絡させた炭素繊維フェルトと前記炭素繊維フェルトの炭素繊維表面を被覆する炭素質からなる保護炭素層とを有する成形断熱材の少なくとも一つの表面に、炭素質の骨材と、軟化点を有する熱硬化性樹脂粒子とが、前記熱硬化性樹脂粒子が溶解しない分散媒中に分散された表面被覆液を含浸させる含浸ステップと、前記含浸ステップの後、前記軟化点以上の温度に加熱して前記熱硬化性樹脂粒子を軟化させて前記炭素質の骨材を前記成形断熱材に固定する軟化ステップと、前記軟化ステップの後、500℃以上で焼成して前記熱硬化性樹脂粒子を炭素化させる焼成ステップと、を備える成形断熱材の製造方法。
The method for manufacturing the molded heat insulating material according to the present invention is as follows.
A molded heat insulating material having a carbon fiber felt in which carbon fibers are intertwined and a protective carbon layer made of carbonaceous material that covers the surface of the carbon fibers of the carbon fiber felt has a carbonaceous aggregate and a softening point on at least one surface thereof. an impregnating step in which the thermosetting resin particles are impregnated with a surface coating liquid dispersed in a dispersion medium in which the thermosetting resin particles are not dissolved, and after the impregnation step, heating to a temperature equal to or higher than the softening point. a softening step of softening the thermosetting resin particles and fixing the carbonaceous aggregate to the molded heat insulating material; and after the softening step, firing at 500° C. or higher to soften the thermosetting resin particles. A method for manufacturing a shaped heat insulating material, comprising: a carbonizing firing step.

炭素繊維フェルトと、炭素繊維フェルトの炭素繊維表面を被覆する炭素質からなる保護炭素層と、を有する成形断熱材であると、成形断熱材の周囲に、不純物として混入或いは炉内で発生した活性ガス(酸素ガス、SiOガス等)が存在する場合、炭素繊維表面を被覆する保護炭素層が炭素繊維に先んじて活性ガスと反応する。これにより炭素繊維と活性ガスとが反応して劣化することが抑制される。 If the molded insulation material has carbon fiber felt and a protective carbon layer made of carbonaceous material that covers the surface of the carbon fibers of the carbon fiber felt, there will be no possibility that the active material mixed in as impurities or generated in the furnace will be mixed around the molded insulation material. When a gas (oxygen gas, SiO gas, etc.) is present, the protective carbon layer covering the carbon fiber surface reacts with the active gas before the carbon fiber. This prevents the carbon fibers from reacting with the active gas and causing deterioration.

ここで、保護炭素層が酸素ガスと反応する場合、保護炭素層を構成する炭素が炭酸ガスとなって除去され、また、SiOガスと反応する場合にはSiCとなって除去されることなく残存するが、いずれの場合も炭素繊維により構成される骨格構造が維持されるので、当該骨格構造が多数の空間を形成することにより得られる断熱作用が維持される。 Here, when the protective carbon layer reacts with oxygen gas, the carbon forming the protective carbon layer becomes carbon dioxide gas and is removed, and when it reacts with SiO gas, it becomes SiC and remains without being removed. However, in either case, since the skeletal structure made of carbon fibers is maintained, the heat insulating effect obtained by the skeletal structure forming a large number of spaces is maintained.

そして、上記本発明では、成形断熱材の表面には、表面被覆層が形成される。この層は、炭素質の骨材と熱硬化性樹脂粒子とが、熱硬化性樹脂を溶解しない分散媒中に分散された表面被覆液を、成形断熱材に浸透後、熱硬化性樹脂粒子を軟化させた後に炭素化してなるものである。そして、成形断熱材の炭素繊維間の空隙の一部が、骨材と熱硬化性樹脂の炭素化物とによって埋められ、ガスが通過する経路の径が小さくなる。このため、成形断熱材内部へのガスの侵入が抑制される。また、表面被覆層は、成型断熱材の粉落ちも防止するように作用する。 In the present invention, a surface coating layer is formed on the surface of the molded heat insulating material. This layer is made of carbonaceous aggregate and thermosetting resin particles after the surface coating liquid, in which carbonaceous aggregate and thermosetting resin particles are dispersed in a dispersion medium that does not dissolve the thermosetting resin, penetrates into the molded insulation material. It is made by softening and then carbonizing it. Then, a portion of the voids between the carbon fibers of the molded heat insulating material are filled with the aggregate and the carbonized thermosetting resin, and the diameter of the path through which the gas passes becomes smaller. For this reason, gas intrusion into the inside of the molded heat insulating material is suppressed. Furthermore, the surface coating layer also acts to prevent powder from falling off from the molded heat insulating material.

また、表面被覆液は、熱硬化性樹脂粒子および骨材を溶解せずに分散した状態であり、熱硬化性樹脂粒子と固形の骨材とが凝集した状態で成形断熱材に含浸される。この後、熱硬化性樹脂粒子の軟化点以上の温度で加熱されると、熱硬化性樹脂粒子が軟化して変形する。これにより、熱硬化性樹脂粒子が骨材を、成形断熱材を構成する炭素繊維に接着固定する。この後、焼成を行うと、骨材固定機能を失うことなく軟化した熱硬化性樹脂粒子が炭素化される。このようにして形成される表面被覆層は、粒子の凝集により不均一なもの、つまり面方向に隙間の多いものとなる。この結果、表面被覆層の表面抵抗を高く(導電性を低く)でき、高周波誘導加熱方式の炉に使用する場合に、表面被覆層での誘導電流・誘導加熱を低減できる。 Further, the surface coating liquid is in a state in which the thermosetting resin particles and the aggregate are dispersed without being dissolved, and the molded heat insulating material is impregnated with the thermosetting resin particles and the solid aggregate in an agglomerated state. Thereafter, when heated at a temperature equal to or higher than the softening point of the thermosetting resin particles, the thermosetting resin particles soften and deform. As a result, the thermosetting resin particles adhere and fix the aggregate to the carbon fibers that constitute the molded heat insulating material. Thereafter, when firing is performed, the softened thermosetting resin particles are carbonized without losing the aggregate fixing function. The surface coating layer formed in this manner becomes non-uniform due to agglomeration of particles, that is, it has many gaps in the surface direction. As a result, the surface resistance of the surface coating layer can be increased (lower conductivity), and when used in a high-frequency induction heating type furnace, induced current and induction heating in the surface coating layer can be reduced.

なお、軟化ステップを行わない場合には、成型断熱材に熱硬化性樹脂粒子による骨材を固定接着する作用が得られない(表面被覆層を形成できない)ため、熱硬化性樹脂粒子の軟化ステップは不可欠のステップである。また、分散媒ではなく溶媒を用い、熱硬化性樹脂粒子を溶解させてしまうと、熱硬化性樹脂が全体に均一に広がるので、製造される表面被覆層の表面抵抗を小さくしてしまう。 Note that if the softening step is not performed, the thermosetting resin particles will not have the effect of fixing and adhering the aggregate to the molded insulation material (a surface coating layer cannot be formed), so the softening step of the thermosetting resin particles will not be performed. is an essential step. Furthermore, if a solvent is used instead of a dispersion medium to dissolve the thermosetting resin particles, the thermosetting resin will spread uniformly throughout, reducing the surface resistance of the surface coating layer produced.

つまり、上記本発明の製造方法によると、成形断熱材内部へのガスの侵入を効果的に抑制しつつも、誘導電流を流れにくく(表面抵抗を大きく)でき、これにより高周波誘導加熱方式の炉に適した成形断熱材を実現できる。 In other words, according to the manufacturing method of the present invention, while effectively suppressing the intrusion of gas into the inside of the molded heat insulating material, it is possible to make it difficult for induced current to flow (increase surface resistance). It is possible to realize molded insulation material suitable for

表面被覆液の含浸は公知の方法を採用でき、例えば表面被覆液を入れた容器に成形断熱材を浸ける方法、スプレーや刷毛を用いて添加する方法などを採用できる。含浸させやすくするために、圧力をかけながら塗布などを行ってもよい。 A known method can be used for impregnation with the surface coating liquid, such as a method in which the molded heat insulating material is immersed in a container containing the surface coating liquid, a method in which it is added using a spray or a brush, and the like. In order to facilitate impregnation, application may be performed while applying pressure.

表面被覆層は、成型断熱材の少なくとも1つの面に形成されるが、2以上の面に形成されている構成としてもよい。表面被覆層の形成面数を増加させるとその分コスト高になるので、成型断熱材の用途や熱源の配置などに応じて適宜決定すればよい。 The surface coating layer is formed on at least one surface of the molded heat insulating material, but may be formed on two or more surfaces. As the number of surfaces on which the surface coating layer is formed increases, the cost increases accordingly, so it may be determined as appropriate depending on the application of the molded heat insulating material, the arrangement of the heat source, etc.

分散媒としては、熱硬化性樹脂を溶解しないものであれば特に限定されないが、安価で低沸点であることが好ましい。中でも、安価で環境負荷のない水がより好ましく、イオン交換、蒸留などによって純度が高められた水であることがさらに好ましい。 The dispersion medium is not particularly limited as long as it does not dissolve the thermosetting resin, but it is preferably inexpensive and has a low boiling point. Among these, water that is inexpensive and has no environmental impact is more preferable, and water whose purity has been increased by ion exchange, distillation, etc. is even more preferable.

(熱硬化性樹脂)
ここで、本明細書において、単なる「熱硬化性樹脂」とは、軟化前のものを意味し、軟化後で且つ熱硬化前のものは「軟化後」、熱硬化後で且つ炭素化前のものは「熱硬化後」、炭素化のものは「炭素化後」などの語を付して区別する。
(thermosetting resin)
Here, in this specification, the mere "thermosetting resin" means the one before softening, the "after softening" means the one after softening and before thermosetting, and the one after thermosetting and before carbonization. Those that are carbonized are distinguished by adding words such as "after thermosetting" and those that are carbonized are "after carbonization."

また、軟化点とは、樹脂の温度を上昇させていったときに、変形し始めるときの温度のことをいう。なお、すべての熱硬化性樹脂が軟化点を有するものではなく、軟化点を有さない熱硬化性樹脂(不融化処理がなされた樹脂など)は、本発明では使用しない。また、熱硬化性樹脂の軟化点は、例えば市販品のカタログ値とすることができ、またJIS K 5601-2-2に従い求めることもできる。 Furthermore, the softening point refers to the temperature at which the resin begins to deform when the temperature of the resin is increased. Note that not all thermosetting resins have a softening point, and thermosetting resins that do not have a softening point (such as resins that have been treated to make them infusible) are not used in the present invention. Further, the softening point of the thermosetting resin can be, for example, a catalog value of a commercially available product, or can also be determined according to JIS K 5601-2-2.

また、市販の熱硬化性樹脂の軟化点のカタログ値は、特定の温度一点ではなく幅を持っていることがある。この場合、軟化点以上の温度とは、その下限値以上の温度を意味する。軟化ステップは、好ましくはその中央値以上の温度、より好ましくは上限値以上の温度で加熱する。 Further, the catalog values for the softening points of commercially available thermosetting resins may not be at a single specific temperature, but may vary over a wide range. In this case, a temperature equal to or higher than the softening point means a temperature equal to or higher than its lower limit. The softening step is preferably performed at a temperature above the median value, more preferably above the upper limit.

また、熱硬化性樹脂粒子は、軟化点を有するものであれば特に限定されず、フェノール樹脂、フラン樹脂、ポリイミド樹脂、エポキシ樹脂等の粒子を使用することができ、中でもフェノール樹脂粒子が好ましい。また、熱硬化性樹脂粒子の平均粒子径は、3~100μmであることが好ましく、5~70μmであることがより好ましく、10~40μmであることがさらに好ましい。なお、平均粒子径は、レーザー回折による中心粒径D50とすることができる。 Further, the thermosetting resin particles are not particularly limited as long as they have a softening point, and particles of phenol resin, furan resin, polyimide resin, epoxy resin, etc. can be used, and among them, phenol resin particles are preferable. Further, the average particle diameter of the thermosetting resin particles is preferably 3 to 100 μm, more preferably 5 to 70 μm, and even more preferably 10 to 40 μm. In addition, the average particle diameter can be set to the center particle diameter D50 determined by laser diffraction.

熱硬化性樹脂粒子の軟化点(幅のある場合、その下限値)は、140~90℃であることが好ましく120~90℃であることがより好ましく、100℃~90℃であることがさらに好ましい。軟化点が高すぎると、軟化ステップで高温をかける必要があり、コスト高になる。軟化点が低すぎると、室温での作業時にも軟化して作業性が低下する。また、軟化ステップにおいて熱硬化性樹脂粒子の軟化とともに分散媒の揮発除去が行えることが好ましく、分散媒として水を用い、100℃の加熱で軟化と水の揮発とを同時に行う構成が最も好ましい。 The softening point (if there is a range, its lower limit) of the thermosetting resin particles is preferably 140 to 90°C, more preferably 120 to 90°C, and even more preferably 100 to 90°C. preferable. If the softening point is too high, it is necessary to apply high temperature in the softening step, resulting in high costs. If the softening point is too low, the material will soften even during work at room temperature, reducing workability. Further, it is preferable that the thermosetting resin particles are softened and the dispersion medium is removed by volatilization in the softening step, and it is most preferable to use water as the dispersion medium and simultaneously perform the softening and volatilization of the water by heating at 100°C.

また、熱硬化性樹脂粒子の形状は特に限定されず、球状、楕円球状、その他不定形状などとすることができ、これらの混合物であってもよい。 Further, the shape of the thermosetting resin particles is not particularly limited, and may be spherical, ellipsoidal, or other irregular shapes, or may be a mixture thereof.

また、熱硬化性樹脂粒子の残炭率(焼成後質量/焼成前質量×100)は、30~70%であることが好ましく、40~70%であることがより好ましく、50~70%であることがさらに好ましい。 Further, the residual carbon percentage (mass after firing/mass before firing x 100) of the thermosetting resin particles is preferably 30 to 70%, more preferably 40 to 70%, and 50 to 70%. It is even more preferable that there be.

(骨材)
表面被覆液に用いる骨材の形状としては特に限定されず、粒子状、ミルド(短繊維)状などとすることができる。なお、端面が円形状であるもの(短繊維)、アスペクト比が9以上であるものなどは、粒子状ではないものとする。
(aggregate)
The shape of the aggregate used in the surface coating liquid is not particularly limited, and may be in the form of particles, milled (short fibers), or the like. Note that fibers with circular end faces (short fibers), fibers with an aspect ratio of 9 or more, etc. are not particulate.

ここで、骨材の形状が球状、楕円球状などの粒子状である場合には、繊維状、針状などのアスペクト比が高い形状である場合よりもガスの経路の径を小さくする効果が大きい。骨材は、黒鉛粒子と炭素繊維ミルドとを含んでいることが好ましい。 Here, when the shape of the aggregate is particulate, such as spherical or elliptical, the effect of reducing the diameter of the gas path is greater than when the aggregate has a shape with a high aspect ratio, such as fibrous or acicular shape. . Preferably, the aggregate contains graphite particles and milled carbon fibers.

また、本明細書において炭素とは、広義のものを意味し、非晶質(難黒鉛化性、易黒鉛化性)であっても黒鉛質であってもよい。 Moreover, in this specification, carbon means something in a broad sense, and may be amorphous (hardly graphitizable or easily graphitizable) or graphitic.

また、骨材に黒鉛粒子などの粒子状の炭素を含ませる場合、その平均粒径は、好ましくは3~100μmであり、より好ましくは5~60μmであり、さらに好ましくは10~40μmである。 Further, when the aggregate contains particulate carbon such as graphite particles, the average particle size thereof is preferably 3 to 100 μm, more preferably 5 to 60 μm, and even more preferably 10 to 40 μm.

骨材に炭素繊維のミルドを含ませる場合、その平均繊維径は、好ましくは5~30μm、より好ましくは6~20μm、さらに好ましくは7~18μmとする。また、平均繊維長(長さ平均繊維長)は、その平均粒径は、好ましくは0.04~0.8mm、より好ましくは0.1~0.6mm、さらに好ましくは0.2~0.5mmとする。長さ平均繊維長ZLは、個々の繊維長をXnとするとき、ZL=(X1 2+X2 2+X3 2+・・・+Xn 2)/(X1+X2+X3+・・・+Xn)で表されるものである。 When milled carbon fibers are included in the aggregate, the average fiber diameter is preferably 5 to 30 μm, more preferably 6 to 20 μm, and still more preferably 7 to 18 μm. In addition, the average fiber length (length average fiber length) is such that the average particle diameter is preferably 0.04 to 0.8 mm, more preferably 0.1 to 0.6 mm, and still more preferably 0.2 to 0. The length shall be 5 mm. The length average fiber length Z L is calculated as follows, where the individual fiber length is X n , Z L = (X 1 2 +X 2 2 +X 3 2 +...+X n 2 )/(X 1 +X 2 +X 3 + ...+X n ).

(表面被覆液)
表面被覆液における炭素質の骨材と、熱硬化性樹脂粒子との質量比は、30:70~80:20であることが好ましく、35:65~75:25であることがより好ましく、40:60~70:30であることがさらに好ましい。
(Surface coating liquid)
The mass ratio of carbonaceous aggregate to thermosetting resin particles in the surface coating liquid is preferably 30:70 to 80:20, more preferably 35:65 to 75:25, and 40:70 to 80:20. More preferably, the ratio is 60 to 70:30.

そして、焼成されてなる表面被覆層において、炭素質の骨材と、熱硬化性樹脂粒子の炭素化物との質量比は、45:65~90:10であることが好ましく、50:50~85:15であることがより好ましく、55:45~80:20であることがさらに好ましい。 In the fired surface coating layer, the mass ratio of the carbonaceous aggregate to the carbonized material of the thermosetting resin particles is preferably 45:65 to 90:10, and preferably 50:50 to 85. :15 is more preferable, and even more preferably 55:45 to 80:20.

また、表面被覆液における固形分(骨材+熱硬化性樹脂粒子)の全質量(骨材+熱硬化性樹脂粒子+分散媒)に占める質量割合は、5~40質量%であることが好ましく10~35質量%であることがより好ましく、15~30質量%であることがさらに好ましい。 Further, the mass ratio of the solid content (aggregate + thermosetting resin particles) in the surface coating liquid to the total mass (aggregate + thermosetting resin particles + dispersion medium) is preferably 5 to 40% by mass. It is more preferably 10 to 35% by mass, and even more preferably 15 to 30% by mass.

(軟化ステップ)
軟化ステップは、熱硬化性樹脂の軟化点~軟化点+30℃の温度範囲で行うことが好ましく、軟化点~軟化点+20℃の温度範囲で行うことがより好ましく、軟化点~軟化点+10℃の温度範囲で行うことがさらに好ましい。コストと十分な軟化とのバランスから、上記温度範囲で行うことが好ましい。
(Softening step)
The softening step is preferably carried out in a temperature range of from the softening point of the thermosetting resin to the softening point +30°C, more preferably in the temperature range of the softening point to the softening point +20°C, and in the temperature range of the softening point to the softening point +10°C. It is more preferable to carry out the reaction within a temperature range. In view of the balance between cost and sufficient softening, it is preferable to carry out the process within the above temperature range.

また、軟化ステップの加熱時間は、15~120分であることが好ましく、15~60分であることがより好ましく、15~30分であることがさらに好ましい。コストと十分な軟化とのバランスから、上記時間範囲で行うことが好ましい。 Further, the heating time of the softening step is preferably 15 to 120 minutes, more preferably 15 to 60 minutes, and even more preferably 15 to 30 minutes. In view of the balance between cost and sufficient softening, it is preferable to carry out the heating within the above time range.

また、表面被覆層形成ステップの焼成温度は1000~2500℃であることが好ましく、1500~2500℃であることがより好ましく、2000~2500℃であることがさらに好ましい。焼成時間は、1~9時間であることが好ましく、2~8時間であることがより好ましく、3~7時間であることがさらに好ましい。 Further, the firing temperature in the surface coating layer forming step is preferably 1000 to 2500°C, more preferably 1500 to 2500°C, and even more preferably 2000 to 2500°C. The firing time is preferably 1 to 9 hours, more preferably 2 to 8 hours, and even more preferably 3 to 7 hours.

(成形断熱材)
上記本発明にかかる製造方法により製造される成形断熱材は、次のようなものとなる。
炭素繊維を交絡させた炭素繊維フェルトと前記炭素繊維フェルトの炭素繊維表面を被覆する炭素質からなる保護炭素層とを有する成形断熱材において、前記成形断熱材の少なくとも一つの表面には、炭素質の骨材が軟化した熱硬化性樹脂粒子の炭素化物により固着されてなる表面被覆層を有する、ことを特徴とする。
(molded insulation material)
The molded heat insulating material manufactured by the manufacturing method according to the present invention is as follows.
In a molded heat insulating material having a carbon fiber felt in which carbon fibers are intertwined and a protective carbon layer made of carbonaceous material that covers the carbon fiber surface of the carbon fiber felt, at least one surface of the molded heat insulating material has a carbonaceous material. It is characterized by having a surface coating layer in which the aggregate is fixed with a carbonized product of softened thermosetting resin particles.

表面被覆層のかさ密度は、0.1~2.0g/cm3であることが好ましく、0.15~1.5g/cm3であることがより好ましく、0.2~0.8g/cm3であることがさらに好ましい。 The bulk density of the surface coating layer is preferably 0.1 to 2.0 g/cm 3 , more preferably 0.15 to 1.5 g/cm 3 , and more preferably 0.2 to 0.8 g/cm 3 More preferably, it is 3 .

また、成形断熱材本体部分(表面被覆層が形成されていない部分)のかさ密度は、0.07~0.3g/cm3であることが好ましく、0.13~0.3g/cm3であることがより好ましく、0.16~0.3g/cm3であることがさらに好ましい。 In addition, the bulk density of the molded heat insulating material main body portion (the portion on which the surface coating layer is not formed) is preferably 0.07 to 0.3 g/cm 3 , and 0.13 to 0.3 g/cm 3 . It is more preferable that the amount is 0.16 to 0.3 g/cm 3 .

さらに、表面被覆層と、成形断熱材本体部分のかさ密度の差は、0.03~1.8g/cm3であることが好ましく、0.1~1.0g/cm3であることがより好ましく0.2~0.4g/cm3であることがさらに好ましい。 Further, the difference in bulk density between the surface coating layer and the main body of the molded heat insulating material is preferably 0.03 to 1.8 g/cm 3 , more preferably 0.1 to 1.0 g/cm 3 . It is more preferably 0.2 to 0.4 g/cm 3 .

表面被覆層の厚み(表面被覆液を含浸させる領域の厚み)は、0.1~5mmであることが好ましく、0.1~2mmであることがより好ましく、0.2~1mmであることがさらに好ましい。 The thickness of the surface coating layer (the thickness of the area impregnated with the surface coating liquid) is preferably 0.1 to 5 mm, more preferably 0.1 to 2 mm, and preferably 0.2 to 1 mm. More preferred.

以上に説明したように、本発明によると、低コストでもってガスの浸透を抑制し得た、しかも高周波誘導加熱方式の炉への適用に適した炭素繊維成形断熱材を実現することができる。 As described above, according to the present invention, it is possible to realize a carbon fiber molded heat insulating material that can suppress gas penetration at low cost and is suitable for application to a high-frequency induction heating type furnace.

図1は、実施例1にかかる成形断熱材の表面被覆層の走査電子顕微鏡写真であって、(a)は焼成前、(b)は焼成後をそれぞれ示す。FIG. 1 is a scanning electron micrograph of a surface coating layer of a shaped heat insulating material according to Example 1, in which (a) shows before firing and (b) shows after firing. 図2は、実施例2にかかる成形断熱材の表面被覆層の走査電子顕微鏡写真であって、(a)は焼成前、(b)は焼成後をそれぞれ示す。FIG. 2 is a scanning electron micrograph of the surface coating layer of the shaped heat insulating material according to Example 2, in which (a) shows before firing and (b) shows after firing. 図3は、比較例1にかかる成形断熱材の焼成前の表面被覆層の走査電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of the surface coating layer of the molded heat insulating material according to Comparative Example 1 before firing. 図4は、比較例2にかかる成形断熱材の表面被覆層の走査電子顕微鏡写真であって、(a)は焼成前、(b)は焼成後をそれぞれ示す。FIG. 4 is a scanning electron micrograph of the surface coating layer of the molded heat insulating material according to Comparative Example 2, in which (a) shows before firing and (b) shows after firing. 図5は、比較例3にかかる成形断熱材の表面被覆層の走査電子顕微鏡写真であって、(a)は焼成前、(b)は焼成後をそれぞれ示す。FIG. 5 is a scanning electron micrograph of the surface coating layer of the molded heat insulating material according to Comparative Example 3, in which (a) shows before firing and (b) shows after firing. 図6は、表面被覆層の表面抵抗率の測定方法を模式的に示す図である。FIG. 6 is a diagram schematically showing a method for measuring the surface resistivity of a surface coating layer. 図7は、ガス透過試験装置を模式的に示す図である。FIG. 7 is a diagram schematically showing a gas permeation test device.

(実施の形態)
本発明に係る成形断熱材は、炭素繊維を交絡させた炭素繊維フェルトと前記炭素繊維フェルトの炭素繊維表面を被覆する炭素質からなる保護炭素層とを有する成形断熱材において、成形断熱材の少なくとも一つの表面には、炭素質の骨材が軟化した熱硬化性樹脂粒子の炭素化物により固着されてなる表面被覆層を有している。
(Embodiment)
A molded heat insulating material according to the present invention includes a carbon fiber felt in which carbon fibers are intertwined and a protective carbon layer made of carbonaceous material that covers the carbon fiber surface of the carbon fiber felt. One surface has a surface coating layer in which carbonaceous aggregate is fixed by carbonized material of softened thermosetting resin particles.

成形断熱材を構成する炭素繊維としては、特に限定されることはなく、例えば石炭又は石油由来の異方性又は等方性ピッチ系、ポリアクリロニトリル(PAN)系、レーヨン系、フェノール系、セルロース系等の炭素繊維を、単一種又は複数種混合して用いることができる。 The carbon fibers constituting the molded heat insulating material are not particularly limited, and include, for example, anisotropic or isotropic pitch derived from coal or petroleum, polyacrylonitrile (PAN), rayon, phenol, and cellulose. A single type of carbon fiber or a mixture of multiple types can be used.

炭素繊維の微視的な構造としては特に限定されず、形状(巻縮型、直線型、直径、長さ等)が同一のもののみを用いてもよく、また異なる構造のものが混合されていてもよい。ただし、炭素繊維の種類やその微視的構造は、製造される成形断熱材の物性に影響を与えるので、用途に応じて適宜選択するのがよい。 The microscopic structure of carbon fibers is not particularly limited, and only carbon fibers with the same shape (crimped type, straight type, diameter, length, etc.) may be used, or carbon fibers with different structures may be mixed. It's okay. However, the type of carbon fiber and its microscopic structure affect the physical properties of the molded heat insulating material produced, so it is best to select it appropriately depending on the application.

成形断熱材の微視的構造としては、ランダムな方向に配向した炭素繊維が複雑に交わっているものを用いることが好ましい。 As for the microscopic structure of the molded heat insulating material, it is preferable to use one in which carbon fibers oriented in random directions intersect in a complicated manner.

また、成形断熱材は、その形状は特に限定されず、板状、直方体状、円筒状などとすることができる。また、表面被覆層を形成後に所望のサイズに切断等してもよく、所望のサイズに切断した後に表面被覆層を形成してもよい。 Moreover, the shape of the molded heat insulating material is not particularly limited, and may be plate-shaped, rectangular parallelepiped, cylindrical, or the like. Further, the surface coating layer may be cut into a desired size after being formed, or the surface coating layer may be formed after being cut into a desired size.

保護炭素層は、炭素繊維の表面全部、あるいは、炭素繊維の表面の一部を被覆し、あるいは炭素繊維相互間を埋めるように存在しているものである。また、保護炭素層は炭素質であればよく、その由来となる化合物は特に限定されることはない。なかでも、炭素繊維フェルトに含浸可能な樹脂材料の炭素化物を用いることが好ましい。このような樹脂材料としては、フェノール樹脂、フラン樹脂、ポリイミド樹脂、エポキシ樹脂等の熱硬化性樹脂が好ましい。 The protective carbon layer is present so as to cover the entire surface of the carbon fiber, or a part of the surface of the carbon fiber, or to fill in the space between the carbon fibers. Further, the protective carbon layer only needs to be carbonaceous, and the compound from which it is derived is not particularly limited. Among these, it is preferable to use a carbonized resin material that can be impregnated into carbon fiber felt. As such resin materials, thermosetting resins such as phenol resins, furan resins, polyimide resins, and epoxy resins are preferred.

ここで、成形断熱材を製造する際の熱硬化性樹脂(保護炭素層の材料)は1種のみを用いてもよく、2種以上を混合して用いてもよい。また、熱硬化性樹脂は、そのまま炭素繊維フェルトに含ませてもよく、溶剤で希釈して炭素繊維フェルトに含ませてもよい。溶剤としては、メチルアルコール、エチルアルコール等のアルコールを用いることができる。 Here, only one type of thermosetting resin (material for the protective carbon layer) may be used in manufacturing the molded heat insulating material, or two or more types may be used in combination. Further, the thermosetting resin may be contained in the carbon fiber felt as it is, or may be diluted with a solvent and then contained in the carbon fiber felt. As the solvent, alcohols such as methyl alcohol and ethyl alcohol can be used.

本実施の形態の構成では、成形断熱材の少なくとも1つの表面には、表面被覆層が設けられており、活性ガス源(熱源)側の表面に表面被覆層が配されるようにすることにより、気流による活性ガスの浸透が抑制される。さらにこの層は炭素繊維の劣化や粉化をも抑制する。したがって、断熱作用が長期間にわたって得られ、成形断熱材の長寿命化が図られる。 In the configuration of this embodiment, a surface coating layer is provided on at least one surface of the molded heat insulating material, and the surface coating layer is arranged on the surface on the active gas source (heat source) side. , the permeation of active gas by airflow is suppressed. Furthermore, this layer also suppresses deterioration and powdering of carbon fibers. Therefore, a heat insulating effect can be obtained for a long period of time, and the life of the molded heat insulating material can be extended.

(表面被覆層の製造方法)
表面被覆層は、次のようにして成形断熱材に形成される。
(Method for manufacturing surface coating layer)
The surface coating layer is formed on the shaped insulation material as follows.

(含浸ステップ)
炭素質の骨材と、軟化点を有する熱硬化性樹脂粒子と、分散媒と、からなる表面被覆液を、成形断熱材の少なくとも一つの表面に塗布して、この領域に表面被覆液を浸透させる。このとき、成形断熱材に圧力がかかるように塗布してもよい。分散媒は、熱硬化性樹脂粒子を溶解しないものであればよいが、中でも水が好ましい。
(Impregnation step)
A surface coating liquid consisting of carbonaceous aggregate, thermosetting resin particles having a softening point, and a dispersion medium is applied to at least one surface of the molded insulation material, and the surface coating liquid is infiltrated into this area. let At this time, the molded heat insulating material may be applied under pressure. The dispersion medium may be any medium as long as it does not dissolve the thermosetting resin particles, but water is particularly preferred.

(軟化ステップ)
この後、軟化点以上の温度に加熱して熱硬化性樹脂粒子を軟化させ、炭素質の骨材を軟化した熱硬化性樹脂粒子により成形断熱材に固定する。このとき、分散媒の揮発除去を同時に行う構成としてもよい。この場合、分散媒の沸点以上に加熱する構成を採用する。
(Softening step)
Thereafter, the thermosetting resin particles are softened by heating to a temperature higher than the softening point, and the carbonaceous aggregate is fixed to the molded heat insulating material by the softened thermosetting resin particles. At this time, the dispersion medium may be removed by volatilization at the same time. In this case, a configuration is adopted in which the dispersion medium is heated to a temperature higher than its boiling point.

(焼成ステップ)
こののち、不活性雰囲気下、500~2500℃で熱処理して、熱硬化性樹脂を炭素化させることにより、軟化ステップにより炭素質の骨材が成形断熱材に固定された状態で、熱硬化性樹脂粒子が炭素化する。これにより、表面被覆層が形成される。
(Baking step)
After this, the thermosetting resin is carbonized by heat treatment at 500 to 2500°C in an inert atmosphere, and the carbonaceous aggregate is fixed to the molded insulation material during the softening step. The resin particles are carbonized. This forms a surface coating layer.

このように形成される表面被覆層は、活性ガスの浸透を抑制しつつも、表面抵抗率が高く誘導電流が流れにくい。このため、高周波誘導加熱方式を採用する炉の断熱に適している。 The surface coating layer formed in this manner suppresses the penetration of active gas, but has a high surface resistivity and does not allow induced current to flow easily. Therefore, it is suitable for insulating furnaces that use high-frequency induction heating.

ここで、軟化ステップと焼成ステップとの間に、熱硬化性樹脂粒子の熱硬化温度以上に加熱して、熱硬化性樹脂粒子を熱硬化する熱硬化ステップを行う構成としてもよい。 Here, between the softening step and the firing step, a thermosetting step may be performed in which the thermosetting resin particles are heated to a temperature higher than the thermosetting temperature of the thermosetting resin particles.

ここで、本明細書でいう炭素化とは、黒鉛化を含んだ広義のものを意味する。例えば、特に2000℃以上の温度で熱処理する場合、表面被覆層の黒鉛構造が発展することが考えられるが、本発明では、表面被覆層の骨材は、非晶質、黒鉛質のいずれでもよく、これらの混合物でもよい。 Here, carbonization as used herein means a broad meaning including graphitization. For example, especially when heat-treated at a temperature of 2000°C or higher, the graphite structure of the surface coating layer may develop, but in the present invention, the aggregate of the surface coating layer may be either amorphous or graphitic. , or a mixture thereof.

実施例に基づいて、本発明をさらに詳細に説明する。 The present invention will be explained in more detail based on examples.

(実施例1)
(表面被覆液作製ステップ)
フェノール樹脂粒子(DIC製フェノライトOI-305A、軟化点90~100℃、平均粒子径15μm)、天然鱗状黒鉛粉末(新越化成製BF-30A/S、平均粒子径30μm)、炭素繊維ミルド(大阪ガスケミカル製S-242、平均繊維径13μm、平均繊維長0.36mm、アスペクト比28)を、質量比30:50:20の比率で混合して混合粉末となした。この混合粉末と精製水を、質量比16:84となるように混合し、混合粉末を精製水中に分散させ、表面被覆液を作製した。
(Example 1)
(Surface coating liquid preparation step)
Phenol resin particles (DIC Phenolite OI-305A, softening point 90-100°C, average particle size 15 μm), natural scaly graphite powder (Shin-etsu Kasei BF-30A/S, average particle size 30 μm), carbon fiber milled ( S-242 manufactured by Osaka Gas Chemicals, average fiber diameter 13 μm, average fiber length 0.36 mm, aspect ratio 28) was mixed at a mass ratio of 30:50:20 to form a mixed powder. This mixed powder and purified water were mixed at a mass ratio of 16:84, and the mixed powder was dispersed in the purified water to prepare a surface coating liquid.

(含浸ステップ)
外径220mm×内径160mm×高さ400mmの円筒状の成形断熱材、及びその上下の蓋となる円板状の成形断熱材(大阪ガスケミカル製DON-1000-H、かさ密度0.16g/cm3)のそれぞれの全ての表面(外側に位置する全ての面)に、それぞれ含浸厚みが同じとなるように、上記表面被覆液を、刷毛を用いて押し込むように含浸させた。表面被覆液は、成形断熱材の表面から0.3mmの領域まで含浸された。
(Impregnation step)
A cylindrical molded insulation material with an outer diameter of 220 mm x an inner diameter of 160 mm and a height of 400 mm, and a disc-shaped molded insulation material that serves as the upper and lower lids (DON-1000-H manufactured by Osaka Gas Chemicals, bulk density 0.16 g/cm) 3 ) The surface coating liquid was impregnated onto all surfaces (all surfaces located on the outside) using a brush so that the impregnation thickness was the same. The surface coating liquid was impregnated to an area of 0.3 mm from the surface of the molded heat insulating material.

(軟化ステップ)
表面被覆溶液が含浸された成形断熱材をオーブンに入れ、大気中100℃で30分間加熱し、フェノール樹脂粒子を軟化させるとともに、水分を蒸発させた。
(Softening step)
The molded insulation material impregnated with the surface coating solution was placed in an oven and heated in the atmosphere at 100° C. for 30 minutes to soften the phenolic resin particles and evaporate water.

(焼成ステップ)
こののち、不活性雰囲気下2000℃で5時間熱処理して、フェノール樹脂粒子を炭素化させて、実施例1にかかる成形断熱材を作製した。なお、表面被覆層のかさ密度は、0.28g/cm3であった。
(Baking step)
Thereafter, heat treatment was performed at 2000° C. for 5 hours in an inert atmosphere to carbonize the phenol resin particles, thereby producing a molded heat insulating material according to Example 1. The bulk density of the surface coating layer was 0.28 g/cm 3 .

(実施例2)
表面被覆液作製ステップ、及び軟化ステップを次のように行ったこと以外は、上記実施例1と同様にして、実施例2にかかる成形断熱材を作製した。なお、表面被覆液は、成形断熱材の表面から0.3mmの領域まで含浸され、表面被覆層のかさ密度は、0.31g/cm3であった。
(Example 2)
A molded heat insulating material according to Example 2 was produced in the same manner as in Example 1 above, except that the surface coating liquid preparation step and the softening step were performed as follows. The surface coating liquid was impregnated up to a region of 0.3 mm from the surface of the molded heat insulating material, and the bulk density of the surface coating layer was 0.31 g/cm 3 .

(表面被覆液作製ステップ)
フェノール樹脂粒子(エア・ウォーター製ベルパールS-899、軟化点110~120℃、平均粒子径20μm)、天然鱗状黒鉛粉末(新越化成製BF-30A/S)、炭素繊維ミルド(大阪ガスケミカル製S-242)を、質量比55:38:7の比率で混合し、さらにこの混合粉末と精製水を質量比18:82となるように混合し、混合粉末を精製水中に分散させ、表面被覆溶液を作製した。
(Surface coating liquid preparation step)
Phenol resin particles (Bell Pearl S-899 manufactured by Air Water, softening point 110-120°C, average particle size 20 μm), natural scaly graphite powder (BF-30A/S manufactured by Shinetsu Kasei), milled carbon fiber (manufactured by Osaka Gas Chemicals) S-242) at a mass ratio of 55:38:7, and further mix this mixed powder and purified water at a mass ratio of 18:82, disperse the mixed powder in purified water, and coat the surface. A solution was prepared.

(軟化ステップ)
表面被覆溶液が含浸された成形断熱材をオーブンに入れ、大気中120℃で30分間加熱し、フェノール樹脂粒子を軟化させるとともに、水分を蒸発させた。
(Softening step)
The molded insulation material impregnated with the surface coating solution was placed in an oven and heated in the atmosphere at 120° C. for 30 minutes to soften the phenolic resin particles and evaporate water.

(比較例1)
軟化ステップの温度を100℃とした以外は、実施例2と同様にして、比較例1にかかる成形断熱材を作製した。この結果、軟化ステップ後、焼成ステップ後のいずれにおいても、骨材の固着が不十分であり、衝撃などにより粉落ちが発生し、十分な品質の表面被覆層を形成できなかった。
(Comparative example 1)
A molded heat insulating material according to Comparative Example 1 was produced in the same manner as in Example 2, except that the temperature in the softening step was 100°C. As a result, the adhesion of the aggregate was insufficient both after the softening step and after the firing step, and powder fell off due to impact etc., making it impossible to form a surface coating layer of sufficient quality.

(比較例2)
表面被覆液作製ステップ、及び軟化ステップを次のように行ったこと以外は、上記実施例2と同様にして、比較例2にかかる成形断熱材を作製した。なお、表面被覆液は、成形断熱材の表面から0.6mmの領域まで含浸され、表面被覆層のかさ密度は、0.39g/cm3であった。
(Comparative example 2)
A molded heat insulating material according to Comparative Example 2 was produced in the same manner as in Example 2 above, except that the surface coating liquid preparation step and the softening step were performed as follows. The surface coating liquid was impregnated up to a region of 0.6 mm from the surface of the molded heat insulating material, and the bulk density of the surface coating layer was 0.39 g/cm 3 .

(表面被覆液作製ステップ)
フェノール樹脂粒子(エア・ウォーター製ベルパールS-899)、天然鱗状黒鉛粉末(新越化成製BF-30A/S)、炭素繊維ミルド(大阪ガスケミカル製S-242)を質量比55:38:7の比率で混合して混合粉末となした。この混合粉末とメタノールを質量比18:82となるように混合し、フェノール樹脂粒子をメタノール中に溶解させ、表面被覆溶液を作製した。
(Surface coating liquid preparation step)
Phenol resin particles (Bell Pearl S-899 manufactured by Air Water), natural scaly graphite powder (BF-30A/S manufactured by Shinetsu Kasei), and milled carbon fiber (S-242 manufactured by Osaka Gas Chemicals) were mixed in a mass ratio of 55:38:7. A mixed powder was prepared by mixing at a ratio of . This mixed powder and methanol were mixed at a mass ratio of 18:82, and the phenol resin particles were dissolved in the methanol to prepare a surface coating solution.

(軟化ステップ)
表面被覆溶液が含浸された成形断熱材をオーブンに入れ、大気中80℃で30分間乾燥させ、溶液に含まれるメタノールを揮発させた。
(Softening step)
The molded heat insulating material impregnated with the surface coating solution was placed in an oven and dried in the atmosphere at 80° C. for 30 minutes to volatilize methanol contained in the solution.

(比較例3)
表面被覆液作製ステップを次のように行ったこと以外は、上記比較例2と同様にして、比較例3にかかる成形断熱材を作製した。なお、表面被覆液は、成形断熱材の表面から0.4mmの領域まで含浸され、表面被覆層のかさ密度は、0.36g/cm3であった。
(Comparative example 3)
A molded heat insulating material according to Comparative Example 3 was produced in the same manner as Comparative Example 2, except that the surface coating liquid production step was performed as follows. The surface coating liquid was impregnated up to a region of 0.4 mm from the surface of the molded heat insulating material, and the bulk density of the surface coating layer was 0.36 g/cm 3 .

(表面被覆液作製ステップ)
フェノール樹脂粒子(DIC製フェノライトOI-305A)、天然鱗状黒鉛粉末(新越化成製BF-30A/S)、炭素繊維ミルド(大阪ガスケミカル製S-242)を、質量比30:50:20の比率で混合して混合粉末となした。この混合粉末とメタノールを、質量比16:84となるように混合し、フェノール樹脂粒子をメタノール中に溶解させ、表面被覆溶液を作製した。
(Surface coating liquid preparation step)
Phenol resin particles (PHENOLITE OI-305A manufactured by DIC), natural scaly graphite powder (BF-30A/S manufactured by Shinetsu Kasei), and milled carbon fiber (S-242 manufactured by Osaka Gas Chemicals) were mixed in a mass ratio of 30:50:20. A mixed powder was prepared by mixing at a ratio of . This mixed powder and methanol were mixed at a mass ratio of 16:84, and the phenol resin particles were dissolved in the methanol to prepare a surface coating solution.

(顕微鏡観察)
図1は実施例1にかかる成形断熱材の表面被覆層、図2は実施例2にかかる成形断熱材の表面被覆層、図3は比較例1にかかる成形断熱材の表面被覆層、図4は比較例2にかかる成形断熱材の表面被覆層、図5は比較例3にかかる成形断熱材の表面被覆層の、それぞれ走査電子顕微鏡写真であって、(a)は焼成前、(b)は焼成後を示す。なお、比較例1では表面被覆層の固形分の粉落ちが多く発生したため、焼成後の表面被覆層の走査電子顕微鏡写真は撮影していない。
(Microscope observation)
1 shows the surface coating layer of the molded insulation material according to Example 1, FIG. 2 shows the surface coating layer of the molded insulation material according to Example 2, FIG. 3 shows the surface coating layer of the molded insulation material according to Comparative Example 1, and FIG. 5 is a scanning electron micrograph of the surface coating layer of the molded heat insulating material according to Comparative Example 2, and FIG. indicates after firing. In addition, in Comparative Example 1, a scanning electron microscope photograph of the surface coating layer after firing was not taken because a lot of powder falling of the solid content of the surface coating layer occurred.

図4(a)、5(a)から分かるように、比較例2、3で成形断熱材1の表面に含浸される熱硬化性樹脂(焼成前)6は、いずれもメタノールに溶解されて広がったものであるため、全体に均一な膜状となっている。このため、図4(b)、5(b)に示すように焼成後においても、熱硬化性樹脂7は膜状の形状を保っている。また、この膜状の熱硬化性樹脂が骨材5を、成型断熱材を構成する炭素繊維4に固定する。 As can be seen from FIGS. 4(a) and 5(a), the thermosetting resin (before firing) 6 impregnated on the surface of the molded heat insulating material 1 in Comparative Examples 2 and 3 was dissolved in methanol and spread. Because it is made of acetate, it has a uniform film-like appearance throughout. Therefore, as shown in FIGS. 4(b) and 5(b), the thermosetting resin 7 maintains its film-like shape even after firing. Further, this film-like thermosetting resin fixes the aggregate 5 to the carbon fibers 4 that constitute the molded heat insulating material.

また、図3に示すように、比較例1では焼成前において熱硬化性樹脂6が軟化しておらず、粒子の形状を保っている。熱硬化性樹脂粒子が軟化していない比較例1では、焼成前および焼成後において、添加した骨材などが衝撃によって脱落した。つまり、焼成ステップでは熱硬化性樹脂粒子による骨材の固着作用を得ることはできず、このような熱硬化性樹脂粒子を軟化させない条件での表面被覆層の形成は不適である。 Further, as shown in FIG. 3, in Comparative Example 1, the thermosetting resin 6 did not soften before firing and maintained the shape of the particles. In Comparative Example 1 in which the thermosetting resin particles were not softened, the added aggregate and the like fell off due to impact before and after firing. That is, in the firing step, it is not possible to obtain the aggregate fixing effect of the thermosetting resin particles, and it is inappropriate to form the surface coating layer under conditions that do not soften the thermosetting resin particles.

これらに対し、実施例1、2では、図1(a)、2(a)に示すように、熱硬化性樹脂6と骨材5とが凝集した状態となっており、均一ではなく偏在化している。そして、熱硬化性樹脂6が含浸前の粒子形状を保っておらず、軟化変形した状態となっており、この軟化変形した熱硬化性樹脂6が、成型断熱材を構成する炭素繊維4に骨材5を固着している。 On the other hand, in Examples 1 and 2, as shown in FIGS. 1(a) and 2(a), the thermosetting resin 6 and the aggregate 5 are in an aggregated state, and are unevenly distributed rather than uniformly. ing. Then, the thermosetting resin 6 does not maintain the particle shape before impregnation, but is in a softened and deformed state, and this softened and deformed thermosetting resin 6 causes bones in the carbon fibers 4 constituting the molded insulation material. Material 5 is fixed.

そして、図1(b)、2(b)に示すように、焼成前の状態をほぼ保ったまま焼成される。つまり、焼成後の表面被覆層は、炭素化後の熱硬化性樹脂7と骨材5とが凝集し、偏在した状態である。また、熱硬化性樹脂7が軟化変形した状態のまま炭素化され、この熱硬化性樹脂7が、成型断熱材を構成する炭素繊維4に骨材5を固着している。このようにして形成された表面被覆層は、衝撃によって粉落ちが生じないとともに、粒子の凝集がない領域に多数の微小な空隙が形成されている。 Then, as shown in FIGS. 1(b) and 2(b), the material is fired while maintaining almost the same state as before firing. That is, in the surface coating layer after firing, the thermosetting resin 7 after carbonization and the aggregate 5 are aggregated and unevenly distributed. Further, the thermosetting resin 7 is carbonized in a softened and deformed state, and this thermosetting resin 7 fixes the aggregate 5 to the carbon fibers 4 constituting the molded heat insulating material. The surface coating layer formed in this manner does not cause powder to fall off due to impact, and has many fine voids formed in areas where particles do not aggregate.

(表面抵抗率の測定)
上記実施例1、比較例2に係る成形断熱材について、図6に示すように、成型断熱材1の表面被覆層3の面方向の表面抵抗率を、ロレスタEPMCP-T360(三菱ケミカルアナリテック製)を用いて四端子法によって各8箇所ずつ測定し、その算術平均値を求めた。
(Measurement of surface resistivity)
Regarding the molded heat insulating materials according to Example 1 and Comparative Example 2, as shown in FIG. ) was used to measure eight points each using the four-probe method, and the arithmetic mean value was determined.

その結果、実施例1の表面被覆層の表面抵抗率は0.264Ω/□であり、比較例2の表面被覆層の表面抵抗率0.129Ω/□の2.05倍高い値を示した。つまり、顕微鏡観察で考察した実施例1の表面被覆層の空隙が、表面被覆層の表面抵抗値を大きく(表面被覆層の面方向の導電性を低く)していると考えられる。 As a result, the surface resistivity of the surface coating layer of Example 1 was 0.264Ω/□, which was 2.05 times higher than the surface resistivity of the surface coating layer of Comparative Example 2, which was 0.129Ω/□. In other words, it is considered that the voids in the surface coating layer of Example 1, which were considered through microscopic observation, increase the surface resistance value of the surface coating layer (lower the conductivity in the surface direction of the surface coating layer).

(消費電力)
上記実施例1、比較例2に係る成形断熱材について、高周波誘導加熱炉での使用時の消費電力を測定した。
(power consumption)
Regarding the molded heat insulating materials according to Example 1 and Comparative Example 2, the power consumption when used in a high frequency induction heating furnace was measured.

竹内電機株式会社製の高周波誘導加熱炉内に、実施例1、または比較例2の成形断熱材を設置し、炉内雰囲気をアルゴンに置換したのち、発振器の出力を32%に設定して運転させた。30分間ほどで炉内温度が安定したので、その時の消費電力を記録した。続けて同様の手順で発振器出力50%、65%時の消費電力を測定した。 The molded heat insulating material of Example 1 or Comparative Example 2 was installed in a high-frequency induction heating furnace manufactured by Takeuchi Electric Co., Ltd. After the atmosphere inside the furnace was replaced with argon, the oscillator output was set to 32% and operated. I let it happen. The temperature inside the furnace stabilized after about 30 minutes, and the power consumption at that time was recorded. Subsequently, power consumption at 50% and 65% oscillator output was measured using the same procedure.

その結果、実施例1の成形断熱材を使用した際の消費電力は、下記表1に示すように、比較例2と比較して平均(32%、50%、65%の算術平均)で8.5%減少していた。 As a result, as shown in Table 1 below, the power consumption when using the molded heat insulating material of Example 1 was 8 on average (arithmetic mean of 32%, 50%, and 65%) compared to Comparative Example 2. It had decreased by .5%.

Figure 0007426264000001
Figure 0007426264000001

これらのことは、次のように考えられる。上述したように比較例2では、フェノール樹脂がメタノールに溶解された状態で成形断熱材に添加されるため、図4に示すように空隙が少ない膜状のフェノール樹脂炭素化物による表面被覆層が得られる。この膜状の表面被覆層は特に面方向の導電性が高く(表面抵抗が低く)なる。 These matters can be considered as follows. As mentioned above, in Comparative Example 2, the phenol resin was added to the molded heat insulating material in a state dissolved in methanol, so a surface coating layer of the carbonized phenol resin was obtained in the form of a film with few voids, as shown in Figure 4. It will be done. This film-like surface coating layer has particularly high conductivity (low surface resistance) in the in-plane direction.

これに対し実施例1では、フェノール樹脂粒子が溶解されないで分散した状態で成形断熱材に添加される。このため、フェノール樹脂は表面被覆液が含浸された領域全体にわたって薄く広がることはなく、他の粒子と凝集した状態で偏在含浸される。その後の軟化と焼成により、フェノール樹脂は軟化した形状を保ったまま炭素化する。このため、図2に示すように骨材が局所的に凝集し、空隙の多い外観の表面被覆層が得られる。このように空隙の多い表面被覆層は、比較例2に比べて面方向の導電性が低く(表面抵抗が高く)なる。それゆえ、実施例1のほうが比較例2よりも成形断熱材に流れる誘導電流の量が減少し、消費電力が小さくなる。 On the other hand, in Example 1, the phenolic resin particles are not dissolved but are added to the molded heat insulating material in a dispersed state. Therefore, the phenol resin does not spread thinly over the entire area impregnated with the surface coating liquid, but is unevenly impregnated in a state where it aggregates with other particles. Through subsequent softening and firing, the phenol resin is carbonized while maintaining its softened shape. Therefore, as shown in FIG. 2, the aggregate aggregates locally, resulting in a surface coating layer that has an appearance with many voids. The surface coating layer with many voids has lower conductivity in the in-plane direction (higher surface resistance) than Comparative Example 2. Therefore, in Example 1, the amount of induced current flowing through the molded heat insulating material is smaller than in Comparative Example 2, resulting in lower power consumption.

次に上記実施例1、比較例2にかかる成形断熱材について、以下の条件でガス透過率を測定した。 Next, the gas permeability of the molded heat insulating materials according to Example 1 and Comparative Example 2 was measured under the following conditions.

(ガス透過試験)
ガス透過試験装置100は、図7に示すように、平板状の台42上にキャップ状の容器41が載置されており、これにより一次側空間20が形成されている。一次側空間20には透過セル21が備えられている。また、台42の中央部には貫通孔が設けられ、ここに配管35が接続されている。この台42よりも下方の空間が、二次側空間30である。また、ガス透過試験装置100は、一次側空間20及び二次側空間30の圧力を測定する圧力計31を備えている。
(Gas permeation test)
As shown in FIG. 7, the gas permeation test apparatus 100 includes a cap-shaped container 41 placed on a flat plate-shaped table 42, thereby forming a primary space 20. A transmission cell 21 is provided in the primary space 20 . Further, a through hole is provided in the center of the stand 42, and the pipe 35 is connected to the through hole. The space below this table 42 is the secondary space 30. The gas permeation test device 100 also includes a pressure gauge 31 that measures the pressure in the primary space 20 and the secondary space 30.

また、一次側空間20内部にガスを供給する吸気管23が設けられるとともに、ロータリー式真空ポンプ34にそれぞれ接続され、一次側空間20又は二次側空間内部のガスを排気する排気管25,33が設けられている。これらの管にはそれぞれバルブ22,24,32が設けられている。 In addition, an intake pipe 23 is provided to supply gas into the primary space 20, and exhaust pipes 25, 33 are connected to a rotary vacuum pump 34 and exhaust gas from the primary space 20 or the secondary space. is provided. Each of these tubes is provided with a valve 22, 24, 32.

上記の成形断熱材を長さ6cm、幅6cm、厚さ約2cmの大きさに切断して試験片10とし、ガス透過試験装置100の透過セル21内に設置した。この試験片10は、ガス漏れが発生しないよう周囲がシリコーンゴム11で目止めされており、且つ上下面にはシリコーンゴム製のOリング12が設置されている。これにより、一次側空間20内部のガスは、透過セル21内部の試験片10を経由しない限り、二次側空間30に移動することはできないようになっている。 The above molded heat insulating material was cut into a size of 6 cm in length, 6 cm in width, and about 2 cm in thickness to obtain a test piece 10, which was placed in the permeation cell 21 of the gas permeation test device 100. The circumference of this test piece 10 is sealed with silicone rubber 11 to prevent gas leakage, and O-rings 12 made of silicone rubber are installed on the upper and lower surfaces. Thereby, the gas inside the primary side space 20 cannot move to the secondary side space 30 unless it passes through the test piece 10 inside the permeation cell 21.

測定は次のようにして行った。まず、バルブ24,32を開け、真空ポンプ34により、一次側空間20及び二次側空間30が一定の真空値になるまで減圧する。次いで、バルブ24,32を閉じ、真空ポンプ34の作動を停止する。そして、バルブ22を開けて一次側空間20に窒素ガスを一定のガス圧で供給する。窒素ガスは、一次側空間20から試験片10を透過して二次側空間30へと移動し、これにより、二次側空間30の圧力が上昇し始める。その圧力上昇率を、圧力計31を用いて測定した。この圧力上昇率から次の式(3)、(4)を用いてガス透過率(K)を算出した。 The measurements were carried out as follows. First, the valves 24 and 32 are opened, and the vacuum pump 34 reduces the pressure in the primary space 20 and the secondary space 30 until they reach a constant vacuum value. Then, the valves 24 and 32 are closed, and the operation of the vacuum pump 34 is stopped. Then, the valve 22 is opened to supply nitrogen gas to the primary space 20 at a constant gas pressure. The nitrogen gas passes through the test piece 10 from the primary space 20 and moves to the secondary space 30, and as a result, the pressure in the secondary space 30 begins to rise. The rate of pressure increase was measured using a pressure gauge 31. From this pressure increase rate, the gas permeability (K) was calculated using the following equations (3) and (4).

K=(Qh)/(ΔPA)・・・(3)
Q={(p2-p1)V0}/t・・・(4)
ここで、Kは窒素ガス透過率、Qは通気量、ΔPは一次側と二次側の圧力差、Aは透過面積、hは試験片の厚さ、p1は二次側の初期圧力、p2は二次側の最終圧力、V0は二次側の容積、tは測定時間である。
K=(Qh)/(ΔPA)...(3)
Q={(p 2 -p 1 )V 0 }/t...(4)
Here, K is the nitrogen gas permeability, Q is the air flow rate, ΔP is the pressure difference between the primary side and the secondary side, A is the permeation area, h is the thickness of the test piece, p1 is the initial pressure on the secondary side, p 2 is the final pressure on the secondary side, V 0 is the volume on the secondary side, and t is the measurement time.

このとき、次の式(5)式が成り立つような平均圧力Pm(一次側空間と二次側空間の圧力の平均値)の範囲で測定するため、平均圧力Pmが約50~110kPaとなる範囲で測定を行った。表2に示しているガス透過率は平均圧力Pmに対してガス透過率Kを3点以上プロットした際の最小二乗法による近似直線において、Pm=100kPaのときの値を示している。 At this time, the average pressure P m is approximately 50 to 110 kPa because the measurement is performed within the range of the average pressure P m ( average value of the pressure in the primary space and the secondary space) such that the following equation (5) holds true. Measurements were made within the following range. The gas permeability shown in Table 2 is the value when P m =100 kPa on the approximate straight line by the least squares method when the gas permeability K is plotted at three or more points against the average pressure P m .

K=aPm+b ・・・(5)
ここで、a、bは定数である。
K=aP m +b...(5)
Here, a and b are constants.

Figure 0007426264000002
Figure 0007426264000002

この結果、実施例1では比較例2よりも800cm2/s(約1.42倍)、ガス透過率が大きい(ガスが透過しやすい)ことがわかった。これは、比較例2のほうがかさ密度が0.11g/cm3(約1.39倍)大きく且つその厚みが2倍であることが影響しているものと考えられる。しかしながら、ガス透過率の差は1.42倍程度でその桁が違うような相違はなく、この程度の数値の差であればガス透過阻止性能に大きな差はないといえる。また、実施例の同様の製法であっても、表面被覆層のかさ密度や厚みなどを適切に設定すれば比較例2程度のガス透過性が得られる。 As a result, it was found that in Example 1, the gas permeability was 800 cm 2 /s (approximately 1.42 times) higher than in Comparative Example 2 (gas permeated easily). This is considered to be due to the fact that Comparative Example 2 has a larger bulk density of 0.11 g/cm 3 (approximately 1.39 times) and is twice as thick. However, the difference in gas permeability is about 1.42 times, which is not an order of magnitude difference, and it can be said that there is no big difference in gas permeation blocking performance if the difference in numerical values is of this order. Further, even with the same manufacturing method as in the example, gas permeability comparable to Comparative Example 2 can be obtained if the bulk density, thickness, etc. of the surface coating layer are appropriately set.

なお、上記実施例では成形断熱材(本体部分)のかさ密度を0.16g/cm3としたが、この値に限定されることはない。ただし、かさ密度は、製造される成形断熱材の断熱性能に影響を及ぼすので、目的とする断熱性能に応じてかさ密度等を選択すればよい。 In addition, although the bulk density of the molded heat insulating material (main body portion) was set to 0.16 g/cm 3 in the above example, it is not limited to this value. However, since the bulk density affects the heat insulating performance of the molded heat insulating material to be manufactured, the bulk density etc. may be selected depending on the desired heat insulating performance.

上記で説明したように、本発明によると、ガスによる断熱性能の低下を抑制し得た、しかも高周波誘導加熱方式の炉への適用に適した成形断熱材を実現できるので、その産業上の利用可能性は大きい。 As explained above, according to the present invention, it is possible to realize a molded heat insulating material that can suppress the deterioration of heat insulating performance due to gas and is suitable for application to high frequency induction heating type furnaces, so that it can be used in industrial applications. The possibilities are great.

1 成形断熱材
3 表面被覆層
4 炭素繊維
5 骨材
6 炭素化前の熱硬化性樹脂
7 熱硬化性樹脂の炭素化物
10 試験片
11 シリコーンゴム
12 Oリング
20 一次側空間
21 透過セル
22 バルブ
23 吸気管
24 バルブ
25 排気管
30 二次側空間
31 圧力計
32 バルブ
33 排気管
34 真空ポンプ
35 配管
41 容器
42 台
100 ガス透過試験装置
1 Molded insulation material 3 Surface coating layer 4 Carbon fiber 5 Aggregate 6 Thermosetting resin before carbonization 7 Carbonized thermosetting resin 10 Test piece 11 Silicone rubber 12 O-ring 20 Primary space 21 Transmission cell 22 Valve 23 Intake pipe 24 Valve 25 Exhaust pipe 30 Secondary space 31 Pressure gauge 32 Valve 33 Exhaust pipe 34 Vacuum pump 35 Piping 41 Container 42 Unit 100 Gas permeation test device

Claims (5)

炭素繊維を交絡させた炭素繊維フェルトと前記炭素繊維フェルトの炭素繊維表面を被覆する炭素質からなる保護炭素層とを有する成形断熱材の少なくとも一つの表面に、炭素質の骨材と、軟化点を有する熱硬化性樹脂粒子とが、前記熱硬化性樹脂粒子が溶解しない分散媒中に分散された表面被覆液を含浸させる含浸ステップと、
前記含浸ステップの後、前記熱硬化性樹脂粒子の軟化点以上で、前記軟化点+30℃以下の温度で、15分以上加熱し、前記熱硬化性樹脂粒子を軟化させて前記炭素質の骨材を前記成形断熱材に固定する軟化ステップと、
前記軟化ステップの後、500℃以上で焼成して前記熱硬化性樹脂粒子を炭素化させる焼成ステップと、を備える成形断熱材の製造方法。
A molded heat insulating material having a carbon fiber felt in which carbon fibers are intertwined and a protective carbon layer made of carbonaceous material that covers the surface of the carbon fibers of the carbon fiber felt has a carbonaceous aggregate and a softening point on at least one surface thereof. an impregnation step of impregnating the thermosetting resin particles with a surface coating liquid dispersed in a dispersion medium in which the thermosetting resin particles are not dissolved;
After the impregnation step, heating is performed at a temperature above the softening point of the thermosetting resin particles and below the softening point +30° C. for 15 minutes or more to soften the thermosetting resin particles and form the carbonaceous aggregate. a softening step of securing the molded insulation to the molded insulation;
A method for manufacturing a shaped heat insulating material, comprising, after the softening step, a firing step of carbonizing the thermosetting resin particles by firing at 500° C. or higher.
前記分散媒が、水である、
ことを特徴とする請求項1に記載の成形断熱材の製造方法。
the dispersion medium is water,
The method for manufacturing a molded heat insulating material according to claim 1.
前記熱硬化性樹脂粒子は、平均粒子径が3~100μmのフェノール樹脂粒子である、
ことを特徴とする請求項1又は2に記載の成形断熱材の製造方法。
The thermosetting resin particles are phenolic resin particles having an average particle diameter of 3 to 100 μm.
The method for manufacturing a shaped heat insulating material according to claim 1 or 2.
前記表面被覆液における前記炭素質の骨材と、前記熱硬化性樹脂粒子との質量比が、30:70~80:20である、
ことを特徴とする請求項1~3のいずれかに記載の成形断熱材の製造方法。
The mass ratio of the carbonaceous aggregate and the thermosetting resin particles in the surface coating liquid is 30:70 to 80:20.
The method for producing a molded heat insulating material according to any one of claims 1 to 3.
炭素繊維を交絡させた炭素繊維フェルトと前記炭素繊維フェルトの炭素繊維表面を被覆する炭素質からなる保護炭素層とを有する成形断熱材において、
前記成形断熱材の少なくとも一つの表面には、炭素質の骨材が軟化した熱硬化性樹脂粒子の炭素化物により固着されてなる、かさ密度が0.1~2.0/cm 3 である表面被覆層を有する、
ことを特徴とする成形断熱材。
A molded heat insulating material comprising a carbon fiber felt in which carbon fibers are intertwined and a protective carbon layer made of carbonaceous material that covers the carbon fiber surface of the carbon fiber felt,
At least one surface of the molded heat insulating material has a surface having a bulk density of 0.1 to 2.0/cm 3 and is made of a carbonaceous aggregate fixed to a carbonized product of softened thermosetting resin particles. having a coating layer;
A molded insulation material characterized by:
JP2020046703A 2020-03-17 2020-03-17 Molded insulation material and its manufacturing method Active JP7426264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020046703A JP7426264B2 (en) 2020-03-17 2020-03-17 Molded insulation material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020046703A JP7426264B2 (en) 2020-03-17 2020-03-17 Molded insulation material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021147258A JP2021147258A (en) 2021-09-27
JP7426264B2 true JP7426264B2 (en) 2024-02-01

Family

ID=77850860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020046703A Active JP7426264B2 (en) 2020-03-17 2020-03-17 Molded insulation material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7426264B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091988A (en) 2010-10-27 2012-05-17 Wamen Techno:Kk Production method for heat insulating material for high temperature furnace and heat insulating material for high temperature furnace produced by the producion method
JP2014058428A (en) 2012-09-19 2014-04-03 Osaka Gas Chem Kk Molded heat insulator subjected to surface finishing, and method for producing the same
JP2017137200A (en) 2016-02-01 2017-08-10 大阪ガスケミカル株式会社 Surface treated molding heat insulation material and manufacturing method therefor
JP2018158874A (en) 2017-03-23 2018-10-11 大阪ガスケミカル株式会社 Molded heat insulating material and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091988A (en) 2010-10-27 2012-05-17 Wamen Techno:Kk Production method for heat insulating material for high temperature furnace and heat insulating material for high temperature furnace produced by the producion method
JP2014058428A (en) 2012-09-19 2014-04-03 Osaka Gas Chem Kk Molded heat insulator subjected to surface finishing, and method for producing the same
JP2017137200A (en) 2016-02-01 2017-08-10 大阪ガスケミカル株式会社 Surface treated molding heat insulation material and manufacturing method therefor
JP2018158874A (en) 2017-03-23 2018-10-11 大阪ガスケミカル株式会社 Molded heat insulating material and method for producing the same

Also Published As

Publication number Publication date
JP2021147258A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
US10608224B2 (en) Apparatus with thermally responsive insulator between battery cells
US7497918B2 (en) Method of siliciding thermostructural composite materials, and parts obtained by the method
KR100634935B1 (en) Composite Carbonaceous Heat Insulator
CN110981546A (en) Anti-oxidation ZrB on surface of C-C composite material2-SiC-Y2O3Coating and method for producing the same
CN108147842A (en) The preparation method of integrated anti-yaw damper ZrC/SiC-C/C composite materials
JP6924595B2 (en) Molded insulation and its manufacturing method
JP7426264B2 (en) Molded insulation material and its manufacturing method
CN106083206B (en) A kind of internally coated preparation method of carbon/carbon compound material SiC
CN107814590A (en) A kind of preparation method of fusedsalt reactor graphite surface SiC coatings
US6809304B2 (en) High efficiency, oxidation resistant radio frequency susceptor
JP2003252694A (en) SiC-FIBER-COMPOSITED SiC COMPOSITE MATERIAL
JP5690789B2 (en) Surface-treated molded heat insulating material and method for producing the same
CN107740266A (en) Continuous SiC fiber surface in situ C SiO2Preparation method of composite coating
Huang et al. Coating dense silicon carbide layer on artificial graphites to achieve synergistically enhanced thermal conductivity and electronic insulation of polymer composites
CN111348915A (en) Carbon-deficient ZrC1-x/C complex phase ceramic material and preparation method thereof
CN110482488A (en) A kind of composite hydrogen storage material, preparation method and applications
Shi et al. Effect of porous pre-coating on the phase composition and oxidation protective performance of SiC coating by gaseous silicon infiltration
JP2004139885A (en) Fuel cell separator and manufacturing method of the same
JP2017137200A (en) Surface treated molding heat insulation material and manufacturing method therefor
JP5492817B2 (en) Surface-treated molded heat insulating material and method for producing the same
CN115710134B (en) Interface modified ceramic matrix composite material and preparation method thereof
JPH05124884A (en) Carbon fiber/carbon composite material
JPH04325481A (en) Oxidation resisting treatment of carbon fiber reinforced carbon composite material
JP2024078025A (en) Insulation
CN118290162A (en) Porous SiCNnw/C/Si3N4Composite wave-absorbing ceramic and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7426264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150