JP7423357B2 - Evaporator used in compression refrigerator, and compression refrigerator equipped with the evaporator - Google Patents

Evaporator used in compression refrigerator, and compression refrigerator equipped with the evaporator Download PDF

Info

Publication number
JP7423357B2
JP7423357B2 JP2020040182A JP2020040182A JP7423357B2 JP 7423357 B2 JP7423357 B2 JP 7423357B2 JP 2020040182 A JP2020040182 A JP 2020040182A JP 2020040182 A JP2020040182 A JP 2020040182A JP 7423357 B2 JP7423357 B2 JP 7423357B2
Authority
JP
Japan
Prior art keywords
heat exchanger
tube group
refrigerant
exchanger tube
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020040182A
Other languages
Japanese (ja)
Other versions
JP2020183859A (en
Inventor
宏幸 山田
健 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Publication of JP2020183859A publication Critical patent/JP2020183859A/en
Application granted granted Critical
Publication of JP7423357B2 publication Critical patent/JP7423357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、スクリュー冷凍機および遠心式冷凍機などの圧縮式冷凍機に関し、特に圧縮機の吸込口に連結された蒸発器に関するものである。 The present invention relates to compression refrigerators such as screw refrigerators and centrifugal refrigerators, and particularly to an evaporator connected to a suction port of a compressor.

冷凍空調装置などに利用される圧縮式冷凍機は、冷媒を封入したクローズドシステムとして構成される。圧縮式冷凍機は、一般に、被冷却流体から熱を奪って冷媒が蒸発して冷凍効果を発揮する蒸発器と、前記蒸発器で蒸発した冷媒蒸気を圧縮して高圧の冷媒蒸気を生成する圧縮機と、高圧の冷媒蒸気を冷却流体で冷却して凝縮させる凝縮器と、前記凝縮した冷媒を減圧して膨張させる膨張弁とを、冷媒配管によって連結して構成されている。 Compression refrigerators used in refrigeration and air conditioning systems are configured as closed systems containing a refrigerant. Compression refrigerators generally include an evaporator that removes heat from the fluid to be cooled and evaporates the refrigerant to produce a refrigeration effect, and a compressor that compresses the refrigerant vapor evaporated in the evaporator to generate high-pressure refrigerant vapor. A condenser that cools and condenses high-pressure refrigerant vapor with a cooling fluid, and an expansion valve that depressurizes and expands the condensed refrigerant are connected by refrigerant piping.

膨張弁は、過熱度(圧縮機入口での冷媒蒸気温度-圧縮機入口での圧力に対応する飽和温度)の大きさに基づいて制御される。冷媒の循環量が増加すると、冷媒液を圧縮機が吸込み、圧縮機が損傷するおそれが有る。そこで、蒸発器出口から圧縮機への冷媒液の吸込みを防止するために、過熱度をある程度(例:3~5℃)に維持する膨張弁制御が必要とされる。 The expansion valve is controlled based on the magnitude of the superheat (refrigerant vapor temperature at the compressor inlet minus the saturation temperature corresponding to the pressure at the compressor inlet). If the amount of refrigerant circulation increases, there is a risk that the refrigerant liquid will be sucked into the compressor and the compressor will be damaged. Therefore, in order to prevent refrigerant liquid from being sucked into the compressor from the evaporator outlet, expansion valve control is required to maintain the degree of superheat at a certain level (eg, 3 to 5° C.).

特開平6-213515号公報Japanese Patent Application Publication No. 6-213515

蒸発器は、被冷却流体が流れる伝熱管群を有している。蒸発器に流入した冷媒液は、伝熱管群の一部に接触して蒸発し、冷媒蒸気となる。さらに、冷媒蒸気は、伝熱管群の他の部分に接触して過熱される。このようにして、蒸発器は、冷媒液から冷媒蒸気を生成し、さらに冷媒蒸気を過熱することで、液状の冷媒が圧縮機に吸い込まれることを防止している。 The evaporator has a group of heat transfer tubes through which the fluid to be cooled flows. The refrigerant liquid that has flowed into the evaporator contacts a portion of the heat transfer tube group and evaporates, becoming refrigerant vapor. Furthermore, the refrigerant vapor contacts other parts of the heat transfer tube group and is superheated. In this manner, the evaporator generates refrigerant vapor from the refrigerant liquid and further superheats the refrigerant vapor, thereby preventing liquid refrigerant from being sucked into the compressor.

しかしながら、冷凍負荷の上昇に応じて冷媒液の循環量が増加すると、冷媒液が飛散して、液状の冷媒が圧縮機に吸い込まれるおそれがある。これを回避するためには伝熱管群を増やす必要があり、蒸発器自体が大きくなってしまう。さらに、冷媒液の循環量が低下したときに、冷媒の蒸発にも過熱にも寄与できない伝熱管の面積が増え、冷媒と被冷却流体との熱交換効率が低下する。 However, if the amount of refrigerant liquid to be circulated increases as the refrigeration load increases, there is a risk that the refrigerant liquid will scatter and the liquid refrigerant will be sucked into the compressor. In order to avoid this, it is necessary to increase the number of heat transfer tube groups, and the evaporator itself becomes larger. Furthermore, when the circulating amount of the refrigerant liquid decreases, the area of the heat transfer tubes that cannot contribute to evaporation or superheating of the refrigerant increases, and the heat exchange efficiency between the refrigerant and the fluid to be cooled decreases.

そこで、本発明は、伝熱管群を冷媒の蒸発および過熱に有効に使用することができる蒸発器を提供する。また、本発明は、そのような蒸発器を備えた圧縮式冷凍機を提供する。 Therefore, the present invention provides an evaporator that can effectively use a group of heat transfer tubes for evaporating and superheating a refrigerant. The present invention also provides a compression refrigerator equipped with such an evaporator.

一態様では、圧縮式冷凍機に使用される液膜式の蒸発器であって、缶胴と、前記缶胴内に配置された蒸発用伝熱管群と、前記缶胴内に配置され、前記蒸発用伝熱管群から離れた位置にある過熱用伝熱管群と、前記蒸発用伝熱管群の上方に配置され、前記蒸発用伝熱管群に冷媒液を供給する冷媒散布手段と、前記冷媒液の一部がフラッシュして生成された冷媒蒸気、及び前記蒸発用伝熱管群と前記冷媒液との接触により発生した冷媒蒸気の上方への流れを阻止するバッフル板を備え、前記バッフル板は、前記蒸発用伝熱管群の上方に配置されている、蒸発器が提供される。 In one aspect, a liquid film type evaporator used in a compression refrigerator includes a can body, a group of evaporation heat transfer tubes arranged in the can body, and a group of evaporation heat transfer tubes arranged in the can body, and a group of superheating heat transfer tubes located at a position apart from the group of heat transfer tubes for evaporation; a refrigerant distribution means disposed above the group of heat transfer tubes for evaporation and supplying a refrigerant liquid to the group of heat transfer tubes for evaporation; and the refrigerant liquid. A baffle plate is provided for blocking upward flow of refrigerant vapor generated by flashing a part of the evaporating heat exchanger tube group and the refrigerant vapor generated by contact between the evaporating heat transfer tube group and the refrigerant liquid, and the baffle plate includes: An evaporator is provided that is disposed above the group of evaporation heat exchanger tubes.

本発明によれば、過熱用伝熱管群は、蒸発用伝熱管群とは別に設けられる。このような配置により、蒸発用伝熱管群自体を小さくでき、蒸発用伝熱管群の上部のみならず、蒸発用伝熱管群の側部および下部にも冷媒液を散布することができる。したがって、蒸発用伝熱管群の全体は、冷媒液の蒸発に寄与できる。また、蒸発用伝熱管群を構成する各伝熱管は、冷媒液の膜で覆われ、伝熱管のドライ状態が回避される。よって、冷媒液に含まれる潤滑油が伝熱管の表面に付着することが防止され、結果として、伝熱管内を流れる被冷却流体(例えば冷水)と冷媒液との熱交換効率を向上させることができる。
バッフル板は、冷媒液の一部がフラッシュして生成した冷媒蒸気、及び蒸発用伝熱管群と冷媒液との接触により発生した冷媒蒸気の流れを横にそらし、過熱用伝熱管群に導くことができる。冷媒蒸気は過熱用伝熱管群によって過熱され、冷媒蒸気に含まれるミスト状の冷媒が蒸発する。したがって、ミスト状の冷媒の圧縮機への吸込みを防止することができる。
According to the present invention, the superheating heat exchanger tube group is provided separately from the evaporation heat exchanger tube group. With this arrangement, the evaporation heat exchanger tube group itself can be made smaller, and the refrigerant liquid can be spread not only on the upper part of the evaporation heat exchanger tube group but also on the sides and lower part of the evaporation heat exchanger tube group. Therefore, the entire evaporation heat exchanger tube group can contribute to the evaporation of the refrigerant liquid. Moreover, each heat exchanger tube constituting the evaporation heat exchanger tube group is covered with a film of refrigerant liquid, and a dry state of the heat exchanger tubes is avoided. Therefore, the lubricating oil contained in the refrigerant liquid is prevented from adhering to the surface of the heat exchanger tube, and as a result, the heat exchange efficiency between the cooled fluid (for example, cold water) flowing inside the heat exchanger tube and the refrigerant liquid can be improved. can.
The baffle plate diverts the flow of refrigerant vapor generated by flashing of a part of the refrigerant liquid and the flow of refrigerant vapor generated by contact between the evaporation heat transfer tube group and the refrigerant liquid to the side and guides it to the superheating heat transfer tube group. Can be done. The refrigerant vapor is superheated by the superheating heat transfer tube group, and the mist of refrigerant contained in the refrigerant vapor evaporates. Therefore, it is possible to prevent mist-like refrigerant from being sucked into the compressor.

一態様では、前記バッフル板と前記冷媒散布手段は、一体的な構造体である。
本発明によれば、バッフル板と冷媒散布手段を別々に缶胴内に配置する作業が不要であるので、蒸発器の組み立てを簡単に行うことができる。
In one aspect, the baffle plate and the refrigerant distribution means are an integral structure.
According to the present invention, it is not necessary to separately arrange the baffle plate and the refrigerant distribution means in the can body, so the evaporator can be easily assembled.

一態様では、前記過熱用伝熱管群は、被冷却流体が流れる1パス目の伝熱管群の一部である。
1パス目の伝熱管群を流れる被冷却流体は比較的高い温度を有している。したがって、過熱用伝熱管群は、冷媒蒸気を高効率で過熱することができ、冷媒蒸気に含まれるミスト状の冷媒を蒸発させることができる。
In one aspect, the superheating heat exchanger tube group is part of a first pass heat exchanger tube group through which the fluid to be cooled flows.
The fluid to be cooled flowing through the first pass heat transfer tube group has a relatively high temperature. Therefore, the superheating heat transfer tube group can superheat the refrigerant vapor with high efficiency, and can evaporate the mist-like refrigerant contained in the refrigerant vapor.

一態様では、前記蒸発器は、前記缶胴の管板を覆う水室カバーと、前記水室カバーに接続された被冷却流体入口ポートと、前記管板と前記水室カバーとの間に形成された流体室を第1流体室と第2流体室に仕切る仕切り板をさらに備え、前記被冷却流体入口ポートおよび前記過熱用伝熱管群は、前記第1流体室に連通している。 In one aspect, the evaporator includes a water chamber cover that covers a tube sheet of the can body, a cooled fluid inlet port connected to the water chamber cover, and a water chamber cover formed between the tube sheet and the water chamber cover. The cooling apparatus further includes a partition plate that partitions the fluid chamber into a first fluid chamber and a second fluid chamber, and the cooled fluid inlet port and the superheating heat transfer tube group communicate with the first fluid chamber.

一態様では、前記過熱用伝熱管群を構成する伝熱管の単位長さ当たりの外側表面積は、前記蒸発用伝熱管群を構成する伝熱管の単位長さ当たりの外側表面積よりも大きい。
本発明によれば、過熱用伝熱管群を構成する伝熱管には、背の高いフィンを有する伝熱管などの外側表面積の大きい伝熱管が使用される。このような伝熱管は、管外の冷媒蒸気の伝熱を促進でき、管外の冷媒蒸気と管内の被冷却流体との熱交換を促進することができるので、過熱用伝熱管群を構成する伝熱管の数を少なくすることができる。
In one embodiment, the outer surface area per unit length of the heat exchanger tubes constituting the group of heat exchanger tubes for superheating is larger than the outer surface area per unit length of the heat exchanger tubes constituting the group of heat exchanger tubes for evaporation.
According to the present invention, heat exchanger tubes with a large outer surface area, such as heat exchanger tubes with tall fins, are used as the heat exchanger tubes constituting the group of heat exchanger tubes for superheating. Such heat exchanger tubes can promote heat transfer of refrigerant vapor outside the tubes, and can promote heat exchange between refrigerant vapor outside the tubes and the fluid to be cooled inside the tubes, so they constitute a group of heat exchanger tubes for superheating. The number of heat exchanger tubes can be reduced.

一態様では、前記過熱用伝熱管群は、前記蒸発用伝熱管群の横に配置されている。
一態様では、前記蒸発器は、前記蒸発用伝熱管群と前記過熱用伝熱管群との間に配置された冷媒蒸気案内板をさらに備えており、前記冷媒蒸気案内板は、前記バッフル板から下方に延びている。
In one aspect, the superheating heat exchanger tube group is arranged beside the evaporation heat exchanger tube group.
In one aspect, the evaporator further includes a refrigerant vapor guide plate disposed between the evaporation heat exchanger tube group and the superheating heat exchanger tube group, and the refrigerant vapor guide plate extends from the baffle plate. extends downward.

蒸発器は圧縮機の吸込口に連結されるので、缶胴内は低圧となっている。冷媒液は凝縮器から蒸発器に送られ、冷媒散布手段から散布される。このとき、冷媒液の一部が瞬間的に蒸発し(フラッシュし)、冷媒の噴流を形成する。冷媒蒸気案内板は、冷媒の噴流の飛散を防止することができる。さらに、冷媒蒸気案内板は、冷媒の蒸気流を下方に案内し、蒸発用伝熱管群に導く。この下方に向かう冷媒の蒸気流は、蒸発用伝熱管群の上部を構成する伝熱管の表面から冷媒液の一部を除去し、上部の伝熱管上の冷媒液の膜厚を小さくする。結果として、蒸発用伝熱管群の全体に冷媒液が供給され、冷媒液の蒸発が促進される。
また、蒸発用伝熱管群内の隙間に存在する冷媒蒸気は、冷媒蒸気案内板によって下方に案内され、その後、蒸発用伝熱管群から側方に流れる。冷媒蒸気は、過熱用伝熱管群に接触する前に、蒸発用伝熱管群と過熱用伝熱管群との間に存在する空間を流れる。このとき、冷媒蒸気の流速は低下するので、冷媒蒸気に含まれる冷媒の液滴が自重により落下する。したがって、冷媒蒸気中に存在する冷媒の液滴は大幅に低減され、ほぼ飽和状態の冷媒蒸気が過熱用伝熱管群に接触する。結果として、過熱用伝熱管群での過熱効果が向上する。
Since the evaporator is connected to the suction port of the compressor, the pressure inside the can body is low. The refrigerant liquid is sent from the condenser to the evaporator and is distributed from the refrigerant distribution means. At this time, a portion of the refrigerant liquid momentarily evaporates (flashes), forming a jet of refrigerant. The refrigerant vapor guide plate can prevent the refrigerant jet from scattering. Further, the refrigerant vapor guide plate guides the refrigerant vapor flow downward to the evaporation heat exchanger tube group. This downward vapor flow of the refrigerant removes a portion of the refrigerant liquid from the surfaces of the heat exchanger tubes forming the upper part of the evaporation heat exchanger tube group, thereby reducing the film thickness of the refrigerant liquid on the upper heat exchanger tubes. As a result, the refrigerant liquid is supplied to the entire group of heat exchanger tubes for evaporation, and evaporation of the refrigerant liquid is promoted.
Moreover, the refrigerant vapor existing in the gap within the evaporation heat exchanger tube group is guided downward by the refrigerant vapor guide plate, and then flows laterally from the evaporation heat exchanger tube group. The refrigerant vapor flows through a space existing between the evaporation heat exchanger tube group and the superheating heat exchanger tube group before coming into contact with the superheating heat exchanger tube group. At this time, since the flow rate of the refrigerant vapor decreases, the refrigerant droplets contained in the refrigerant vapor fall due to their own weight. Therefore, the number of refrigerant droplets present in the refrigerant vapor is significantly reduced, and the almost saturated refrigerant vapor contacts the superheating heat exchanger tube group. As a result, the superheating effect in the superheating heat exchanger tube group is improved.

一態様では、前記冷媒蒸気案内板の下端は、前記過熱用伝熱管群の内側の下端よりも低い位置にある。
本発明によれば、蒸発用伝熱管群を通過した冷媒蒸気のほとんどすべてを過熱用伝熱管群に導くことができる。
In one aspect, the lower end of the refrigerant vapor guide plate is located at a lower position than the inner lower end of the superheating heat exchanger tube group.
According to the present invention, almost all of the refrigerant vapor that has passed through the evaporation heat exchanger tube group can be guided to the superheating heat exchanger tube group.

一態様では、前記蒸発器は、前記冷媒散布手段の両側に配置されたブロック壁をさらに備えており、前記ブロック壁は、前記蒸発用伝熱管群の両縁の上方に配置されている。
ブロック壁は、冷媒散布手段から吐出された冷媒液の飛散を防止することができる。ブロック壁に接触した冷媒液は、ブロック壁から滴下し、蒸発用伝熱管群の両縁を構成する伝熱管に接触する。したがって、蒸発用伝熱管群の全幅に亘って冷媒液が供給され、蒸発用伝熱管群を流れる被冷却流体と冷媒液との熱交換効率を向上させることができる。
In one aspect, the evaporator further includes block walls arranged on both sides of the refrigerant distribution means, and the block walls are arranged above both edges of the evaporation heat exchanger tube group.
The block wall can prevent the refrigerant liquid discharged from the refrigerant distribution means from scattering. The refrigerant liquid that has come into contact with the block wall drips from the block wall and comes into contact with the heat exchanger tubes forming both edges of the evaporation heat exchanger tube group. Therefore, the refrigerant liquid is supplied over the entire width of the evaporation heat exchanger tube group, and the heat exchange efficiency between the cooled fluid and the refrigerant liquid flowing through the evaporation heat exchanger tube group can be improved.

一態様では、冷媒液を蒸発させて冷媒蒸気を生成する上記蒸発器と、前記冷媒蒸気を圧縮する圧縮機と、前記圧縮された冷媒蒸気を凝縮させて前記冷媒液を生成する凝縮器と、前記凝縮器と前記蒸発器との間に配置された膨張弁を備えた、圧縮式冷凍機が提供される。 In one embodiment, the evaporator evaporates refrigerant liquid to generate refrigerant vapor, the compressor compresses the refrigerant vapor, and the condenser condenses the compressed refrigerant vapor to generate the refrigerant liquid; A compression refrigerator is provided, comprising an expansion valve disposed between the condenser and the evaporator.

一態様では、前記圧縮式冷凍機は、前記過熱用伝熱管群に流入する被冷却流体の入口温度を測定する入口温度測定器と、前記過熱用伝熱管群から流出した前記被冷却流体の出口温度を測定する出口温度測定器と、前記入口温度と前記出口温度との差に基づいて前記膨張弁の開度を制御する弁制御部をさらに備えている。 In one aspect, the compression refrigerator includes an inlet temperature measuring device that measures the inlet temperature of the fluid to be cooled that flows into the group of heat transfer tubes for superheating, and an outlet of the fluid to be cooled that flows out of the group of heat transfer tubes for superheating. The apparatus further includes an outlet temperature measuring device that measures temperature, and a valve control section that controls the opening degree of the expansion valve based on the difference between the inlet temperature and the outlet temperature.

冷媒蒸気中の液状の冷媒が過熱用伝熱管群との接触により蒸発すると、被冷却流体の入口温度と出口温度との差が速やかに変化する。すなわち、被冷却流体の入口温度と出口温度との差の変化は、過熱用伝熱管群に接触している冷媒蒸気中の液状の冷媒の量を反映している。したがって、弁制御部は、被冷却流体の入口温度と出口温度との差に基づいて膨張弁の開度、すなわち過熱度を精密に制御することができる。また、本発明によれば、蒸発器内の液面センサを設ける必要がないので、低価格で膨張弁の制御が可能である。 When the liquid refrigerant in the refrigerant vapor evaporates due to contact with the superheating heat transfer tube group, the difference between the inlet temperature and the outlet temperature of the fluid to be cooled changes rapidly. That is, the change in the difference between the inlet temperature and the outlet temperature of the fluid to be cooled reflects the amount of liquid refrigerant in the refrigerant vapor that is in contact with the superheating heat exchanger tube group. Therefore, the valve control section can precisely control the degree of opening of the expansion valve, that is, the degree of superheating, based on the difference between the inlet temperature and the outlet temperature of the fluid to be cooled. Further, according to the present invention, since there is no need to provide a liquid level sensor in the evaporator, the expansion valve can be controlled at low cost.

本発明によれば、蒸発用伝熱管群自体を小さくでき、蒸発用伝熱管群の上部のみならず、蒸発用伝熱管群の側部および下部にも冷媒液を散布することができる。したがって、蒸発用伝熱管群の全体は、冷媒液の蒸発に寄与できる。また、蒸発用伝熱管群を構成する各伝熱管は、冷媒液の膜で覆われ、伝熱管のドライ状態が回避される。よって、冷媒液に含まれる潤滑油(圧縮機で使用される潤滑油)が伝熱管の表面に付着することが防止され、結果として、伝熱管内を流れる被冷却流体(例えば冷水)と冷媒液との熱交換効率を向上させることができる。バッフル板は、蒸発用伝熱管群と冷媒液との接触により発生した冷媒蒸気の流れを横にそらし、過熱用伝熱管群に導くことができる。冷媒蒸気は過熱用伝熱管群によって過熱され、冷媒蒸気に含まれるミスト状の冷媒が蒸発する。したがって、ミスト状の冷媒の圧縮機への吸込みを防止することができる。 According to the present invention, the evaporation heat exchanger tube group itself can be made smaller, and the refrigerant liquid can be sprayed not only on the upper part of the evaporation heat exchanger tube group but also on the sides and lower part of the evaporation heat exchanger tube group. Therefore, the entire evaporation heat exchanger tube group can contribute to the evaporation of the refrigerant liquid. Moreover, each heat exchanger tube constituting the evaporation heat exchanger tube group is covered with a film of refrigerant liquid, and a dry state of the heat exchanger tubes is avoided. Therefore, the lubricating oil contained in the refrigerant liquid (lubricating oil used in the compressor) is prevented from adhering to the surface of the heat transfer tube, and as a result, the fluid to be cooled (e.g. cold water) and the refrigerant liquid flowing inside the heat transfer tube are prevented from adhering to the surface of the heat transfer tube. It is possible to improve the heat exchange efficiency with The baffle plate can divert laterally the flow of refrigerant vapor generated by contact between the evaporation heat exchanger tube group and the refrigerant liquid and guide it to the superheating heat exchanger tube group. The refrigerant vapor is superheated by the superheating heat transfer tube group, and the mist of refrigerant contained in the refrigerant vapor evaporates. Therefore, it is possible to prevent mist-like refrigerant from being sucked into the compressor.

遠心式冷凍機の一実施形態を示す模式図である。FIG. 1 is a schematic diagram showing an embodiment of a centrifugal refrigerator. 蒸発器の一実施形態の側面図である。FIG. 2 is a side view of one embodiment of an evaporator. 図2のA-A線断面図である。3 is a sectional view taken along line AA in FIG. 2. FIG. 図2のB-B線断面図である。3 is a sectional view taken along line BB in FIG. 2. FIG. 冷媒散布手段、冷媒蒸気案内板、ブロック壁を示す拡大図である。It is an enlarged view showing a refrigerant distribution means, a refrigerant vapor guide plate, and a block wall. 冷媒散布手段、バッフル板、およびブロック壁の配置の一実施形態を示す拡大図である。FIG. 3 is an enlarged view showing one embodiment of the arrangement of a refrigerant distribution means, a baffle plate, and a block wall. 図6の矢印Cで示す方向から見た図である。7 is a view seen from the direction indicated by arrow C in FIG. 6. FIG. 冷媒散布手段、バッフル板、およびブロック壁の配置の他の実施形態を示す拡大図である。FIG. 7 is an enlarged view showing another embodiment of the arrangement of a refrigerant distribution means, a baffle plate, and a block wall. 図8の矢印Dで示す方向から見た図である。9 is a view seen from the direction indicated by arrow D in FIG. 8. FIG. 蒸発器の他の実施形態の断面図である。FIG. 3 is a cross-sectional view of another embodiment of an evaporator. 図10に示す実施形態に係る蒸発器の水室カバーの断面図である。11 is a sectional view of the water chamber cover of the evaporator according to the embodiment shown in FIG. 10. FIG. 蒸発器のさらに他の実施形態の断面図である。FIG. 7 is a cross-sectional view of yet another embodiment of an evaporator. 図12に示す実施形態に係る蒸発器の水室カバーの断面図である。13 is a sectional view of the water chamber cover of the evaporator according to the embodiment shown in FIG. 12. FIG. 蒸発器のさらに他の実施形態の断面図である。FIG. 7 is a cross-sectional view of yet another embodiment of an evaporator. 図14に示す実施形態に係る蒸発器の水室カバーの断面図である。15 is a sectional view of the water chamber cover of the evaporator according to the embodiment shown in FIG. 14. FIG.

以下、本発明の実施形態について図面を参照して説明する。
図1は、遠心式冷凍機の一実施形態を示す模式図である。遠心式冷凍機は、圧縮式冷凍機の一例である。図1に示すように、遠心式冷凍機は、冷媒液を蒸発させて冷媒蒸気を生成する蒸発器2と、冷媒蒸気を圧縮する圧縮機1と、圧縮された冷媒蒸気を凝縮させて冷媒液を生成する凝縮器3を備えている。蒸発器2は、冷媒液入口5および冷媒蒸気出口6を有している。圧縮機1の吸込口は、冷媒配管4Aによって蒸発器2の冷媒蒸気出口6に連結されている。圧縮機1の排出口は、冷媒配管4Bによって凝縮器3に連結されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram showing one embodiment of a centrifugal refrigerator. A centrifugal refrigerator is an example of a compression refrigerator. As shown in Figure 1, a centrifugal refrigerator consists of an evaporator 2 that evaporates refrigerant liquid to generate refrigerant vapor, a compressor 1 that compresses the refrigerant vapor, and a refrigerant liquid that condenses the compressed refrigerant vapor. It is equipped with a condenser 3 that generates . The evaporator 2 has a refrigerant liquid inlet 5 and a refrigerant vapor outlet 6. A suction port of the compressor 1 is connected to a refrigerant vapor outlet 6 of the evaporator 2 by a refrigerant pipe 4A. The discharge port of the compressor 1 is connected to the condenser 3 by a refrigerant pipe 4B.

遠心式冷凍機は、凝縮器3と蒸発器2との間に配置されたエコノマイザ9をさらに備えている。凝縮器3は冷媒配管4Cによってエコノマイザ9に連結され、エコノマイザ9は冷媒配管4Dによって蒸発器2に連結されている。さらに、エコノマイザ9は、冷媒配管4Eによって圧縮機1に連結されている。エコノマイザ9は、凝縮器3と蒸発器2との間に配置された中間冷却器である。凝縮器3からエコノマイザ9に延びる冷媒配管4Cには膨張弁21が取り付けられ、エコノマイザ9から蒸発器2に延びる冷媒配管4Dには膨張弁22が取り付けられている。膨張弁21,22は、その開度が調整可能に構成されており、例えば開度可変な電動弁から構成されている。膨張弁21,22のそれぞれは、並列に配置された膨張弁とオリフィスで構成してもよい。また、膨張弁21,22の内、一つが流量調整可能で、一つが固定オリフィスでもよい。 The centrifugal refrigerator further includes an economizer 9 disposed between the condenser 3 and the evaporator 2. The condenser 3 is connected to the economizer 9 by a refrigerant pipe 4C, and the economizer 9 is connected to the evaporator 2 by a refrigerant pipe 4D. Furthermore, the economizer 9 is connected to the compressor 1 by a refrigerant pipe 4E. Economizer 9 is an intercooler placed between condenser 3 and evaporator 2. An expansion valve 21 is attached to the refrigerant pipe 4C extending from the condenser 3 to the economizer 9, and an expansion valve 22 is attached to the refrigerant pipe 4D extending from the economizer 9 to the evaporator 2. The expansion valves 21 and 22 are configured so that their opening degrees can be adjusted, and are configured, for example, from electrically operated valves whose opening degrees are variable. Each of the expansion valves 21 and 22 may include an expansion valve and an orifice arranged in parallel. Furthermore, one of the expansion valves 21 and 22 may be adjustable in flow rate, and one may be a fixed orifice.

本実施形態では、圧縮機1は、多段遠心式圧縮機から構成されている。より具体的には、圧縮機1は二段遠心式圧縮機からなり、一段目羽根車11と、二段目羽根車12と、これらの羽根車11,12を回転させる電動機13とを備えている。 In this embodiment, the compressor 1 is comprised of a multi-stage centrifugal compressor. More specifically, the compressor 1 is a two-stage centrifugal compressor, and includes a first-stage impeller 11, a second-stage impeller 12, and an electric motor 13 that rotates these impellers 11 and 12. There is.

圧縮機1の吸込口には、冷媒蒸気の羽根車11,12への吸込流量を調整するガイドベーン16が配置されている。ガイドベーン16は一段目羽根車11の吸込側に位置している。ガイドベーン16は放射状に配置されており、各ガイドベーン16が自身の軸心を中心として互いに同期して所定の角度だけ回転することにより、ガイドベーン16の開度が変更される。蒸発器2から送られた冷媒蒸気は、ガイドベーン16を通過し、その後、回転する羽根車11,12によって順次昇圧される。昇圧された冷媒蒸気は、冷媒配管4Bを通って凝縮器3に送られる。 A guide vane 16 is arranged at the suction port of the compressor 1 to adjust the flow rate of refrigerant vapor sucked into the impellers 11 and 12. The guide vane 16 is located on the suction side of the first stage impeller 11. The guide vanes 16 are arranged radially, and the opening degree of the guide vanes 16 is changed by rotating each guide vane 16 by a predetermined angle in synchronization with each other about its own axis. Refrigerant vapor sent from the evaporator 2 passes through a guide vane 16 and is then sequentially pressurized by rotating impellers 11 and 12. The pressurized refrigerant vapor is sent to the condenser 3 through the refrigerant pipe 4B.

遠心式冷凍機は、冷媒蒸気を凝縮器3から蒸発器2に導くバイパスライン20と、このバイパスライン20を開閉するための膨張弁(ホットガス兼用バイパス弁)25とを備えている。バイパスライン20は、エコノマイザ9をバイパスして延びている。バイパスライン20の一端は冷媒配管4Cに接続され、バイパスライン20の他端は冷媒配管4Dに接続されている。膨張弁25は、その開度が調整可能に構成されており、例えば開度可変な電動弁から構成されている。 The centrifugal refrigerator includes a bypass line 20 that guides refrigerant vapor from the condenser 3 to the evaporator 2, and an expansion valve (hot gas bypass valve) 25 that opens and closes the bypass line 20. Bypass line 20 extends by bypassing economizer 9. One end of the bypass line 20 is connected to the refrigerant pipe 4C, and the other end of the bypass line 20 is connected to the refrigerant pipe 4D. The expansion valve 25 is configured such that its opening degree can be adjusted, and is composed of, for example, an electric valve whose opening degree is variable.

膨張弁21,22,25は、弁制御部10に電気的に接続されており、膨張弁21,22,25の動作は弁制御部10によって制御される。定常運転では、膨張弁25は閉じられている。弁制御部10が膨張弁25を開くと、圧縮機1によって圧縮された冷媒蒸気或いは凝縮器3の冷媒液は、エコノマイザ9をバイパスしてバイパスライン20を通って凝縮器3から蒸発器2に送られる。 The expansion valves 21 , 22 , 25 are electrically connected to the valve control section 10 , and the operations of the expansion valves 21 , 22 , 25 are controlled by the valve control section 10 . In steady operation, the expansion valve 25 is closed. When the valve control unit 10 opens the expansion valve 25, the refrigerant vapor compressed by the compressor 1 or the refrigerant liquid in the condenser 3 bypasses the economizer 9 and passes through the bypass line 20 from the condenser 3 to the evaporator 2. Sent.

蒸発器2は、被冷却流体(例えば冷水)から熱を奪って冷媒液が蒸発して冷凍効果を発揮する。圧縮機1は、蒸発器2で蒸発した冷媒蒸気を圧縮して高圧の冷媒蒸気を生成し、凝縮器3は、高圧の冷媒蒸気を冷却流体(例えば冷却水)で冷却して凝縮させることで、冷媒液を生成する。冷媒液は、膨張弁21を通過することによって減圧される。減圧された冷媒液中に存在する冷媒蒸気はエコノマイザ9によって分離され、圧縮機1の一段目羽根車11と二段目羽根車12との間に設けた中間吸込口17に送られる。エコノマイザ9を通過した冷媒液は、膨張弁22を通過することによって減圧され、さらに冷媒配管4Dを通って蒸発器2に送られる。このように、遠心式冷凍機は、冷媒を封入したクローズドシステムとして構成される。エコノマイザ9は省略される場合もある。 The evaporator 2 removes heat from the fluid to be cooled (for example, cold water), evaporates the refrigerant liquid, and exhibits a refrigeration effect. The compressor 1 compresses the refrigerant vapor evaporated in the evaporator 2 to generate high-pressure refrigerant vapor, and the condenser 3 cools and condenses the high-pressure refrigerant vapor with a cooling fluid (for example, cooling water). , producing a refrigerant liquid. The refrigerant liquid is depressurized by passing through the expansion valve 21 . Refrigerant vapor present in the depressurized refrigerant liquid is separated by an economizer 9 and sent to an intermediate suction port 17 provided between a first-stage impeller 11 and a second-stage impeller 12 of the compressor 1 . The refrigerant liquid that has passed through the economizer 9 is depressurized by passing through the expansion valve 22, and is further sent to the evaporator 2 through the refrigerant pipe 4D. In this way, the centrifugal refrigerator is configured as a closed system containing a refrigerant. The economizer 9 may be omitted in some cases.

遠心式冷凍機は、蒸発器2の過熱用伝熱管群(後述する)に流入する被冷却流体の入口温度を測定する入口温度測定器としての温度センサS1と、上記過熱用伝熱管群から流出する被冷却流体の出口温度を測定する出口温度測定器としての温度センサS2をさらに備えている。温度センサS1,S2は弁制御部10に電気的に接続されており、温度センサS1,S2の出力値(すなわち、被冷却流体の入口温度および出口温度の測定値)は弁制御部10に送られるようになっている。 The centrifugal refrigerator includes a temperature sensor S1 as an inlet temperature measuring device that measures the inlet temperature of the fluid to be cooled flowing into the superheating heat transfer tube group (described later) of the evaporator 2, and a temperature sensor S1 as an inlet temperature measuring device for measuring the inlet temperature of the fluid to be cooled flowing into the superheating heat transfer tube group (described later) of the evaporator 2, and It further includes a temperature sensor S2 as an outlet temperature measuring device for measuring the outlet temperature of the fluid to be cooled. The temperature sensors S1 and S2 are electrically connected to the valve control unit 10, and the output values of the temperature sensors S1 and S2 (i.e., the measured values of the inlet temperature and outlet temperature of the fluid to be cooled) are sent to the valve control unit 10. It is now possible to

図2は、蒸発器2の一実施形態の側面図である。図2に示すように、蒸発器2は、缶胴30と、缶胴30内に配置された伝熱管群31および冷媒散布手段40を備えている。冷媒散布手段40は冷媒液入口5を備えており、この冷媒液入口5は、冷媒配管4C,4Dを介して凝縮器3およびエコノマイザ9に連結されている。缶胴30の頂部には、冷媒蒸気出口6が設けられている。本実施形態では、缶胴30内に配置された伝熱管群31は、1パス目の伝熱管群31-1と、2パス目の伝熱管群31-2を含む。図2では、これら伝熱管群31-1,31-2は、模式的に描かれている。1パス目の伝熱管群31-1は、冷媒液を蒸発させて冷媒蒸気を生成するための第1蒸発用伝熱管群32Aと、冷媒蒸気を過熱するための過熱用伝熱管群33を含む。 FIG. 2 is a side view of one embodiment of the evaporator 2. As shown in FIG. 2, the evaporator 2 includes a can body 30, a group of heat transfer tubes 31 disposed within the can body 30, and a refrigerant distribution means 40. The refrigerant distribution means 40 includes a refrigerant liquid inlet 5, and the refrigerant liquid inlet 5 is connected to the condenser 3 and the economizer 9 via refrigerant pipes 4C and 4D. A refrigerant vapor outlet 6 is provided at the top of the can body 30. In this embodiment, the heat exchanger tube group 31 arranged in the can body 30 includes a first pass heat exchanger tube group 31-1 and a second pass heat exchanger tube group 31-2. In FIG. 2, these heat exchanger tube groups 31-1 and 31-2 are schematically depicted. The first pass heat transfer tube group 31-1 includes a first evaporation heat transfer tube group 32A for evaporating refrigerant liquid to generate refrigerant vapor, and a superheating heat transfer tube group 33 for superheating the refrigerant vapor. .

蒸発器2は、缶胴30の管板42を覆う水室カバー44と、水室カバー44に接続された被冷却流体入口ポート45および被冷却流体出口ポート46を備えている。蒸発器2のターン側には、缶胴30の管板50を覆う水室カバー51が設けられている。この水室カバー51の内部には、流体室52が形成されている。管板42,50は、缶胴30の側壁を構成している。入口温度測定器としての温度センサS1は、被冷却流体入口ポート45に取り付けられ、出口温度測定器としての温度センサS2は、過熱用伝熱管群33の被冷却流体出口に取り付けられている。 The evaporator 2 includes a water chamber cover 44 that covers the tube plate 42 of the can body 30, and a cooled fluid inlet port 45 and a cooled fluid outlet port 46 connected to the water chamber cover 44. A water chamber cover 51 that covers the tube plate 50 of the can body 30 is provided on the turn side of the evaporator 2. A fluid chamber 52 is formed inside the water chamber cover 51. The tube sheets 42 and 50 constitute side walls of the can body 30. A temperature sensor S1 as an inlet temperature measuring device is attached to the cooled fluid inlet port 45, and a temperature sensor S2 as an outlet temperature measuring device is attached to the cooled fluid outlet of the superheating heat transfer tube group 33.

図3は、図2のA-A線断面図であり、図4は、図2のB-B線断面図である。1パス目の伝熱管群31-1は、冷媒液を蒸発させて冷媒蒸気を生成するための第1蒸発用伝熱管群32Aと、冷媒蒸気を過熱するための過熱用伝熱管群33を構成する。2パス目の伝熱管群31-2は、第2蒸発用伝熱管群32Bを構成する。1パス目の伝熱管群31-1の一部を構成する第1蒸発用伝熱管群32Aは、2パス目の伝熱管群31-2を構成する第2蒸発用伝熱管群32Bの下方に配置されている。 3 is a sectional view taken along line AA in FIG. 2, and FIG. 4 is a sectional view taken along line BB in FIG. The first pass heat transfer tube group 31-1 includes a first evaporation heat transfer tube group 32A for evaporating refrigerant liquid to generate refrigerant vapor, and a superheating heat transfer tube group 33 for superheating the refrigerant vapor. do. The second pass heat exchanger tube group 31-2 constitutes a second evaporation heat exchanger tube group 32B. The first evaporation heat exchanger tube group 32A, which constitutes a part of the first pass heat exchanger tube group 31-1, is located below the second evaporation heat exchanger tube group 32B, which constitutes the second pass heat exchanger tube group 31-2. It is located.

以下の説明では、第1蒸発用伝熱管群32Aおよび第2蒸発用伝熱管群32Bを、総称して蒸発用伝熱管群32という。蒸発用伝熱管群32および過熱用伝熱管群33は、缶胴30内に配置されている。冷媒散布手段40は、蒸発用伝熱管群32の上方に配置され、蒸発用伝熱管群32にその上から冷媒液を供給するように配置されている。冷媒散布手段40は、冷媒液入口5と、冷媒液入口5に連結された複数のノズル管48を備えている。冷媒液は、冷媒液入口5に流入し、ノズル管48から蒸発用伝熱管群32に散布される。 In the following description, the first evaporation heat exchanger tube group 32A and the second evaporation heat exchanger tube group 32B are collectively referred to as the evaporation heat exchanger tube group 32. The evaporation heat exchanger tube group 32 and the superheating heat exchanger tube group 33 are arranged within the can body 30. The refrigerant distribution means 40 is arranged above the evaporation heat exchanger tube group 32 and is arranged to supply refrigerant liquid to the evaporation heat exchanger tube group 32 from above. The refrigerant distribution means 40 includes a refrigerant liquid inlet 5 and a plurality of nozzle pipes 48 connected to the refrigerant liquid inlet 5. The refrigerant liquid flows into the refrigerant liquid inlet 5 and is sprayed from the nozzle pipe 48 to the evaporation heat exchanger tube group 32.

過熱用伝熱管群33は、蒸発用伝熱管群32から離れた位置にある。より具体的には、過熱用伝熱管群33は、蒸発用伝熱管群32の横に位置している。本実施形態では、2つの過熱用伝熱管群33が設けられており、これら2つの過熱用伝熱管群33は蒸発用伝熱管群32の両側に配置されている。過熱用伝熱管群33の上端は、蒸発用伝熱管群32の上端よりも高い位置にあり、過熱用伝熱管群33の下端は、蒸発用伝熱管群32の上端よりも低い位置にある。 The superheating heat exchanger tube group 33 is located away from the evaporation heat exchanger tube group 32. More specifically, the superheating heat exchanger tube group 33 is located next to the evaporation heat exchanger tube group 32. In this embodiment, two overheating heat exchanger tube groups 33 are provided, and these two overheating heat exchanger tube groups 33 are arranged on both sides of the evaporation heat exchanger tube group 32. The upper end of the superheating heat transfer tube group 33 is located higher than the upper end of the evaporation heat transfer tube group 32, and the lower end of the superheating heat transfer tube group 33 is located lower than the upper end of the evaporation heat transfer tube group 32.

図4に示すように、蒸発器2は、管板42と水室カバー44(図2参照)との間に形成された流体室を第1流体室53と第2流体室54に仕切る仕切り板57をさらに備えている。仕切り板57は、管板42或いは水室カバー44に固定されている。管板42は、缶胴30の側壁を構成しており、水室カバー44は管板42に接続されている。被冷却流体入口ポート45は第1流体室53に連通し、被冷却流体出口ポート46は第2流体室54に連通している。過熱用伝熱管群33および第1蒸発用伝熱管群32Aの一端は、第1流体室53に連通し、過熱用伝熱管群33および第1蒸発用伝熱管群32Aの他端はターン側の流体室52(図2参照)に連通している。第2蒸発用伝熱管群32Bの一端は、第2流体室54に連通し、第2蒸発用伝熱管群32Bの他端はターン側の流体室52(図2参照)に連通している。 As shown in FIG. 4, the evaporator 2 includes a partition plate that partitions a fluid chamber formed between a tube plate 42 and a water chamber cover 44 (see FIG. 2) into a first fluid chamber 53 and a second fluid chamber 54. 57. The partition plate 57 is fixed to the tube plate 42 or the water chamber cover 44. The tube sheet 42 constitutes a side wall of the can body 30, and the water chamber cover 44 is connected to the tube sheet 42. The cooled fluid inlet port 45 communicates with the first fluid chamber 53 , and the cooled fluid outlet port 46 communicates with the second fluid chamber 54 . One end of the superheating heat transfer tube group 33 and the first evaporation heat transfer tube group 32A is connected to the first fluid chamber 53, and the other end of the superheating heat transfer tube group 33 and the first evaporation heat transfer tube group 32A is connected to the turn side. It communicates with the fluid chamber 52 (see FIG. 2). One end of the second evaporative heat transfer tube group 32B communicates with the second fluid chamber 54, and the other end of the second evaporative heat transfer tube group 32B communicates with the fluid chamber 52 on the turn side (see FIG. 2).

被冷却流体(例えば、冷水)は、被冷却流体入口ポート45を通って第1流体室53に流入し、第1流体室53を満たす。被冷却流体は、第1流体室53に連通する第1蒸発用伝熱管群32Aおよび過熱用伝熱管群33を流れて流体室52(図2参照)に流入する。流体室52を満たした被冷却流体は、第2蒸発用伝熱管群32Bを流れ、第2流体室54に流入する。被冷却流体は、第2流体室54から被冷却流体出口ポート46を通って流出する。 Cooled fluid (eg, cold water) enters and fills the first fluid chamber 53 through the cooled fluid inlet port 45 . The fluid to be cooled flows through the first evaporation heat transfer tube group 32A and the superheating heat transfer tube group 33 that communicate with the first fluid chamber 53, and flows into the fluid chamber 52 (see FIG. 2). The fluid to be cooled that has filled the fluid chamber 52 flows through the second evaporation heat transfer tube group 32B and flows into the second fluid chamber 54. Cooled fluid exits second fluid chamber 54 through cooled fluid outlet port 46 .

冷媒液は、冷媒散布手段40から蒸発用伝熱管群32(第1蒸発用伝熱管群32Aおよび第2蒸発用伝熱管群32B)に散布される。冷媒液は、蒸発用伝熱管群32の表面に接触し、蒸発用伝熱管群32内を流れる被冷却流体との熱交換により蒸発し、冷媒蒸気となる。冷媒蒸気は、図3の矢印で示すように、蒸発用伝熱管群32の両側から流出し、缶胴30内を上昇する。さらに、冷媒蒸気は、過熱用伝熱管群33の表面に接触し、過熱用伝熱管群33内を流れる被冷却流体により過熱される。上述したように、過熱用伝熱管群33は、1パス目の伝熱管群31-1(図2参照)の一部から構成されている。1パス目の伝熱管群31-1を流れる被冷却流体は比較的高い温度を有している。したがって、過熱用伝熱管群33は、冷媒蒸気を高効率で過熱することができ、冷媒蒸気に含まれるミスト状の冷媒を蒸発させることができる。 The refrigerant liquid is distributed from the refrigerant distribution means 40 to the evaporation heat exchanger tube group 32 (first evaporation heat exchanger tube group 32A and second evaporation heat exchanger tube group 32B). The refrigerant liquid contacts the surface of the evaporation heat exchanger tube group 32, evaporates through heat exchange with the fluid to be cooled flowing within the evaporation heat exchanger tube group 32, and becomes refrigerant vapor. The refrigerant vapor flows out from both sides of the evaporation heat transfer tube group 32 and rises inside the can body 30, as shown by the arrows in FIG. Further, the refrigerant vapor comes into contact with the surface of the superheating heat exchanger tube group 33 and is superheated by the fluid to be cooled flowing within the superheating heat exchanger tube group 33. As described above, the superheating heat exchanger tube group 33 is composed of a part of the first pass heat exchanger tube group 31-1 (see FIG. 2). The fluid to be cooled flowing through the first pass heat transfer tube group 31-1 has a relatively high temperature. Therefore, the superheating heat transfer tube group 33 can superheat the refrigerant vapor with high efficiency, and can evaporate the mist-like refrigerant contained in the refrigerant vapor.

過熱された冷媒蒸気は、缶胴30の頂部に設けられた冷媒蒸気出口6を通って流出する。冷媒蒸気出口6は、図1に示す圧縮機1の吸込口に冷媒配管4Aによって接続されている。したがって、冷媒蒸気は、冷媒配管4Aを流れて圧縮機1に導入される。 The superheated refrigerant vapor flows out through the refrigerant vapor outlet 6 provided at the top of the can body 30. The refrigerant vapor outlet 6 is connected to the suction port of the compressor 1 shown in FIG. 1 by a refrigerant pipe 4A. Therefore, the refrigerant vapor flows through the refrigerant pipe 4A and is introduced into the compressor 1.

過熱用伝熱管群33は、蒸発用伝熱管群32とは別に設けられる。このような配置により、蒸発用伝熱管群32自体を小さくでき、蒸発用伝熱管群32の上部のみならず、蒸発用伝熱管群32の側部および下部にも冷媒液を散布することができる。したがって、蒸発用伝熱管群32の全体は、冷媒液の蒸発に寄与できる。また、蒸発用伝熱管群32を構成する各伝熱管は、冷媒液の膜で覆われ、伝熱管のドライ状態が回避される。よって、冷媒液に含まれる潤滑油(圧縮機1で使用される潤滑油)が伝熱管の表面に付着することが防止され、結果として、伝熱管内を流れる被冷却流体(例えば冷水)と冷媒液との熱交換効率を向上させることができる。 The superheating heat exchanger tube group 33 is provided separately from the evaporation heat exchanger tube group 32. With this arrangement, the evaporation heat exchanger tube group 32 itself can be made smaller, and the refrigerant liquid can be spread not only at the top of the evaporation heat exchanger tube group 32 but also at the sides and bottom of the evaporation heat exchanger tube group 32. . Therefore, the entire evaporation heat exchanger tube group 32 can contribute to the evaporation of the refrigerant liquid. Moreover, each heat exchanger tube constituting the evaporation heat exchanger tube group 32 is covered with a film of refrigerant liquid, and a dry state of the heat exchanger tubes is avoided. Therefore, the lubricating oil contained in the refrigerant liquid (the lubricating oil used in the compressor 1) is prevented from adhering to the surface of the heat exchanger tube, and as a result, the fluid to be cooled (for example, cold water) flowing inside the heat exchanger tube and the refrigerant are prevented from adhering to the surface of the heat exchanger tube. The heat exchange efficiency with the liquid can be improved.

図3に示すように、蒸発器2は、蒸発用伝熱管群32と冷媒液との接触により発生した冷媒蒸気の上方への流れを阻止するバッフル板60をさらに備えている。バッフル板60は、蒸発用伝熱管群32の上方に配置されている。本実施形態では、バッフル板60の下面は、過熱用伝熱管群33の上端よりも低い位置にあり、過熱用伝熱管群33は、バッフル板60の両側に配置されている。バッフル板60は、蒸発用伝熱管群32の幅より大きな幅を有している。 As shown in FIG. 3, the evaporator 2 further includes a baffle plate 60 that prevents the refrigerant vapor generated by the contact between the evaporating heat exchanger tube group 32 and the refrigerant liquid from flowing upward. The baffle plate 60 is arranged above the evaporation heat exchanger tube group 32. In this embodiment, the lower surface of the baffle plate 60 is located at a lower position than the upper end of the overheating heat exchanger tube group 33, and the overheating heat exchanger tube group 33 is arranged on both sides of the baffle plate 60. The baffle plate 60 has a width larger than the width of the evaporation heat exchanger tube group 32.

バッフル板60は、冷媒散布手段40から散布された冷媒の一部がフラッシュして生成された冷媒蒸気、及び蒸発用伝熱管群32と冷媒液との接触により発生した冷媒蒸気の流れを横にそらし、過熱用伝熱管群33に導くことができる。冷媒蒸気は過熱用伝熱管群33によって過熱され、冷媒蒸気に含まれるミスト状の冷媒が蒸発する。したがって、ミスト状の冷媒の圧縮機1への吸込みを防止することができる。 The baffle plate 60 horizontally channels the flow of refrigerant vapor generated by flashing a part of the refrigerant sprayed from the refrigerant distribution means 40 and the flow of refrigerant vapor generated by contact between the evaporation heat transfer tube group 32 and the refrigerant liquid. It can be diverted and guided to the heat exchanger tube group 33 for superheating. The refrigerant vapor is superheated by the superheating heat transfer tube group 33, and the mist-like refrigerant contained in the refrigerant vapor evaporates. Therefore, it is possible to prevent mist-like refrigerant from being sucked into the compressor 1.

蒸発器2は、蒸発用伝熱管群32と過熱用伝熱管群33との間に配置された冷媒蒸気案内板63をさらに備えている。冷媒蒸気案内板63は、バッフル板60の両側端に固定されている。冷媒蒸気案内板63は、バッフル板60から下方に延びている。 The evaporator 2 further includes a refrigerant vapor guide plate 63 disposed between the evaporation heat exchanger tube group 32 and the superheating heat exchanger tube group 33. The refrigerant vapor guide plates 63 are fixed to both ends of the baffle plate 60. The refrigerant vapor guide plate 63 extends downward from the baffle plate 60.

冷媒蒸気案内板63の効果は次の通りである。蒸発器2は圧縮機1の吸込口に連結されるので、缶胴30内は低圧となっている。冷媒液は凝縮器3から蒸発器2に送られ、冷媒散布手段40から散布される。このとき、冷媒液の一部が瞬間的に蒸発し(フラッシュし)、冷媒の噴流を形成する。冷媒蒸気案内板63は、冷媒の噴流の飛散を防止することができる。さらに、冷媒蒸気案内板63は、冷媒の蒸気流を下方に案内し、蒸発用伝熱管群32に導く。この下方に向かう冷媒の蒸気流は、蒸発用伝熱管群32の上部を構成する伝熱管の表面から冷媒液の一部を除去し、上部の伝熱管上の冷媒液の膜厚を小さくする。結果として、蒸発用伝熱管群32の全体に冷媒液が供給され、冷媒液の蒸発が促進される。 The effects of the refrigerant vapor guide plate 63 are as follows. Since the evaporator 2 is connected to the suction port of the compressor 1, the pressure inside the can body 30 is low. The refrigerant liquid is sent from the condenser 3 to the evaporator 2 and is distributed from the refrigerant distribution means 40. At this time, a portion of the refrigerant liquid momentarily evaporates (flashes), forming a jet of refrigerant. The refrigerant vapor guide plate 63 can prevent the refrigerant jet from scattering. Further, the refrigerant vapor guide plate 63 guides the refrigerant vapor flow downward to the evaporation heat exchanger tube group 32 . This downward vapor flow of the refrigerant removes a portion of the refrigerant liquid from the surfaces of the heat exchanger tubes forming the upper part of the evaporative heat exchanger tube group 32, thereby reducing the film thickness of the refrigerant liquid on the upper heat exchanger tubes. As a result, the refrigerant liquid is supplied to the entire evaporation heat exchanger tube group 32, and evaporation of the refrigerant liquid is promoted.

また、蒸発用伝熱管群32内の隙間に存在する冷媒蒸気は、冷媒蒸気案内板63によって下方に案内され、その後、蒸発用伝熱管群32から側方に流れる。冷媒蒸気は、過熱用伝熱管群33に接触する前に、蒸発用伝熱管群32と過熱用伝熱管群33との間に存在する空間を流れる。このとき、冷媒蒸気の流速は低下するので、冷媒蒸気に含まれる冷媒の液滴が自重により落下する。したがって、冷媒蒸気中に存在する冷媒の液滴は大幅に低減され、ほぼ飽和状態の冷媒蒸気が過熱用伝熱管群33に接触する。結果として、過熱用伝熱管群33での過熱効果が向上する。 Moreover, the refrigerant vapor existing in the gap within the evaporative heat exchanger tube group 32 is guided downward by the refrigerant vapor guide plate 63, and then flows laterally from the evaporative heat exchanger tube group 32. The refrigerant vapor flows through a space existing between the evaporation heat exchanger tube group 32 and the superheating heat exchanger tube group 33 before coming into contact with the superheating heat exchanger tube group 33 . At this time, since the flow rate of the refrigerant vapor decreases, the refrigerant droplets contained in the refrigerant vapor fall due to their own weight. Therefore, the number of refrigerant droplets present in the refrigerant vapor is significantly reduced, and the almost saturated refrigerant vapor contacts the superheating heat exchanger tube group 33. As a result, the superheating effect in the superheating heat exchanger tube group 33 is improved.

冷媒蒸気案内板63の下端は、過熱用伝熱管群33の全体よりも低い位置にある。このように配置された冷媒蒸気案内板63は、蒸発用伝熱管群32を通過した冷媒蒸気のほとんどすべてを過熱用伝熱管群33に導くことができる。 The lower end of the refrigerant vapor guide plate 63 is located at a lower position than the entire superheating heat exchanger tube group 33. The refrigerant vapor guide plate 63 arranged in this manner can guide almost all of the refrigerant vapor that has passed through the evaporation heat transfer tube group 32 to the superheating heat transfer tube group 33.

図3に示すように、蒸発器2は、冷媒散布手段40の両側に配置されたブロック壁65をさらに備えている。ブロック壁65は、蒸発用伝熱管群32の両縁の上方に配置されており、冷媒蒸気案内板63よりも内側に位置している。図5は、冷媒散布手段40、冷媒蒸気案内板63、ブロック壁65を示す拡大図である。ブロック壁65は、冷媒散布手段40から吐出された冷媒液の飛散を防止することができる。ブロック壁65に接触した冷媒液は、ブロック壁65から滴下し、蒸発用伝熱管群32の両縁を構成する伝熱管に接触する。したがって、蒸発用伝熱管群32の全幅に亘って冷媒液が供給され、蒸発用伝熱管群32を流れる被冷却流体と冷媒液との熱交換効率を向上させることができる。 As shown in FIG. 3, the evaporator 2 further includes block walls 65 disposed on both sides of the refrigerant distribution means 40. As shown in FIG. The block wall 65 is arranged above both edges of the evaporation heat exchanger tube group 32 and is located inside the refrigerant vapor guide plate 63. FIG. 5 is an enlarged view showing the refrigerant distribution means 40, the refrigerant vapor guide plate 63, and the block wall 65. The block wall 65 can prevent the refrigerant liquid discharged from the refrigerant distribution means 40 from scattering. The refrigerant liquid that has come into contact with the block wall 65 drips from the block wall 65 and comes into contact with the heat exchanger tubes forming both edges of the evaporation heat exchanger tube group 32 . Therefore, the refrigerant liquid is supplied over the entire width of the evaporation heat exchanger tube group 32, and the heat exchange efficiency between the cooled fluid flowing through the evaporation heat exchanger tube group 32 and the refrigerant liquid can be improved.

本実施形態では、過熱用伝熱管群33を構成する伝熱管には、背の高いフィンを有する伝熱管などの外側表面積の大きい伝熱管が使用される。すなわち、過熱用伝熱管群33を構成する伝熱管の単位長さ当たりの外側表面積は、蒸発用伝熱管群32を構成する伝熱管の単位長さ当たりの外側表面積よりも大きい。このような過熱用伝熱管群33を構成する伝熱管は、管外の冷媒蒸気の伝熱を促進でき、管外の冷媒蒸気と管内の被冷却流体との熱交換を促進することができるので、過熱用伝熱管群33を構成する伝熱管の数を少なくすることができる。 In this embodiment, the heat exchanger tubes constituting the superheating heat exchanger tube group 33 are heat exchanger tubes with a large outer surface area, such as heat exchanger tubes with tall fins. That is, the outer surface area per unit length of the heat exchanger tubes constituting the group 33 of heat exchanger tubes for superheating is larger than the outer surface area per unit length of the heat exchanger tubes constituting the group 32 of heat exchanger tubes for evaporation. The heat transfer tubes constituting the superheating heat transfer tube group 33 can promote heat transfer of the refrigerant vapor outside the tubes, and can promote heat exchange between the refrigerant vapor outside the tubes and the fluid to be cooled inside the tubes. , the number of heat exchanger tubes that constitute the overheating heat exchanger tube group 33 can be reduced.

冷媒蒸気中の液状の冷媒が過熱用伝熱管群33との接触により蒸発すると、被冷却流体の入口温度と出口温度との差が速やかに変化する。すなわち、被冷却流体の入口温度と出口温度との差の変化は、過熱用伝熱管群33に接触している冷媒蒸気中の液状の冷媒の量を反映している。したがって、弁制御部10は、被冷却流体の入口温度と出口温度との差に基づいて膨張弁22または膨張弁25の開度、すなわち過熱度を精密に制御することができる。また、本発明によれば、蒸発器2内の液面センサを設ける必要がないので、低価格で膨張弁22,25の制御が可能である。 When the liquid refrigerant in the refrigerant vapor evaporates due to contact with the superheating heat transfer tube group 33, the difference between the inlet temperature and the outlet temperature of the fluid to be cooled changes rapidly. That is, the change in the difference between the inlet temperature and the outlet temperature of the fluid to be cooled reflects the amount of liquid refrigerant in the refrigerant vapor that is in contact with the superheating heat transfer tube group 33. Therefore, the valve control unit 10 can precisely control the degree of opening of the expansion valve 22 or the expansion valve 25, that is, the degree of superheat, based on the difference between the inlet temperature and the outlet temperature of the fluid to be cooled. Further, according to the present invention, since there is no need to provide a liquid level sensor in the evaporator 2, the expansion valves 22 and 25 can be controlled at low cost.

図6は、冷媒散布手段40、バッフル板60、およびブロック壁65の配置の一実施形態を示す拡大図であり、図7は、図6の矢印Cで示す方向から見た図である。冷媒散布手段40は、冷媒液入口5と、冷媒液入口5に接続されたヘッダー管49と、ヘッダー管49に接続された複数のノズル管48を備えている。ノズル管48は、ヘッダー管49に固定されている。各ノズル管48の下部には、複数の開口48aが設けられている。冷媒液は、冷媒液入口5、ヘッダー管49、およびノズル管48の順に流れ、開口48aから散布される。 FIG. 6 is an enlarged view showing one embodiment of the arrangement of the refrigerant distribution means 40, the baffle plate 60, and the block wall 65, and FIG. 7 is a view seen from the direction indicated by arrow C in FIG. The refrigerant distribution means 40 includes a refrigerant liquid inlet 5, a header pipe 49 connected to the refrigerant liquid inlet 5, and a plurality of nozzle pipes 48 connected to the header pipe 49. The nozzle pipe 48 is fixed to a header pipe 49. A plurality of openings 48a are provided at the bottom of each nozzle pipe 48. The refrigerant liquid flows through the refrigerant liquid inlet 5, the header pipe 49, and the nozzle pipe 48 in this order, and is sprayed from the opening 48a.

冷媒液入口5はバッフル板60を貫通して延びている。バッフル板60は、冷媒液入口5およびヘッダー管49に固定されている。したがって、バッフル板60と冷媒散布手段40は一体的な構造体である。本実施形態によれば、バッフル板60と冷媒散布手段40を別々に缶胴30内に配置する作業が不要であるので、蒸発器2の組み立てを簡単に行うことができる。 Refrigerant liquid inlet 5 extends through baffle plate 60 . The baffle plate 60 is fixed to the refrigerant liquid inlet 5 and the header pipe 49. Therefore, the baffle plate 60 and the refrigerant distribution means 40 are an integral structure. According to this embodiment, it is not necessary to separately arrange the baffle plate 60 and the refrigerant distribution means 40 inside the can body 30, so the evaporator 2 can be assembled easily.

図8は、冷媒散布手段40、バッフル板60、およびブロック壁65の配置の他の実施形態を示す拡大図であり、図9は、図8の矢印Dで示す方向から見た図である。本実施形態では、冷媒散布手段40は、冷媒液入口5に接続された中空箱68を備えており、中空箱68の下面には複数の開口68aが形成されている。中空箱68は、バッフル板60としても機能する。すなわち、中空箱68は、冷媒散布手段40を構成しつつ、バッフル板60を構成する。冷媒蒸気案内板63は、中空箱68(バッフル板60)の両側端に固定され、ブロック壁65は、中空箱68(バッフル板60)の下面に固定されている。冷媒液は、冷媒液入口5、中空箱68の順に流れ、開口68aから散布される。本実施形態によれば、よりシンプルな構造を持つ冷媒散布手段40およびバッフル板60が達成できる。 FIG. 8 is an enlarged view showing another embodiment of the arrangement of the refrigerant distribution means 40, the baffle plate 60, and the block wall 65, and FIG. 9 is a view seen from the direction indicated by arrow D in FIG. In this embodiment, the refrigerant distribution means 40 includes a hollow box 68 connected to the refrigerant liquid inlet 5, and a plurality of openings 68a are formed in the lower surface of the hollow box 68. The hollow box 68 also functions as a baffle plate 60. That is, the hollow box 68 constitutes the baffle plate 60 while constituting the refrigerant dispersing means 40 . The refrigerant vapor guide plate 63 is fixed to both ends of the hollow box 68 (baffle plate 60), and the block wall 65 is fixed to the lower surface of the hollow box 68 (baffle plate 60). The refrigerant liquid flows through the refrigerant liquid inlet 5 and the hollow box 68 in this order, and is dispersed from the opening 68a. According to this embodiment, the refrigerant distribution means 40 and the baffle plate 60 having a simpler structure can be achieved.

図10は、蒸発器2の他の実施形態の断面図であり、図11は、図10に示す実施形態に係る蒸発器2の水室カバー44の断面図である。特に説明しない本実施形態の詳細は、図2乃至図4を参照して説明した実施形態と同じであるので、その重複する説明を省略する。本実施形態では、過熱用伝熱管群33の断面形状は、外側に向かって下方に傾斜している。過熱用伝熱管群33の全体は、蒸発用伝熱管群32の上端よりも低い位置にあり、かつ蒸発用伝熱管群32の下端よりも高い位置にある。 FIG. 10 is a sectional view of another embodiment of the evaporator 2, and FIG. 11 is a sectional view of the water chamber cover 44 of the evaporator 2 according to the embodiment shown in FIG. Details of this embodiment that are not particularly described are the same as those of the embodiment described with reference to FIGS. 2 to 4, and therefore, redundant description thereof will be omitted. In this embodiment, the cross-sectional shape of the superheating heat exchanger tube group 33 is inclined downward toward the outside. The entire superheating heat exchanger tube group 33 is located at a lower position than the upper end of the evaporation heat exchanger tube group 32 and higher than the lower end of the evaporation heat exchanger tube group 32.

冷媒蒸気案内板63の下端は、過熱用伝熱管群33の内側の下端よりも低い位置にある。したがって、図2乃至図4を参照して説明した実施形態と同様に、蒸発用伝熱管群32内の隙間に存在する冷媒蒸気は、冷媒蒸気案内板63によって下方に案内され、その後、蒸発用伝熱管群32から側方に流れる。冷媒蒸気は、蒸発用伝熱管群32と過熱用伝熱管群33との間に存在する空間を流れる間に、冷媒蒸気に含まれる冷媒の液滴が自重により落下する。したがって、冷媒蒸気中に存在する冷媒の液滴は大幅に低減され、ほぼ飽和状態の冷媒蒸気が過熱用伝熱管群33に接触する。結果として、過熱用伝熱管群33での過熱効果が向上する。 The lower end of the refrigerant vapor guide plate 63 is located at a lower position than the inner lower end of the superheating heat exchanger tube group 33. Therefore, similar to the embodiment described with reference to FIGS. 2 to 4, the refrigerant vapor existing in the gap in the evaporative heat transfer tube group 32 is guided downward by the refrigerant vapor guide plate 63, and then It flows laterally from the heat exchanger tube group 32. While the refrigerant vapor flows through the space existing between the evaporation heat transfer tube group 32 and the superheating heat transfer tube group 33, droplets of the refrigerant contained in the refrigerant vapor fall due to their own weight. Therefore, the number of refrigerant droplets present in the refrigerant vapor is significantly reduced, and the almost saturated refrigerant vapor contacts the superheating heat exchanger tube group 33. As a result, the superheating effect in the superheating heat exchanger tube group 33 is improved.

図12は、蒸発器2のさらに他の実施形態の断面図であり、図13は、図12に示す実施形態に係る蒸発器2の水室カバー44の断面図である。特に説明しない本実施形態の詳細は、図2乃至図4を参照して説明した実施形態と同じであるので、その重複する説明を省略する。本実施形態では、過熱用伝熱管群33の全体は、冷媒散布手段40、バッフル板60、および蒸発用伝熱管群32よりも高い位置にある。 FIG. 12 is a sectional view of still another embodiment of the evaporator 2, and FIG. 13 is a sectional view of the water chamber cover 44 of the evaporator 2 according to the embodiment shown in FIG. Details of this embodiment that are not particularly described are the same as those of the embodiment described with reference to FIGS. 2 to 4, and therefore, redundant description thereof will be omitted. In this embodiment, the entire superheating heat exchanger tube group 33 is located at a higher position than the refrigerant distribution means 40, the baffle plate 60, and the evaporation heat exchanger tube group 32.

図2乃至図4を参照して説明した実施形態と同様に、蒸発用伝熱管群32内の隙間に存在する冷媒蒸気は、冷媒蒸気案内板63によって下方に案内され、その後、蒸発用伝熱管群32から側方に流れる。冷媒蒸気は、蒸発用伝熱管群32と過熱用伝熱管群33との間に存在する空間を流れる間に、冷媒蒸気に含まれる冷媒の液滴が自重により落下する。したがって、冷媒蒸気中に存在する冷媒の液滴は大幅に低減され、ほぼ飽和状態の冷媒蒸気が過熱用伝熱管群33に接触する。結果として、過熱用伝熱管群33での過熱効果が向上する。 Similar to the embodiment described with reference to FIGS. 2 to 4, the refrigerant vapor present in the gap in the evaporation heat exchanger tube group 32 is guided downward by the refrigerant vapor guide plate 63, and then the evaporation heat exchanger tube Flows laterally from group 32. While the refrigerant vapor flows through the space existing between the evaporation heat transfer tube group 32 and the superheating heat transfer tube group 33, droplets of the refrigerant contained in the refrigerant vapor fall due to their own weight. Therefore, the number of refrigerant droplets present in the refrigerant vapor is significantly reduced, and the almost saturated refrigerant vapor contacts the superheating heat exchanger tube group 33. As a result, the superheating effect in the superheating heat exchanger tube group 33 is improved.

上述した蒸発器2のそれぞれの実施形態は、1パス目の伝熱管群31-1および2パス目の伝熱管群31-2を備えているが、本発明はこれら実施形態に限定されない。一実施形態では、図14および図15に示すように、蒸発器2は1パス目の伝熱管群31-1のみからなる蒸発用伝熱管群32および過熱用伝熱管群33を備えてもよい。あるいは、蒸発器2は3パス目以上の伝熱管群をさらに備えてもよい。 Although each of the embodiments of the evaporator 2 described above includes a first-pass heat exchanger tube group 31-1 and a second-pass heat exchanger tube group 31-2, the present invention is not limited to these embodiments. In one embodiment, as shown in FIGS. 14 and 15, the evaporator 2 may include an evaporation heat exchanger tube group 32 and a superheating heat exchanger tube group 33, which are comprised only of the first pass heat exchanger tube group 31-1. . Alternatively, the evaporator 2 may further include a third or more pass heat exchanger tube group.

上述した遠心式冷凍機は、圧縮式冷凍機の一例である。本発明は、圧縮式冷凍機の他の例であるスクリュー冷凍機にも同様に適用することができる。 The centrifugal refrigerator mentioned above is an example of a compression refrigerator. The present invention can be similarly applied to a screw refrigerator, which is another example of a compression refrigerator.

上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。 The embodiments described above have been described to enable those skilled in the art to carry out the invention. Various modifications of the above embodiments can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Therefore, the invention is not limited to the described embodiments, but is to be construed in the broadest scope according to the spirit defined by the claims.

1 圧縮機
2 蒸発器
3 凝縮器
4A,4B,4C,4D,4E 冷媒配管
5 冷媒液入口
6 冷媒蒸気出口
9 エコノマイザ
10 弁制御部
11 一段目羽根車
12 二段目羽根車
13 電動機
16 ガイドベーン
17 中間吸込口
20 バイパスライン
21,22,25 膨張弁
30 缶胴
31 伝熱管群
31-1 1パス目の伝熱管群
31-2 2パス目の伝熱管群
32 蒸発用伝熱管群
32A 第1蒸発用伝熱管群
32B 第2蒸発用伝熱管群
33 過熱用伝熱管群
40 冷媒散布手段
42 管板
44 水室カバー
45 被冷却流体入口ポート
46 被冷却流体出口ポート
48 ノズル管
49 ヘッダー管
53 第1流体室
54 第2流体室
57 仕切り板
60 バッフル板
63 冷媒蒸気案内板
65 ブロック壁
68 中空箱
S1 温度センサ
S2 温度センサ
1 Compressor 2 Evaporator 3 Condenser 4A, 4B, 4C, 4D, 4E Refrigerant piping 5 Refrigerant liquid inlet 6 Refrigerant vapor outlet 9 Economizer 10 Valve control unit 11 First stage impeller 12 Second stage impeller 13 Electric motor 16 Guide vane 17 Intermediate suction port 20 Bypass lines 21, 22, 25 Expansion valve 30 Can body 31 Heat exchanger tube group 31-1 1st pass heat exchanger tube group 31-2 2nd pass heat exchanger tube group 32 Evaporation heat exchanger tube group 32A 1st Evaporation heat transfer tube group 32B Second evaporation heat transfer tube group 33 Superheating heat transfer tube group 40 Refrigerant distribution means 42 Tube plate 44 Water chamber cover 45 Cooled fluid inlet port 46 Cooled fluid outlet port 48 Nozzle pipe 49 Header pipe 53 No. 1 fluid chamber 54 2nd fluid chamber 57 Partition plate 60 Baffle plate 63 Refrigerant vapor guide plate 65 Block wall 68 Hollow box S1 Temperature sensor S2 Temperature sensor

Claims (8)

圧縮式冷凍機に使用される液膜式の蒸発器であって、
缶胴と、
前記缶胴内に配置された蒸発用伝熱管群と、
前記缶胴内に配置され、前記蒸発用伝熱管群から離れた位置にある過熱用伝熱管群と、
前記蒸発用伝熱管群の上方に配置され、前記蒸発用伝熱管群に冷媒液を供給する冷媒散布手段と、
前記冷媒液の一部がフラッシュして生成された冷媒蒸気、及び前記蒸発用伝熱管群と前記冷媒液との接触により発生した冷媒蒸気の上方への流れを阻止するバッフル板と、
前記蒸発用伝熱管群と前記過熱用伝熱管群との間に配置された冷媒蒸気案内板を備え、
前記バッフル板は、前記蒸発用伝熱管群の上方に配置されており、
前記過熱用伝熱管群は、前記蒸発用伝熱管群の横に配置されており、
前記冷媒蒸気案内板は、前記バッフル板から下方に延びており、
前記冷媒蒸気案内板の下端は、前記過熱用伝熱管群の内側の下端よりも低い位置にある、蒸発器。
A liquid film type evaporator used in a compression refrigerator,
Can body and
a group of evaporation heat exchanger tubes arranged in the can body;
a superheating heat transfer tube group disposed within the can body and located away from the evaporation heat transfer tube group;
a refrigerant dispersing means disposed above the evaporation heat exchanger tube group and supplying refrigerant liquid to the evaporation heat exchanger tube group;
a baffle plate that prevents upward flow of refrigerant vapor generated by flashing a portion of the refrigerant liquid and refrigerant vapor generated by contact between the evaporation heat transfer tube group and the refrigerant liquid;
comprising a refrigerant vapor guide plate disposed between the evaporation heat exchanger tube group and the superheating heat exchanger tube group ,
The baffle plate is arranged above the evaporation heat exchanger tube group ,
The superheating heat exchanger tube group is arranged next to the evaporation heat exchanger tube group,
The refrigerant vapor guide plate extends downward from the baffle plate,
The lower end of the refrigerant vapor guide plate is located at a lower position than the inner lower end of the superheating heat exchanger tube group .
前記バッフル板と前記冷媒散布手段は、一体的な構造体である、請求項1に記載の蒸発器。 The evaporator according to claim 1, wherein the baffle plate and the refrigerant distribution means are an integral structure. 前記過熱用伝熱管群は、被冷却流体が流れる1パス目の伝熱管群の一部である、請求項1または2に記載の蒸発器。 The evaporator according to claim 1 or 2, wherein the superheating heat transfer tube group is a part of a first pass heat transfer tube group through which the fluid to be cooled flows. 前記蒸発器は、
前記缶胴の管板を覆う水室カバーと、
前記水室カバーに接続された被冷却流体入口ポートと、
前記管板と前記水室カバーとの間に形成された流体室を第1流体室と第2流体室に仕切る仕切り板をさらに備え、
前記被冷却流体入口ポートおよび前記過熱用伝熱管群は、前記第1流体室に連通している、請求項3に記載の蒸発器。
The evaporator is
a water chamber cover that covers the tube plate of the can body;
a cooled fluid inlet port connected to the water chamber cover;
further comprising a partition plate that partitions the fluid chamber formed between the tube plate and the water chamber cover into a first fluid chamber and a second fluid chamber,
The evaporator according to claim 3, wherein the cooled fluid inlet port and the superheating heat exchanger tube group communicate with the first fluid chamber.
前記過熱用伝熱管群を構成する伝熱管の単位長さ当たりの外側表面積は、前記蒸発用伝熱管群を構成する伝熱管の単位長さ当たりの外側表面積よりも大きい、請求項1乃至4のいずれか一項に記載の蒸発器。 The outer surface area per unit length of the heat exchanger tubes constituting the superheating heat exchanger tube group is larger than the outer surface area per unit length of the heat exchanger tubes constituting the evaporation heat exchanger tube group. The evaporator according to any one of the items. 前記蒸発器は、前記冷媒散布手段の両側に配置されたブロック壁をさらに備えており、
前記ブロック壁は、前記蒸発用伝熱管群の両縁の上方に配置されている、請求項1乃至のいずれか一項に記載の蒸発器。
The evaporator further includes block walls disposed on both sides of the refrigerant distribution means,
The evaporator according to any one of claims 1 to 5 , wherein the block wall is arranged above both edges of the evaporation heat exchanger tube group.
冷媒液を蒸発させて冷媒蒸気を生成する請求項1乃至のいずれか一項に記載の蒸発器と、
前記冷媒蒸気を圧縮する圧縮機と、
前記圧縮された冷媒蒸気を凝縮させて前記冷媒液を生成する凝縮器と、
前記凝縮器と前記蒸発器との間に配置された膨張弁を備えた、圧縮式冷凍機。
The evaporator according to any one of claims 1 to 6 , which evaporates refrigerant liquid to generate refrigerant vapor;
a compressor that compresses the refrigerant vapor;
a condenser that condenses the compressed refrigerant vapor to produce the refrigerant liquid;
A compression refrigerator comprising an expansion valve disposed between the condenser and the evaporator.
前記過熱用伝熱管群に流入する被冷却流体の入口温度を測定する入口温度測定器と、
前記過熱用伝熱管群から流出した前記被冷却流体の出口温度を測定する出口温度測定器と、
前記入口温度と前記出口温度との差に基づいて前記膨張弁の開度を制御する弁制御部をさらに備えている、請求項に記載の圧縮式冷凍機。
an inlet temperature measuring device that measures the inlet temperature of the fluid to be cooled flowing into the superheating heat transfer tube group;
an outlet temperature measuring device that measures the outlet temperature of the fluid to be cooled that has flowed out from the group of superheating heat transfer tubes;
The compression refrigerator according to claim 7 , further comprising a valve control section that controls the opening degree of the expansion valve based on the difference between the inlet temperature and the outlet temperature.
JP2020040182A 2019-04-26 2020-03-09 Evaporator used in compression refrigerator, and compression refrigerator equipped with the evaporator Active JP7423357B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910344130.X 2019-04-26
CN201910344130.XA CN111854232A (en) 2019-04-26 2019-04-26 Evaporator for compression refrigerator and compression refrigerator provided with same

Publications (2)

Publication Number Publication Date
JP2020183859A JP2020183859A (en) 2020-11-12
JP7423357B2 true JP7423357B2 (en) 2024-01-29

Family

ID=72951685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040182A Active JP7423357B2 (en) 2019-04-26 2020-03-09 Evaporator used in compression refrigerator, and compression refrigerator equipped with the evaporator

Country Status (2)

Country Link
JP (1) JP7423357B2 (en)
CN (1) CN111854232A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539414A (en) 1999-03-12 2002-11-19 アメリカン スタンダード インコーポレイテッド A falling film evaporator equipped with a two-stage refrigerant dispersion device
JP2008224055A (en) 2007-03-08 2008-09-25 Ihi Corp Refrigerant liquid level detecting device, flooded evaporator, ice heat storage device and heat pump system
JP2011510248A (en) 2008-01-11 2011-03-31 ジョンソン コントロールズ テクノロジー カンパニー Vapor compression system
JP2014020753A (en) 2012-07-23 2014-02-03 Daikin Ind Ltd Downward flow liquid film type evaporator
US20160076799A1 (en) 2013-05-01 2016-03-17 United Technologies Corporation Falling film evaporator for mixed refrigerants
CN108844258A (en) 2018-07-25 2018-11-20 珠海格力电器股份有限公司 Evaporator and air-conditioner set

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539414A (en) 1999-03-12 2002-11-19 アメリカン スタンダード インコーポレイテッド A falling film evaporator equipped with a two-stage refrigerant dispersion device
JP2008224055A (en) 2007-03-08 2008-09-25 Ihi Corp Refrigerant liquid level detecting device, flooded evaporator, ice heat storage device and heat pump system
JP2011510248A (en) 2008-01-11 2011-03-31 ジョンソン コントロールズ テクノロジー カンパニー Vapor compression system
JP2014020753A (en) 2012-07-23 2014-02-03 Daikin Ind Ltd Downward flow liquid film type evaporator
US20160076799A1 (en) 2013-05-01 2016-03-17 United Technologies Corporation Falling film evaporator for mixed refrigerants
CN108844258A (en) 2018-07-25 2018-11-20 珠海格力电器股份有限公司 Evaporator and air-conditioner set

Also Published As

Publication number Publication date
JP2020183859A (en) 2020-11-12
CN111854232A (en) 2020-10-30

Similar Documents

Publication Publication Date Title
US6318118B2 (en) Evaporator with enhanced refrigerant distribution
US3866439A (en) Evaporator with intertwined circuits
JP2018071967A (en) Evaporator and method of conditioning air
JP2020507731A (en) Condenser having tube support structure
JP2008534894A (en) Refrigeration system with saving cycle
JP2020521103A (en) Heat exchanger
EP3204702B1 (en) Internal liquid suction heat exchanger
EP2304340B1 (en) Start-up procedure for refrigerant systems having microchannel condenser and reheat cycle
ITVI20070187A1 (en) HEAT EXCHANGER WITH A TUBE OF A PERFECT TYPE
EP2661593B1 (en) Condenser/accumulator and systems and operation methods
EP2901091B1 (en) Refrigerator and method of controlling refrigerator
US11885540B2 (en) Condensers for heating and/or cooling systems
JP7423357B2 (en) Evaporator used in compression refrigerator, and compression refrigerator equipped with the evaporator
JP2009150625A (en) Steam generation system
KR20120138977A (en) A multi funtional chilly wind drying machine with both overheat protection and auto thermostatic control
CN210004632U (en) Evaporator for compression refrigerator and compression refrigerator provided with same
US10907865B2 (en) Heating and cooling system, and heat exchanger for the same
WO2022068306A1 (en) Heat regenerator and refrigeration system having same
JP6623076B2 (en) Refrigeration cycle equipment
EP3627072B1 (en) Cooling system and a method for cooling water
JP2014081120A (en) Precise temperature control device
JP2019211138A (en) Air conditioner
JP6878550B2 (en) Refrigerator
KR102169284B1 (en) Heat exchanger and air conditional having the same
EP3627073A1 (en) Flooded evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240117

R150 Certificate of patent or registration of utility model

Ref document number: 7423357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150