JP7420512B2 - Resin composition and molded product made from the resin composition - Google Patents

Resin composition and molded product made from the resin composition Download PDF

Info

Publication number
JP7420512B2
JP7420512B2 JP2019165738A JP2019165738A JP7420512B2 JP 7420512 B2 JP7420512 B2 JP 7420512B2 JP 2019165738 A JP2019165738 A JP 2019165738A JP 2019165738 A JP2019165738 A JP 2019165738A JP 7420512 B2 JP7420512 B2 JP 7420512B2
Authority
JP
Japan
Prior art keywords
resin
resin composition
plant
biomass
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019165738A
Other languages
Japanese (ja)
Other versions
JP2021042318A (en
Inventor
陽 平田
真一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimori Kogyo Co Ltd
Original Assignee
Fujimori Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Kogyo Co Ltd filed Critical Fujimori Kogyo Co Ltd
Priority to JP2019165738A priority Critical patent/JP7420512B2/en
Publication of JP2021042318A publication Critical patent/JP2021042318A/en
Application granted granted Critical
Publication of JP7420512B2 publication Critical patent/JP7420512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、廃棄する際の環境負荷が小さい樹脂組成物、および、その樹脂組成物によって形成される生活用品、台所用品、事務用品、インテリア用品、土木建築用資材等の各種の成形品に関するものである。 The present invention relates to a resin composition that has a small environmental impact when disposed of, and various molded products such as household goods, kitchen goods, office goods, interior goods, and civil engineering and construction materials formed from the resin composition. It is.

生活用品、台所用品、事務用品、インテリア用品、土木建築用資材等の各種の製品を製造する際の原料として、各種の合成樹脂が広く用いられている。たとえば、食品、薬品、化粧品等の各種の液体や粉体等を包装・収納するための包装材料としては、合成樹脂製のフィルムからなる包装袋が多く使用されている(特許文献1)。 Various synthetic resins are widely used as raw materials for manufacturing various products such as household goods, kitchen goods, office goods, interior goods, and civil engineering and construction materials. For example, packaging bags made of synthetic resin films are often used as packaging materials for packaging and storing various liquids and powders such as foods, medicines, and cosmetics (Patent Document 1).

一方、近年では、廃棄された合成樹脂を燃焼させる際に排出されるCOが環境問題になっているが、上記従来の合成樹脂製の製品(たとえば、包装フィルムや包装袋等)は、燃焼時に多くのCOを排出させるものであるため、廃棄時の環境負荷が小さいとは言い難い。それゆえ、特許文献2の如く、カーボンニュートラルな性質(燃やしても大気中のCOの増減に影響を与えない性質)を有する竹等の木質材を、主原料である合成樹脂中に添加した樹脂組成物によって合成樹脂フィルムを製造する技術も開発されている。 On the other hand, in recent years, CO2 emitted when discarded synthetic resin is burned has become an environmental issue. Since they sometimes emit a large amount of CO 2 , it is difficult to say that the environmental impact upon disposal is small. Therefore, as in Patent Document 2, wood materials such as bamboo, which have carbon-neutral properties (properties that do not affect the increase or decrease of CO2 in the atmosphere even when burned), are added to synthetic resins, which are the main raw materials. Techniques for manufacturing synthetic resin films using resin compositions have also been developed.

特開2017-88180号公報JP2017-88180A 特開2016-23282号公報JP2016-23282A

しかしながら、特許文献2の如き従来の木質材入りの合成樹脂フィルムは、主原料である合成樹脂中に竹材からなる粒子を単純に添加して製造するものであるため、合成樹脂と木質材との馴染みが悪く、成形品中にボイドやクラックを発生しやすい上、合成樹脂中における木質材粒子の分散性が悪いことに起因して合成樹脂本来の特性が発現されにくい、という不具合がある。 However, conventional synthetic resin films containing wood materials, such as the one disclosed in Patent Document 2, are manufactured by simply adding bamboo particles to the synthetic resin, which is the main raw material. There are problems in that it has poor compatibility, tends to cause voids and cracks in the molded product, and is difficult to express the inherent properties of the synthetic resin due to the poor dispersibility of wood particles in the synthetic resin.

本発明の目的は、上記従来の成形品の原料である樹脂組成物が有する問題点を解消し、カーボンニュートラルな性質を有する物質を含有しており、成形品の廃棄時の環境負荷が小さいにもかかわらず、その物質と合成樹脂との馴染みが良好であり、成形品の成形時にボイドやクラックが形成されにくく、合成樹脂本来の特性を発現する成形品を成形可能な樹脂組成物を提供することにある。また、当該樹脂組成物によって形成される廃棄時の環境負荷が小さく、かつ、合成樹脂本来の特性を発現可能な成形品を提供することにある。 The purpose of the present invention is to solve the problems of the resin compositions that are the raw materials for conventional molded products, contain substances with carbon-neutral properties, and reduce the environmental burden when disposing of molded products. However, to provide a resin composition that has good compatibility with the synthetic resin, is less likely to form voids or cracks during molding, and can be molded into a molded product that exhibits the characteristics inherent to the synthetic resin. There is a particular thing. Another object of the present invention is to provide a molded article formed from the resin composition, which has a small environmental burden upon disposal, and which can exhibit the characteristics inherent to the synthetic resin.

本発明の内、請求項1に記載された発明は、植物由来材の粒子を樹脂成分中に添加してなる樹脂組成物であって、前記植物由来材の粒子の添加割合が1~50質量%であり、前記植物由来材の粒子の最大径の平均値が100~300μmであるとともに、前記樹脂成分が、ベース樹脂中に、サトウキビ由来のポリオレフィンを主成分とするバイオマス系樹脂を含有させたものであり、かつ、前記ベース樹脂が、ポリオレフィンを主成分とし、バイオマス系樹脂以外の非バイオマス系樹脂を含有するものであるとともに、前記植物由来材の粒子が、表面をアセチル化処理したものであることを特徴とする。なお、植物由来材とは、各種の木質材、竹、竹炭、食品残渣からなるセルロース、あるいはそれらの混合物のことである。 The invention described in claim 1 of the present invention provides a resin composition in which particles of a plant-derived material are added to a resin component, wherein the proportion of the particles of the plant-derived material added is 1 to 50% by mass. %, the average maximum diameter of the particles of the plant-derived material is 100 to 300 μm, and the resin component contains a biomass-based resin whose main component is polyolefin derived from sugarcane in the base resin. and the base resin is mainly composed of polyolefin and contains a non-biomass resin other than a biomass resin , and the particles of the plant-derived material have their surfaces subjected to acetylation treatment. characterized by something. Note that the plant-derived material refers to various wood materials, bamboo, bamboo charcoal, cellulose made from food residue, or a mixture thereof.

請求項2に記載された発明は、請求項1に記載された発明において、前記バイオマス系樹脂が、サトウキビ由来のポリオレフィンを主成分とするものであることを特徴とする。 The invention set forth in claim 2 is characterized in that, in the invention set forth in claim 1 , the biomass-based resin has a polyolefin derived from sugarcane as a main component.

請求項2に記載された発明は、請求項1に記載された発明において、前記ベース樹脂が、酸変性ポリオレフィンを含むものであることを特徴とする。 The invention set forth in claim 2 is characterized in that, in the invention set forth in claim 1 , the base resin contains an acid-modified polyolefin.

請求項3に記載された発明は、請求項1、または2に記載された発明において、前記ベース樹脂の酸変性度が0.3~2.5mol%であることを特徴とするものである。 The invention set forth in claim 3 is the invention set forth in claim 1 or 2 , characterized in that the degree of acid modification of the base resin is 0.3 to 2.5 mol%.

請求項4に記載された発明は、請求項1~3のいずれかに記載された発明において、前記樹脂成分のバイオマス由来度が5~60質量%であることを特徴とするものである。 The invention set forth in claim 4 is the invention set forth in any one of claims 1 to 3 , characterized in that the degree of biomass origin of the resin component is 5 to 60% by mass.

請求項5に記載された発明は、請求項1~4のいずれかに記載された発明において、前記樹脂成分の190℃におけるメルトフローレートが5~50であることを特徴とするものである。 The invention set forth in claim 5 is the invention set forth in any one of claims 1 to 4 , characterized in that the resin component has a melt flow rate of 5 to 50 at 190°C.

請求項6に記載された発明は、請求項1~5のいずれかに記載の樹脂組成物によって形成されていることを特徴とする成形品である。 The invention described in claim 6 is a molded article characterized by being formed from the resin composition according to any one of claims 1 to 5 .

本発明に係る樹脂組成物は、バイオマス由来の樹脂中に植物由来材の粒子を添加したものであるので、成形後の成形品を廃棄する際の環境負荷が小さい。また、それにもかかわらず、バイオマス系樹脂と植物由来材の粒子との馴染みが良好であるため、成形品中にボイドやクラックが形成されにくく、樹脂本来の特性を発現し易い。さらに、本発明に係る樹脂組成物は、成形品に成形する場合に、それらの成形品に、植物由来材独特の質感(木質感やヒンヤリ感等)を付与することができる。それゆえ、本発明に係る樹脂組成物は、シート、フィルムや包装袋等をはじめとする各種の成形品の原料として幅広く利用することができる。 Since the resin composition according to the present invention is made by adding particles of a plant-derived material to a resin derived from biomass, the environmental burden when disposing of a molded article after molding is small. Moreover, in spite of this, since the biomass resin and the particles of the plant-derived material have good compatibility, voids and cracks are less likely to be formed in the molded product, and the original properties of the resin are easily expressed. Furthermore, when the resin composition according to the present invention is molded into molded articles, it can impart a texture unique to plant-derived materials (such as a woody feel or a cool feeling) to the molded articles. Therefore, the resin composition according to the present invention can be widely used as a raw material for various molded products including sheets, films, packaging bags, and the like.

また、本発明に係る成形品は、廃棄する際の環境負荷が小さい上、バイオマス系樹脂と植物由来材の粒子との馴染みが良好であるためボイドやクラックが少なく、樹脂本来の特性を発現することができる。 In addition, the molded product according to the present invention has a small environmental burden when disposed of, and because the biomass resin and the particles of the plant-derived material are compatible, there are few voids and cracks, and the original characteristics of the resin are expressed. be able to.

以下、本発明の好適な実施形態について詳細に説明する。なお、以下の説明においては、各成分の特性、含有量、添加量に関する“~”は、原則的に、左側の数値以上右側の数値以下を意味するものとする。 Hereinafter, preferred embodiments of the present invention will be described in detail. In the following description, "~" regarding the characteristics, content, and addition amount of each component basically means greater than or equal to the value on the left and less than or equal to the value on the right.

本発明に係る樹脂組成物は、バイオマス由来のバイオマス系樹脂を含有させたベース樹脂中に特定の形状の植物由来材の粒子を添加したものである。ベース樹脂としては、各種の樹脂を用いることができるが、ポリオレフィンを主成分とするポリオレフィン系樹脂(すなわち、ポリオレフィンの比率が概ね80質量%以上である樹脂)を用いると、樹脂組成物のハンドリング性が良好なものとなるので好ましい。また、ポリオレフィンとしては、ポリプロピレン、中密度ポリエチレン、高密度ポリエチレンを単独で、あるいは、それらの内の2種以上を混合して用いることができる。 The resin composition according to the present invention is one in which particles of a plant-derived material having a specific shape are added to a base resin containing a biomass-based resin derived from biomass. Various resins can be used as the base resin, but if a polyolefin resin containing polyolefin as a main component (i.e., a resin in which the proportion of polyolefin is approximately 80% by mass or more) is used, the handling of the resin composition will be improved. This is preferable because it provides good results. Further, as the polyolefin, polypropylene, medium density polyethylene, and high density polyethylene can be used alone or in combination of two or more thereof.

また、ベース樹脂として、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等、グラフト変性されたポリオレフィンを単独で、あるいは、それらの内の2種以上を混合して、もしくは、それらの内の1種以上を他の樹脂(たとえば、ポリオレフィン樹脂)と混合して用いると、バイオマス系樹脂を含有させたベース樹脂と植物由来材の粒子との親和性が良好なものとなり、樹脂組成物から成形品を成形する際にボイドやクラックが形成されにくくなるので好ましい。さらに、上述の如く、ベース樹脂として(あるいはその一部として)、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等の酸変性されたポリオレフィンを用いる場合には、酸変性度(すなわち、酸変性ポリオレフィンに含まれる酸変性基の含有率(モル比))が0.3~2.5mol%であると、バイオマス系樹脂を含有させたベース樹脂中での植物由来材の粒子の分散性が良好なものとなる上、成形品の成形時にベース樹脂の本来の特性が損なわれにくいので好ましく、酸変性度が0.5~2.0mol%であるとより好ましい。加えて、ベース樹脂として(あるいはその一部として)、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等の酸変性されたポリオレフィンを用いる場合には、分子量が5,000~50,000のものを用いると、酸変性されたポリオレフィンの低分子成分が成形後の成形品の表面に析出して表面が粘着状になる事態が生じない上、樹脂組成物からシートやフィルムを成形する際に可撓性が損なわれにくいので好ましい。 In addition, as a base resin, graft-modified polyolefins such as maleic acid-modified polyethylene and maleic acid-modified polypropylene may be used alone, or in combination of two or more of them, or in combination with one or more of them. When mixed with other resins (for example, polyolefin resins), the base resin containing biomass resin has a good affinity with the plant-derived material particles, and molded products can be formed from the resin composition. This is preferable because voids and cracks are less likely to be formed. Furthermore, as mentioned above, when using an acid-modified polyolefin such as maleic acid-modified polyethylene or maleic acid-modified polypropylene as the base resin (or as a part thereof), the degree of acid modification ( i.e., the amount of When the content (mole ratio) of acid-modified groups is 0.3 to 2.5 mol%, the dispersibility of the particles of the plant-derived material in the base resin containing the biomass resin is good. Moreover, it is preferable because the original properties of the base resin are less likely to be impaired during molding of a molded article, and it is more preferable that the degree of acid modification is 0.5 to 2.0 mol%. In addition, when using an acid-modified polyolefin such as maleic acid-modified polyethylene or maleic acid-modified polypropylene as the base resin (or as a part thereof), it is recommended to use one with a molecular weight of 5,000 to 50,000. , the low-molecular components of the acid-modified polyolefin will not precipitate on the surface of the molded product after molding and the surface will become sticky, and the flexibility will be improved when molding sheets and films from the resin composition. It is preferable because it is less likely to be damaged.

一方、ベース樹脂中に含有させるバイオマス系樹脂としては、各種のものを用いることができ、トウモロコシ、サトウキビ、ビート、マニオク等の植物原料から得られるバイオマス由来のエタノール(発酵エタノール)を原料としたものを好適に用いることができる。また、それらの中でも、バイオマス由来のエタノールを原料として製造されるポリオレフィン系樹脂を用いると、植物由来材の粒子を添加した場合に均一に分散されやすくなるので好ましい。さらに、それらの中でも、サトウキビ由来のポリエチレンを用いると、樹脂成分中での植物由来材の粒子の分散性がきわめて良好なものとなるので特に好ましい。 On the other hand, various kinds of biomass-based resins can be used as the biomass-based resin to be contained in the base resin, and those made from biomass-derived ethanol (fermented ethanol) obtained from plant materials such as corn, sugar cane, beets, and manioc. can be suitably used. Moreover, among these, it is preferable to use a polyolefin resin produced using biomass-derived ethanol as a raw material because it facilitates uniform dispersion when particles of a plant-derived material are added. Furthermore, among these, it is particularly preferable to use polyethylene derived from sugarcane because the dispersibility of the particles of the plant-derived material in the resin component is extremely good.

また、ベース樹脂中に含有させるバイオマス系樹脂の質量割合(バイオマス由来度)は、5~60%であると好ましい。ベース樹脂におけるバイオマス由来度が5%未満であると、樹脂組成物を成形した成形品を廃棄する際の環境負荷が大きくなるため好ましくなく、ベース樹脂におけるバイオマス由来度が60%を上回ると、樹脂組成物を成形した成形品の強度や耐久性が不十分となる虞れがあるので好ましくない。ベース樹脂におけるバイオマス由来度は、5~50%であるとより好ましく、5~30%であると特に好ましい。 Further, the mass percentage of the biomass-based resin contained in the base resin (biomass origin) is preferably 5 to 60%. If the degree of biomass origin in the base resin is less than 5%, it is undesirable because the environmental burden will increase when disposing of molded products made from the resin composition, and if the degree of biomass origin in the base resin exceeds 60%, the resin This is not preferable since there is a risk that the strength and durability of the molded product formed from the composition will be insufficient. The degree of biomass origin in the base resin is more preferably 5 to 50%, particularly preferably 5 to 30%.

また、バイオマス系樹脂を含有させたベース樹脂中に添加する植物由来材の粒子としては、分級粉砕機等の粉砕装置等を利用して木質材、竹、竹炭、食品残渣からなるセルロース、あるいはそれらの混合物を粒子状に粉砕したものを好適に用いることができる。また、植物由来材として木質材を利用する場合には、ヒノキ、スギ、パイン(松)、スプルース等の針葉樹や、ローズウッド、カリン、チーク、マホガニー、ウォールナット、ナラ(オーク)、ブナ、タモ、キリ、サクラ、ラワン、カバ等の広葉樹、あるいはそれらを混合したものを好適に用いることができる。そのような植物由来材の粒子の中でも、スギを粒子状に粉砕したものを用いると、バイオマス系樹脂を含有させたベース樹脂中での植物由来材の粒子の分散性がきわめて良好なものとなり、均一に分散しやすくなるので好ましい。一方、植物由来材の粒子として、竹や竹炭を粒子状に粉砕したものを用いると、樹脂組成物を成形品に加工した際に、独特な風合いを発現するので好ましい。 In addition, the particles of plant-derived material added to the base resin containing biomass-based resin can be prepared by using a crushing device such as a classification crusher to obtain particles of wood, bamboo, bamboo charcoal, cellulose made from food residue, or A mixture obtained by pulverizing the mixture into particles can be suitably used. In addition, when using wood materials as plant-derived materials, coniferous trees such as cypress, cedar, pine, spruce, rosewood, quince, teak, mahogany, walnut, oak, beech, ash, etc. Hardwoods such as tung tree, cherry, lauan, and birch, or a mixture thereof can be suitably used. Among such plant-derived material particles, when pulverized cedar particles are used, the dispersibility of the plant-derived material particles in the base resin containing biomass resin is extremely good. This is preferred because it facilitates uniform dispersion. On the other hand, it is preferable to use pulverized bamboo or bamboo charcoal as the plant-derived material particles, since this will give a unique texture when the resin composition is processed into a molded product.

上述した植物由来材の粒子の大きさは、特に限定されないが、粒子径の最大径が50~500μmであると、バイオマス系樹脂を含有させたベース樹脂と混ざりやすくなり、樹脂組成物を成形した際に、物性に斑のない均一な成形品が得られるので好ましく、粒子径が100~300μmであるとより好ましく、粒子径が150~250μmであると特に好ましい。なお、粒子の最大径は、数平均径として、顕微鏡の画像解析により得ることができ、粒子100点の直径(粒子が円形でない場合には粒子径の長さが最も長くなる径)の平均値を採用することができる。また、植物由来材の粒子として、表面をアセチル化処理(アセチレンによる処理等)した粒子を用いると、バイオマス系樹脂を含有させたベース樹脂中での分散性が一段と良好なものとなるので好ましい。植物由来材の粒子として針状のものを用いると、成形品の強度が良好なものとなるので特に好ましい。また、植物由来の粒子にカビが生えないように、植物由来材の粒子中に防カビ剤を添加するのが好ましい。 The particle size of the above-mentioned plant-derived material is not particularly limited, but if the maximum particle size is 50 to 500 μm, it will be easier to mix with the base resin containing the biomass resin, and the resin composition will be molded. In this case, it is preferable that a molded article with uniform physical properties and no unevenness can be obtained, and the particle size is more preferably 100 to 300 μm, and particularly preferably 150 to 250 μm. The maximum diameter of a particle can be obtained as a number average diameter by image analysis using a microscope, and is the average value of the diameters of 100 particles (if the particles are not circular, the diameter at which the particle diameter is the longest). can be adopted. Furthermore, it is preferable to use particles whose surfaces have been subjected to acetylation treatment (treatment with acetylene, etc.) as the particles of the plant-derived material, since the dispersibility in the base resin containing the biomass resin will be even better. It is particularly preferable to use needle-shaped particles of the plant-derived material because the molded product will have good strength. Furthermore, to prevent mold from growing on the plant-derived particles, it is preferable to add a fungicide to the particles of the plant-derived material.

また、植物由来材の粒子は、バイオマス系樹脂を含有させたベース樹脂(樹脂全体)に対して、1~50質量%の割合で添加する必要がある。植物由来材の粒子の添加量が1%未満であると、成形された成形品を廃棄する際の環境負荷が大きくなる上、成形品に植物由来材独特の風合いを発現させることができなくなるので好ましくない。反対に、植物由来材の粒子の添加量が50%を上回ると、バイオマス系樹脂を含有させたベース樹脂と混ざりにくくなって成形しにくくなる上、ベース樹脂本来の特性が発現されにくくなるので好ましくない。植物由来材の粒子の含有量は、10%以上40%以下であるとより好ましく、20%以上30%以下であると特に好ましい。 Furthermore, the particles of the plant-derived material need to be added at a rate of 1 to 50% by mass with respect to the base resin (the entire resin) containing the biomass resin. If the amount of plant-derived material particles added is less than 1%, the environmental burden when disposing of the molded product will be large, and the molded product will not be able to express the unique texture of the plant-derived material. Undesirable. On the other hand, if the amount of the plant-derived material particles added exceeds 50%, it becomes difficult to mix with the base resin containing biomass-based resin, making it difficult to mold and making it difficult for the original characteristics of the base resin to be expressed, which is preferable. do not have. The content of particles of the plant-derived material is more preferably 10% or more and 40% or less, particularly preferably 20% or more and 30% or less.

また、本発明に係る樹脂組成物を製造する際には、バイオマス系樹脂を含有させたベース樹脂を溶融させた状態で植物由来材の粒子を添加し、しかる後に混合物を十分に撹拌する方法を好適に用いることができる。さらに、本発明に係る樹脂組成物を製造する際には、バイオマス系樹脂を含有させたベース樹脂中に、植物由来材の粒子とともに、相溶化剤を添加することも可能である。かかる相溶化剤としては、ワックス成分、界面活性剤、酸変性樹脂組成物、脂肪族エステル化合物、多価アルコールエステル、フマル酸、マレイン酸、クエン酸、ステアリン酸、ポリアルキレングリコール等を好適に用いることができる。それらの相溶化剤の中でも、酸変性樹脂組成物を用いるのが好ましく、酸変性ポリオレフィンを用いるのが特に好ましい。そのように相溶化剤を添加することによって、バイオマス系樹脂を含有させたベース樹脂中での植物由来材の粒子の分散性が一段と良好なものとなる。さらに、相溶化剤を添加する際には、相溶化剤の添加量を、0.1~30重量%に調整すると、バイオマス系樹脂を含有させたベース樹脂と植物由来材の粒子との親和性が良好なものとなり、樹脂組成物を成形品に加工する際にボイドやクラックが形成されにくくなるので好ましい。 In addition, when manufacturing the resin composition according to the present invention, a method is used in which particles of plant-derived materials are added to a melted base resin containing biomass-based resin, and then the mixture is sufficiently stirred. It can be suitably used. Furthermore, when producing the resin composition according to the present invention, it is also possible to add a compatibilizer to the base resin containing the biomass-based resin together with the particles of the plant-derived material. As such compatibilizers, wax components, surfactants, acid-modified resin compositions, aliphatic ester compounds, polyhydric alcohol esters, fumaric acid, maleic acid, citric acid, stearic acid, polyalkylene glycols, etc. are preferably used. be able to. Among these compatibilizers, it is preferable to use acid-modified resin compositions, and it is particularly preferable to use acid-modified polyolefins. By adding such a compatibilizer, the dispersibility of the particles of the plant-derived material in the base resin containing the biomass resin becomes even better. Furthermore, when adding a compatibilizer, adjusting the amount of the compatibilizer to 0.1 to 30% by weight improves the affinity between the base resin containing biomass resin and the particles of the plant-derived material. This is preferable because it provides good properties and makes it difficult for voids and cracks to be formed when the resin composition is processed into a molded product.

一方、本発明の樹脂組成物は、樹脂組成物全体におけるバイオマス成分(すなわち、バイオマス系樹脂および植物由来材の粒子)の質量割合であるバイオマス由来度が10~80%であると好ましい。当該バイオマス由来度が10%未満であると、樹脂組成物を成形した成形品を廃棄する際の環境負荷が大きくなるため好ましくなく、バイオマス由来度が80%を上回ると、樹脂組成物を成形した成形品の強度や耐久性が不十分なものとなる虞れがあるので好ましくない。かかるバイオマス由来度は、10~50%であるとより好ましく、10~30%であると特に好ましい。 On the other hand, the resin composition of the present invention preferably has a biomass origin degree of 10 to 80%, which is the mass proportion of biomass components (that is, particles of biomass-based resin and plant-derived material) in the entire resin composition. If the degree of biomass origin is less than 10%, it is undesirable because the environmental load will be large when disposing of the molded product made from the resin composition, and if the degree of biomass origin exceeds 80%, the molded product made from the resin composition will be discarded. This is not preferable because there is a risk that the strength and durability of the molded product will be insufficient. The degree of biomass origin is more preferably 10 to 50%, particularly preferably 10 to 30%.

加えて、本発明に係る樹脂組成物は、MFR(メルトフローレート)が2.0~50.0の範囲内にあると、押し出し成形等の方法によって各種の成形品(フィルムやシート等)を形成するときのハンドリング性(成形性)が良好なものとなり、効率良く成形することが可能となるので好ましく、MFRが10.0~40であると、より好ましい。 In addition, when the resin composition according to the present invention has an MFR (melt flow rate) in the range of 2.0 to 50.0, it can be used to form various molded products (films, sheets, etc.) by methods such as extrusion molding. It is preferable that the MFR is from 10.0 to 40, since the handling property (moldability) during forming is good and it becomes possible to form the molded material efficiently.

一方、本発明に係る樹脂組成物は、各種の生活用品、台所用品、事務用品、インテリア用品、工業製品(フィルム、シート、機械部品等)、土木建築用資材等の成形に好適に用いることができる。特に、本発明に係る樹脂組成物を用いて、フィルムやシートを成形すると、当該フィルムやシートが植物由来の独特の風合い、質感や手触りを呈するものとなるので、特に好ましい。 On the other hand, the resin composition according to the present invention can be suitably used for molding various household goods, kitchen goods, office goods, interior goods, industrial products (films, sheets, mechanical parts, etc.), civil engineering and construction materials, etc. can. In particular, it is particularly preferable to mold a film or sheet using the resin composition of the present invention, since the film or sheet will exhibit a unique feel, texture, and feel derived from plants.

以下、本発明に係る樹脂組成物および成形品について実施例によって詳細に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。また、実施例(参考例)・比較例における物性、特性の評価方法は以下の通りである。 Hereinafter, the resin composition and molded article according to the present invention will be explained in detail with reference to Examples, but the present invention is not limited to the embodiments of the Examples in any way, and within the scope of the spirit of the present invention, It is possible to change it as appropriate. In addition, the methods for evaluating physical properties and characteristics in Examples (Reference Examples) and Comparative Examples are as follows.

<メルトフローレート(MFR)>
東洋精機製作所製メルトインデックサ F-F01を用いて、JIS K6921-1に準拠した方法により、温度:190℃、荷重:2.16kg、単位:g/10minの条件下で測定した。
<Melt flow rate (MFR)>
It was measured using a melt indexer F-F01 manufactured by Toyo Seiki Seisakusho in accordance with JIS K6921-1 at a temperature of 190°C, a load of 2.16 kg, and a unit of g/10 min.

<環境への負荷>
実施例(参考例)・比較例で得られた樹脂組成物中に含まれるカーボンニュートラルな性質(燃やしても大気中のCOの増減に影響を与えない性質)を有する原料の量によって下記の2段階で評価した。
◎:カーボンニュートラルな性質を有する原料の含有量が35質量%以上である
○:カーボンニュートラルな性質を有する原料の含有量が20質量%以上35%未満である
△:カーボンニュートラルな性質を有する原料の含有量が10質量%以上20%未満である
×:カーボンニュートラルな性質を有する原料の含有量が10質量%未満である
<Load on the environment>
Depending on the amount of raw materials with carbon-neutral properties (properties that do not affect the increase or decrease of CO2 in the atmosphere even when burned) contained in the resin compositions obtained in Examples (Reference Examples) and Comparative Examples, the following Evaluation was made in two stages.
◎: The content of raw materials with carbon-neutral properties is 35% by mass or more. ○: The content of raw materials with carbon-neutral properties is 20% by mass or more and less than 35%. △: Raw materials with carbon-neutral properties. The content of raw materials having carbon neutral properties is 10% by mass or more and less than 20% ×: The content of raw materials having carbon neutral properties is less than 10% by mass

<耐衝撃性:樹脂組成物>
実施例・比較例で得られた樹脂組成物を用いて、射出成型を行い、170mm×20mm×4mmのサイズの試験用ダンベル状サンプルを作製した。そして、(株)東洋精機製作所製シャルピー衝撃試験機を用いて、25℃×65%RHの雰囲気下で以下の測定条件にて、作製された試験用ダンベル状サンプルのシャルピー衝撃強さを測定した(n=10)。
・容量:10kg・cm
・ハンマー重量:1.019kg
・ハンマーの空持ち上げ角度:127度
・軸心より重心までの距離:6.12cm
そして、測定されたシャルピー衝撃強さの平均値を、試験用サンプルの断面積(試験用サンプルの厚み×試験用サンプルの幅)で除すことによって単位断面積当たりのシャルピー衝撃強さ(MJ/m)を算出した。そして、算出された単位断面積当たりのシャルピー衝撃強さの数値によって、下記の3段階で評価した。
◎:5MJ/m以上
○:3MJ/m以上5MJ/m未満
△:3MJ/m未満
<Impact resistance: resin composition>
Injection molding was performed using the resin compositions obtained in Examples and Comparative Examples to prepare dumbbell-shaped samples for testing with a size of 170 mm x 20 mm x 4 mm. Then, using a Charpy impact tester manufactured by Toyo Seiki Seisakusho Co., Ltd., the Charpy impact strength of the prepared test dumbbell sample was measured under the following measurement conditions in an atmosphere of 25°C x 65% RH. (n=10).
・Capacity: 10kg/cm
・Hammer weight: 1.019kg
・Hammer empty lifting angle: 127 degrees ・Distance from center of axis to center of gravity: 6.12cm
Then, the Charpy impact strength per unit cross-sectional area (MJ/ m 2 ) was calculated. Then, evaluation was made in the following three stages based on the calculated Charpy impact strength per unit cross-sectional area.
◎: 5MJ/m 2 or more ○: 3MJ/m 2 or more 5MJ/m less than 2 △: 3MJ/m less than 2

<耐衝撃性:シート>
実施例・比較例で得られた樹脂組成物を熱溶融させて、フィルム状に成形した後、長さ=180mm、幅=20mmのストリップ状に裁断することによって試験用サンプルを作成した。そして、樹脂組成物の耐衝撃性の評価と同様な方法で、作成されたストリップ状の試験用サンプルの耐衝撃性を評価した。
<Impact resistance: sheet>
Test samples were prepared by thermally melting the resin compositions obtained in Examples and Comparative Examples, forming them into a film, and then cutting them into strips with a length of 180 mm and a width of 20 mm. Then, the impact resistance of the prepared strip-shaped test sample was evaluated in the same manner as the evaluation of the impact resistance of the resin composition.

<見た目の質感(風合い)>
実施例・比較例で得られたシートの質感(木質感)を、目視によって下記の3段階で官能評価した。
◎:十分な木質感があるとともに、表面が艶消しされており、ほとんどてからない
○:若干の木質感があるとともに、表面がわずかに艶消しされており、あまりてからない
△:木質感がない上、表面がほとんど艶消しされておらず、表面のてかり度合いが高い
<Appearance of texture (texture)>
The texture (wood texture) of the sheets obtained in the Examples and Comparative Examples was visually evaluated and sensory evaluated on the following three scales.
◎: There is sufficient wood texture, and the surface is matte, so it is hardly shiny. ○: There is some wood texture, and the surface is slightly matte, so it is not too shiny. △: Wood texture. In addition, the surface is hardly matte and has a high degree of shine.

<表面の触感>
実施例・比較例で得られたシートの表面の触感を、目視によって下記の3段階で官能評価した。
◎:木質材(スギ)独特のざらついた触感を強く感じる
○:木質材独特のざらついた触感を感じる
△:樹脂の触感以外の触感を感じない
<Surface feel>
The tactile sensation of the surface of the sheets obtained in the Examples and Comparative Examples was visually evaluated on the following three scales.
◎: I strongly feel the rough texture unique to wood (cedar) ○: I feel the rough texture unique to wood △: I don't feel any texture other than that of resin

[実施例1]
ベース樹脂としてのポリエチレン(数平均分子量:MFR=10.0) 15重量部、および、サトウキビ由来のバイオマス系ポリエチレン(数平均分子量:MFR=5.5) 20重量部を、190℃の温度で加熱することにより溶融させて、その溶融させた混合樹脂中に、木質材(スギを乾燥させたもの)を粉砕してなる植物由来材の粒子(数平均粒子径=120μm) 60質量部、および、相溶加剤であるマレイン酸変性ポリプロピレン樹脂 5重量部を添加して十分に撹拌混合することによって実施例1の樹脂組成物を得た。そして、得られた樹脂組成物の特性(メルトフローレート、耐衝撃性)を、上記した方法によって評価した。
[Example 1]
15 parts by weight of polyethylene (number average molecular weight: MFR=10.0) as a base resin and 20 parts by weight of biomass polyethylene derived from sugarcane (number average molecular weight: MFR=5.5) are heated at a temperature of 190°C. 60 parts by mass of particles (number average particle diameter = 120 μm) of a plant-derived material obtained by crushing wood material (dried cedar) into the melted mixed resin, and A resin composition of Example 1 was obtained by adding 5 parts by weight of a maleic acid-modified polypropylene resin as a compatible additive and thoroughly stirring and mixing. Then, the properties (melt flow rate, impact resistance) of the obtained resin composition were evaluated by the method described above.

さらに、得られた樹脂組成物を、200℃の条件でシート状に押し出すことによって、厚さ200μmの樹脂シートを得た。そして、その合成樹脂シートの特性(耐衝撃性、質感)を、上記した方法によって評価した。実施例1の樹脂組成物、樹脂シートの特性の評価結果を、性状とともに表1に示す。 Furthermore, the obtained resin composition was extruded into a sheet shape at 200° C. to obtain a resin sheet with a thickness of 200 μm. Then, the properties (impact resistance, texture) of the synthetic resin sheet were evaluated by the method described above. The evaluation results of the properties of the resin composition and resin sheet of Example 1 are shown in Table 1 along with their properties.

[実施例2]
ポリエチレン、バイオマス系ポリエチレン、植物由来材の粒子の添加量を、それぞれ以下のように変更した以外は、実施例1と同様にして、実施例2の樹脂組成物を得た。そして、得られた樹脂組成物の特性(メルトフローレート、耐衝撃性)を、上記した方法によって評価した。
・ポリエチレン 25重量部
・バイオマス系ポリエチレン 40重量部
・植物由来材の粒子 30重量部
[Example 2]
A resin composition of Example 2 was obtained in the same manner as Example 1, except that the amounts of polyethylene, biomass-based polyethylene, and plant-derived material particles added were changed as follows. Then, the properties (melt flow rate, impact resistance) of the obtained resin composition were evaluated by the method described above.
・Polyethylene 25 parts by weight ・Biomass polyethylene 40 parts by weight ・Plant-derived material particles 30 parts by weight

さらに、得られた樹脂組成物を、実施例1と同様にシート状に押し出すことによって、厚さ200μmの樹脂シートを得た。そして、その合成樹脂シートの特性(耐衝撃性、質感)を、上記した方法によって評価した。実施例2の樹脂組成物、樹脂シートの特性の評価結果を、性状とともに表1に示す。 Furthermore, the obtained resin composition was extruded into a sheet shape in the same manner as in Example 1 to obtain a resin sheet with a thickness of 200 μm. Then, the properties (impact resistance, texture) of the synthetic resin sheet were evaluated by the method described above. The evaluation results of the characteristics of the resin composition and resin sheet of Example 2 are shown in Table 1 along with the properties.

[実施例3]
ポリエチレン、バイオマス系ポリエチレン、植物由来材の粒子の添加量を、それぞれ以下のように変更した以外は、実施例1と同様にして、実施例3の樹脂組成物を得た。そして、得られた樹脂組成物の特性(メルトフローレート、耐衝撃性)を、上記した方法によって評価した。
・ポリエチレン 80重量部
・バイオマス系ポリエチレン 10重量部
・植物由来材の粒子 5重量部
[Example 3]
A resin composition of Example 3 was obtained in the same manner as in Example 1, except that the amounts of polyethylene, biomass-based polyethylene, and plant-derived material particles added were changed as follows. Then, the properties (melt flow rate, impact resistance) of the obtained resin composition were evaluated by the method described above.
・Polyethylene 80 parts by weight ・Biomass polyethylene 10 parts by weight ・Plant-derived material particles 5 parts by weight

さらに、得られた樹脂組成物を、実施例1と同様にシート状に押し出すことによって、厚さ200μmの樹脂シートを得た。そして、その合成樹脂シートの特性(耐衝撃性、質感)を、上記した方法によって評価した。実施例3の樹脂組成物、樹脂シートの特性の評価結果を、性状とともに表1に示す。 Furthermore, the obtained resin composition was extruded into a sheet shape in the same manner as in Example 1 to obtain a resin sheet with a thickness of 200 μm. Then, the properties (impact resistance, texture) of the synthetic resin sheet were evaluated by the method described above. The evaluation results of the characteristics of the resin composition and resin sheet of Example 3 are shown in Table 1 along with the properties.

[実施例4]
変性ポリオレフィン樹脂であるマレイン酸変性ポリプロピレン(変性度=1.5mol%、MFR=8.0) 19重量部、および、サトウキビ由来のバイオマス系ポリエチレン(MFR=5.5) 30重量部を、190℃の温度下で加熱することによって溶融させて、その溶融させた混合樹脂中に、木質材(スギを乾燥させたもの)を粉砕してなる植物由来材の粒子(数平均粒子径=85μm) 50質量部、および、相溶加剤である界面活性剤含有ポリエチレン 1重量部を添加して十分に撹拌混合することによって実施例4の樹脂組成物を得た。そして、得られた樹脂組成物の特性(メルトフローレート、耐衝撃性)を、上記した方法によって評価した。
[Example 4]
19 parts by weight of maleic acid-modified polypropylene (degree of modification = 1.5 mol%, MFR = 8.0), which is a modified polyolefin resin, and 30 parts by weight of biomass polyethylene derived from sugarcane (MFR = 5.5) were heated at 190°C. Particles of plant-derived material (number average particle diameter = 85 μm) made by crushing wood material (dried cedar) into the melted mixed resin by heating at a temperature of 50 A resin composition of Example 4 was obtained by adding 1 part by weight of surfactant-containing polyethylene as a compatible filler and thoroughly stirring and mixing. Then, the properties (melt flow rate, impact resistance) of the obtained resin composition were evaluated by the method described above.

さらに、得られた樹脂組成物を、200℃の条件でシート状に押し出すことによって、厚さ200μmの樹脂シートを得た。そして、その合成樹脂シートの特性(耐衝撃性、質感)を、上記した方法によって評価した。実施例4の樹脂組成物、樹脂シートの特性の評価結果を、性状とともに表1に示す。 Furthermore, the obtained resin composition was extruded into a sheet shape at 200° C. to obtain a resin sheet with a thickness of 200 μm. Then, the properties (impact resistance, texture) of the synthetic resin sheet were evaluated by the method described above. The evaluation results of the properties of the resin composition and resin sheet of Example 4 are shown in Table 1 along with the properties.

比較例5
サトウキビ由来のバイオマス系ポリエチレン(MFR=5.5) 65重量部を、190℃の温度下で加熱することによって溶融させて、その溶融させた混合樹脂中に、実施例1と同じ植物由来材の粒子 30質量部、および、実施例1と同じ界面活性剤含有ポリエチレン樹脂(相溶加剤) 5重量部を添加して十分に撹拌混合することによって比較例5の樹脂組成物を得た。そして、得られた樹脂組成物の特性(メルトフローレート、耐衝撃性)を、上記した方法によって評価した。
[ Comparative example 5 ]
65 parts by weight of biomass polyethylene derived from sugarcane (MFR=5.5) was melted by heating at a temperature of 190°C, and the same plant-derived material as in Example 1 was added to the melted mixed resin. A resin composition of Comparative Example 5 was obtained by adding 30 parts by weight of the particles and 5 parts by weight of the same surfactant-containing polyethylene resin (compatible additive) as in Example 1 and sufficiently stirring and mixing. Then, the properties (melt flow rate, impact resistance) of the obtained resin composition were evaluated by the method described above.

さらに、得られた樹脂組成物を、200℃の条件でシート状に押し出すことによって、厚さ200μmの樹脂シートを得た。そして、その合成樹脂シートの特性(耐衝撃性、質感)を、上記した方法によって評価した。実施例5の樹脂組成物、樹脂シートの特性の評価結果を、性状とともに表1に示す。 Furthermore, the obtained resin composition was extruded into a sheet shape at 200° C. to obtain a resin sheet with a thickness of 200 μm. Then, the properties (impact resistance, texture) of the synthetic resin sheet were evaluated by the method described above. The evaluation results of the properties of the resin composition and resin sheet of Example 5 are shown in Table 1 along with the properties.

[比較例1]
実施例1と同じポリエチレン 69重量部を、190℃の温度下で加熱することによって溶融させて、その溶融させた混合樹脂中に、実施例1と同じ植物由来材の粒子 30質量部、および、実施例4と同じ界面活性剤含有ポリエチレン(相溶化剤) 1重量部を添加して十分に撹拌混合することによって比較例1の樹脂組成物を得た。そして、得られた樹脂組成物の特性(メルトフローレート、耐衝撃性)を、上記した方法によって評価した。
[Comparative example 1]
69 parts by weight of the same polyethylene as in Example 1 was melted by heating at a temperature of 190°C, and 30 parts by weight of the same plant-derived material particles as in Example 1 were added to the molten mixed resin, and A resin composition of Comparative Example 1 was obtained by adding 1 part by weight of the same surfactant-containing polyethylene (compatibilizer) as in Example 4 and thoroughly stirring and mixing. Then, the properties (melt flow rate, impact resistance) of the obtained resin composition were evaluated by the method described above.

さらに、得られた樹脂組成物を、200℃の条件でシート状に押し出すことによって、厚さ200μmの樹脂シートを得た。そして、その合成樹脂シートの特性(耐衝撃性、質感)を、上記した方法によって評価した。比較例1の樹脂組成物、樹脂シートの特性の評価結果を、性状とともに表1に示す。 Furthermore, the obtained resin composition was extruded into a sheet shape at 200° C. to obtain a resin sheet with a thickness of 200 μm. Then, the properties (impact resistance, texture) of the synthetic resin sheet were evaluated by the method described above. The evaluation results of the characteristics of the resin composition and resin sheet of Comparative Example 1 are shown in Table 1 along with the properties.

[比較例2]
ポリエチレン、バイオマス系ポリエチレン、植物由来材の粒子の添加量を、それぞれ以下のように変更した以外は、実施例1と同様にして、比較例2の樹脂組成物を得た。そして、得られた樹脂組成物の特性(メルトフローレート、耐衝撃性)を、上記した方法によって評価した。
・ポリエチレン 85重量部
・バイオマス系ポリエチレン 5重量部
・植物由来材の粒子 5重量部
[Comparative example 2]
A resin composition of Comparative Example 2 was obtained in the same manner as in Example 1, except that the amounts of polyethylene, biomass-based polyethylene, and plant-derived material particles added were changed as follows. Then, the properties (melt flow rate, impact resistance) of the obtained resin composition were evaluated by the method described above.
・Polyethylene 85 parts by weight ・Biomass-based polyethylene 5 parts by weight ・Plant-derived material particles 5 parts by weight

さらに、得られた樹脂組成物を、実施例1と同様にシート状に押し出すことによって、厚さ200μmの樹脂シートを得た。そして、その合成樹脂シートの特性(耐衝撃性、質感)を、上記した方法によって評価した。比較例2の樹脂組成物、樹脂シートの特性の評価結果を、性状とともに表1に示す。 Furthermore, the obtained resin composition was extruded into a sheet shape in the same manner as in Example 1 to obtain a resin sheet with a thickness of 200 μm. Then, the properties (impact resistance, texture) of the synthetic resin sheet were evaluated by the method described above. The evaluation results of the characteristics of the resin composition and resin sheet of Comparative Example 2 are shown in Table 1 along with the properties.

[比較例3]
ポリエチレン、バイオマス系ポリエチレン、植物由来材の粒子の添加量を、それぞれ以下のように変更した以外は、実施例1と同様にして、比較例3の樹脂組成物の調製を試みた。しかしながら、十分に混練することができず、ポリエチレン、バイオマス系ポリエチレンの混合樹脂中に植物由来材が均一に分散した樹脂組成物を得ることができなかった。
・ポリエチレン 5重量部
・バイオマス系ポリエチレン 10重量部
・植物由来材の粒子 80重量部
[Comparative example 3]
A resin composition of Comparative Example 3 was prepared in the same manner as in Example 1, except that the amounts of polyethylene, biomass polyethylene, and plant-derived material particles added were changed as follows. However, sufficient kneading was not possible, and a resin composition in which the plant-derived material was uniformly dispersed in a mixed resin of polyethylene and biomass-based polyethylene could not be obtained.
・Polyethylene 5 parts by weight ・Biomass polyethylene 10 parts by weight ・Plant-derived material particles 80 parts by weight

[比較例4]
ポリエチレン、バイオマス系ポリエチレン、植物由来材の粒子の添加量を、それぞれ以下のように変更するとともに、混合溶融樹脂中に、植物由来材の粒子および界面活性剤含有ポリエチレン樹脂(相溶化剤)を添加しなかったこと以外は、実施例1と同様にして、比較例4の樹脂組成物を得た。そして、得られた樹脂組成物の特性(メルトフローレート、耐衝撃性)を、上記した方法によって評価した。
・ポリエチレン 90重量部
・バイオマス系ポリエチレン 10重量部
[Comparative example 4]
The amounts of polyethylene, biomass-based polyethylene, and plant-derived material particles added were changed as shown below, and plant-derived material particles and surfactant-containing polyethylene resin (compatibilizer) were added to the mixed molten resin. A resin composition of Comparative Example 4 was obtained in the same manner as in Example 1, except that this was not done. Then, the properties (melt flow rate, impact resistance) of the obtained resin composition were evaluated by the method described above.
・Polyethylene 90 parts by weight ・Biomass polyethylene 10 parts by weight

さらに、得られた樹脂組成物を、実施例1と同様にシート状に押し出すことによって、厚さ200μmの樹脂シートを得た。そして、その合成樹脂シートの特性(耐衝撃性、質感)を、上記した方法によって評価した。比較例4の樹脂組成物、樹脂シートの特性の評価結果を、性状とともに表1に示す。 Furthermore, the obtained resin composition was extruded into a sheet shape in the same manner as in Example 1 to obtain a resin sheet with a thickness of 200 μm. Then, the properties (impact resistance, texture) of the synthetic resin sheet were evaluated by the method described above. The evaluation results of the characteristics of the resin composition and resin sheet of Comparative Example 4 are shown in Table 1 along with the properties.

Figure 0007420512000001
Figure 0007420512000001

表1から、実施例1~4で得られた樹脂組成物は、いずれも環境負荷が小さく、耐衝撃性に優れていることが分かる。また、実施例1~4で得られた樹脂シートは、いずれも耐衝撃性に優れており、見た目の木質感、木質の触感があるため意匠性に優れていることが分かる。
From Table 1, it can be seen that the resin compositions obtained in Examples 1 to 4 all have low environmental impact and excellent impact resistance. Furthermore, it can be seen that the resin sheets obtained in Examples 1 to 4 all have excellent impact resistance, and are excellent in design because they have a woody appearance and a woody feel.

それに対して、混合樹脂中にバイオマス由来樹脂を含有しない比較例1の樹脂組成物は、環境負荷が大きい上、耐衝撃性が不良であり、比較例1で得られた樹脂シートは、耐衝撃性が不良な上、見た目の木質感がなく意匠性が低いことが分かる。また、植物由来材の粒子の添加量が少ない比較例2,4で得られた樹脂組成物は、耐衝撃性が良好であるものの、環境負荷が大きく、比較例2,4で得られた樹脂シートは、見た目の木質感がなく意匠性が低いことが分かる。さらに、大量の植物由来材の粒子を混合樹脂中に添加した比較例3においては、成形に適した樹脂組成物が得られなかったことが分かる。 On the other hand, the resin composition of Comparative Example 1, which does not contain biomass-derived resin in the mixed resin, has a large environmental load and has poor impact resistance. It can be seen that not only the quality is poor, but also the appearance has no woody feel and the design quality is low. In addition, the resin compositions obtained in Comparative Examples 2 and 4, in which the amount of particles of plant-derived material added is small, have good impact resistance, but have a large environmental load. It can be seen that the sheet does not have a woody appearance and has a low design quality. Furthermore, it can be seen that in Comparative Example 3, in which a large amount of particles of a plant-derived material were added to the mixed resin, a resin composition suitable for molding was not obtained.

本発明に係る樹脂組成物は、は、上記の如く優れた効果を奏するものであるから、生活用品、台所用品、事務用品、インテリア用品、工業製品(フィルム、シート、機械部品等)、土木建築用資材等の各種の成形品の原料として好適に用いることができる。 Since the resin composition according to the present invention exhibits the excellent effects as described above, it can be used in daily necessities, kitchen supplies, office supplies, interior goods, industrial products (films, sheets, mechanical parts, etc.), civil engineering and construction. It can be suitably used as a raw material for various molded products such as industrial materials.

Claims (6)

植物由来材の粒子を樹脂成分中に添加してなる樹脂組成物であって、
前記植物由来材の粒子の添加割合が1~50質量%であり、
前記植物由来材の粒子の最大径の平均値が100~300μmであるとともに、
前記樹脂成分が、ベース樹脂中に、サトウキビ由来のポリオレフィンを主成分とするバイオマス系樹脂を含有させたものであり、かつ、
前記ベース樹脂が、ポリオレフィンを主成分とし、バイオマス系樹脂以外の非バイオマス系樹脂を含有するものであるとともに、
前記植物由来材の粒子が、表面をアセチル化処理したものであることを特徴とする樹脂組成物。
A resin composition comprising particles of a plant-derived material added to a resin component,
The addition ratio of the particles of the plant-derived material is 1 to 50% by mass,
The average maximum diameter of the particles of the plant-derived material is 100 to 300 μm, and
The resin component is a base resin containing a biomass-based resin whose main component is polyolefin derived from sugarcane , and
The base resin has a polyolefin as a main component and contains a non-biomass resin other than a biomass resin , and
A resin composition characterized in that the particles of the plant-derived material have acetylated surfaces.
前記ベース樹脂が、酸変性ポリオレフィンを含むものであることを特徴とする請求項1に記載の樹脂組成物。 The resin composition according to claim 1 , wherein the base resin contains an acid-modified polyolefin. 前記ベース樹脂の酸変性度が0.3~2.5mol%であることを特徴とする請求項1、または2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the degree of acid modification of the base resin is 0.3 to 2.5 mol%. 前記樹脂成分のバイオマス由来度が5~60質量%であることを特徴とする請求項1~3のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the resin component has a biomass-derived degree of 5 to 60% by mass. 前記樹脂成分の190℃におけるメルトフローレートが5~50であることを特徴とする請求項1~4のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the resin component has a melt flow rate of 5 to 50 at 190°C. 請求項1~5のいずれかに記載の樹脂組成物によって形成されていることを特徴とする成形品。 A molded article formed from the resin composition according to any one of claims 1 to 5 .
JP2019165738A 2019-09-11 2019-09-11 Resin composition and molded product made from the resin composition Active JP7420512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165738A JP7420512B2 (en) 2019-09-11 2019-09-11 Resin composition and molded product made from the resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165738A JP7420512B2 (en) 2019-09-11 2019-09-11 Resin composition and molded product made from the resin composition

Publications (2)

Publication Number Publication Date
JP2021042318A JP2021042318A (en) 2021-03-18
JP7420512B2 true JP7420512B2 (en) 2024-01-23

Family

ID=74861570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165738A Active JP7420512B2 (en) 2019-09-11 2019-09-11 Resin composition and molded product made from the resin composition

Country Status (1)

Country Link
JP (1) JP7420512B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018706A (en) 2002-06-18 2004-01-22 Toppan Printing Co Ltd Woody resin molded body and decorative board
JP2004143438A (en) 2002-10-03 2004-05-20 Daicel Chem Ind Ltd Composite biodegradable molded product
JP2009013343A (en) 2007-07-06 2009-01-22 Sumitomo Electric Ind Ltd Resin composition and process for producing molded article formed from the resin composition
JP2015205942A (en) 2014-04-17 2015-11-19 リケンテクノス株式会社 Antibacterial resin composition and film thereof
JP2017226849A (en) 2017-07-24 2017-12-28 大日本印刷株式会社 Polyolefin resin film
JP2018100312A (en) 2016-12-19 2018-06-28 公立大学法人秋田県立大学 Biodegradable composite material and method for producing the same
JP2018119048A (en) 2017-01-25 2018-08-02 株式会社プレジール Resin composition containing biomass powder and having high impact resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918265B2 (en) * 1990-01-12 1999-07-12 東洋ゴム工業株式会社 Studless tire tread rubber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018706A (en) 2002-06-18 2004-01-22 Toppan Printing Co Ltd Woody resin molded body and decorative board
JP2004143438A (en) 2002-10-03 2004-05-20 Daicel Chem Ind Ltd Composite biodegradable molded product
JP2009013343A (en) 2007-07-06 2009-01-22 Sumitomo Electric Ind Ltd Resin composition and process for producing molded article formed from the resin composition
JP2015205942A (en) 2014-04-17 2015-11-19 リケンテクノス株式会社 Antibacterial resin composition and film thereof
JP2018100312A (en) 2016-12-19 2018-06-28 公立大学法人秋田県立大学 Biodegradable composite material and method for producing the same
JP2018119048A (en) 2017-01-25 2018-08-02 株式会社プレジール Resin composition containing biomass powder and having high impact resistance
JP2017226849A (en) 2017-07-24 2017-12-28 大日本印刷株式会社 Polyolefin resin film

Also Published As

Publication number Publication date
JP2021042318A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
Ayrilmis et al. Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour
Zeller et al. Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae
Samal et al. Bio-based polyethylene–lignin composites containing a pro-oxidant/pro-degradant additive: preparation and characterization
WO2022160032A1 (en) Biodegradable polymeric material, biodegradable products and methods of manufacture and use therefor
US7846991B2 (en) Biodegradable resin composition and method for producing the same
Yeh et al. Synergistic effect of coupling agents on polypropylene‐based wood–plastic composites
Kaymakcı et al. Surface properties and hardness of polypropylene composites filled with sunflower stalk flour
JP2017106025A (en) Thermoplastic starch composition obtained from agricultural waste
KR101757904B1 (en) Pellet Composition for Production of Deck Using Pine Nut Shell
KR100961729B1 (en) Cellulosic polymer composites and low carbon environment-friendly mouldings produced therefrom
JP2021536380A (en) Wood composite material that can be composted
JP5481623B2 (en) Wood resin composition and wood pellet
Yamak Thermal, mechanical and water resistance properties of LDPE/starch bio-based polymer blends for food packing applications
WO2024057286A1 (en) Biodegradable thermoplastic polymer materials, biodegradable products and methods of manufacture and use therefor
JP7420512B2 (en) Resin composition and molded product made from the resin composition
Osman et al. Effects of durian seed flour on processing torque, tensile, thermal and biodegradation properties of polypropylene and high density polyethylene composites
JP2014133835A (en) Resin composition
Bakar et al. Mechanical and thermal properties of oil palm empty fruit bunch-filled unplasticized poly (vinyl chloride) composites
JP2012017426A (en) Modifier for thermoplastic resin
US20220275202A1 (en) Flexible wood composite material
JP7237630B2 (en) Resin composition, resin molded product, and method for producing resin composition
WO2023013251A1 (en) Plant filler-containing composite resin composition and composite resin molded article using plant filler-containing composite resin composition
Wu et al. Processing and properties of biobased blends from soy meal and natural rubber
Dominguez-Candela et al. Contribution to a Circular Economy Model: From Lignocellulosic Wastes from the Extraction of Vegetable Oils to the Development of a New Composite. Polymers 2021, 13, 2269
Bajwa et al. Functionalized Distiller's Dried Grains with Solubles for Improving Impact Properties of Polylactic Acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

R150 Certificate of patent or registration of utility model

Ref document number: 7420512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150