JP7419882B2 - Power supply control system - Google Patents

Power supply control system Download PDF

Info

Publication number
JP7419882B2
JP7419882B2 JP2020036336A JP2020036336A JP7419882B2 JP 7419882 B2 JP7419882 B2 JP 7419882B2 JP 2020036336 A JP2020036336 A JP 2020036336A JP 2020036336 A JP2020036336 A JP 2020036336A JP 7419882 B2 JP7419882 B2 JP 7419882B2
Authority
JP
Japan
Prior art keywords
power
power supply
receiving device
mode
request form
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020036336A
Other languages
Japanese (ja)
Other versions
JP2021141395A (en
Inventor
正幸 川岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2020036336A priority Critical patent/JP7419882B2/en
Priority to JP2021049815A priority patent/JP7099576B2/en
Publication of JP2021141395A publication Critical patent/JP2021141395A/en
Application granted granted Critical
Publication of JP7419882B2 publication Critical patent/JP7419882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/221General power management systems

Landscapes

  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Power Sources (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

本発明は、PoE(Power Over Ethernet「登録商標」)によって給電装置が通信電力線に接続された受電デバイスに電力を供給する技術に関する。 The present invention relates to a technology in which a power supply device supplies power to a power receiving device connected to a communication power line using PoE (Power Over Ethernet (registered trademark)).

「IoT」デバイスは、「LPWA無線/電池」の組み合わせで系統から物理的に切離されたロケーションで動作するイメージが強いが、「有線LAN/PoE」の組み合わせで稼働するケースも少なくない。 There is a strong image that "IoT" devices operate in locations physically separated from the grid through a combination of "LPWA wireless/battery," but there are also many cases in which they operate with a combination of "wired LAN/PoE."

例えば「PoE」で稼働するセンサ,カメラ,LEDライトのセットをスイッチングハブ(HUB)に接続して出入口を監視する用途などが想定できる。このときイーサネットで電力が供給されるため、電池切れの心配がなく、また「有線LAN」なので通信安定性が無線より高く、今後に多様なアプリケーションの登場が期待されている。 For example, it can be used to monitor entrances and exits by connecting a set of sensors, cameras, and LED lights that operate using PoE to a switching hub (HUB). At this time, power is supplied via Ethernet, so there is no need to worry about the battery running out, and since it is a wired LAN, communication stability is higher than wireless, and a variety of applications are expected to appear in the future.

「PoE」に関する規格としては、「IEEE802.3af」,「IEEE802.at」,「IEEE802.3bt」が挙げられる。これらの規格は、主に物理層の仕様を定義し、電力供給側は「Power Sourcing Equipment」と呼ばれ、電力受給側は「Powered Devices」と呼ばれている。 Standards related to "PoE" include "IEEE802.3af," "IEEE802.at," and "IEEE802.3bt." These standards mainly define the specifications of the physical layer, and the power supply side is called "Power Sourcing Equipment" and the power reception side is called "Powered Devices."

以下、電力供給側を「給電装置(PSE)」と呼び、電力受給側を「受電デバイス(PD)」と呼ぶ。表1は、受電デバイスの消費電力に応じて定められたクラスを示している。 Hereinafter, the power supply side will be referred to as a "power supply device (PSE)," and the power reception side will be referred to as a "power receiving device (PD)." Table 1 shows classes defined according to power consumption of power receiving devices.

Figure 0007419882000001
Figure 0007419882000001

特開2008-219277JP2008-219277

「LPWA無線/電池」の組み合わせによる「IoT」デバイスは、主に電池切れおよび無線到達性が問題となる。この点については「PoE」を利用すれば解消するものの、給電装置の電力供給能力による制約が生じる。 "IoT" devices based on the combination of "LPWA wireless/battery" mainly have problems with battery exhaustion and wireless reachability. Although this problem can be solved by using "PoE," there are restrictions due to the power supply capacity of the power supply device.

そこで、特許文献1では、「PoE」の給電過負荷に対して、通信装置(受電デバイス)内部で過電流が発生している場合、給電装置が通信装置の過電流を検出して給電を停止させ、さらに通信装置が自身の過電流を検出して能動的に給電装置の給電を停止させている。 Therefore, in Patent Document 1, in response to a "PoE" power supply overload, if an overcurrent occurs inside the communication device (power receiving device), the power supply device detects the overcurrent of the communication device and stops power supply. Furthermore, the communication device detects its own overcurrent and actively stops the power supply from the power supply device.

しかしながら、特許文献1は過電流の発生時に給電停止をするにすぎず、受電デバイス群の消費電力が給電装置の総供給電力(定格)を超過させないようにするシステムを提供するものではない。すなわち、「PoE」ではポートごとの供給電力定格(表1のクラス)が定められているが、これとは別に給電装置の電力供給能力の上限による制約を受ける。 However, Patent Document 1 merely stops the power supply when an overcurrent occurs, and does not provide a system that prevents the power consumption of the power receiving device group from exceeding the total power supply (rated) of the power supply device. That is, in "PoE", the power supply rating (class in Table 1) is defined for each port, but apart from this, it is also restricted by the upper limit of the power supply capacity of the power supply device.

例えばポート数「24ポート」、供給可能総電力「500W」の給電装置の場合、全ポートにクラス「4」の受電デバイスが接続され、かつ各々の受電デバイスが規格一杯に電力を消費した場合、総消費電力「24×25.5W=612W」となり、定格「500W」を超過してしまう。 For example, in the case of a power supply device with 24 ports and a total supply power of 500W, if class 4 power receiving devices are connected to all ports, and each power receiving device consumes the maximum amount of power according to the standard, The total power consumption is ``24 x 25.5W = 612W'', which exceeds the rated value ``500W''.

消費電力の超過を防止するためには、給電装置において受電デバイスの総消費電力を計算し、自身の定格を超過させないように給電状態を制御しなければならない。一般的には給電するポートを限定する形で定格を守ろうとするが、この方式では受電できる受電デバイスは常に受電できる一方、受電できない受電デバイスは常に受電できないおそれがある。 In order to prevent excess power consumption, the power supply device must calculate the total power consumption of the power receiving device and control the power supply state so as not to exceed its own rating. Generally, an attempt is made to protect the rating by limiting the ports that feed power, but with this method, devices that can receive power can always receive power, while devices that cannot receive power may not be able to receive power at all times.

「IoT」システムの傾向として、個々の受電デバイスは安価であるものの、個数の増大による圧力がかかる一方で、これを収容する基地局(PoEシステムでは給電装置)は高価なため、受電デバイスと同程度のレートで増設することは難しい。 The trend in IoT systems is that individual power receiving devices are inexpensive, but the increasing number of devices is putting pressure on them, and the base stations that accommodate them (power supply equipment in PoE systems) are expensive, so they are the same as the power receiving devices. It is difficult to increase capacity at a similar rate.

本発明は、このような従来の問題を解決するためになされ、給電装置の給電能力を上回る受電デバイス群を収容する手法の提供を解決課題としている。 The present invention has been made in order to solve such conventional problems, and its problem to be solved is to provide a method for accommodating a group of power receiving devices that exceeds the power feeding capacity of a power feeding device.

(1)本発明の一態様は、
給電装置が通信電力線に接続された複数の受電デバイスに給電するシステムであって、
前記給電装置は、前記各受電デバイスの動作モード毎の消費電力が記述された受電デバイスプロファイルが保存されたデータベースと、
前記データベースを参照して前記各受電デバイスの前記動作モードを制御し、前記受電デバイス群による消費電力を前記給電装置の供給定格内に制御する給電スケジューラと、を備える。
(1) One aspect of the present invention is
A system in which a power supply device supplies power to a plurality of power receiving devices connected to a communication power line,
The power supply device includes a database storing a power receiving device profile that describes power consumption for each operation mode of each of the power receiving devices;
The power supply scheduler controls the operation mode of each power receiving device by referring to the database, and controls power consumption by the power receiving device group to within a supply rating of the power supply device.

(2)本発明の他の態様は、複数の給電デバイスに通信電力線を介して給電する給電装置であって、
前記給電装置は、前記各受電デバイスの動作モード毎の消費電力が記述された受電デバイスプロファイルが保存されたデータベースと、
前記データベースを参照して前記各受電デバイスの前記動作モードを制御し、前記受電デバイス群による消費電力を前記給電装置の供給定格内に制御する給電スケジューラと、を備える。
(2) Another aspect of the present invention is a power feeding device that feeds power to a plurality of power feeding devices via a communication power line,
The power supply device includes a database storing a power receiving device profile that describes power consumption for each operation mode of each of the power receiving devices;
The power supply scheduler controls the operation mode of each power receiving device by referring to the database, and controls power consumption by the power receiving device group to within a supply rating of the power supply device.

本発明によれば、給電装置の給電能力を上回る受電デバイス群を収容することが可能となる。 According to the present invention, it is possible to accommodate a group of power receiving devices that exceeds the power feeding capacity of the power feeding device.

本発明の実施形態に係る給電制御システムの構成図。FIG. 1 is a configuration diagram of a power supply control system according to an embodiment of the present invention. 同 受電デバイスの動作モードの状態遷移図。State transition diagram of the operation mode of the same power receiving device. 同 給電キューの動作模型図。An operational model diagram of the same power feeding queue. 実施例1の監視システムの構成図。FIG. 1 is a configuration diagram of a monitoring system according to a first embodiment. 同 給電サイクル図。Same power supply cycle diagram. 実施例2の給電サイクル図。FIG. 3 is a power supply cycle diagram of Example 2.

以下、本発明の実施形態に係る給電制御システムを説明する。この給電制御システムは、次の着想をベースに案出されている。 Hereinafter, a power supply control system according to an embodiment of the present invention will be described. This power supply control system has been devised based on the following ideas.

(1)「IoT」デバイスは、一般に間欠動作(あるいはイベント駆動)し、睡眠モード(スリープモード)を持つことが多く、常時電源オンの場合は少ない。 (1) "IoT" devices generally operate intermittently (or are event-driven), often have a sleep mode, and are rarely always powered on.

(2)睡眠モード中の「IoT」デバイスは、電力を殆ど消費しないが、いつ起床して稼働モードに遷移するか不明である。 (2) "IoT" devices in sleep mode consume almost no power, but it is unclear when they will wake up and transition to working mode.

したがって、電力消費量の計算は、ワーストケース(運悪く、全デバイスが同時に起床して稼働した場合)を想定せざるをえず、電力消費量は全デバイスの稼働モード時の消費電力の合計となる。 Therefore, when calculating power consumption, we have to assume the worst case (unfortunately, all devices wake up and operate at the same time), and the power consumption is the sum of the power consumption of all devices in active mode. Become.

(3)仮に給電装置が、自身に接続された受電デバイスの起動タイミングを重複しないように制御できれば、給電装置の供給能力を越える受電デバイス群をシステムに収容することが可能となる。 (3) If the power supply device can control the startup timing of the power receiving devices connected to itself so as not to overlap, it will be possible to accommodate in the system a group of power receiving devices that exceed the supply capacity of the power supply device.

(4)睡眠モードを持たない受電デバイスについては、給電装置が給電/給電停止(停電)を制御することにより、受電デバイスに間欠動作を強いることもできる。 (4) For a power receiving device that does not have a sleep mode, the power supply device can also force the power receiving device to perform intermittent operation by controlling power supply/stopping of power supply (power outage).

そこで、前記給電制御システムは、給電装置において受電デバイス群を制御することで給電装置の供給容量を越える受電デバイスをシステム内に収容させる。ここでは前記給電制御システムを「時分割多重型PoE(TDM-PoE)」と呼び、また「時分割多重型PoE」に関わる手続を「TDM-PoEプロトコル」と呼ぶものとする。 Therefore, the power feeding control system controls a group of power receiving devices in the power feeding device to accommodate in the system a number of power receiving devices that exceed the supply capacity of the power feeding device. Here, the power supply control system will be referred to as "time division multiplexed PoE (TDM-PoE)," and the procedures related to "time division multiplexed PoE" will be referred to as "TDM-PoE protocol."

≪構成例≫
図1に基づき「時分割多重型PoE」の構成例を説明する。図1中の1は時分割多重型給電装置(TDM-PSE:以下、給電装置)を示し、7は給電装置1の給電ポートを示し、8は時分割多重型受電デバイス(TDM-PD:以下、受電デバイス)を示している。
<<Configuration example>>
An example of the configuration of "time division multiplexed PoE" will be explained based on FIG. 1. 1 in FIG. 1 indicates a time division multiplexed power supply device (TDM-PSE: hereinafter referred to as the power supply device), 7 indicates a power supply port of the power supply device 1, and 8 indicates a time division multiplexed power receiving device (TDM-PD: hereinafter referred to as the power supply device). , powered device).

ここでは給電装置1の給電ポート7にそれぞれ受電デバイス8a~8eがイーサネットケーブル経由で接続されている。なお、受電デバイス8の個数は5つに限定されず、任意の個数でよいものとする。 Here, power receiving devices 8a to 8e are respectively connected to the power feeding port 7 of the power feeding device 1 via an Ethernet cable. Note that the number of power receiving devices 8 is not limited to five, and may be any number.

給電装置1は、受電デバイスデータベース(PDDB)2,マスタークロック(MCLK)3,給電装置設定(CFG)4,給電スケジューラ(SCHED)5,給電キュー(PSQ6),給電ポート7を実装している。 The power supply device 1 is equipped with a power receiving device database (PDDB) 2, a master clock (MCLK) 3, a power supply device setting (CFG) 4, a power supply scheduler (SCHED) 5, a power supply queue (PSQ6), and a power supply port 7.

受電デバイス8a~8eは、それぞれ受電デバイスプロファイル(PROFILE)9を備えている。なお、表2は前記各構成1~9の詳細を示し、表3は前記プロファイル9の詳細を示している。 Each of the power receiving devices 8a to 8e includes a power receiving device profile (PROFILE) 9. Note that Table 2 shows the details of each of the configurations 1 to 9, and Table 3 shows the details of the profile 9.

Figure 0007419882000002
Figure 0007419882000002

Figure 0007419882000003
Figure 0007419882000003

図1中の7aは給電状態の給電ポート7を示し、7bは停電状態の給電ポート7を示している。したがって、受電デバイス8a~8dは所定の動作モード(稼働モード・準備モード・待機モード・睡眠モード)の状態と示されている。一方、受電デバイス8eは停電状態、即ちシャットダウンした状態と示されている。表4は、受電デバイスの各動作モードの詳細を示している。 7a in FIG. 1 indicates the power supply port 7 in a power supply state, and 7b indicates the power supply port 7 in a power outage state. Therefore, the power receiving devices 8a to 8d are shown to be in a predetermined operating mode (operating mode, preparation mode, standby mode, sleep mode). On the other hand, the power receiving device 8e is shown in a power outage state, that is, in a shut down state. Table 4 shows details of each operation mode of the power receiving device.

Figure 0007419882000004
Figure 0007419882000004

(1)動作モードの状態遷移
図2に基づき動作モードの状態遷移を説明する。まず、受電デバイス8は、停電状態(S0)からの給電開始により起動し、準備モード(S1)の状態で待機する。この準備モードのときに給電装置1からスリープ指令あれば睡眠モード(S2)に遷移し、レジューム指令があれば稼働モード(S3)に遷移する。
(1) State transition of operation mode State transition of operation mode will be explained based on FIG. 2. First, the power receiving device 8 is activated by starting power supply from a power outage state (S0), and waits in a preparation mode (S1). In this preparation mode, if there is a sleep command from the power supply device 1, the power supply device 1 transitions to the sleep mode (S2), and if there is a resume command, the power supply device changes to the operating mode (S3).

受電デバイス8は、睡眠モード(S2)のときに給電装置1から「WoL(Wake On LAN)」/起床トリガーの指令があれば、準備モード(S1)に遷移する。 If the power receiving device 8 receives a “WoL (Wake On LAN)”/wake-up trigger command from the power supply device 1 while in the sleep mode (S2), the power receiving device 8 transitions to the preparation mode (S1).

また、稼働モード(S3)のときに給電装置1からサスペンド指令/遷移条件1を満たせば準備モード(S1)に遷移する。さらに稼働モードのときにスリープ指令/遷移条件2を満たせば睡眠モード(S2)に遷移する。 Further, if the suspend command/transition condition 1 is satisfied from the power supply device 1 in the operation mode (S3), the mode transitions to the preparation mode (S1). Further, if the sleep command/transition condition 2 is satisfied in the operating mode, the mode transitions to the sleep mode (S2).

なお、各動作モード(S1~S3)のときに給電装置1が給電を停止すれば停電状態(S0)に遷移する。表5は各動作モード(S0~S3)の状態遷移を示し、表6は遷移条件1,2となり得るインシデント及びその詳細を示している。 Note that if the power supply device 1 stops power supply during each operation mode (S1 to S3), a transition occurs to a power outage state (S0). Table 5 shows the state transition of each operation mode (S0 to S3), and Table 6 shows incidents that can become transition conditions 1 and 2 and their details.

Figure 0007419882000005
Figure 0007419882000005

Figure 0007419882000006
Figure 0007419882000006

表7は、受電デバイス8が遠隔監視システムの端末である場合、即ち該端末を給電装置1により給電制御した場合の電源マッピングを示している。ここでは稼働モードの場合には、「CPU,デジタル入出力,アナログ入出力,FRAM(強誘電体メモリ)」がすべて電源オンとなる。 Table 7 shows power supply mapping when the power receiving device 8 is a terminal of a remote monitoring system, that is, when the terminal is controlled to be supplied with power by the power supply device 1. Here, in the case of operation mode, "CPU, digital input/output, analog input/output, FRAM (ferroelectric memory)" are all powered on.

準備モードの場合には「CPU,FRAM」が電源オンとなる一方、「デジタル入出力,アナログ入出力」が電源オフとなる。睡眠モードの場合には「CPU」がスリーブとなり、「FRAM,デジタル入出力,アナログ入出力」が電源オフとなる。 In the preparation mode, the "CPU and FRAM" are powered on, while the "digital input/output and analog input/output" are powered off. In the sleep mode, the "CPU" becomes a sleeve, and the "FRAM, digital input/output, and analog input/output" are powered off.

Figure 0007419882000007
Figure 0007419882000007

表8は、表3中のタスクタイプ、即ち受電デバイス8の行動形態を表すパラメータの定義を示している。表9は、表3中の起床モードの定義を示し、起床後の受電デバイス8は必ず準備モードに遷移する。表10は、表3中の就寝モードの定義を示している。 Table 8 shows the definition of the task type in Table 3, that is, the parameter representing the behavioral form of the power receiving device 8. Table 9 shows the definition of the wake-up mode in Table 3, and the power receiving device 8 always transitions to the preparation mode after waking up. Table 10 shows the definitions of the sleeping modes in Table 3.

Figure 0007419882000008
Figure 0007419882000008

Figure 0007419882000009
Figure 0007419882000009

Figure 0007419882000010
Figure 0007419882000010

(2)給電キュー6
図3に基づき給電キュー6の動作を説明する。この給電キュー6は、受電デバイス8の動作モードで消費する電力を記述した電力要求票6cが順次に格納(エンキュー)され、稼働キュー6a,基礎負荷キュー6bを備えている。
(2) Power supply queue 6
The operation of the power feeding queue 6 will be explained based on FIG. 3. The power supply queue 6 sequentially stores (enqueues) a power request form 6c describing the power consumed in the operation mode of the power receiving device 8, and includes an operation queue 6a and a basic load queue 6b.

具体的には稼働キュー6aには、受電デバイス8の稼働モードで消費する電力を記述した電力要求票6c-2が格納される。一方、基礎負荷キュー6bには、受電デバイス8の睡眠モード/準備モードで消費する電力を記述した電力要求票が格納される。 Specifically, the operation queue 6a stores a power request form 6c-2 that describes the power consumed in the operation mode of the power receiving device 8. On the other hand, the basic load queue 6b stores a power request form that describes the power consumed in the sleep mode/preparation mode of the power receiving device 8.

この各キュー6a,6bに格納された電力要求票6cは、合流器(MUX)6dにより先頭から順に取り出される(デキューされる)。ここで取り出された電力要求票6cは給電保存部(バケツ)6eに移送され、給電保存部6eに移送された電力要求票6cの受電デバイス8が給電対象となる。 The power request forms 6c stored in each of the queues 6a, 6b are sequentially taken out (dequeued) from the head by a combiner (MUX) 6d. The power request form 6c taken out here is transferred to the power supply storage section (bucket) 6e, and the power receiving device 8 of the power request form 6c transferred to the power supply storage section 6e becomes the target of power supply.

すなわち、消費電力計算器6fは、給電保存部6eに移送された電力要求票6cに記述された消費電力の合計を計算し、合流器6dにフィードバックする。表11は給電キュー6の各部6a~6fの詳細を示し、表12は電力要求票6cの記述内容の詳細を示している。 That is, the power consumption calculator 6f calculates the total power consumption described in the power request form 6c transferred to the power supply storage section 6e, and feeds it back to the combiner 6d. Table 11 shows the details of each part 6a to 6f of the power supply queue 6, and Table 12 shows the details of the description contents of the power request form 6c.

Figure 0007419882000011
Figure 0007419882000011

Figure 0007419882000012
Figure 0007419882000012

≪システムの動作処理≫
以下、「時分割多重型PoE」の動作処理を説明する。すなわち、給電装置1は、自身に接続されている受電デバイス8の前記プロファイル9を収集し、収集された前記プロファイル9を前記データベース2に格納する。
≪System operation processing≫
The operation processing of "time division multiplexed PoE" will be explained below. That is, the power supply device 1 collects the profiles 9 of the power receiving devices 8 connected to itself, and stores the collected profiles 9 in the database 2.

また、給電スケジューラ5は、前記データベース2を参照して給電スケジューリングを実行し、受電デバイス8による総消費電力が自身の装置定格以内を越えないように各給電ポート7の給電を制御する。このような「時分割多重型PoE」の動作処理は、主にプロファイル収集と給電スケジューリングとに大別される。 Further, the power supply scheduler 5 executes power supply scheduling with reference to the database 2, and controls the power supply to each power supply port 7 so that the total power consumption by the power receiving device 8 does not exceed its own device rating. The operation processing of such "time division multiplexed PoE" is mainly divided into profile collection and power supply scheduling.

<プロファイル収集>
プロファイル収集方法を受電デバイス8および給電装置1の動作仕様に基づき説明する。
<Profile collection>
A profile collection method will be explained based on the operational specifications of the power receiving device 8 and the power supply device 1.

(1)受電デバイス8の動作仕様
A:受電デバイス8は、最初の受電開始後必ず準備モードで起動する。給電装置からの許可(レジューム指令)があるまでは稼働モードに遷移してはならない。
(1) Operation specifications of the power receiving device 8 A: The power receiving device 8 always starts in the preparation mode after the first power reception starts. Do not transition to operation mode until permission (resume command) is received from the power supply device.

B:受電デバイス8は、自身が受電する給電ポート7から自身の前記プロファイル9を給電装置1に送信する(プロファイル提出)。これをハローメッセージと呼び、該ハローメッセージの送信後は給電装置1からの応答を待つ。 B: The power receiving device 8 transmits its own profile 9 to the power supply device 1 from the power supply port 7 through which it receives power (profile submission). This is called a hello message, and after transmitting the hello message, a response from the power supply device 1 is awaited.

このハローメッセージの応答に自身のプロファイルが記述されていれば挨拶が完了し、ハンドシェイク済みとなる。一方、前記応答に一部でも相違があれば受電デバイス8は、ハローメッセージを再送する。 If the user's own profile is described in the response to this hello message, the greeting is complete and the handshake has been completed. On the other hand, if there is any difference in the responses, the power receiving device 8 resends the hello message.

(2)給電装置1の動作仕様
A:給電装置は、特定の給電ポート7において電力供給を「ON」に設定し、ハローメッセージを定期的に送信する。この作業を「プロ―ビング」と呼ぶ。
(2) Operation specifications of the power supply device 1 A: The power supply device sets power supply to “ON” at a specific power supply port 7 and periodically transmits a hello message. This work is called "probing."

プロ―ビングを行う際は、当該給電ポート7に接続された未知の受電デバイス8が当該給電ポート7の最大定格電力を消費したとしても、給電装置1の全体の最大定格を超過しないように他の給電ポート7での電力供給を調整しなければならない。 When performing probing, even if the unknown power receiving device 8 connected to the power supply port 7 consumes the maximum rated power of the power supply port 7, other measures must be taken to ensure that the overall maximum rating of the power supply device 1 is not exceeded. The power supply at the power supply port 7 must be adjusted.

B:給電装置1は、プロ―ビング中の給電ポート7が受電デバイス8からのハローメッセージを受信すれば、該ハローメッセージに記述された前記プロファイル9を前記データベース2に格納し、その後に同プロファイル9を受電デバイス8に返信する。 B: When the power feeding port 7 during probing receives a hello message from the power receiving device 8, the power feeding device 1 stores the profile 9 described in the hello message in the database 2, and then stores the profile 9 in the database 2. 9 is returned to the power receiving device 8.

C:給電装置1は、プロ―ビング中の給電ポート7において、受電デバイス8からのハローメッセージを受信するまで、定期的にハローメッセージを送信する。 C: The power supply device 1 periodically transmits a hello message until it receives a hello message from the power receiving device 8 at the power supply port 7 during probing.

ただし、給電装置設定(表2参照)に定められた期間・回数を過ぎても受電デバイス8からのハローメッセージを受信しない場合には同給電装置設定に従って行動する。例えば以下の(a)(b)の行動が想定される。
(a)そのままプロービングを続行する。
(b)当該給電ポート7におけるプロービングを打ち切り、当該給電ポートの給電を終了する。
However, if the hello message is not received from the power receiving device 8 even after the period and number of times set in the power feeding device settings (see Table 2) have passed, the device operates according to the power feeding device settings. For example, the following actions (a) and (b) are assumed.
(a) Continue probing.
(b) Aborting probing at the power supply port 7 and ending power supply at the power supply port.

D:給電装置1は、自身の全給電ポート7においてプロービングを実行し、自身に接続された全ての受電デバイス8の前記プロファイル9を収集する。このとき「挨拶・ハンドシェイク」が未成立の給電ポート7については、給電を常時オフに維持する/定期的(あるいは恒常的)にプロービングを実施するなど給電装置設定(表2参照)に従うものとする。 D: The power supply device 1 executes probing on all power supply ports 7 of itself and collects the profiles 9 of all power receiving devices 8 connected to itself. At this time, for the power supply port 7 for which "greeting/handshake" has not been established, the power supply device settings (see Table 2) should be followed, such as keeping the power supply off at all times and periodically (or permanently) probing. do.

<給電スケジューリング>
給電スケジューラ5は、前記データベース2を参照して受電デバイス8の電力要求票6cを作成して給電キュー6a,6bに格納する。以下、給電スケジューラ5の動作処理を説明する。
<Power supply scheduling>
The power supply scheduler 5 refers to the database 2, creates a power request form 6c for the power receiving device 8, and stores it in the power supply queues 6a and 6b. The operation processing of the power supply scheduler 5 will be explained below.

(1)受電デバイス8に対する動作モードの割当て
給電スケジューラ5は、各受電デバイス8について電力供給能力の制約(定格)が無かったら動作モードをどのように設定したであろうかを判定する。すなわち、各受電デバイス8を稼働させるべきか否かを判定する。具体的には受電デバイス8のタスクタイプ(表3・表4・表13参照)に従って判定する。
(1) Assignment of operating mode to power receiving device 8 The power supply scheduler 5 determines how the operating mode would have been set for each power receiving device 8 if there were no restrictions (ratings) on the power supply capability. That is, it is determined whether each power receiving device 8 should be operated. Specifically, the determination is made according to the task type of the power receiving device 8 (see Tables 3, 4, and 13).

Figure 0007419882000013
Figure 0007419882000013

(2)消費電力の見積もり
給電装置1は、前記判定に基づき各受電デバイスの消費電力の見積もりを作成する。表14は、動作モード毎の消費電力見積もりの詳細を示している。
(2) Estimation of power consumption The power supply device 1 creates an estimate of the power consumption of each power receiving device based on the determination. Table 14 shows details of power consumption estimation for each operation mode.

Figure 0007419882000014
Figure 0007419882000014

(3)電力要求票6cの起票
給電装置1は、各受電デバイス8について動作モード毎の前記見積もりに基づき電力要求票6cを起票して給電キュー6にエンキューする。
(3) Creation of power request form 6c The power supply device 1 creates a power request form 6c for each power receiving device 8 based on the estimate for each operation mode, and enqueues it in the power supply queue 6.

詳細を説明すれば、まず全ての受電デバイス8について表15の基礎負荷用電力要求票6c-1を起票し、起票した基礎負荷用電力要求票6c-1を基礎負荷キュー6bにエンキューする。 To explain the details, first, the basic load power request form 6c-1 shown in Table 15 is generated for all power receiving devices 8, and the generated basic load power request form 6c-1 is enqueued in the basic load queue 6b. .

Figure 0007419882000015
Figure 0007419882000015

つぎに前記判定で稼働モードとされた受電デバイス8について表16の稼働用電力要求票6c-2を起票し、起票した稼働用電力要求票6c-2を稼働キュー6aにエンキューする。 Next, an operating power request form 6c-2 shown in Table 16 is generated for the power receiving device 8 that has been placed in the operating mode in the above determination, and the generated operating power request form 6c-2 is enqueued in the operating queue 6a.

Figure 0007419882000016
Figure 0007419882000016

(4)基礎負荷キューのデキュー
給電装置1は、基礎負荷キュー6bにエンキューされた基礎負荷用電力要求票6c-1を先頭から順にデキューし、給電保存部6eに移送する。ただし、給電保存部6eにエンキューされた基礎負荷用電力要求票6c-1の消費電力の合計、即ち消費電力計算器6fの出力が給電装置1の定格に達した場合には、そこで基礎負荷用電力要求票6c-1の移送を打ち切る。なお、基礎負荷キュー6bが空になったら次の動作処理に進む。
(4) Dequeuing basic load queue The power supply device 1 sequentially dequeues the basic load power request forms 6c-1 enqueued in the basic load queue 6b from the beginning, and transfers them to the power feeding storage unit 6e. However, if the total power consumption of the basic load power request form 6c-1 enqueued in the power supply storage unit 6e, that is, the output of the power consumption calculator 6f, reaches the rating of the power supply device 1, then Transfer of power request form 6c-1 is terminated. Note that when the basic load queue 6b becomes empty, the process proceeds to the next operation process.

(5)稼働キューのデキュー
給電装置1は、稼働キュー6aにエンキューされた稼働用電力要求票6c-2を先頭から順にデューし、給電保存部6eに移送する。ただし、給電保存部6eにエンキューされた両電力要求票6c-1,6c-2の消費電力の合計が給電装置1の供給定格に達した場合には、そこで稼働用電力要求票6c-2の移送を打ち切る。なお、稼働キュー6aが空になったら次の動作処理に進む。
(5) Dequeue of operation queue The power supply device 1 dequeues the operation power request forms 6c-2 enqueued in the operation queue 6a in order from the beginning, and transfers them to the power supply storage unit 6e. However, if the total power consumption of both power request forms 6c-1 and 6c-2 enqueued in the power supply storage unit 6e reaches the supply rating of the power supply device 1, then the operating power request form 6c-2 Abort the transfer. Note that when the operation queue 6a becomes empty, the process proceeds to the next operation process.

(6)給電の決定
電力要求票6c-1,6c-2のデキューが終了すれば、受電デバイス8への給電の有無を次の通りに決定する。
(6) Determination of power supply When the dequeue of the power request forms 6c-1 and 6c-2 is completed, whether or not to supply power to the power receiving device 8 is determined as follows.

A:給電保存部6eに電力要求票6c-1,6c-2のいずれも入っていない受電デバイスは給電が完全に停止される。したがって、睡眠モード・準備モードで動作させることもできない。この点で間欠動作をサポートしていない受電デバイスについて、給電/停電のスイッチングにより間欠動作を作り出すことが可能となる。 A: Power supply is completely stopped for power receiving devices for which neither the power request forms 6c-1 nor 6c-2 are stored in the power supply storage unit 6e. Therefore, it cannot be operated in sleep mode or preparation mode. In this respect, for power receiving devices that do not support intermittent operation, it is possible to create intermittent operation by switching power supply/power outage.

B:給電保存部6eに電力要求票6c-1,6c-2が入っている受電デバイス8については、電力要求票6c-1,6-c2に従って給電する。すなわち、電力要求票6c-1のみが入っている受電デバイス8は睡眠モードで給電する一方、両電力要求票6c-1,6c-2が入っている受電デバイス8は稼働モードで給電する。この場合、前述のように前記電力要求票6c-1,6c-2の消費電力の合計は、給電装置1の供給定格に達すれば移送が打ち切られているため、給電装置1の定格の範囲内に収まる。 B: Power is supplied to the power receiving devices 8 whose power request forms 6c-1 and 6c-2 are included in the power supply storage unit 6e in accordance with the power request forms 6c-1 and 6-c2. That is, the power receiving device 8 containing only the power request form 6c-1 is supplied with power in the sleep mode, while the power receiving device 8 containing both the power request forms 6c-1 and 6c-2 is supplied with power in the operating mode. In this case, as mentioned above, the total power consumption of the power request forms 6c-1 and 6c-2 is within the range of the power supply device 1's rating because the transfer is terminated when the supply rating of the power supply device 1 is reached. It fits in.

そして、給電装置1の供給定格の範囲内で前記電力要求票6c-1,6c-2のエンキュー・デキューを繰り返すことにより、各受電デバイス8の各動作モードを間欠動作させ、給電装置1の定格を上回る総消費電力の受電デバイス8群をシステムに収容することを可能にしている。 Then, by repeating enqueuing and dequeuing of the power request forms 6c-1 and 6c-2 within the range of the supply rating of the power supply device 1, each operation mode of each power receiving device 8 is operated intermittently, and the power supply device 1 is rated This makes it possible to accommodate eight groups of power-receiving devices with a total power consumption that exceeds the total power consumption.

(7)給電スイッチング
給電スケジューラ5は、動作モードの割り当て時に睡眠(あるいは停電)させるべきと判定した受電デバイス8を睡眠モードに遷移させる(あるいは停電させる)。また、稼働させるべきと判定した受電デバイス8に対しては稼働モードに遷移させる。
(7) Power supply switching The power supply scheduler 5 transitions the power receiving device 8 that is determined to be put into sleep mode (or causes a power outage) to sleep mode (or causes a power outage) when assigning the operation mode. Further, the power receiving device 8 determined to be activated is caused to transition to the operational mode.

この処理を「給電スイッチング」と呼ぶ。ただし、稼働モードへの遷移を先に実行すると一時的とはいえ、消費電力が供給定格を超過するおそれがある。そこで、給電スイッチングは、必ず睡眠モード(あるいは停電)への遷移を先に実行し、次に稼働モードへの遷移を実行するものとする。なお、受電デバイス8の動作モードを遷移させるための切り替え手続として、「スリーブ指令」・「サスペンド指令」・「レジューム指令」を用いる。 This process is called "power supply switching." However, if the transition to the operating mode is executed first, there is a risk that the power consumption will exceed the supply rating, albeit temporarily. Therefore, when switching the power supply, it is assumed that the transition to the sleep mode (or power outage) is performed first, and then the transition to the operating mode is performed. Note that a "sleeve command", a "suspend command", and a "resume command" are used as the switching procedure for transitioning the operation mode of the power receiving device 8.

A:具体的には給電装置1は、動作モードの割り当て時に睡眠させるべきと判定した受電デバイス8が起床状態(稼働モード)にあれば、当該受電デバイス8に対して「スリープ指令」を発行する。 A: Specifically, if the power receiving device 8 determined to be put to sleep when assigning the operation mode is in the awake state (operating mode), the power supply device 1 issues a "sleep command" to the power receiving device 8. .

受電デバイス8は、「スリープ指令」を受信すれば現在実行中の動作処理を切り上げ、給電装置1への応答(ACK)の返信後に睡眠モードに遷移する。このとき同指令の受信から睡眠モードに遷移するまでの時間は、サスペンド準備時間以下でなければならない。 When the power receiving device 8 receives the "sleep command", it terminates the operation process currently being executed, and transitions to the sleep mode after returning a response (ACK) to the power supply device 1. At this time, the time from receiving the command to transitioning to sleep mode must be less than or equal to the suspend preparation time.

このとき睡眠モードを持たない受電デバイス8は、稼働モードから準備モードに遷移させることで消費電力を抑制し、給電装置1からの「レジューム指令」を受けるまで待機する。 At this time, the power receiving device 8 that does not have a sleep mode suppresses power consumption by transitioning from the operating mode to the preparation mode, and waits until it receives a "resume command" from the power supply device 1.

なお、割り当て時に停電させるべきと判定した受電デバイス8が起床状態(稼働モード)にあれば、当該受電デバイス8の給電を停止する。これにより当該受電デバイス8は、強制的に停電状態に移行する。 Note that if the power receiving device 8 determined to be subjected to power outage at the time of allocation is in the awake state (operating mode), power supply to the power receiving device 8 is stopped. This forces the power receiving device 8 to transition to a power outage state.

B:サスペンド指令
「サスペンド指令」は、「スリープ指令」と同様の目的で使用される。ただし、同指令は睡眠モードではなく、準備モードへ遷移させる点で相違している。この「サスペンド指令」の使用は次のケースが想定される。
・受電デバイス8が睡眠モードをサポートしていない。
・稼働モードの終了後に受電デバイスに何らかのアクションがある場合(設定変更,測定データの吸い上げ等)
C:レジューム指令
給電装置1は、動作モードの割り当て時に稼働させるべきと判定した受電デバイス8が睡眠状態(睡眠モード)にあれば、当該受電デバイス8に対して「レジューム指令」を発行する。
B: Suspend Command The "suspend command" is used for the same purpose as the "sleep command". However, this command differs in that it transitions to preparation mode instead of sleep mode. The following cases are assumed for the use of this "suspend command".
- Power receiving device 8 does not support sleep mode.
- If there is any action on the powered device after the operation mode ends (change settings, download measurement data, etc.)
C: Resume Command If the power receiving device 8 determined to be operated at the time of assignment of the operation mode is in a sleep state (sleep mode), the power supply device 1 issues a "resume command" to the power receiving device 8.

ただし、睡眠モード中の受電デバイス8に指令を発しても反応が無いので、まずは「WoL」マジックパケットによって起床させる。ここで起床した受電デバイス8は、必ず準備モードに遷移しなければならず、稼働モードに遷移してはならない。 However, since there is no response even if a command is issued to the power receiving device 8 in sleep mode, first wake it up using the "WoL" magic packet. The power receiving device 8 that wakes up at this point must necessarily transition to the preparation mode and must not transition to the operating mode.

このとき給電装置1は、「WoL」にて起床した受電デバイス8に対して「レジューム指令」を発行し、当該受電デバイス8を稼働モードに遷移させる。これにより「レジューム指令」を受けた受電デバイス8は稼働モードに遷移し、自身の課せられた主たる任務を実行する。 At this time, the power supply device 1 issues a "resume command" to the power receiving device 8 that woke up in "WoL", and causes the power receiving device 8 to transition to the operating mode. As a result, the power receiving device 8 that has received the "resume command" transitions to the operating mode and executes its assigned main mission.

≪実施例1≫
図4および図5に基づき「時分割多重型PoE」の実施例1を説明する。ここでは「時分割多重型PoE」は、5台の水位測定端末8a~8eを受電デバイス8とする監視システムに適用されている(図5中では水位測定端末8c~8eを省略している。)。
≪Example 1≫
A first embodiment of "time division multiplexed PoE" will be described based on FIGS. 4 and 5. Here, "time division multiplexed PoE" is applied to a monitoring system in which five water level measuring terminals 8a to 8e are used as power receiving devices 8 (water level measuring terminals 8c to 8e are omitted in FIG. 5). ).

水位測定端末8a~8eは、それぞれマンホール11に設置され、共通の給電装置1にLANケーブルで接続され、「PoE」により電力供給されている。また、水位測定端末8a~8eの測位データは、前記LANケーブルにより給電装置1経由で遠隔監視系に伝送される。 The water level measuring terminals 8a to 8e are each installed in a manhole 11, connected to a common power supply device 1 by a LAN cable, and are supplied with power by "PoE". Furthermore, positioning data from the water level measuring terminals 8a to 8e is transmitted to the remote monitoring system via the power supply device 1 via the LAN cable.

この給電装置1は、電柱に設置されたトランスのケースに収納されて風雨から保護され、降圧後の100V電源を供給されて稼働する。ここでは給電装置の「PoE」供給定格は30Wとし、LANケーブルは地中に塩ビ管等を埋設してその中空部内に配線されているものとする。 This power supply device 1 is housed in a transformer case installed on a utility pole to be protected from wind and rain, and is operated by being supplied with a 100V voltage step-down power source. Here, it is assumed that the "PoE" supply rating of the power supply device is 30 W, and that the LAN cable is wired in a hollow part of a PVC pipe or the like buried underground.

Figure 0007419882000017
Figure 0007419882000017

表17は、水位測定端末8a~8eのプロファイル9を示し、1分間測定/1分間休憩を周期とする間欠動作を想定した設定となっている。すなわち、給電装置1の供給定格が十分に大きければ、前記周期を完全に履行できるが、表17に示す前記プロファイル9の諸条件によれば、給電装置1の供給定格を超過する消費となる。そこで、実施例1では給電装置1の給電スイッチングなどにより供給超過の防止を図っている。以下、動作処理を説明する。 Table 17 shows profile 9 of the water level measuring terminals 8a to 8e, which are set assuming intermittent operation with a cycle of 1 minute measurement/1 minute break. That is, if the supply rating of the power supply device 1 is sufficiently large, the cycle can be completely fulfilled, but according to the conditions of the profile 9 shown in Table 17, the consumption exceeds the supply rating of the power supply device 1. Therefore, in the first embodiment, oversupply is prevented by switching the power supply of the power supply device 1 or the like. The operation process will be explained below.

(1)初期状態
表18は、初期状態の基礎負荷キュー(BQ)6b・稼働キュー(AQ)6aと給電保存部6eを示し、それぞれには水位測定端末8a~8eの電力要求票6は入っていない。このとき給電装置1は、給電ポート7の1ポートずつ給電しつつ前記プロファイル9を収集する。
(1) Initial state Table 18 shows the basic load queue (BQ) 6b, operation queue (AQ) 6a, and power supply storage section 6e in the initial state, and the power request form 6 of the water level measurement terminals 8a to 8e is stored in each. Not yet. At this time, the power supply device 1 collects the profile 9 while supplying power to each power supply port 7 one by one.

Figure 0007419882000018
Figure 0007419882000018

(2)プロービング
給電装置1は、前述のように水位測定端末8a~8eの給電ポート7を一つずつ給電してハンドシェイクを実行し、前記プロファイル9を収集する。この段階では、どのような受電デバイス8が接続されているか不明なので、ワーストケースを想定して給電ポート7数を絞り込む必要がある。
(2) Probing As described above, the power supply device 1 supplies power to the power supply ports 7 of the water level measurement terminals 8a to 8e one by one, performs handshake, and collects the profile 9. At this stage, it is unknown what kind of power receiving device 8 is connected, so it is necessary to narrow down the number of power feeding ports 7 by assuming the worst case.

(3)電力要求票6cのエンキュー
給電装置1は、水位測定端末8a~8eについて電力要求票6cを起票する。本実施例では、全ての水位測定端末8a~8eが周期モードなので、初回はすべて稼働モードと判定される。
(3) Enqueue of power request form 6c The power supply device 1 issues a power request form 6c for the water level measurement terminals 8a to 8e. In this embodiment, since all the water level measurement terminals 8a to 8e are in the periodic mode, they are all determined to be in the operating mode for the first time.

表19は、給電キュー6に投入された電力要求票6cを示し、水位測定端末8a~8eのそれぞれの両電力要求票6c-1,6c-2がエンキューされている。なお、各稼働用電力要求票6c-2の要求電力は、「稼働時消費電力(12W)-睡眠時消費電力(1W)=11W」となっている。 Table 19 shows the power request forms 6c placed in the power supply queue 6, and both power request forms 6c-1 and 6c-2 of the water level measuring terminals 8a to 8e are enqueued. Note that the requested power in each operating power request form 6c-2 is "power consumption during operation (12W) - power consumption during sleep (1W) = 11W".

Figure 0007419882000019
Figure 0007419882000019

(4)電力要求票6cのデキュー
まず、基礎負荷キュー6bの基礎負荷用電力要求票6c-1から先にデキューし、給電保存部6eに移送する。表20は、すべての基礎負荷用電力要求票6c-1を給電保存部6eに移送した状態を示している。
(4) Dequeuing the power request form 6c First, the basic load power request form 6c-1 of the basic load queue 6b is first dequeued and transferred to the power supply storage section 6e. Table 20 shows the state in which all basic load power request forms 6c-1 have been transferred to the power supply storage section 6e.

ここで給電保存部6eの上段に記載された「5W(網掛表示)/30W」中、「5W」は移送された基礎負荷用電力要求票6c-1の合計消費電力を示し、「30W」は給電装置1の供給定格を示している。また、給電保存部6eの下段の網掛表示は移送された基礎負荷用電力要求票6c-1を示している。 Here, in "5W (shaded display)/30W" written in the upper row of the power supply storage section 6e, "5W" indicates the total power consumption of the transferred basic load power request form 6c-1, and "30W" The supply rating of the power supply device 1 is shown. Further, the shaded display at the bottom of the power supply storage section 6e indicates the transferred basic load power request form 6c-1.

Figure 0007419882000020
Figure 0007419882000020

つぎに稼働キュー6aから水位測定端末8aの稼働用電力要求票6c-2をデキューし、給電保存部6eに移送する。表21は、同移送後の状態を示している。 Next, the power request form 6c-2 for operation of the water level measuring terminal 8a is dequeued from the operation queue 6a and transferred to the power supply storage section 6e. Table 21 shows the state after the transfer.

Figure 0007419882000021
Figure 0007419882000021

表22は、続いて水位測定端末8bの稼働用電力要求票6c-2を給電保存部6eに移送した状態を示している。この表22によれば、給電保存部6eの合計消費電力は「27W」に達したため、残り「3w」では次の水位測定端末8cの稼働用電力要求票6c-2に応えられないため、ここで移送を打ち切る。 Table 22 shows the state in which the operating power request form 6c-2 of the water level measuring terminal 8b is subsequently transferred to the power supply storage section 6e. According to this table 22, since the total power consumption of the power supply storage unit 6e has reached "27W", the remaining "3W" cannot meet the operating power request form 6c-2 of the next water level measuring terminal 8c. Terminates the transfer.

Figure 0007419882000022
Figure 0007419882000022

(5)給電の実施「0分時点」
給電保存部6eに入っている前記電力要求票6c-1,6c-2に基づいて給電スイッチングを実施する。すなわち、水位測定端末8a,8bは、稼働用電力要求票6c-2が給電保存部6eに入っているので、稼働モードにて給電される。また、水位測定端末8c~8eは、基礎負荷用電力要求票6c-1のみが給電保存部6eに入っているので、待機モードにて給電される。
(5) Implementation of power supply “0 minute point”
Power supply switching is performed based on the power request forms 6c-1 and 6c-2 stored in the power supply storage unit 6e. That is, the water level measuring terminals 8a and 8b are supplied with power in the operating mode because the operating power request form 6c-2 is stored in the power supply storage section 6e. Further, the water level measurement terminals 8c to 8e are supplied with power in standby mode because only the basic load power request form 6c-1 is stored in the power supply storage section 6e.

(6)受電デバイス就寝「1分時点」
前記給電スイッチングの実施後1分が経過し、稼働モードの水位測定端末8a,8bが睡眠モードに遷移した。この水位測定端末8a,8bは「2分時点」まで睡眠モードの状態のままである。
(6) Power receiving device goes to bed “1 minute”
One minute has passed since the power supply switching was performed, and the water level measurement terminals 8a and 8b in the operating mode have transitioned to the sleep mode. The water level measurement terminals 8a, 8b remain in the sleep mode until the "2 minute time point".

(7)電力要求票6cの増減
水位測定端末8a,8bは睡眠モードに遷移したため、その稼働用電力要求票6c-2を給電保存部6eから取り除く。表23は、水位測定端末8a,8bの稼働用電力要求票6c-2を取り除いた状態を示している。
(7) Increase/decrease in the power request form 6c Since the water level measuring terminals 8a and 8b have transitioned to sleep mode, the operating power request form 6c-2 is removed from the power supply storage unit 6e. Table 23 shows a state in which the operating power request form 6c-2 of the water level measuring terminals 8a and 8b is removed.

Figure 0007419882000023
Figure 0007419882000023

その後、必要に応じて電力要求票6cを起票する。ここでは表24に示すように、特に電力要求票6cは起票されていない。 Thereafter, a power request form 6c is generated as necessary. Here, as shown in Table 24, the power request form 6c is not particularly generated.

Figure 0007419882000024
Figure 0007419882000024

(8)電力要求票6cのデキュー
まず、基礎負荷キュー6bから先にデキューし、給電保存部6eに移送する(既に実施済み。)。表25は移送後の給電保存部6eを示している。
(8) Dequeuing the power request form 6c First, the basic load queue 6b is first dequeued and transferred to the power supply storage unit 6e (already done). Table 25 shows the power supply storage section 6e after the transfer.

Figure 0007419882000025
Figure 0007419882000025

つぎに稼働キュー6aから水位測定端末8cの稼働用電力要求票6c-2をデキューし、給電保存部6eに移送する。表26は、同移送後の状態を示している。 Next, the power request form 6c-2 for operation of the water level measuring terminal 8c is dequeued from the operation queue 6a and transferred to the power supply storage section 6e. Table 26 shows the state after the transfer.

Figure 0007419882000026
Figure 0007419882000026

表27は、続いて水位測定端末8dの稼働用電力要求票6c-2を給電保存部6eに移送した状態を示している。この表22によれば、給電保存部6eの合計消費電力は「27W」に達したため、残り「3w」では次の水位測定端末8eの稼働用電力要求票6c-2に応えられないため、ここで移送を打ち切る。 Table 27 shows the state in which the operation power request form 6c-2 of the water level measuring terminal 8d is subsequently transferred to the power supply storage section 6e. According to this table 22, the total power consumption of the power supply storage unit 6e has reached "27W", so the remaining "3W" cannot meet the operating power request form 6c-2 of the next water level measuring terminal 8e. Terminates the transfer.

Figure 0007419882000027
Figure 0007419882000027

(9)給電実施「1分時点」
給電保存部6eに入っている前記電力要求票6c-1,6c-2に基づいて給電スイッチングを実施する。すなわち、水位測定端末8c,8dは、稼働用電力要求票6c-2が給電保存部6eに入っているので、稼働モードにて給電される。また、水位測定端末8e,8a,8bは、基礎負荷用電力要求票6c-1のみが給電保存部6eに入っているので、待機モードにて給電される。
(9) Power supply implementation “at 1 minute”
Power supply switching is performed based on the power request forms 6c-1 and 6c-2 stored in the power supply storage unit 6e. That is, the water level measuring terminals 8c and 8d are supplied with power in the operating mode because the operating power request form 6c-2 is stored in the power supply storage section 6e. Further, the water level measuring terminals 8e, 8a, and 8b are supplied with power in standby mode because only the basic load power request form 6c-1 is stored in the power supply storage section 6e.

(10)受電デバイス就寝「2分時点」
前記給電スイッチングの実施後1分が経過し、稼働モードの水位測定端末8c,8dが睡眠モードに遷移した。この水位測定端末8c,8dは「3分時点」まで睡眠モードの状態のままである。一方、睡眠モードの水位測定端末8a,8bは起床して稼働したい時間となった。
(10) Power receiving device goes to sleep “2 minutes in”
One minute has passed since the power supply switching was performed, and the water level measurement terminals 8c and 8d in the operating mode have transitioned to the sleep mode. The water level measuring terminals 8c and 8d remain in the sleep mode until the "3 minute point". On the other hand, the time has come for the water level measuring terminals 8a and 8b in sleep mode to wake up and operate.

(11)電力要求票6cの増減
水位測定端末8c,8dは睡眠モードに遷移したため、その稼働用電力要求票6c-2を給電保存部6eから取り除く。表28は、水位測定端末8c,8dの稼働用電力要求票6c-2を取り除いた状態を示している。
(11) Increase/decrease in the power request form 6c Since the water level measuring terminals 8c and 8d have transitioned to sleep mode, the operating power request form 6c-2 is removed from the power supply storage unit 6e. Table 28 shows a state in which the operating power request form 6c-2 of the water level measuring terminals 8c and 8d is removed.

Figure 0007419882000028
Figure 0007419882000028

その後、必要に応じて電力要求票6cを起票する。ここでは表29に示すように、水位測定端末8a,8bの稼働用電力要求票6c-2を起票した。 Thereafter, a power request form 6c is generated as necessary. Here, as shown in Table 29, a power request form 6c-2 for operation of the water level measuring terminals 8a and 8b was issued.

Figure 0007419882000029
Figure 0007419882000029

(12)電力要求票6cのデキュー
まず、基礎負荷キュー6bから先にデキューし、給電保存部6eに移送する(既に実施済み。)。表30は移送後の給電保存部6eを示している。
(12) Dequeuing the power request form 6c First, the basic load queue 6b is dequeued and transferred to the power supply storage unit 6e (already done). Table 30 shows the power supply storage section 6e after being transferred.

Figure 0007419882000030
Figure 0007419882000030

つぎに稼働キュー6aから水位測定端末8eの稼働用電力要求票6c-2をデキューし、給電保存部6eに移送する。表31は、同移送後の状態を示している。 Next, the power request form 6c-2 for operation of the water level measuring terminal 8e is dequeued from the operation queue 6a and transferred to the power supply storage section 6e. Table 31 shows the state after the transfer.

Figure 0007419882000031
Figure 0007419882000031

表32は、続いて水位測定端末8aの稼働用電力要求票6c-2を給電保存部6eに移送した状態を示している。この表32によれば、給電保存部6eの合計消費電力は「27W」に達したため、残り「3w」では次の水位測定端末8bの稼働用電力要求票6c-2に応えられないため、ここで移送を打ち切る。 Table 32 shows the state in which the operating power request form 6c-2 of the water level measuring terminal 8a is subsequently transferred to the power supply storage section 6e. According to this table 32, the total power consumption of the power supply storage unit 6e has reached "27W", so the remaining "3W" cannot meet the operating power request form 6c-2 of the next water level measuring terminal 8b. Terminates the transfer.

Figure 0007419882000032
Figure 0007419882000032

(13)給電実施「2分時点」
給電保存部6eに入っている前記電力要求票6c-1,6c-2に基づいて給電スイッチングを実施する。すなわち、水位測定端末8e,8aは、稼働用電力要求票6c-2が給電保存部6eに入っているので、稼働モードにて給電される。また、水位測定端末8b~8dは、基礎負荷用電力要求票6c-1のみが給電保存部6eに入っているので、待機モードにて給電される。
(13) Power supply implementation “2 minutes”
Power supply switching is performed based on the power request forms 6c-1 and 6c-2 stored in the power supply storage unit 6e. That is, the water level measuring terminals 8e and 8a are supplied with power in the operating mode because the operating power request form 6c-2 is stored in the power supply storage section 6e. Further, the water level measurement terminals 8b to 8d are supplied with power in standby mode because only the basic load power request form 6c-1 is stored in the power supply storage section 6e.

(14)受電デバイス就寝「3分時点」
前記給電スイッチングの実施後1分が経過し、稼働モードの水位測定端末8e,8aが睡眠モードに遷移した。この水位測定端末8e,8aは「4分時点」まで睡眠モードの状態のままである。一方、睡眠モードの水位測定端末8c,8dは起床して稼働したい時間となった。
(14) Power receiving device goes to bed “3 minutes in”
One minute passed after the power supply switching was performed, and the water level measurement terminals 8e and 8a in the operating mode transitioned to the sleep mode. The water level measuring terminals 8e and 8a remain in the sleep mode until the "4 minute point". On the other hand, the time has come for the water level measurement terminals 8c and 8d in sleep mode to wake up and operate.

(15)電力要求票6cの増減
水位測定端末8e,8aは睡眠モードに遷移したため、その稼働用電力要求票6c-2を給電保存部6eから取り除く。表33は、水位測定端末8e,8aの稼働用電力要求票6c-2を取り除いた状態を示している。
(15) Increase/decrease in the power request form 6c Since the water level measurement terminals 8e and 8a have transitioned to sleep mode, the operating power request form 6c-2 is removed from the power supply storage unit 6e. Table 33 shows a state in which the operating power request form 6c-2 of the water level measuring terminals 8e and 8a is removed.

Figure 0007419882000033
Figure 0007419882000033

その後、必要に応じて電力要求票6cを起票する。ここでは表34に示すように、水位測定端末8c,8dの稼働用電力要求票6c-2を起票した。 Thereafter, a power request form 6c is generated as necessary. Here, as shown in Table 34, a power request form 6c-2 for operation of the water level measuring terminals 8c and 8d was issued.

Figure 0007419882000034
Figure 0007419882000034

(16)電力要求票6cのデキュー
まず、基礎負荷キュー6bから先にデキューし、給電保存部6eに移送する(既に実施済み。)。表35は移送後の給電保存部6eを示している。
(16) Dequeuing the power request form 6c First, the basic load queue 6b is first dequeued and transferred to the power supply storage unit 6e (already done). Table 35 shows the power supply storage section 6e after the transfer.

Figure 0007419882000035
Figure 0007419882000035

つぎに稼働キュー6aから水位測定端末8bの稼働用電力要求票6c-2をデキューし、給電保存部6eに移送する。表36は、同移送後の状態を示している。 Next, the power request form 6c-2 for operation of the water level measuring terminal 8b is dequeued from the operation queue 6a and transferred to the power supply storage section 6e. Table 36 shows the state after the transfer.

Figure 0007419882000036
Figure 0007419882000036

表37は、続いて水位測定端末8cの稼働用電力要求票6c-2を給電保存部6eに移送した状態を示している。この表37によれば、給電保存部6eの合計消費電力は「27W」に達したため、残り「3w」では次の水位測定端末8dの稼働用電力要求票6c-2に応えられないため、ここで移送を打ち切る。 Table 37 shows the state in which the operating power request form 6c-2 of the water level measuring terminal 8c is subsequently transferred to the power supply storage section 6e. According to this table 37, the total power consumption of the power supply storage unit 6e has reached "27W", so the remaining "3W" cannot meet the operating power request form 6c-2 of the next water level measuring terminal 8d. Terminates the transfer.

Figure 0007419882000037
Figure 0007419882000037

(17)給電実施「3分時点」
給電保存部6eに入っている前記電力要求票6c-1,6c-2に基づいて給電スイッチングを実施する。すなわち、水位測定端末8b,8cは、稼働用電力要求票6c-2が給電保存部6eに入っているので、稼働モードにて給電される。また、水位測定端末8d,8e,8aは、基礎負荷用電力要求票6c-1のみが給電保存部6eに入っているので、待機モードにて給電される。
(17) Power supply implementation “3 minutes”
Power supply switching is performed based on the power request forms 6c-1 and 6c-2 stored in the power supply storage unit 6e. That is, the water level measuring terminals 8b and 8c are supplied with power in the operating mode because the operating power request form 6c-2 is stored in the power supply storage section 6e. Further, the water level measuring terminals 8d, 8e, and 8a are supplied with power in standby mode because only the basic load power request form 6c-1 is stored in the power supply storage section 6e.

(18)受電デバイス就寝「4分時点」
前記給電スイッチングの実施後1分が経過し、稼働モードの水位測定端末8b,8cが睡眠モードに遷移した。この水位測定端末8b,8cは「5分時点」まで睡眠モードの状態のままである。一方、睡眠モードの水位測定端末8e,8aは起床して稼働したい時間となった。
(18) Power receiving device goes to sleep “at 4 minutes”
One minute has passed since the power supply switching was performed, and the water level measurement terminals 8b and 8c in the operating mode have transitioned to the sleep mode. The water level measuring terminals 8b and 8c remain in the sleep mode until the "5 minute point". On the other hand, the time has come for the water level measurement terminals 8e and 8a in sleep mode to wake up and operate.

(19)電力要求票6cの増減
水位測定端末8b,8cは睡眠モードに遷移したため、その稼働用電力要求票6c-2を給電保存部6eから取り除く。表38は、水位測定端末8b,8cの稼働用電力要求票6c-2を取り除いた状態を示している。
(19) Increase/decrease in the power request form 6c Since the water level measurement terminals 8b and 8c have transitioned to sleep mode, the operating power request form 6c-2 is removed from the power supply storage unit 6e. Table 38 shows a state in which the operation power request form 6c-2 of the water level measuring terminals 8b and 8c is removed.

Figure 0007419882000038
Figure 0007419882000038

その後、必要に応じて電力要求票6cを起票する。ここでは表39に示すように、水位測定端末8e,8aの稼働用電力要求票6c-2を起票した。 Thereafter, a power request form 6c is generated as necessary. Here, as shown in Table 39, a power request form 6c-2 for operation of the water level measuring terminals 8e and 8a was issued.

Figure 0007419882000039
Figure 0007419882000039

(20)電力要求票6cのデキュー
まず、基礎負荷キュー6bから先にデキューし、給電保存部6eに移送する(既に実施済み。)。表40は移送後の給電保存部6eを示している。
(20) Dequeuing the power request form 6c First, the basic load queue 6b is first dequeued and transferred to the power supply storage unit 6e (already done). Table 40 shows the power supply storage section 6e after the transfer.

Figure 0007419882000040
Figure 0007419882000040

つぎに稼働キュー6aから水位測定端末8dの稼働用電力要求票6c-2をデキューし、給電保存部6eに移送する。表41は、同移送後の状態を示している。 Next, the power request form 6c-2 for operation of the water level measuring terminal 8d is dequeued from the operation queue 6a and transferred to the power supply storage section 6e. Table 41 shows the state after the transfer.

Figure 0007419882000041
Figure 0007419882000041

Figure 0007419882000042
Figure 0007419882000042

表42は、続いて水位測定端末8eの稼働用電力要求票6c-2を給電保存部6eに移送した状態を示している。この表42によれば、給電保存部6eの合計消費電力は「27W」に達したため、残り「3w」では次の水位測定端末8aの稼働用電力要求票6c-2に応えられないため、ここで移送を打ち切る。 Table 42 shows the state in which the operation power request form 6c-2 of the water level measuring terminal 8e is subsequently transferred to the power supply storage section 6e. According to this table 42, the total power consumption of the power supply storage unit 6e has reached "27W", so the remaining "3W" cannot meet the power request form 6c-2 for operation of the next water level measuring terminal 8a. Terminates the transfer.

このような動作処理のサイクルを繰り返して実行する。図5は、前記サイクルのチャートを示している。ここでは水位測定端末8a~8eは睡眠モードの時間が2分に伸びており、動作周期の伸縮が確認されているが、これは給電装置1の供給電力不足による延伸に起因し、やむを得ない。 Such a cycle of operation processing is repeatedly executed. FIG. 5 shows a chart of the cycle. Here, the time in the sleep mode of the water level measurement terminals 8a to 8e has been extended to 2 minutes, and it has been confirmed that the operating cycle has expanded or contracted, but this is due to the extension due to the lack of power supplied by the power supply device 1 and is unavoidable.

その一方で「時分割多重型PoE」によれば、水位測定端末8の消費電力,個数,動作周期によって定まる総消費電力が給電装置1の供給定格(30W)を超過したとしても、前述の動作周期の伸縮により稼働密度が調整される。これにより供給定格の超過を防止しながらの間欠動作が実現され、給電装置1の供給定格を上回る水位測定端末8群をシステムに収容することが可能となる。 On the other hand, according to "time division multiplexing PoE", even if the total power consumption determined by the power consumption, number, and operation cycle of the water level measuring terminals 8 exceeds the supply rating (30W) of the power supply device 1, the above-mentioned operation will be performed. The operating density is adjusted by expanding and contracting the period. As a result, intermittent operation is realized while preventing the supply rating from being exceeded, and it becomes possible to accommodate in the system eight groups of water level measurement terminals that exceed the supply rating of the power supply device 1.

このとき従来手法によれば、ワーストケースで消費電力を見積もるしかなかったので、睡眠モード中の水位測定端末8により供給電力に余力があっても、それを使用することができなかった。これに対して「時分割多重型PoE」によれば、稼働用電力要求票6c-2を供給定格の電力量まで移送可能ため、給電装置1の供給定格一杯に電力を使うことができ、電力の使用効率が向上する。 At this time, according to the conventional method, power consumption could only be estimated in the worst case, so even if there was surplus power supplied by the water level measurement terminal 8 in sleep mode, it could not be used. On the other hand, according to "time-division multiplexing PoE", it is possible to transfer the operating power request form 6c-2 up to the supply rated power amount, so the power can be used to the full supply rating of the power supply device 1, and the power improves usage efficiency.

また、給電装置1の供給定格の範囲内で稼働用電力要求票6c-2をラウンドロビンすることでエンキュー・デキューが繰り返される。したがって、周期動作する水位測定端末8a~8eの稼働タイミング(稼働モード)がずらされ、その結果、水位測定端末8の同時起動による通信の輻≡を自然に予防できる。 Further, enqueue/dequeue is repeated by round-robining the operating power request form 6c-2 within the supply rating of the power supply device 1. Therefore, the operation timings (operation modes) of the water level measuring terminals 8a to 8e that operate periodically are shifted, and as a result, communication congestion due to simultaneous activation of the water level measuring terminals 8 can be naturally prevented.

なお、実施例1では、説明の便宜上、各水位測定端末8a~8eの動作周期や動作時間を比較的簡単に分かり易い設定とした。もっとも、実際にどの様に設定されていたとしても、給電装置1の供給定格の範囲内でラウンドロビンすることで公平性が担保された形で水位測定端末8の間欠動作サイクルを構築することができる。 In the first embodiment, for convenience of explanation, the operating cycles and operating times of each of the water level measurement terminals 8a to 8e are set to be relatively easy to understand. However, no matter how it is actually set, it is possible to construct an intermittent operation cycle of the water level measurement terminal 8 in a manner that ensures fairness by performing round robin within the supply rating range of the power supply device 1. can.

≪実施例2≫
実施例2の「時分割多重型PoE」は、実施例1と同様に5台の水位測定端末8a~8eを受電デバイス8とする監視システムに適用されている。実施例1は、給電装置1の供給定格による制約から動作周期が伸びる場合があった。そこで、実施例2では稼働キュー6aの運用に改善を施した。
≪Example 2≫
The "time division multiplexing PoE" of the second embodiment is applied to a monitoring system in which five water level measurement terminals 8a to 8e are used as power receiving devices 8, as in the first embodiment. In the first embodiment, the operation cycle may be extended due to restrictions imposed by the supply rating of the power supply device 1. Therefore, in the second embodiment, improvements were made to the operation of the operation queue 6a.

(1)改善点
実施例2の改善点は次の通りである。
(1) Improvements The improvements in Example 2 are as follows.

a)稼働キュー6aを複数本にした。ここでは稼働キュー6aとして、稼働キューAQ1,AQ2を用意した。 a) The number of active queues 6a is increased to multiple. Here, working queues AQ1 and AQ2 are prepared as working queues 6a.

b)水位測定端末8の感知した水位に応じてエンキューを、以下のように変更する。
・測定値が危険水位に達したら稼働キューAQ1にエンキューする。
・測定値が危険水位未満であれば稼働キューAQ2にエンキューする。
b) The enqueue is changed as follows according to the water level sensed by the water level measuring terminal 8.
- When the measured value reaches the dangerous water level, it is enqueued to the operation queue AQ1.
- If the measured value is below the dangerous water level, it is enqueued to the operation queue AQ2.

c)ただし、稼働キューAQ1を先にデキューするものとする。 c) However, it is assumed that the active queue AQ1 is dequeued first.

以下、実施例2の「時分割多重型PoE」が適用された監視システムの動作処理を説明する。ここでは水位測定端末8bの地点が危険水位であるとする。 The operation processing of the monitoring system to which "time division multiplexed PoE" of the second embodiment is applied will be described below. Here, it is assumed that the point of the water level measurement terminal 8b is at a dangerous water level.

(1)初期状態 (1) Initial state

Figure 0007419882000043
Figure 0007419882000043

Figure 0007419882000044
Figure 0007419882000044

表43は、初期状態の基礎負荷キュー(BQ)6b・稼働キュー6a(AQ1,AQ2)と給電保存部6eを示し、それぞれには水位測定端末8a~8eの電力要求票6は入っていない。このとき給電装置1は、実施例1と同様に給電ポート7の1ポートずつ給電しつつ前記プロファイル9を収集する。 Table 43 shows the basic load queue (BQ) 6b, operation queue 6a (AQ1, AQ2), and power supply storage section 6e in the initial state, each of which does not contain the power request form 6 of the water level measurement terminals 8a to 8e. At this time, the power supply device 1 collects the profile 9 while supplying power to each power supply port 7 as in the first embodiment.

(2)プロービング
給電装置1は、水位測定端末8a~8eの給電ポート7を一つずつ給電してハンドシェイクを実行し、前記プロファイル9を収集する。
(2) Probing The power supply device 1 supplies power to the power supply ports 7 of the water level measuring terminals 8a to 8e one by one, performs handshaking, and collects the profile 9.

(3)電力要求票6cのエンキュー
また、給電装置1は、水位測定端末8a~8eについて電力要求票6cを起票する。本実施例でも、全ての水位測定端末8a~8eが周期モードなので、初回はすべて稼働モードと判定される。
(3) Enqueuing the power request form 6c Also, the power supply device 1 issues a power request form 6c for the water level measurement terminals 8a to 8e. Also in this embodiment, since all the water level measuring terminals 8a to 8e are in the periodic mode, they are all determined to be in the operating mode for the first time.

表44は、電力要求票6cが投入された給電キュー6を示し、水位測定端末8a~8eのそれぞれの両電力要求票6c-1,6c-2が基礎負荷キュー(SQ)6bおよび稼働キュー6a(AQ2)にエンキューされている。 Table 44 shows the power supply queue 6 into which the power request form 6c has been input, and both power request forms 6c-1 and 6c-2 of the water level measuring terminals 8a to 8e are the basic load queue (SQ) 6b and the operation queue 6a. (AQ2) is enqueued.

Figure 0007419882000045
Figure 0007419882000045

(4)電力要求票6cのデキュー
表45は、すべての基礎負荷用電力要求票6c-1を給電保存部6eに移送した状態を示している。
(4) Dequeuing power request forms 6c Table 45 shows the state in which all basic load power request forms 6c-1 have been transferred to the power supply storage unit 6e.

また、稼働キュー6aの稼働用電力要求票6c-2をデキューし、順に給電保存部6eに移送する。ただし、水位測定端末8bが危険水位を報告したため、該水位測定端末8bの稼働用電力要求票6c-2を優先する。 Further, the operation power request form 6c-2 in the operation queue 6a is dequeued and sequentially transferred to the power supply storage section 6e. However, since the water level measuring terminal 8b has reported a dangerous water level, priority is given to the operating power request form 6c-2 of the water level measuring terminal 8b.

ここでは表46に示すように、水位測定端末8a,8bの稼働用電力要求票6c-2が給電保存部6eに移送される。これにより給電保存部6eの合計消費電力は「27W」に達したため、残り「3w」では次の水位測定端末8cの稼働用電力要求票6c-2に応えられず、ここで移送を打ち切って給電スイッチングを開始する。 Here, as shown in Table 46, the power request form 6c-2 for operation of the water level measuring terminals 8a, 8b is transferred to the power supply storage section 6e. As a result, the total power consumption of the power supply storage unit 6e reached "27W", so the remaining "3W" could not meet the operation power request form 6c-2 of the next water level measurement terminal 8c, so the transfer was stopped here and the power supply Start switching.

Figure 0007419882000046
Figure 0007419882000046

(5)給電の実施「0分時点」
水位測定端末8a,8bが稼働モードにて給電される一方、水位測定端末8c~8dが待機モードにて給電される。
(5) Implementation of power supply “0 minute point”
The water level measuring terminals 8a and 8b are supplied with power in the operating mode, while the water level measuring terminals 8c to 8d are supplied with power in the standby mode.

(6)充電デバイス就寝「1分時点」
1分が経過し、稼働モードの水位測定端末8a,8bが睡眠モードに遷移する。この水位測定端末8b,8cは「2分時点」まで睡眠モードの状態のままである。
(6) Charging device goes to bed “1 minute”
One minute has passed, and the water level measurement terminals 8a, 8b in the operating mode transition to the sleep mode. The water level measurement terminals 8b and 8c remain in the sleep mode until the "2 minute point".

(7)電力要求票6cの増減
水位測定端末8a,8bは睡眠モードに遷移したため、その稼働用電力要求票6c-2を給電保存部6eから取り除く。表47は、水位測定端末8a,8bの稼働用電力要求票6c-2を取り除いた状態を示している。その後、必要に応じて電力要求票6cを起票する。ここでは特に電力要求票6cは起票されていない。
(7) Increase/decrease in the power request form 6c Since the water level measuring terminals 8a and 8b have transitioned to sleep mode, the operating power request form 6c-2 is removed from the power supply storage unit 6e. Table 47 shows a state in which the operation power request form 6c-2 of the water level measuring terminals 8a and 8b is removed. Thereafter, a power request form 6c is generated as necessary. In particular, the power request form 6c is not created here.

Figure 0007419882000047
Figure 0007419882000047

(8)電力要求票6cのデキュー
まず、基礎負荷キュー6bから先にデキューし、給電保存部6eに移送する(既に実施済み。)。
(8) Dequeuing the power request form 6c First, the basic load queue 6b is first dequeued and transferred to the power supply storage unit 6e (already done).

つぎに表48に示すように稼働キュー6aから水位測定端末8c,8dの稼働用電力要求票6c-2をデキューし、給電保存部6eに移送する。この表48によれば、給電保存部6eの合計消費電力は「27W」に達したため、残り「3w」では次の水位測定端末8eの稼働用電力要求票6c-2に応えられないため、ここで移送を打ち切って給電スイッチングを実施する。 Next, as shown in Table 48, the power request form 6c-2 for operation of the water level measuring terminals 8c and 8d is dequeued from the operation queue 6a and transferred to the power supply storage section 6e. According to this table 48, the total power consumption of the power supply storage unit 6e has reached "27W", so the remaining "3W" cannot meet the power request form 6c-2 for operation of the next water level measuring terminal 8e. Stop the transfer and perform power supply switching.

Figure 0007419882000048
Figure 0007419882000048

(9)給電実施「1分時点」
水位測定端末8c,8dが稼働モードにて給電される一方、水位測定端末8a,8b,8eが待機モードにて給電される。
(9) Power supply implementation “at 1 minute”
The water level measuring terminals 8c, 8d are supplied with power in the operating mode, while the water level measuring terminals 8a, 8b, 8e are supplied with power in the standby mode.

(10)充電デバイス就寝「2分時点」
給電実施後1分が経過すれば稼働モードの水位測定端末8c,8dが睡眠モードに遷移する。この水位測定端末8c,8dは「2分時点」まで睡眠モードの状態のままである。
(10) Charging device goes to bed “2 minutes in”
When one minute passes after the power supply is performed, the water level measurement terminals 8c and 8d in the operating mode transition to the sleep mode. The water level measurement terminals 8c and 8d remain in the sleep mode until the "2 minute point".

(11)電力要求票6cの増減
水位測定端末8c,8dは睡眠モードに遷移したため、その稼働用電力要求票6c-2を給電保存部6eから取り除く。表49は、水位測定端末8c,8dの稼働用電力要求票6c-2を取り除いた状態を示している。
(11) Increase/decrease in the power request form 6c Since the water level measuring terminals 8c and 8d have transitioned to sleep mode, the operating power request form 6c-2 is removed from the power supply storage unit 6e. Table 49 shows a state in which the operating power request form 6c-2 of the water level measuring terminals 8c and 8d is removed.

Figure 0007419882000049
Figure 0007419882000049

なお、水位測定端末8a,8bは、起床して稼働したい時間となったため、稼働用電力要求票6c-2が起票される。 Incidentally, since it is time for the water level measuring terminals 8a and 8b to wake up and start operating, an operating power request form 6c-2 is generated.

(12)電力要求票6cのデキュー
まず、基礎負荷キュー6bから先にデキューし、給電保存部6eに移送する(既に実施済み。)。
(12) Dequeuing the power request form 6c First, the basic load queue 6b is dequeued and transferred to the power supply storage unit 6e (already done).

つぎに表50に示すように、前回の測位結果で危険水位を報告した水位測定端末8bの稼働用電力要求票6c-2を稼働キュー6a(AQ1)にエンキューし、水位測定端末8aの稼働用電力要求票6c-2を稼働キュー6a(AQ2)にエンキューする。 Next, as shown in Table 50, the operation power request form 6c-2 of the water level measurement terminal 8b that reported the dangerous water level in the previous positioning result is enqueued into the operation queue 6a (AQ1), and the power request form 6c-2 for operation of the water level measurement terminal 8a is enqueued. The power request form 6c-2 is enqueued into the operation queue 6a (AQ2).

Figure 0007419882000050
Figure 0007419882000050

そして、表51に示すように、水位測定端末8bの稼働用電力要求票6c-2を給電保存部6eに移送する。その後、表52に示すように、水位測定端末8eの稼働用電力要求票6c-2を給電保存部6eに移送する。 Then, as shown in Table 51, the operating power request form 6c-2 of the water level measuring terminal 8b is transferred to the power supply storage section 6e. Thereafter, as shown in Table 52, the power request form 6c-2 for operation of the water level measuring terminal 8e is transferred to the power supply storage section 6e.

Figure 0007419882000051
Figure 0007419882000051

Figure 0007419882000052
Figure 0007419882000052

その結果、給電保存部6eの合計消費電力は「27W」に達したため、残り「3w」では次の水位測定端末8aの稼働用電力要求票6c-2に応えられないため、ここで移送を打ち切って給電スイッチングを実施する。 As a result, the total power consumption of the power supply storage unit 6e reached "27W", so the remaining "3W" could not meet the operation power request form 6c-2 of the next water level measurement terminal 8a, so the transfer was terminated here. Perform power supply switching.

(13)給電実施「2分時点」
水位測定端末8b,8eが稼働モードにて給電される一方、水位測定端末8a,8c,8dが待機モードにて給電される。
(13) Power supply implementation “2 minutes”
The water level measuring terminals 8b, 8e are supplied with power in the operating mode, while the water level measuring terminals 8a, 8c, 8d are supplied with power in the standby mode.

(14)充電デバイス就寝「3分時点」
給電実施後1分が経過すれば稼働モードの水位測定端末8b,8eが睡眠モードに遷移する。この水位測定端末8b,8eは「3分時点」まで睡眠モードの状態のままである。
(14) Charging device goes to bed “3 minutes in”
When one minute passes after the power supply is performed, the water level measurement terminals 8b and 8e in the operating mode transition to the sleep mode. The water level measuring terminals 8b and 8e remain in the sleep mode until the "3 minute point".

(15)電力要求票6cの増減
水位測定端末8b,8eは睡眠モードに遷移したため、その稼働用電力要求票6c-2を給電保存部6eから取り除く。表53は、水位測定端末8b,8eの稼働用電力要求票6c-2を取り除いた状態を示している。
(15) Increase/decrease in the power request form 6c Since the water level measuring terminals 8b and 8e have transitioned to sleep mode, the operating power request form 6c-2 is removed from the power supply storage unit 6e. Table 53 shows a state in which the operation power request form 6c-2 of the water level measuring terminals 8b and 8e is removed.

Figure 0007419882000053
Figure 0007419882000053

なお、水位測定端末8c,8dは、起床して稼働したい時間となったため、稼働用電力要求票6c-2が起票される。 It should be noted that the water level measuring terminals 8c and 8d have woken up at the time when they want to start operating, so an operating power request form 6c-2 is generated.

(16)電力要求票6cのデキュー
まず、基礎負荷キュー6bから先にデキューし、給電保存部6eに移送する(既に実施済み。)。
(16) Dequeuing the power request form 6c First, the basic load queue 6b is first dequeued and transferred to the power supply storage unit 6e (already done).

つぎに表54に示すように水位測定端末8c,8dの稼働用電力要求票6c-2を稼働キュー6a(AQ2)にエンキューする。 Next, as shown in Table 54, the operating power request forms 6c-2 for the water level measuring terminals 8c and 8d are enqueued into the operating queue 6a (AQ2).

Figure 0007419882000054
Figure 0007419882000054

そして、表55に示すように、水位測定端末8a,8cの稼働用電力要求票6c-2を給電保存部6eに移送する。 Then, as shown in Table 55, the power request form 6c-2 for operation of the water level measuring terminals 8a, 8c is transferred to the power supply storage section 6e.

Figure 0007419882000055
Figure 0007419882000055

その結果、給電保存部6eの合計消費電力は「27W」に達したため、残り「3w」では次の水位測定端末8dの稼働用電力要求票6c-2に応えられないため、ここで移送を打ち切って給電スイッチングを実施する。 As a result, the total power consumption of the power supply storage unit 6e reached "27W", so the remaining "3W" could not meet the operating power request form 6c-2 of the next water level measuring terminal 8d, so the transfer was terminated here. Perform power supply switching.

(17)給電実施「3分時点」
水位測定端末8a,8cが稼働モードにて給電される一方、水位測定端末8b,8d,8eが待機モードにて給電される。
(17) Power supply implementation “3 minutes”
The water level measuring terminals 8a, 8c are powered in the operating mode, while the water level measuring terminals 8b, 8d, 8e are powered in the standby mode.

(18)充電デバイス就寝「2分時点」
給電実施後1分が経過すれば稼働モードの水位測定端末8a,8cが睡眠モードに遷移する。この水位測定端末8a,8cは「3分時点」まで睡眠モードの状態のままである。
(18) Bedtime for charging device “2 minutes”
When one minute passes after the power supply is performed, the water level measurement terminals 8a and 8c in the operating mode transition to the sleep mode. The water level measuring terminals 8a, 8c remain in the sleep mode until the "3 minute point".

(19)電力要求票6cの増減
水位測定端末8a,8cは睡眠モードに遷移したため、その稼働用電力要求票6c-2を給電保存部6eから取り除く。表56は、水位測定端末8a,8cの稼働用電力要求票6c-2を取り除いた状態を示している。
(19) Increase/decrease in the power request form 6c Since the water level measurement terminals 8a and 8c have transitioned to sleep mode, the operating power request form 6c-2 is removed from the power supply storage unit 6e. Table 56 shows a state in which the operating power request form 6c-2 of the water level measurement terminals 8a and 8c is removed.

Figure 0007419882000056
Figure 0007419882000056

なお、水位測定端末8b,8eは、起床して稼働したい時間となったため、稼働用電力要求票6c-2が起票される。 Incidentally, since it is time for the water level measuring terminals 8b and 8e to wake up and start operating, an operating power request form 6c-2 is generated.

(20)電力要求票6cのデキュー
まず、基礎負荷キュー6bから先にデキューし、給電保存部6eに移送する(既に実施済み。)。
(20) Dequeuing the power request form 6c First, the basic load queue 6b is first dequeued and transferred to the power supply storage unit 6e (already done).

つぎに表57に示すように、前回の測位結果で危険水位を報告した水位測定端末8bの稼働用電力要求票6c-2を稼働キュー6a(AQ1)にエンキューし、水測定端末8eの稼働用電力要求票6c-2を稼働キュー6a(AQ2)にエンキューする。 Next, as shown in Table 57, the power request form 6c-2 for operation of the water level measurement terminal 8b that reported the dangerous water level in the previous positioning result is enqueued into the operation queue 6a (AQ1), and the power request form 6c-2 for operation of the water measurement terminal 8e is enqueued. The power request form 6c-2 is enqueued into the operation queue 6a (AQ2).

Figure 0007419882000057
Figure 0007419882000057

そして、表58に示すように、水位測定端末8bの稼働用電力要求票6c-2を給電保存部6eに移送する。その後、表59に示すように、水測定端末8eの稼働用電力要求票6c-2を給電保存部6eに移送する。 Then, as shown in Table 58, the operating power request form 6c-2 of the water level measuring terminal 8b is transferred to the power supply storage section 6e. Thereafter, as shown in Table 59, the operating power request form 6c-2 of the water measurement terminal 8e is transferred to the power supply storage section 6e.

Figure 0007419882000058
Figure 0007419882000058

Figure 0007419882000059
Figure 0007419882000059

その結果、給電保存部6eの合計消費電力は「27W」に達したため、残り「3w」では次の水位測定端末8aの稼働用電力要求票6c-2に応えられないため、ここで移送を打ち切って給電スイッチングを実施する。 As a result, the total power consumption of the power supply storage unit 6e reached "27W", so the remaining "3W" could not meet the operation power request form 6c-2 of the next water level measurement terminal 8a, so the transfer was terminated here. Perform power supply switching.

このような動作処理のサイクルを繰り返して実行する。図6は、前記サイクルのチャートを示している。ここでは稼働キュー6a(AQ1)を設けて危険水位を報告した水位測定端末8bのキューイングを優遇した結果、他の水位測定端末8a,8c~8eはともかくとして、最重要の水位測定端末8bについて睡眠モードの時間が2分に延伸することが回避できた。 Such a cycle of operation processing is repeatedly executed. FIG. 6 shows a chart of the cycle. Here, as a result of setting up the operation queue 6a (AQ1) and giving preferential treatment to the queuing of the water level measuring terminal 8b that has reported a dangerous water level, the most important water level measuring terminal 8b is set aside for the other water level measuring terminals 8a, 8c to 8e. It was possible to avoid extending the sleep mode time to 2 minutes.

したがって、実施例2によれば、キューイングを改善して水位測定端末8群に優劣をつけることで重要度に応じた稼働モードの制御が可能となる。これにより有限の資源である給電装置1の供給電力を有効に活用することができる。 Therefore, according to the second embodiment, by improving the queuing and assigning superiority to the eight groups of water level measuring terminals, it becomes possible to control the operation mode according to the degree of importance. Thereby, the power supplied by the power supply device 1, which is a limited resource, can be effectively utilized.

1…給電装置
2…受電デバイスデータベース
3…マスタークロック
4…給電装置設定
5…給電スケジューラ
6…給電キュー
6a…稼働キュー
6b…基礎負荷キュー
6c…電力要求票
6c-1…基礎負荷用電力要求票
6c-2…稼働用電力要求票
7…給電ポート
8…時分割多重型の受電デバイス(水位測定端末)
9…受電デバイスプロファイル
11…マンホール
1... Power feeding device 2... Power receiving device database 3... Master clock 4... Power feeding device settings 5... Power feeding scheduler 6... Power feeding queue 6a... Operation queue 6b... Basic load queue 6c... Power request form 6c-1... Power request form for basic load 6c-2...Power request form for operation 7...Power supply port 8...Time division multiplexed power receiving device (water level measurement terminal)
9... Power receiving device profile 11... Manhole

Claims (9)

給電装置が通信電力線に接続された複数の受電デバイスに給電するシステムであって、
前記給電装置は、前記各受電デバイスの動作モード毎の消費電力が記述された受電デバイスプロファイルが保存されたデータベースと、
前記データベースを参照して前記各受電デバイスの前記動作モードを制御し、前記受電デバイス群による消費電力を前記給電装置の供給定格内に制御する給電スケジューラと、
を備え,
前記受電デバイスプロファイルには、
前記受電デバイスが主たる任務実行中の稼働モード時の消費電力を示す稼働時消費電力と、
前記受電デバイスが起動していない睡眠モード時の消費電力を示す睡眠時消費電力と、
が含まれ,
前記給電スケジューラは、前記データベースに保存された受電デバイスプロファイルに基づき各受電デバイスについて、
前記睡眠時消費電力に応じた基礎負荷用電力要求票と、
前記稼働時消費電力と前記睡眠時消費電力との差に応じた稼働用電力要求票と、
を起票してそれぞれを基礎負荷キューと稼働キューとに格納し、
前記基礎負荷用電力要求票を順に給電保存部に移送し、該移送後に稼働用電力要求票を順に給電保存部に移送し、
前記給電保存部に移送された前記両電力要求票の合計消費電力が前記供給定格に達した場合には前記移送を終了し、
前記給電保存部に移送された前記両電力要求票に基づき受電デバイスの動作モードを判定して給電する
ことを特徴とする給電制御システム。
A system in which a power supply device supplies power to a plurality of power receiving devices connected to a communication power line,
The power supply device includes a database storing a power receiving device profile that describes power consumption for each operation mode of each of the power receiving devices;
a power supply scheduler that controls the operation mode of each power receiving device by referring to the database, and controls power consumption by the power receiving device group to within a supply rating of the power supply device;
Equipped with,
The powered device profile includes:
operating power consumption indicating power consumption in an operating mode when the power receiving device is executing its main mission;
sleep power consumption indicating power consumption in a sleep mode in which the power receiving device is not activated;
includes,
The power supply scheduler performs the following for each powered device based on the powered device profile stored in the database:
a basic load power request form according to the power consumption during sleep;
an operating power request form according to the difference between the operating power consumption and the sleep power consumption;
and store them in the basic load queue and the operation queue, respectively.
Transferring the basic load power request forms to the power supply storage unit in order, and after the transfer, sequentially transferring the operating power request forms to the power supply storage unit,
If the total power consumption of both the power request forms transferred to the power supply storage unit reaches the supply rating, the transfer is terminated;
Determine the operating mode of the power receiving device based on the two power request forms transferred to the power supply storage unit and supply power.
A power supply control system characterized by:
前記受電デバイスプロファイルは、前記受電デバイスの起動時に前記給電装置に送信され、
前記受電デバイスプロファイルを受信した前記給電装置は、前記受電デバイスに応答のメッセージを送信し、
前記受電デバイスプロファイルを前記データベースに保存することを特徴とする請求項記載の給電制御システム。
The power receiving device profile is transmitted to the power supply device when the power receiving device is activated,
The power supply device that has received the power receiving device profile transmits a response message to the power receiving device,
The power supply control system according to claim 1 , wherein the power receiving device profile is stored in the database.
前記給電スケジューラは、
前記基礎負荷用電力要求票のみが前記給電保存部に投入された前記受電デバイスの給電を睡眠モードと判定する一方、
前記基礎負荷用電力要求票および前記稼働用電力要求票が前記給電保存部に投入された前記受電デバイスの給電を稼働モードと判定する
ことを特徴とする請求項1または2記載の給電制御システム。
The power supply scheduler is
Only the basic load power request form determines that the power supply of the power receiving device inputted into the power supply storage unit is in sleep mode,
The power supply control system according to claim 1 or 2, wherein the power request form for basic load and the power request form for operation determine that the power supply to the power receiving device inputted into the power supply storage unit is in an operation mode.
前記給電スケジューラにより睡眠モードと判定された前記受電デバイスが稼働モードの状態であれば前記給電装置はスリープ指令を送信し、
前記スリープ指令を受信した前記受電デバイスは、稼働モードから睡眠モードに遷移する
ことを特徴とする請求項記載の給電制御システム。
If the power receiving device determined to be in sleep mode by the power supply scheduler is in operating mode, the power supply device transmits a sleep command;
The power feeding control system according to claim 3 , wherein the power receiving device that receives the sleep command transitions from an operating mode to a sleep mode.
前記給電スケジューラにより稼働モードと判定された前記受電デバイスが睡眠モードであれば前記給電装置はレジューム指令を送信し、
前記レジューム指令を受信した前記受電デバイスは、睡眠モードから稼働モードに遷移する
ことを特徴とする請求項記載の給電制御システム。
If the power receiving device determined to be in operation mode by the power supply scheduler is in sleep mode, the power supply device transmits a resume command;
The power feeding control system according to claim 4 , wherein the power receiving device that receives the resume command transitions from sleep mode to working mode.
前記稼働モードへの遷移を前記睡眠モードへの遷移後に実行することを特徴とする請求項5記載の給電制御システム。 6. The power supply control system according to claim 5, wherein the transition to the working mode is executed after the transition to the sleep mode. 前記給電保存部に移送された稼働用電力要求票の前記受電デバイスが、睡眠モードに遷移すれば前記給電保存部から取り除かれ、
次の稼働用電力要求票を順に前記給電保存部に移送することを特徴とする請求項3~6のいずれかに記載の給電制御システム。
When the power receiving device of the operating power request form transferred to the power supply storage unit transitions to sleep mode, it is removed from the power supply storage unit,
The power supply control system according to any one of claims 3 to 6, characterized in that the next power request form for operation is sequentially transferred to the power supply storage unit.
前記給電保存部に前記両電力要求票のいずれも投入されていない受電デバイスの給電が停止される
ことを特徴とする請求項3~7のいずれかに記載の給電制御システム。
The power supply control system according to any one of claims 3 to 7, characterized in that power supply to a power receiving device for which neither of the power request forms is input to the power supply storage unit is stopped.
前記受電デバイスプロファイルには、
前記受電デバイスが起動しているものの、主たる任務を実行していない準備モードの消費電力を示す準備時消費電力が記述され、
前記睡眠モードをサポートしていない前記受電デバイスについては、前記準備モードで動作させる
ことを特徴とする請求項3~8のいずれかに記載の給電制御システム。
The powered device profile includes:
Preparation power consumption is described, which indicates power consumption in a preparation mode in which the power receiving device is activated but is not executing its main mission;
The power supply control system according to any one of claims 3 to 8 , wherein the power receiving device that does not support the sleep mode is operated in the preparation mode.
JP2020036336A 2020-03-04 2020-03-04 Power supply control system Active JP7419882B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020036336A JP7419882B2 (en) 2020-03-04 2020-03-04 Power supply control system
JP2021049815A JP7099576B2 (en) 2020-03-04 2021-03-24 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020036336A JP7419882B2 (en) 2020-03-04 2020-03-04 Power supply control system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021049815A Division JP7099576B2 (en) 2020-03-04 2021-03-24 Power supply device

Publications (2)

Publication Number Publication Date
JP2021141395A JP2021141395A (en) 2021-09-16
JP7419882B2 true JP7419882B2 (en) 2024-01-23

Family

ID=77669708

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020036336A Active JP7419882B2 (en) 2020-03-04 2020-03-04 Power supply control system
JP2021049815A Active JP7099576B2 (en) 2020-03-04 2021-03-24 Power supply device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021049815A Active JP7099576B2 (en) 2020-03-04 2021-03-24 Power supply device

Country Status (1)

Country Link
JP (2) JP7419882B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052421A1 (en) 2008-08-28 2010-03-04 Cisco Technology, Inc. Network-centric scheduled power provisioning method
WO2012026299A1 (en) 2010-08-24 2012-03-01 日本電気株式会社 State control system and method
JP2013105394A (en) 2011-11-15 2013-05-30 Canon Inc System control device, system control method, and program
JP2014132449A (en) 2012-12-20 2014-07-17 Xerox Corp Multi-mode device power-saving optimization
JP2018166373A (en) 2017-03-28 2018-10-25 ルネサスエレクトロニクス株式会社 Power supply device, power supply control device, and power supply control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052421A1 (en) 2008-08-28 2010-03-04 Cisco Technology, Inc. Network-centric scheduled power provisioning method
WO2012026299A1 (en) 2010-08-24 2012-03-01 日本電気株式会社 State control system and method
JP2013105394A (en) 2011-11-15 2013-05-30 Canon Inc System control device, system control method, and program
JP2014132449A (en) 2012-12-20 2014-07-17 Xerox Corp Multi-mode device power-saving optimization
JP2018166373A (en) 2017-03-28 2018-10-25 ルネサスエレクトロニクス株式会社 Power supply device, power supply control device, and power supply control method

Also Published As

Publication number Publication date
JP7099576B2 (en) 2022-07-12
JP2021141395A (en) 2021-09-16
JP2021141807A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
CN102025509B (en) Power-off control method and device
US8719601B2 (en) Dynamic remaining maximum power allocation to secondary port while staying within optimal efficiency range of power supply
EP2673992B1 (en) Method and apparatus of smart power management for mobile communication terminals using power thresholds
CN102869077B (en) ZigBee-protocol-based data acquisition and transmission method of wireless sensor network
CN105893148B (en) A kind of accidental task low energy consumption dispatching method based on RM strategy
CN102959487B (en) Be provided for the wakeup logic waken up from low-power mode by electronic equipment
US8135346B2 (en) Method and system for a reduced USB polling rate to save power on a Bluetooth host
EP2673993A1 (en) Method and apparatus of smart power management for mobile communication terminals
JP4523654B2 (en) Wireless terminal, wireless communication system, and wireless communication method
JP7419882B2 (en) Power supply control system
CN106063304B (en) System and method for message-based fine-grained system-on-chip power control
JP2014030991A (en) Image forming apparatus, method for controlling image forming apparatus, and program
CN104023379A (en) Data transmission method and data forwarding device
CN101943944B (en) Idle history information-based energy-saving method for computing array
CN202183160U (en) Intelligent control system for household appliances
JP7356020B2 (en) Network systems, management devices, communication devices, adapter devices, network system control methods, and programs
Cena et al. Enabling Listening Suspension in the Time Slotted Channel Hopping Protocol
CN102118407B (en) Method for reducing running power consumption of cluster job system, node and system
EP2517423A1 (en) Ethernet port speed control method and device
CN107172691B (en) Dormancy method of communication module of meter and meter
KR100772924B1 (en) Method for power saving of ubiquitous sensor network based on nano operating system
CN106933325B (en) A kind of fixed priority I/O device energy consumption management method
CN112788558A (en) Data communication method and related equipment
TW201220037A (en) Electronic device and power control method
Gotzhein et al. Energy-aware system design with SDL

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7419882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150