JP7416738B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP7416738B2
JP7416738B2 JP2021092004A JP2021092004A JP7416738B2 JP 7416738 B2 JP7416738 B2 JP 7416738B2 JP 2021092004 A JP2021092004 A JP 2021092004A JP 2021092004 A JP2021092004 A JP 2021092004A JP 7416738 B2 JP7416738 B2 JP 7416738B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode plate
material layer
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021092004A
Other languages
Japanese (ja)
Other versions
JP2022184263A (en
Inventor
舜也 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2021092004A priority Critical patent/JP7416738B2/en
Publication of JP2022184263A publication Critical patent/JP2022184263A/en
Application granted granted Critical
Publication of JP7416738B2 publication Critical patent/JP7416738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、非水電解液二次電池に係り、詳しくは、基材、合材層、セパレータ等の負担を軽減した非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery that reduces the burden on a base material, a composite material layer, a separator, etc.

リチウムイオン二次電池に代表される非水電解液二次電池は、高いエネルギー密度を有し、高容量であることから、電気自動車(EV)やハイブリッド自動車(HV)等の駆動用電源として用いられている。 Non-aqueous electrolyte secondary batteries, typified by lithium-ion secondary batteries, have high energy density and high capacity, so they are used as power sources for driving electric vehicles (EVs), hybrid vehicles (HVs), etc. It is being

一般的にリチウムイオン二次電池は、正極板及び負極板がセパレータを介して積層されて電極体を構成し、この電極体を電解液が充填された電池ケース内に収容されて構成される。特に近年は、帯状の正極板及び帯状の負極板がセパレータを介して積層され、この状態で積層体が長手方向に捲回され圧縮された状態の電極体が電池ケースに収容される捲回型のリチウムイオン二次電池が、効率が良く、コンパクトであるため、多く採用されている。 In general, a lithium ion secondary battery is configured such that a positive electrode plate and a negative electrode plate are laminated with a separator in between to form an electrode body, and this electrode body is housed in a battery case filled with an electrolyte. Particularly in recent years, a wound type is used in which a strip-shaped positive electrode plate and a strip-shaped negative electrode plate are laminated with a separator in between, and in this state, the laminate is wound in the longitudinal direction and the compressed electrode body is housed in a battery case. Lithium-ion secondary batteries are widely used because they are efficient and compact.

図11(a)は、このような従来の捲回型のリチウムイオン二次電池の電極体10の製造工程において、負極板100、正極板110、セパレータ120を積層した電極体10の状態を、捲回方向L(図8参照、負極板100、正極板110の長手方向)と直交する幅方向W(図10参照)の断面の模式図である。図11(a)に示すように、負極板100と正極板110は、積層される際に、負極板100と正極板110とが幅方向にずらされて積層される。そして、幅方向の一端には、負極合材層102が設けられていない負極接続部103が多数突出する。また、幅方向の他端には、正極合材層112が設けられていない正極接続部113が多数突出する。 FIG. 11A shows the state of the electrode body 10 in which the negative electrode plate 100, the positive electrode plate 110, and the separator 120 are laminated in the manufacturing process of the electrode body 10 of such a conventional wound type lithium ion secondary battery. 10 is a schematic diagram of a cross section in the width direction W (see FIG. 10) orthogonal to the winding direction L (see FIG. 8, the longitudinal direction of the negative electrode plate 100 and the positive electrode plate 110). As shown in FIG. 11A, when the negative electrode plate 100 and the positive electrode plate 110 are stacked, the negative electrode plate 100 and the positive electrode plate 110 are stacked with the negative electrode plate 100 and the positive electrode plate 110 being shifted in the width direction. A large number of negative electrode connection portions 103 in which the negative electrode composite material layer 102 is not provided protrude from one end in the width direction. Further, at the other end in the width direction, a large number of positive electrode connecting portions 113 in which the positive electrode composite material layer 112 is not provided protrude.

図11(b)は、このような従来のリチウムイオン二次電池の電極体10の模式図である。製造工程において、負極接続部103と正極接続部113を、捲回方向L及び幅方向Wと直交する厚み方向に圧縮する。負極集電体13、正極集電体15を溶接した状態の幅方向の水平断面の模式図である。図11(b)に示すように、負極接続部103と正極接続部113とは、それぞれ厚み方向に圧縮されて集箔される。集箔された負極接続部103は負極集電体13に溶接される。正極接続部113は正極集電体15に溶接される。接続部に溶接された集電体の一部は、電池ケースの外部へ露出して設けられ、リチウムイオン二次電池の外部において負極外部端子14、正極外部端子16と接続される(図7参照)。 FIG. 11(b) is a schematic diagram of the electrode body 10 of such a conventional lithium ion secondary battery. In the manufacturing process, the negative electrode connecting portion 103 and the positive electrode connecting portion 113 are compressed in the thickness direction perpendicular to the winding direction L and the width direction W. FIG. 3 is a schematic diagram of a horizontal cross-section in the width direction in a state where the negative electrode current collector 13 and the positive electrode current collector 15 are welded together. As shown in FIG. 11(b), the negative electrode connection portion 103 and the positive electrode connection portion 113 are each compressed in the thickness direction and collected. The collected negative electrode connection portion 103 is welded to the negative electrode current collector 13. The positive electrode connection portion 113 is welded to the positive electrode current collector 15 . A part of the current collector welded to the connection part is provided to be exposed to the outside of the battery case, and is connected to the negative electrode external terminal 14 and the positive electrode external terminal 16 on the outside of the lithium ion secondary battery (see FIG. 7). ).

しかしながら、このように接続部と集電体を接続すると、捲回された電極体の外周部分は、集箔される位置までの距離が長く、集箔された接続部における長さがばらばらになってしまう。 However, when the connection part and the current collector are connected in this way, the distance of the outer periphery of the wound electrode body to the position where the foil is collected is long, and the length at the connection part where the foil is collected is scattered. It ends up.

図12は、特許文献1に示された電極体10が捲回される前の構成を示す図である。このような問題に対し特許文献1に以下のような発明が開示された。図12に示すように、負極接続部103と正極接続部113とは、それぞれ原形が長方形である。捲回外周側から捲回中心側に向けて切取り部104、114の部分で切り取られ、中心側に向かって長さが徐々に短くなっている。図13は、特許文献1に示された電極体10が捲回された後の構成を示す幅方向の部分断面図である。このように負極接続部103から切取り部104が切り取られ、正極接続部113から切取り部114が切り取られたため、この積層体を捲回していくと、図13に示すように、集箔された負極接続部103では、その先端部の位置が揃う。 FIG. 12 is a diagram showing the configuration of the electrode body 10 shown in Patent Document 1 before being wound. In response to such problems, the following invention was disclosed in Patent Document 1. As shown in FIG. 12, the negative electrode connection portion 103 and the positive electrode connection portion 113 each have a rectangular original shape. It is cut out at the cutout portions 104 and 114 from the outer circumferential side of the winding toward the center of the winding, and the length becomes gradually shorter toward the center. FIG. 13 is a partial cross-sectional view in the width direction showing the structure of the electrode body 10 disclosed in Patent Document 1 after being wound. Since the cutout part 104 was cut out from the negative electrode connection part 103 and the cutout part 114 was cut out from the positive electrode connection part 113 in this way, when this laminate was wound, the collected negative electrode In the connecting portion 103, the positions of the tip portions are aligned.

特許文献1のような構成とすれば、接続部の先端部が揃い、捲回された電極体と集電体との溶接部における溶接面積を均一化することができる。 With the configuration as in Patent Document 1, the tips of the connecting portions are aligned, and the welding area at the welded portion between the wound electrode body and the current collector can be made uniform.

特開2014-060045号公報Japanese Patent Application Publication No. 2014-060045

ところで、接続部の先端を揃えても、接続部を集箔するときには、外周部の接続部が中心部に向かって急激に折り曲げられることになる。急激に折り曲げられると、折り曲げ部分に応力が集中し、金属箔からなる基材、樹脂を含む合材層、薄い樹脂製のセパレータ等に負担をかけることになるという問題がある。 By the way, even if the tips of the connection parts are aligned, when the connection parts are collected, the connection parts on the outer periphery will be sharply bent toward the center. If it is suddenly bent, stress will be concentrated at the bent portion, which will put a strain on the base material made of metal foil, the composite material layer containing resin, the thin resin separator, etc.

本発明の非水電解液二次電池が解決しようとする課題は、接続部を集箔するときの外周部の基材、合材層、セパレータ等の集箔の際の負担を軽減することにある。 The problem to be solved by the non-aqueous electrolyte secondary battery of the present invention is to reduce the burden when collecting foil on the outer periphery of the base material, composite material layer, separator, etc. when collecting foil on the connection part. be.

上記課題を解決するため、本発明の非水電解液二次電池では、幅が略一定の帯状の金属箔からなる負極基材と、前記負極基材の両面に設けられた負極合材層と、前記負極基材の長手方向に直交する幅方向の一端部に設けられ前記負極合材層が設けられていない部分である負極接続部とを有する負極板と、幅が略一定の帯状の金属箔からなる正極基材と、前記正極基材の両面に設けられた正極合材層と、前記正極基材の長手方向に直交する幅方向の他端部に設けられ前記正極合材層が設けられていない部分である正極接続部とを有する正極板と、前記正極板及び前記負極板の間に設けられたセパレータとを備えて積層された積層体が、捲回軸を中心に長手方向に捲回されているとともに、幅方向と直交する方向から扁平に圧縮された電極体と、該電極体の幅方向の前記一端部の負極接続部が集箔された当該負極接続部に溶接により接合されている負極集電体と、前記他端部の正極接続部が集箔された当該正極接続部に溶接により接合されている正極集電体と、を備える非水電解液二次電池であって、少なくとも前記負極板が外周になるにつれて負極接続部側にずれて捲回されるか、又は前記正極板が外周になるにつれて正極接続部側にずれて捲回されるとともに、前記正極板の前記正極合材層は、前記負極板の負極合材層に対向していることを特徴とする。 In order to solve the above problems, the nonaqueous electrolyte secondary battery of the present invention includes a negative electrode base material made of a strip-shaped metal foil having a substantially constant width, and a negative electrode composite material layer provided on both sides of the negative electrode base material. , a negative electrode plate having a negative electrode connection portion provided at one end in the width direction orthogonal to the longitudinal direction of the negative electrode base material and which is a portion where the negative electrode composite material layer is not provided; and a strip-shaped metal having a substantially constant width. A positive electrode base material made of foil, a positive electrode composite material layer provided on both surfaces of the positive electrode base material, and a positive electrode composite material layer provided at the other end in the width direction perpendicular to the longitudinal direction of the positive electrode base material. A laminated body including a positive electrode plate having a positive electrode connecting portion which is a portion that is not connected to the positive electrode plate, and a separator provided between the positive electrode plate and the negative electrode plate is wound in the longitudinal direction around a winding axis. At the same time, an electrode body compressed flat from a direction perpendicular to the width direction, and a negative electrode connection portion at the one end of the electrode body in the width direction are joined by welding to the negative electrode connection portion where the foil is collected. A non-aqueous electrolyte secondary battery comprising: a negative electrode current collector having a negative electrode current collector; and a positive electrode current collector having a positive electrode connecting portion at the other end joined by welding to the positive electrode connecting portion where the positive electrode connecting portion is foil-collected; At least the negative electrode plate is wound so as to be shifted toward the negative electrode connection part side as it becomes the outer periphery, or the positive electrode plate is wound so as to be shifted towards the positive electrode connection part side as it becomes the outer periphery, and the positive electrode of the positive electrode plate The composite material layer is characterized in that it faces the negative electrode composite material layer of the negative electrode plate.

幅方向において、前記負極合材層の幅Wnは前記正極合材層の幅Wpより差ΔLだけ長く形成され、前記セパレータは、前記負極板の負極合材層全体を覆うように配置され、捲回された前記電極体の正極端子側の正極合材層の曲面中心部における端部と、最外周部における端部との幅方向の位置の差ΔPmaxと、捲回された前記電極体の正極端子側の負極合材層の曲面中心部における端部と、最外周部における端部との幅方向の位置の差ΔNmaxとの合計が、前記差ΔLより小さいものとすることが好ましい。 In the width direction, the width Wn of the negative electrode composite material layer is formed to be longer than the width Wp of the positive electrode composite material layer by a difference ΔL, and the separator is arranged so as to cover the entire negative electrode composite material layer of the negative electrode plate, and is wound. Difference ΔPmax in the width direction between the edge at the center of the curved surface of the positive electrode composite layer on the positive terminal side of the rotated electrode body and the edge at the outermost circumference, and the positive electrode of the wound electrode body It is preferable that the sum of the widthwise position difference ΔNmax between the end at the center of the curved surface of the negative electrode composite layer on the terminal side and the end at the outermost periphery is smaller than the difference ΔL.

前記正極接続部は、前記正極集電体において溶接するために集箔された先端部の位置が一定になるように、捲回された前記電極体の正極端子側の正極合材層の捲回方向の端部の曲面部分の中心における前記正極接続部の端部と、最外周部における前記正極接続部の端部との幅方向の位置の差ΔPが設定されていることも好ましい。 The positive electrode connection part is formed by winding the positive electrode composite layer on the positive terminal side of the wound electrode body so that the position of the tip of the collected foil for welding on the positive electrode current collector remains constant. It is also preferable that a widthwise position difference ΔP be set between the end of the positive electrode connecting portion at the center of the curved surface portion of the end in the direction and the end of the positive electrode connecting portion at the outermost periphery.

また、前記負極接続部は、前記負極集電体において溶接するために集箔された先端部の位置が一定になるように、捲回された前記電極体の負極端子側の負極合材層の捲回方向の端部の曲面部分の中心における前記負極接続部の端部と、最外周部における前記負極接続部の端部との幅方向の位置の差ΔNが設定されていることも好ましい。 Further, the negative electrode connection part is formed of a negative electrode composite material layer on the negative electrode terminal side of the wound electrode body so that the position of the tip of the collected foil for welding in the negative electrode current collector is constant. It is also preferable that a widthwise position difference ΔN be set between the end of the negative electrode connecting portion at the center of the curved surface portion of the end in the winding direction and the end of the negative electrode connecting portion at the outermost circumference.

なお、前記正極板及び前記負極板の少なくとも一方は、その両端部が捲回方向に対して設定した傾きを有した平行四辺形に形成してもよい。
前記非水電解液二次電池が、リチウムイオン二次電池である場合に好適に適用できる。
Note that at least one of the positive electrode plate and the negative electrode plate may be formed in the shape of a parallelogram with both ends thereof having a set inclination with respect to the winding direction.
It is suitably applicable when the non-aqueous electrolyte secondary battery is a lithium ion secondary battery.

本発明の非水電解液二次電池によれば、接続部を集箔するときの外周部の基材、合材層、セパレータ等の集箔の際の負担を軽減することができる。 According to the non-aqueous electrolyte secondary battery of the present invention, it is possible to reduce the burden of foil collecting the base material, composite material layer, separator, etc. on the outer periphery when collecting the foil at the connection portion.

(a)本実施形態の電極体における負極板と、正極板との位置関係を示す模式図。(b)図1(a)のように積層した電極体の負極接続部と正極接続部を集箔して、負極集電体と正極集電体をそれぞれ溶接した状態を示す模式図。(a) A schematic diagram showing the positional relationship between the negative electrode plate and the positive electrode plate in the electrode body of the present embodiment. (b) A schematic diagram showing a state in which the negative electrode connection portion and the positive electrode connection portion of the stacked electrode bodies as shown in FIG. 1(a) are collected, and the negative electrode current collector and the positive electrode current collector are welded, respectively. 図1(b)に示す集箔された電極体の正極接続部側の拡大図。FIG. 2 is an enlarged view of the positive electrode connection portion side of the foil-collected electrode body shown in FIG. 1(b). (a)本実施形態の負極板を展開した図。(b)本実施形態の正極板を展開した図。(a) An expanded view of the negative electrode plate of this embodiment. (b) An expanded view of the positive electrode plate of this embodiment. (a)別の実施形態の負極板を展開した図。(b)別の実施形態の正極板を展開した図。(a) An expanded view of a negative electrode plate of another embodiment. (b) A developed view of a positive electrode plate of another embodiment. (a)別の実施形態の電極体における負極板と、正極板との位置関係を示す模式図。(b)図5(a)のように積層した電極体の負極接続部と正極接続部を集箔して、負極集電体と正極集電体をそれぞれ溶接した状態を示す模式図。(a) A schematic diagram showing the positional relationship between a negative electrode plate and a positive electrode plate in an electrode body of another embodiment. (b) A schematic diagram showing a state in which the negative electrode connection portion and the positive electrode connection portion of the stacked electrode bodies as shown in FIG. 5(a) are collected, and the negative electrode current collector and the positive electrode current collector are welded, respectively. (a)さらに別に実施形態の電極体における負極板と、正極板との位置関係を示す模式図。(b)図6(a)のように積層した電極体の負極接続部と正極接続部を集箔して、負極集電体と正極集電体をそれぞれ溶接した状態を示す模式図。(a) A schematic diagram showing the positional relationship between a negative electrode plate and a positive electrode plate in an electrode body of another embodiment. (b) A schematic diagram showing a state in which the negative electrode connection portion and the positive electrode connection portion of the stacked electrode bodies as shown in FIG. 6(a) are collected, and the negative electrode current collector and the positive electrode current collector are welded, respectively. リチウムイオン二次電池のセル電池の斜視図。A perspective view of a cell battery of a lithium ion secondary battery. 捲回される電極体の構成を示す模式図である。FIG. 3 is a schematic diagram showing the configuration of a wound electrode body. リチウムイオン二次電池の電極体の構成を示す模式図。FIG. 2 is a schematic diagram showing the configuration of an electrode body of a lithium ion secondary battery. 捲回された電極体の幅方向の負極接続部側の端部を示す斜視図。FIG. 3 is a perspective view showing the end of the wound electrode body on the negative electrode connection portion side in the width direction. (a)従来のリチウムイオン二次電池の電極体の製造工程において、負極板、正極板、セパレータを積層した電極体の状態を、捲回方向と直交する幅方向の断面の模式図。(b)従来のリチウムイオン二次電池の電極体の製造工程において、負極接続部と正極接続部を、捲回方向と直交する幅方向に圧縮して、負極集電体、正極集電体を溶接した状態を、捲回方向と直交する幅方向の断面の模式図。(a) A schematic cross-sectional view in the width direction perpendicular to the winding direction of an electrode body in which a negative electrode plate, a positive electrode plate, and a separator are laminated in a conventional manufacturing process of an electrode body for a lithium ion secondary battery. (b) In the manufacturing process of conventional electrode bodies for lithium ion secondary batteries, the negative electrode connection part and the positive electrode connection part are compressed in the width direction perpendicular to the winding direction, and the negative electrode current collector and the positive electrode current collector are FIG. 3 is a schematic cross-sectional view of the welded state in the width direction perpendicular to the winding direction. 特許文献1に示された電極体が捲回される前の構成を示す図。The figure which shows the structure before the electrode body shown in patent document 1 is wound. 特許文献1に示された電極体が捲回された後の構成を示す幅方向の部分断面図。FIG. 2 is a partial cross-sectional view in the width direction showing the structure of the electrode body disclosed in Patent Document 1 after being wound.

図1~6を参照して、本発明の非水電解液二次電池を、リチウムイオン二次電池1を例に説明する。
(第1の実施形態の構成)
まず、本実施形態のリチウムイオン二次電池1(図7参照)について、その前提となる構成を説明する。本実施形態と従来のリチウムイオン二次電池は、負極板100と正極板110の配置を除き、基本的にその原理は共通する。そこで本実施形態のリチウムイオン二次電池1の説明に当たっては、説明の単純化のため、先に前提となる従来のリチウムイオン二次電池を図7~10を参照して説明する。
With reference to FIGS. 1 to 6, the non-aqueous electrolyte secondary battery of the present invention will be explained using a lithium ion secondary battery 1 as an example.
(Configuration of first embodiment)
First, the basic configuration of the lithium ion secondary battery 1 (see FIG. 7) of this embodiment will be explained. The principles of this embodiment and the conventional lithium ion secondary battery are basically the same except for the arrangement of the negative electrode plate 100 and the positive electrode plate 110. Therefore, in explaining the lithium ion secondary battery 1 of this embodiment, in order to simplify the explanation, a conventional lithium ion secondary battery as a premise will first be explained with reference to FIGS. 7 to 10.

<リチウムイオン二次電池1の基本構成>
図7は、リチウムイオン二次電池1の斜視図である。図7に示すようにリチウムイオン二次電池1は、セル電池として構成される。リチウムイオン二次電池1は、上側に開口部を有する直方体形状の電池ケース11を備える。電池ケース11は、電池ケース11を封止する蓋体12を備える。電池ケース11の内部には電極体10が収容される。電池ケース11内には図示しない注液孔から非水電解液17が注入される。電池ケース11及び蓋体12はアルミニウム合金等の金属で構成されている。リチウムイオン二次電池1は、電池ケース11に蓋体12を取り付けることで密閉された電槽が構成される。またリチウムイオン二次電池1は、蓋体12に、電力の充放電に用いられる負極外部端子14、正極外部端子16を備えている。
<Basic configuration of lithium ion secondary battery 1>
FIG. 7 is a perspective view of the lithium ion secondary battery 1. As shown in FIG. 7, the lithium ion secondary battery 1 is configured as a cell battery. The lithium ion secondary battery 1 includes a rectangular parallelepiped battery case 11 having an opening on the upper side. The battery case 11 includes a lid 12 that seals the battery case 11. The electrode body 10 is housed inside the battery case 11 . A non-aqueous electrolyte 17 is injected into the battery case 11 from a liquid injection hole (not shown). The battery case 11 and the lid 12 are made of metal such as aluminum alloy. The lithium ion secondary battery 1 is configured as a sealed battery case by attaching a lid 12 to a battery case 11. The lithium ion secondary battery 1 also includes a lid 12 with a negative external terminal 14 and a positive external terminal 16, which are used for charging and discharging power.

<電極体10>
図8は、捲回される電極体10の構成を示す模式図である。電極体10は、負極板100と正極板110とそれらの間に配置されたセパレータ120とが扁平に捲回されて形成されている。負極板100は、負極基材101上に負極合材層102が形成される。捲回される方向(捲回方向L)に直交する幅方向W(捲回軸方向)の一端側に負極合材層102が形成されておらず負極基材101が露出した負極接続部103が設けられている。正極板110は、正極基材111上に正極合材層112が形成される。正極基材111が捲回される方向(捲回方向L)に直交する幅方向W(捲回軸方向)の他端側に正極合材層112が形成されておらず正極基材111が露出した正極接続部113が設けられている。
<Electrode body 10>
FIG. 8 is a schematic diagram showing the configuration of the electrode body 10 to be wound. The electrode body 10 is formed by winding a negative electrode plate 100, a positive electrode plate 110, and a separator 120 disposed between them into a flat shape. In the negative electrode plate 100, a negative electrode composite layer 102 is formed on a negative electrode base material 101. The negative electrode connection portion 103 has no negative electrode composite material layer 102 formed on one end side in the width direction W (winding axis direction) perpendicular to the winding direction (winding direction L) and the negative electrode base material 101 is exposed. It is provided. In the positive electrode plate 110, a positive electrode composite layer 112 is formed on a positive electrode base material 111. The positive electrode composite layer 112 is not formed on the other end side in the width direction W (winding axis direction) perpendicular to the direction in which the positive electrode base material 111 is wound (winding direction L), and the positive electrode base material 111 is exposed. A positive electrode connection portion 113 is provided.

<電極体10の積層体>
図9は、リチウムイオン二次電池1の電極体10の積層体の構成を示す模式図である。図9に示すように、リチウムイオン二次電池1の電極体10は、負極板100と正極板110とセパレータ120を備える。負極板100は、負極基材101の両面に負極合材層102を備える。正極板110は、正極基材111の両面に正極合材層112を備える。負極板100と、正極板110は、セパレータ120を介して重ねて積層体が構成される。この積層体が捲回軸を中心に長手方向に捲回され、扁平に整形されてなる電極体10を構成する。
<Laminated body of electrode body 10>
FIG. 9 is a schematic diagram showing the structure of a laminate of the electrode body 10 of the lithium ion secondary battery 1. As shown in FIG. 9, the electrode body 10 of the lithium ion secondary battery 1 includes a negative electrode plate 100, a positive electrode plate 110, and a separator 120. The negative electrode plate 100 includes negative electrode composite material layers 102 on both sides of a negative electrode base material 101 . The positive electrode plate 110 includes positive electrode composite layers 112 on both sides of a positive electrode base material 111 . The negative electrode plate 100 and the positive electrode plate 110 are stacked on top of each other with a separator 120 in between to form a laminate. This laminated body is wound in the longitudinal direction around the winding axis and formed into a flat shape to constitute the electrode body 10.

ここで、負極合材層102の負極接続部側端部を「負極接続部側負極合材層端部102n」といい、負極合材層102の正極接続部側端部を「正極接続部側負極合材層端部102p」という。 Here, the end of the negative electrode composite material layer 102 on the negative electrode connection part side is referred to as "negative electrode connection part side negative electrode composite layer end 102n", and the end part of the negative electrode composite material layer 102 on the positive electrode connection part side is referred to as "positive electrode connection part side". "Negative electrode composite layer end portion 102p".

また、正極合材層112の負極接続部側端部を「負極接続部側正極合材層端部112n」といい、正極合材層112の正極接続側端部を「正極接続部側正極合材層端部112p」という。 In addition, the end portion of the positive electrode composite material layer 112 on the negative electrode connection portion side is referred to as “negative electrode connection portion side positive electrode composite layer end portion 112n”, and the end portion of the positive electrode composite material layer 112 on the positive electrode connection side is referred to as “positive electrode connection portion side positive electrode composite layer end portion 112n”. "material layer end portion 112p".

負極接続部103は、負極板100の負極合材層102から電気を取り出す集電部として機能する。正極接続部113は、正極板110の正極合材層112から電気を取り出す集電部として機能する。 The negative electrode connection portion 103 functions as a current collector that extracts electricity from the negative electrode composite material layer 102 of the negative electrode plate 100. The positive electrode connection portion 113 functions as a current collector that extracts electricity from the positive electrode composite material layer 112 of the positive electrode plate 110.

<電極体10の端部構成>
図10は、捲回された電極体10の幅方向Wの負極接続部側の端部を示す斜視図である。電極体10は捲回軸を中心に捲回されると、幅方向Wと直交する厚さ方向Dから圧縮されて断面が競走用トラック状の扁平な形状に整形される。扁平な電極体10は、図7に示すように電池ケース11に収容され、負極接続部103には、負極集電体13が溶接される。正極接続部113には正極集電体15が溶接される。接続部と集電体との溶接方法としては、例えば超音波溶接や抵抗溶接、電気溶接がある。そして、蓋体12を貫通して負極集電体13には負極外部端子14が接続され、正極集電体15には正極外部端子16が接続される。
<End configuration of electrode body 10>
FIG. 10 is a perspective view showing the end of the wound electrode body 10 in the width direction W on the negative electrode connection portion side. When the electrode body 10 is wound around the winding axis, it is compressed in the thickness direction D perpendicular to the width direction W, and its cross section is shaped into a flat shape in the shape of a racing track. The flat electrode body 10 is housed in a battery case 11 as shown in FIG. 7, and a negative electrode current collector 13 is welded to the negative electrode connection portion 103. The positive electrode current collector 15 is welded to the positive electrode connection portion 113. Examples of methods for welding the connection portion and the current collector include ultrasonic welding, resistance welding, and electric welding. A negative external terminal 14 is connected to the negative current collector 13 through the lid 12, and a positive external terminal 16 is connected to the positive current collector 15.

捲回された電極体10を構成する負極板100及び正極板110は、中心から渦巻き状に捲回されている、負極接続部側から幅方向Wに見ると、その外観は競走用のトラックのような形状となっており、上端及び下端は半円弧状で、負極板100及び正極板110により「曲面部R」が形成されている。また、中央部は直線状で、負極板100及び正極板110により「平面部F」が形成されている。ここで、本実施形態では、半円弧状の「曲面部R」部分の中心に相当する部分を「曲面中心C」という。 The negative electrode plate 100 and the positive electrode plate 110 constituting the wound electrode body 10 are spirally wound from the center. When viewed in the width direction W from the negative electrode connection side, the appearance resembles that of a racing truck. The upper end and the lower end are semicircular arc shapes, and the negative electrode plate 100 and the positive electrode plate 110 form a "curved surface portion R". Further, the central portion is linear, and a “flat portion F” is formed by the negative electrode plate 100 and the positive electrode plate 110. Here, in this embodiment, a portion corresponding to the center of the semicircular arc-shaped "curved surface portion R" is referred to as a "curved surface center C."

<負極板100>
図9に示すように、負極基材101の両面に負極合材層102が形成されて負極板100が構成されている。負極基材101は、実施形態ではCu箔から構成されている。負極基材101は、負極合材層102の骨材としてのベースとなるとともに、負極合材層102から電気を集電する集電部材の機能を有している。負極板100は、金属製の負極基材101上に負極合材層102が形成される。第1の実施形態では負極活物質は、リチウムイオンを吸蔵・放出可能な材料であり、黒鉛(グラファイト)等からなる粉末状の炭素材料を用いる。
<Negative electrode plate 100>
As shown in FIG. 9, negative electrode composite layers 102 are formed on both sides of a negative electrode base material 101 to constitute a negative electrode plate 100. In the embodiment, the negative electrode base material 101 is made of Cu foil. The negative electrode base material 101 serves as a base for the negative electrode composite material layer 102 as an aggregate, and has the function of a current collecting member that collects electricity from the negative electrode composite material layer 102. In the negative electrode plate 100, a negative electrode composite layer 102 is formed on a negative electrode base material 101 made of metal. In the first embodiment, the negative electrode active material is a material capable of intercalating and deintercalating lithium ions, and is a powdery carbon material made of graphite or the like.

負極板100は、例えば、負極活物質と、溶媒と、結着剤(バインダー)とを混練し、混練後の負極合材を負極基材101に塗布して乾燥することで作製される。
<正極板110>
図9に示すように、正極基材111の両面に正極合材層112が形成されて正極板110が構成されている。正極基材111は、本実施形態ではAl箔やAl合金箔から構成されている。正極基材111は、正極合材層112の骨材としてのベースとなるとともに、正極合材層112から電気を集電する集電部材の機能を有している。
The negative electrode plate 100 is produced, for example, by kneading a negative electrode active material, a solvent, and a binder, and applying the kneaded negative electrode mixture onto the negative electrode base material 101 and drying it.
<Positive electrode plate 110>
As shown in FIG. 9, a positive electrode plate 110 is configured by forming positive electrode composite material layers 112 on both sides of a positive electrode base material 111. In this embodiment, the positive electrode base material 111 is made of Al foil or Al alloy foil. The positive electrode base material 111 serves as a base for the positive electrode composite material layer 112 as an aggregate, and has the function of a current collecting member that collects electricity from the positive electrode composite material layer 112.

正極板110は、正極基材111の表面に正極合材層112が形成されている。正極合材層112は正極活物質を有する。正極活物質は、リチウムを吸蔵・放出可能な材料であり、例えばコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等を用いることができる。また、LiCoO、LiMn、LiNiOを任意の割合で混合した材料を用いてもよい。 In the positive electrode plate 110, a positive electrode composite layer 112 is formed on the surface of a positive electrode base material 111. The positive electrode composite material layer 112 includes a positive electrode active material. The positive electrode active material is a material that can insert and release lithium, and for example, lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickel oxide (LiNiO 2 ), etc. can be used. Alternatively, a material in which LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 are mixed in an arbitrary ratio may be used.

また、正極合材層112は、導電材を含む。導電材としては、例えばアセチレンブラック(AB)、ケッチェンブラック等のカーボンブラック、黒鉛(グラファイト)を用いることができる。 Further, the positive electrode composite material layer 112 includes a conductive material. As the conductive material, for example, carbon black such as acetylene black (AB) or Ketjen black, or graphite can be used.

正極板110は、例えば、正極活物質と、導電材と、溶媒と、結着剤(バインダー)とを混練し、混練後の正極合材を正極基材111に塗布して乾燥することで作製される。
<セパレータ120>
セパレータ120は、負極板100及び正極板110の間に非水電解液17を保持するためのポリプロピレン製等の不織布である。また、セパレータ120としては、多孔性ポリエチレン膜、多孔性ポリオレフィン膜、および多孔性ポリ塩化ビニル膜等の多孔性ポリマー膜、又は、リチウムイオンもしくはイオン導電性ポリマー電解質膜を、単独、又は組み合わせて使用することもできる。非水電解液17に電極体10に浸漬させるとセパレータ120の端部から中央部に向けて非水電解液が浸透する。
The positive electrode plate 110 is produced, for example, by kneading a positive electrode active material, a conductive material, a solvent, and a binder, and applying the kneaded positive electrode mixture onto the positive electrode base material 111 and drying it. be done.
<Separator 120>
The separator 120 is a nonwoven fabric made of polypropylene or the like for holding the non-aqueous electrolyte 17 between the negative electrode plate 100 and the positive electrode plate 110. As the separator 120, porous polymer membranes such as porous polyethylene membranes, porous polyolefin membranes, and porous polyvinyl chloride membranes, or lithium ion or ion conductive polymer electrolyte membranes may be used alone or in combination. You can also. When the electrode body 10 is immersed in the non-aqueous electrolyte 17, the non-aqueous electrolyte permeates from the ends of the separator 120 toward the center.

<非水電解液17>
図7に示す非水電解液17は、非水溶媒に支持塩が含有された組成物である。ここで、非水溶媒としては、エチレンカーボネート(EC)を用いることができる。また、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等からなる群から選択された一種または二種以上の材料でもよい。また、支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等から選択される一種または二種以上のリチウム化合物(リチウム塩)を用いることができる。
<Nonaqueous electrolyte 17>
The non-aqueous electrolyte 17 shown in FIG. 7 is a composition containing a supporting salt in a non-aqueous solvent. Here, ethylene carbonate (EC) can be used as the nonaqueous solvent. Alternatively, one or more materials selected from the group consisting of propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), etc. may be used. Supporting salts include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(CF 3 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiI One or more kinds of lithium compounds (lithium salts) selected from the following can be used.

<本実施形態の特徴>
本実施形態のリチウムイオン二次電池1の特徴は、電極体10における負極板100と、正極板110との位置関係にある。
<Features of this embodiment>
The lithium ion secondary battery 1 of this embodiment is characterized by the positional relationship between the negative electrode plate 100 and the positive electrode plate 110 in the electrode body 10.

<負極板100と、正極板110との位置関係>
図1(a)は、本実施形態の電極体10における負極板100と、正極板110との位置関係を示す模式図である。図1(a)は、図10に示す曲面中心Cに沿ったA-A部分の電極体10の断面図である。なお、図面は、負極板100、正極板110、セパレータ120の実際の厚さ方向D、幅方向Wの長さ等を反映したものではなく、本実施形態のリチウムイオン二次電池1の電極体10の構成を説明するための模式図である。したがって本実施形態は、図面の寸法に限定されない。他の図面においても同様である。
<Positional relationship between negative electrode plate 100 and positive electrode plate 110>
FIG. 1A is a schematic diagram showing the positional relationship between the negative electrode plate 100 and the positive electrode plate 110 in the electrode body 10 of this embodiment. FIG. 1(a) is a cross-sectional view of the electrode body 10 along the line AA along the center C of the curved surface shown in FIG. Note that the drawings do not reflect the actual lengths of the negative electrode plate 100, the positive electrode plate 110, and the separator 120 in the thickness direction D and the width direction W. 10 is a schematic diagram for explaining the configuration of FIG. Therefore, this embodiment is not limited to the dimensions of the drawings. The same applies to other drawings.

ここで、負極板100を捲回したときに、曲面中心Cから離れる側を「外周側」とする。そうすると、負極板100は、曲面中心Cに配置された負極板100が最も幅方向Wにおいて正極接続部側(図上右側)に配置され、外周側に向かって、負極接続部側(左側)にずれるように配置される。 Here, when the negative electrode plate 100 is wound, the side away from the center C of the curved surface is defined as the "outer peripheral side". Then, the negative electrode plate 100 placed at the center C of the curved surface is placed closest to the positive electrode connection part (on the right side in the figure) in the width direction W, and toward the outer periphery, the negative electrode plate 100 placed at the center C of the curved surface is placed closest to the positive electrode connection part (on the left side in the figure). It is arranged so that it shifts.

一方、正極板110は、曲面中心Cに配置された正極板110が最も幅方向Wにおいて負極接続部側(図上左側)に配置され、外周側に向かって、正極接続部側(右側)にずれるように配置される。 On the other hand, in the positive electrode plate 110, the positive electrode plate 110 disposed at the center C of the curved surface is disposed closest to the negative electrode connection part (left side in the figure) in the width direction W, and toward the outer circumference, the positive electrode plate 110 is placed at the positive electrode connection part side (right side). It is arranged so that it shifts.

<集箔時の負極板100と、正極板110>
図1(b)は、図1(a)のように積層した電極体10の負極接続部103と正極接続部113を集箔して、負極集電体13と正極集電体15をそれぞれ溶接した状態を示す模式図である。負極板100は、負極接続部103の先端が厚さ方向Dに集箔される。このとき、正極板110は、負極板100より比較的固く、そのため、負極板100は、正極板110の基端部110eで折れ曲がり集箔される。本実施形態では、複数の負極接続部103が集箔されたときに、負極接続部103の先端103tの幅方向Wにおける位置が一定となり、先端103tが揃った状態となるように設定されている。
<Negative electrode plate 100 and positive electrode plate 110 during foil collection>
In FIG. 1(b), the negative electrode connection portion 103 and the positive electrode connection portion 113 of the electrode body 10 stacked as shown in FIG. 1(a) are collected, and the negative electrode current collector 13 and the positive electrode current collector 15 are welded, respectively. FIG. In the negative electrode plate 100, the tip of the negative electrode connecting portion 103 is collected in the thickness direction D. At this time, the positive electrode plate 110 is relatively harder than the negative electrode plate 100, so the negative electrode plate 100 is bent and foil-collected at the base end 110e of the positive electrode plate 110. In this embodiment, when a plurality of negative electrode connection parts 103 are foil-collected, the position of the tips 103t of the negative electrode connection parts 103 in the width direction W is set to be constant, and the tips 103t are aligned. .

正極板110は、正極接続部113の先端が厚さ方向Dに集箔される。このとき、正極接続部113は、セパレータ120を介して負極板100に挟まれた状態となっている。Al箔からなる正極接続部113は、負極板100より柔らかく、そのため、正極接続部113は、負極板100の基端部100eで、セパレータ120とともに折れ曲がり集箔される。本実施形態では、複数の正極接続部113が集箔されたときに、正極接続部113の先端113tの幅方向Wの位置が一定となり、先端113tが揃った状態となるように設定されている。 In the positive electrode plate 110, the tip of the positive electrode connecting portion 113 is collected in the thickness direction D. At this time, the positive electrode connecting portion 113 is sandwiched between the negative electrode plates 100 with the separator 120 in between. The positive electrode connecting portion 113 made of Al foil is softer than the negative electrode plate 100, and therefore, the positive electrode connecting portion 113 is bent and foil-collected together with the separator 120 at the base end 100e of the negative electrode plate 100. In this embodiment, when a plurality of positive electrode connecting parts 113 are foil-collected, the positions of the tips 113t of the positive electrode connecting parts 113 in the width direction W are set to be constant, and the tips 113t are set to be aligned. .

<第1のずれ量の設定>
図2は、図1(b)に示す集箔された電極体10の正極接続部側の拡大図である。ここでは、第1のずれ量の設定を、正極接続部側の拡大図で説明する。
<Setting the first deviation amount>
FIG. 2 is an enlarged view of the positive electrode connection portion side of the collected electrode body 10 shown in FIG. 1(b). Here, the setting of the first shift amount will be explained using an enlarged view of the positive electrode connection part side.

前提として、図1(a)に示すように負極合材層102の幅方向Wの長さである負極合材層の「幅Wn」は、正極合材層112の幅方向Wの長さである正極合材層の「幅Wp」より長く形成されている。この負極合材層の幅Wnと正極合材層の幅Wpの長さの差を「差ΔL」とする。 As a premise, the “width Wn” of the negative electrode composite material layer, which is the length in the width direction W of the negative electrode composite material layer 102, is the length in the width direction W of the positive electrode composite material layer 112, as shown in FIG. 1(a). It is formed longer than the "width Wp" of a certain positive electrode composite material layer. The difference in length between the width Wn of the negative electrode composite material layer and the width Wp of the positive electrode composite material layer is defined as "difference ΔL".

もう一つの前提として、正極合材層112は、必ず負極合材層102に対向する位置に配置される。正極合材層112が負極合材層102に対向していなければ、その部分は、リチウムイオンの遣り取りが困難となるためである。なお、本実施形態のリチウムイオン二次電池1は、負極容量が正極容量より大きい「正極規制」となっており、正極合材層112のすべてが負極合材層102に対向してリチウムイオンの遣り取りができれば、リチウムイオン二次電池1としての容量が規制されることはない。 Another premise is that the positive electrode composite material layer 112 is always placed at a position facing the negative electrode composite material layer 102. This is because if the positive electrode composite material layer 112 does not face the negative electrode composite material layer 102, it will be difficult to exchange lithium ions in that area. Note that the lithium ion secondary battery 1 of this embodiment has a "positive electrode regulation" in which the negative electrode capacity is larger than the positive electrode capacity, and all of the positive electrode composite material layer 112 faces the negative electrode composite material layer 102, and the lithium ion secondary battery 1 has a negative electrode capacity larger than the positive electrode capacity. If exchange is possible, the capacity of the lithium ion secondary battery 1 will not be restricted.

図2に示すように、負極板100の正極接続部側の端部である基端部100eは、曲面中心Cで最も正極接続部側に位置している。そこから外周側になるに連れて、負極接続部側にずれている。この曲面中心Cでの負極板100の基端部100eの幅方向Wの位置を基準として、外周側の基端部100eの幅方向Wにおける位置の差を「負極位置差ΔN」とする。そうすると、最外周の負極板100の基端部100eの負極位置差ΔNが最も大きくなる。この最外周の負極板100の基端部100eの負極位置差ΔNを「負極最大位置差ΔNmax」とする。 As shown in FIG. 2, the base end portion 100e, which is the end of the negative electrode plate 100 on the positive electrode connection portion side, is located closest to the positive electrode connection portion at the center C of the curved surface. From there, as it moves toward the outer periphery, it shifts toward the negative electrode connection part. With the position in the width direction W of the base end 100e of the negative electrode plate 100 at the center C of the curved surface as a reference, the difference in the position of the base end 100e on the outer peripheral side in the width direction W is defined as "negative electrode position difference ΔN". Then, the negative electrode position difference ΔN at the base end 100e of the outermost negative electrode plate 100 becomes the largest. This negative electrode position difference ΔN between the base end portion 100e of the outermost negative electrode plate 100 is defined as "negative electrode maximum position difference ΔNmax."

同様に、正極板110の正極接続部側の正極合材層112の端部である「正極接続部側正極合材層端部112p」は、曲面中心Cで最も負極接続部側に位置している。そこから外周側になるに連れて、正極接続部側にずれている。この曲面中心Cでの正極接続部側正極合材層端部112pの幅方向Wにおける位置を基準として、外周側の正極接続部側正極合材層端部112pの幅方向Wにおける位置の差を「正極位置差ΔP」とする。そうすると、最外周の正極接続部側正極合材層端部112pの正極位置差ΔPが最も大きくなる。この最外周の正極接続部側正極合材層端部112pの正極位置差ΔPを「正極最大位置差ΔPmax」とする。 Similarly, the "positive electrode connection part side positive electrode composite layer end 112p" which is the end of the positive electrode composite material layer 112 on the positive electrode connection part side of the positive electrode plate 110 is located closest to the negative electrode connection part side at the center C of the curved surface. There is. From there, as it gets closer to the outer circumference, it shifts toward the positive electrode connection part. Based on the position in the width direction W of the positive electrode composite layer end portion 112p on the positive electrode connection portion side at the center C of the curved surface as a reference, the difference in the position of the positive electrode composite layer end portion 112p on the outer peripheral side in the width direction W is calculated. Let it be "positive electrode position difference ΔP". Then, the positive electrode position difference ΔP at the outermost positive electrode connection portion side positive electrode composite layer end portion 112p becomes the largest. This positive electrode position difference ΔP between the outermost positive electrode connection portion side positive electrode composite layer end portion 112p is defined as “positive electrode maximum position difference ΔPmax”.

前述のように、前提として、第1に図1(a)に示すように負極合材層102の幅方向Wの長さである負極合材層の「幅Wn」は、正極合材層112の幅方向Wの長さである正極合材層の「幅Wp」より「差ΔL」だけ長く形成されている。また、第2に正極合材層112は、必ず負極合材層102に対向する位置に配置される。 As described above, firstly, as shown in FIG. The width Wp of the positive electrode composite material layer is longer than the width Wp of the positive electrode composite material layer by a difference ΔL. Second, the positive electrode composite material layer 112 is always placed at a position facing the negative electrode composite material layer 102.

これらの前提条件を考慮すると、正極合材層112は、負極合材層102に対して、最大で差ΔLのずれが許容される。
ここで、正極合材層112の負極合材層102に対するずれ量は、負極最大位置差ΔNmaxと正極最大位置差ΔPmaxの和である。
Considering these preconditions, the positive electrode composite material layer 112 is allowed to be shifted by a maximum difference ΔL from the negative electrode composite material layer 102.
Here, the amount of deviation of the positive electrode composite material layer 112 from the negative electrode composite material layer 102 is the sum of the negative electrode maximum positional difference ΔNmax and the positive electrode maximum positional difference ΔPmax.

そうすると、
負極最大位置差ΔNmax+正極最大位置差ΔPmax≦ΔL…(式1)
を満たす関係となる。
Then,
Negative electrode maximum position difference ΔNmax + positive electrode maximum position difference ΔPmax≦ΔL…(Formula 1)
The relationship satisfies the following.

ここで、負極最大位置差ΔNmax若しくは正極最大位置差ΔPmaxは、その値をゼロとすることが許容される。すなわち、負極板100もしくは正極板110のいずれか一方が、幅方向Wにおけるずれがなく、同じ幅方向Wの位置に揃っているような構成も許容される。具体的な構成は、第3の実施形態及び第4の実施形態において説明する。 Here, the negative electrode maximum position difference ΔNmax or the positive electrode maximum position difference ΔPmax is allowed to have a value of zero. That is, a configuration in which either the negative electrode plate 100 or the positive electrode plate 110 is aligned at the same position in the width direction W without deviation in the width direction W is also acceptable. The specific configuration will be explained in the third embodiment and the fourth embodiment.

以上のような第1のずれ量の設定で、正極合材層112は、必ず負極合材層102に対向する位置の範囲内で負極合材層102対する正極合材層112の最大のずれ量を設定できる。 By setting the first deviation amount as described above, the positive electrode composite material layer 112 always has the maximum deviation amount of the positive electrode composite material layer 112 with respect to the negative electrode composite material layer 102 within the range of the position facing the negative electrode composite material layer 102. can be set.

<第2のずれ量の設定>
ずれ量の設定に関して、第1のずれ量の設定では、最大のずれ量を設定するが、第2のずれ量の設定では、集箔された負極接続部103及び正極接続部113に関するずれ量の設定である。
<Second deviation amount setting>
Regarding the deviation amount setting, the first deviation amount setting sets the maximum deviation amount, but the second deviation amount setting sets the deviation amount regarding the collected negative electrode connection part 103 and positive electrode connection part 113. It is a setting.

<正極でのずれ量の設定>
図2に示す正極接続部113は、曲面中心C側に隣接する負極板100の基端部100eに沿って折れ曲がり、集箔される。なお、図2においては、実際にはセパレータ120は柔軟なため折れ曲がるが、図解の見やすさからセパレータ120の屈曲の図示を省略して、図を簡略化している。これらの正極接続部113が、正極接続部113の集箔部113aの先端113tの位置が幅方向Wにおいて揃うことが、均一な導電性、機械的な応力の均一化、先端113tに異物が混入しにくいなどの理由から好ましい。
<Setting the amount of deviation at the positive electrode>
The positive electrode connection portion 113 shown in FIG. 2 is bent along the base end portion 100e of the negative electrode plate 100 adjacent to the curved surface center C side, and is collected. In FIG. 2, the separator 120 actually bends because it is flexible, but for ease of viewing the illustration, the illustration of the bending of the separator 120 is omitted to simplify the drawing. These positive electrode connecting portions 113 ensure that the positions of the tips 113t of the foil collecting portions 113a of the positive electrode connecting portions 113 are aligned in the width direction W, ensuring uniform conductivity, uniform mechanical stress, and preventing foreign matter from entering the tips 113t. This is preferable because it is difficult to do.

そのためには、正極接続部側正極合材層端部112pから負極板100の基端部100eまでの平坦部113cの長さと、負極板100の基端部100eから集箔部113aまでの屈曲部113bの長さの合計が等しいことが望まれる。なお、各正極接続部113の集箔部113aの長さは等しい。 For this purpose, the length of the flat part 113c from the positive electrode composite layer end 112p on the positive electrode connection part side to the base end 100e of the negative electrode plate 100, and the bent part from the base end 100e of the negative electrode plate 100 to the foil collecting part 113a are required. It is desired that the total lengths of 113b are equal. Note that the lengths of the foil collecting portions 113a of each positive electrode connection portion 113 are equal.

<負極でのずれ量の設定>
図1(b)に示す負極接続部103は、曲面中心C側に隣接する正極板110の基端部110eに沿って折れ曲がり、集箔される。なお、図1(b)に示すように、セパレータ120は柔軟なため、負極板100とともに折れ曲がる。これらの負極接続部103が、負極接続部103の集箔部103aの先端103tの位置が幅方向Wにおいて揃うことが、均一な導電性、機械的な応力の均一化、先端103tに異物が混入しにくいなどの理由から好ましい。
<Setting the amount of deviation at the negative electrode>
The negative electrode connection portion 103 shown in FIG. 1(b) is bent along the base end portion 110e of the positive electrode plate 110 adjacent to the curved surface center C side, and is collected. Note that, as shown in FIG. 1(b), since the separator 120 is flexible, it bends together with the negative electrode plate 100. In these negative electrode connecting parts 103, the positions of the tips 103t of the foil collecting parts 103a of the negative electrode connecting parts 103 are aligned in the width direction W, which ensures uniform conductivity, uniformity of mechanical stress, and prevention of foreign matter from entering the tips 103t. This is preferable because it is difficult to do.

そのためには、正極板110の基端部110eから集箔部103aまでの屈曲部103bの長さが等しいことが望まれる。なお、各負極接続部103の集箔部103aの長さは等しい。 For this purpose, it is desirable that the length of the bent portion 103b from the base end 110e of the positive electrode plate 110 to the foil collecting portion 103a be equal. Note that the lengths of the foil collecting portions 103a of each negative electrode connection portion 103 are equal.

<負極板100の形状>
このような第2のずれ量の設定におけるずれ量を設定するために、本実施形態では以下のような構成を備える。
<Shape of negative electrode plate 100>
In order to set the amount of deviation in setting the second amount of deviation, the present embodiment includes the following configuration.

図3(a)は、負極板100を展開した図である。二点鎖線で示す形状は、従来の長方形の正極板の形状を比較のため記載したものである。
図3(a)に示すように、負極板100は、捲回方向Lに捲回すると、図の下部が捲回中心となり、図の上部が外周側となる。この負極板100を捲回し、扁平に整形する。そして電極体10において、図2に示すように、曲面中心部の負極板100の幅方向Wの位置より外周側の負極板100の幅方向Wの位置がΔNmaxだけずれるように、上端部は下端部よりΔNmaxだけ幅方向Wにおいて負極接続部側に位置している。
FIG. 3(a) is an expanded view of the negative electrode plate 100. The shape shown by the two-dot chain line is the shape of a conventional rectangular positive electrode plate for comparison.
As shown in FIG. 3A, when the negative electrode plate 100 is wound in the winding direction L, the lower part of the figure becomes the center of winding, and the upper part of the figure becomes the outer peripheral side. This negative electrode plate 100 is rolled up and shaped into a flat shape. In the electrode body 10, as shown in FIG. 2, the upper end is shifted from the lower end so that the position in the width direction W of the negative electrode plate 100 on the outer peripheral side is shifted by ΔNmax from the position in the width direction W of the negative electrode plate 100 at the center of the curved surface. It is located on the negative electrode connection part side in the width direction W by ΔNmax from the part.

そして、正極板110の基端部110eから集箔部103aまでの屈曲部103bの長さが等しくなるように、その位置が特定され、その位置に基づいた曲線となっている。
その結果、負極板100は、このような構成となっているため、これを捲回し整形すると、正極板110の基端部110eから、負極接続部103の集箔部103aまでの屈曲部103bの長さが等しくなる。
Then, the position is specified so that the length of the bent part 103b from the base end 110e of the positive electrode plate 110 to the foil collecting part 103a is equal, and the curve is based on that position.
As a result, since the negative electrode plate 100 has such a configuration, when it is wound and shaped, the bent portion 103b from the base end 110e of the positive electrode plate 110 to the foil collecting portion 103a of the negative electrode connecting portion 103 is formed. the lengths will be equal.

<正極板110の形状>
図3(b)は、正極板110を展開した図である。二点鎖線で示す形状は、従来の長方形の正極板の形状を比較のため記載したものである。
<Shape of positive electrode plate 110>
FIG. 3(b) is an expanded view of the positive electrode plate 110. The shape shown by the two-dot chain line is the shape of a conventional rectangular positive electrode plate for comparison.

図3(b)に示すように、正極板110は、捲回方向Lに捲回すると、図の下部が捲回中心となり、図の上部が外周側となる。したがって、この正極板110を捲回し、扁平に整形する。そうすると電極体10において、図2に示すように、曲面中心Cの正極板110の幅方向Wの位置より外周側の正極板110の幅方向Wの位置がΔPmaxだけずれるように、上端部は下端部よりΔPmaxだけ幅方向Wにおいて正極接続部側に位置している。 As shown in FIG. 3(b), when the positive electrode plate 110 is wound in the winding direction L, the lower part of the figure becomes the center of winding, and the upper part of the figure becomes the outer peripheral side. Therefore, this positive electrode plate 110 is wound and shaped into a flat shape. Then, in the electrode body 10, as shown in FIG. 2, the upper end portion is shifted from the lower end so that the position in the width direction W of the positive electrode plate 110 on the outer peripheral side is shifted by ΔPmax from the position in the width direction W of the positive electrode plate 110 at the center C of the curved surface. It is located on the positive electrode connection part side in the width direction W by ΔPmax from the part.

そして、正極接続部側正極合材層端部112pから負極板100の基端部100eまでの平坦部113cの長さと、負極板100の基端部100eから集箔部113aまでの屈曲部113bの長さの合計が等しくなるように、その位置が特定され、その位置に基づいた曲線となっている。 The length of the flat part 113c from the positive electrode composite layer end 112p on the positive electrode connection part side to the base end 100e of the negative electrode plate 100, and the length of the bent part 113b from the base end 100e of the negative electrode plate 100 to the foil collecting part 113a. Its position is specified so that the total length is equal, and the curve is based on that position.

その結果、正極板110は、このような構成となっているため、これを捲回し整形すると、正極接続部側正極合材層端部112pから負極板100の基端部100eまでの平坦部113cの長さと、負極板100の基端部100eから集箔部113aまでの屈曲部113bの長さの合計が等しくなる。 As a result, since the positive electrode plate 110 has such a configuration, when it is wound and shaped, a flat portion 113c from the positive electrode composite layer end 112p on the positive electrode connection side to the base end 100e of the negative electrode plate 100 is formed. The total length of the bent portion 113b from the base end 100e of the negative electrode plate 100 to the foil collecting portion 113a is equal to the length of the bent portion 113b of the negative electrode plate 100.

<負極板100と正極板110との積層>
負極板100と正極板110は、積層されて上述のように、それぞれΔNmax、ΔPmaxだけずれて捲回される。その結果、負極板100と正極板110のずれは、ΔNmax+ΔPmaxとなる。この値は、ΔNmax+ΔPmax≦ΔLに調整されているので、最外周部においても、正極板110の正極合材層112は、負極板100の負極合材層102の範囲を逸脱することがない。その結果、正極合材層112は、必ず負極合材層102に対向した位置になる。
<Lamination of negative electrode plate 100 and positive electrode plate 110>
The negative electrode plate 100 and the positive electrode plate 110 are stacked and wound as described above with a difference of ΔNmax and ΔPmax, respectively. As a result, the deviation between the negative electrode plate 100 and the positive electrode plate 110 becomes ΔNmax+ΔPmax. Since this value is adjusted to ΔNmax+ΔPmax≦ΔL, the positive electrode composite material layer 112 of the positive electrode plate 110 does not deviate from the range of the negative electrode composite material layer 102 of the negative electrode plate 100 even at the outermost periphery. As a result, the positive electrode composite material layer 112 is always in a position opposite to the negative electrode composite material layer 102.

<負極板100及び正極板110の製造方法>
上述のような負極板100及び正極板110は、例えば、以下の方法で製造する。負極基材101及び正極基材111は、例えば、十分な面積を持った、Al、Cuなどの金属箔をプレスで所定の形状に打ち抜くようにして作成する。あるいは、一定の幅を持ったAl、Cuなどの金属箔を、所定の長さに切断するとともに、接続部側と反対側の凸となる部分を、プレスロールなどを用いて延伸するようにしてもよい。
<Method for manufacturing negative electrode plate 100 and positive electrode plate 110>
The negative electrode plate 100 and positive electrode plate 110 as described above are manufactured, for example, by the following method. The negative electrode base material 101 and the positive electrode base material 111 are created, for example, by punching a metal foil of Al, Cu, or the like having a sufficient area into a predetermined shape using a press. Alternatively, cut a metal foil such as Al or Cu with a certain width into a predetermined length, and stretch the convex part on the side opposite to the connection part using a press roll or the like. Good too.

(第1の実施形態の作用)
本実施形態のリチウムイオン二次電池1の電極体10は、上記のような構成を備えるため、次のような作用を奏する。
(Effects of the first embodiment)
Since the electrode body 10 of the lithium ion secondary battery 1 of this embodiment has the above configuration, it has the following effects.

図1(b)に示すように、正極においては、図11(b)に示す従来技術と比較すると、幅方向Wにおける集箔の位置が同じであれば、正極接続部113の屈曲の角度が緩和されるため、正極接続部113の金属箔に係る応力が低減し、正極接続部113に係る負荷を小さくすることができる。 As shown in FIG. 1(b), in the positive electrode, when the position of the foil collection in the width direction W is the same, the bending angle of the positive electrode connecting portion 113 is Since the stress is relaxed, the stress applied to the metal foil of the positive electrode connection part 113 is reduced, and the load applied to the positive electrode connection part 113 can be reduced.

また図1(b)に示すように、負極においては、図11(b)に示す従来技術と比較すると、幅方向Wにおける集箔の位置が同じであれば、負極接続部103の屈曲の角度が緩和されるため、負極接続部103の金属箔に係る応力が低減し、負極接続部103に係る負荷を小さくすることができる。 Further, as shown in FIG. 1(b), in the negative electrode, when compared with the conventional technology shown in FIG. 11(b), if the position of the foil collection in the width direction W is the same, is relaxed, the stress related to the metal foil of the negative electrode connection portion 103 is reduced, and the load related to the negative electrode connection portion 103 can be reduced.

図1(b)に示すように、正極においては、図11(b)に示す従来技術と比較すると、幅方向Wにおける集箔の位置が同じであれば、正極接続部113の屈曲の角度が緩和されるため、セパレータ120に係る応力を低減させ、セパレータ120に係る負荷を小さくすることができる。 As shown in FIG. 1(b), in the positive electrode, when the position of the foil collection in the width direction W is the same, the bending angle of the positive electrode connecting portion 113 is Since the stress is relaxed, the stress applied to the separator 120 can be reduced, and the load applied to the separator 120 can be reduced.

図1(b)に示すように、負極においては、図11(b)に示す従来技術と比較すると、幅方向Wにおける集箔の位置が同じであれば、負極接続部103の屈曲の角度が緩和されるため、セパレータ120に係る応力を低減させ、セパレータ120に係る負荷を小さくすることができる。 As shown in FIG. 1(b), in comparison with the prior art shown in FIG. 11(b), in the negative electrode, if the position of the foil collection in the width direction W is the same, the bending angle of the negative electrode connecting portion 103 Since the stress is relaxed, the stress applied to the separator 120 can be reduced, and the load applied to the separator 120 can be reduced.

負極接続部側では、負極接続部側負極合材層端部102nが集箔部103aに近くなるため、強度の低い金属箔のみの部分を短くすることができる。
集箔した場合に、負極接続部103の先端103tの幅方向Wの位置が揃うため、集箔時に外周側の金属箔に過度の張力を与える必要はない。
On the negative electrode connecting portion side, the negative electrode composite layer end portion 102n on the negative electrode connecting portion side is close to the foil collecting portion 103a, so that the portion where only the metal foil with low strength is made can be shortened.
When the foil is collected, the positions of the tips 103t of the negative electrode connecting portions 103 in the width direction W are aligned, so there is no need to apply excessive tension to the metal foil on the outer peripheral side during the foil collection.

正極板110の正極合材層112は、必ず、負極合材層102に対向して配置されているため、正極規制のリチウムイオン二次電池の場合は、容量が低下することがない。
あらかじめ、負極板100の形状を、捲回し整形し、集箔した場合に、負極接続部103の先端103tが揃うように成形している。このため、所定の負極板100を捲回し整形するだけで、負極接続部103の先端103tを揃えることができる。
Since the positive electrode composite material layer 112 of the positive electrode plate 110 is always arranged to face the negative electrode composite material layer 102, in the case of a lithium ion secondary battery with positive electrode regulations, the capacity does not decrease.
The negative electrode plate 100 is shaped in advance by winding and shaping so that when the foil is collected, the tips 103t of the negative electrode connecting portions 103 are aligned. Therefore, the tips 103t of the negative electrode connecting portions 103 can be aligned simply by winding and shaping a predetermined negative electrode plate 100.

同様にあらかじめ、正極板110の形状を、捲回し整形し、集箔した場合に、正極接続部113の先端113tが揃うように成形している。このため、所定の正極板110を捲回し整形するだけで、正極接続部113の先端113tを揃えることができる。 Similarly, the shape of the positive electrode plate 110 is shaped in advance so that when the positive electrode plate 110 is wound and collected, the tips 113t of the positive electrode connecting portions 113 are aligned. Therefore, just by winding and shaping a predetermined positive electrode plate 110, the tips 113t of the positive electrode connecting portions 113 can be aligned.

(第1の実施形態の効果)
(1-1)本実施形態のリチウムイオン二次電池1では、外周になるにつれて負極接続部103が負極接続部側に、正極接続部113が正極接続部側にずれて捲回される。このため、負極接続部側では、負極接続部側負極合材層端部102nが集箔部103aに近くなるため、強度の低い金属箔のみの部分を短くすることができる。また、正極接続部側では正極接続部側正極合材層端部112pが集箔部113aに近くなるため、強度の低い金属箔のみの部分を短くすることができる。
(Effects of the first embodiment)
(1-1) In the lithium ion secondary battery 1 of this embodiment, the negative electrode connecting portion 103 is wound toward the negative electrode connecting portion and the positive electrode connecting portion 113 is shifted toward the positive electrode connecting portion as the winding approaches the outer periphery. Therefore, on the negative electrode connecting portion side, the negative electrode composite layer end portion 102n on the negative electrode connecting portion side is located close to the foil collecting portion 103a, so that the portion where only the metal foil with low strength is made can be shortened. In addition, on the positive electrode connecting portion side, since the positive electrode composite layer end portion 112p on the positive electrode connecting portion side is close to the foil collecting portion 113a, the portion where only the metal foil with low strength is made can be shortened.

(1-2)また、本実施形態のリチウムイオン二次電池1では、外周になるにつれて正極接続部113が正極接続部側に、負極接続部103が負極接続部側にずれて捲回される。このため、外周ほど薄い金属箔のみで構成される負極接続部103の屈曲角度を緩和して、これに伴う負極板100やセパレータ120の屈曲角度を緩和して、負極板100やセパレータ120の負荷を軽減することができる。 (1-2) In addition, in the lithium ion secondary battery 1 of this embodiment, the positive electrode connection portion 113 is shifted toward the positive electrode connection portion side and the negative electrode connection portion 103 is shifted toward the negative electrode connection portion side as the outer circumference approaches the winding. . Therefore, the bending angle of the negative electrode connecting portion 103 made of only thinner metal foil is relaxed toward the outer periphery, and the bending angle of the negative electrode plate 100 and separator 120 associated with this is relaxed. can be reduced.

(1-3)また、本実施形態のリチウムイオン二次電池1では、外周になるにつれて負極接続部103が負極接続部側に、正極接続部113が正極接続部側にずれて捲回される。このため、外周ほど薄い金属箔のみで構成される正極接続部113の屈曲角度を緩和して、これに伴う正極板110やセパレータ120の屈曲角度を緩和して、正極板110やセパレータ120の負荷を軽減することができる。 (1-3) In addition, in the lithium ion secondary battery 1 of this embodiment, the negative electrode connection portion 103 is shifted toward the negative electrode connection portion side and the positive electrode connection portion 113 is shifted toward the positive electrode connection portion side as the outer circumference approaches the winding. . For this reason, the bending angle of the positive electrode connection part 113 made of only thinner metal foil is relaxed toward the outer periphery, and the bending angle of the positive electrode plate 110 and separator 120 associated with this is relaxed, and the load on the positive electrode plate 110 and separator 120 is can be reduced.

(1-4)本実施形態のリチウムイオン二次電池1では、負極板100の負極接続部103の先端103tが、集箔されたときに幅方向Wにおいて一致するように調整されている。また、正極板110の正極接続部113の先端113tが、集箔されたときに幅方向Wにおいて一致するように調整されている。そのため、均一な導電性を得ることができる。また、機械的な応力の均一化ができる。さらに、先端103t、113tに異物が混入しにくいなどの効果がある。 (1-4) In the lithium ion secondary battery 1 of this embodiment, the tips 103t of the negative electrode connection portions 103 of the negative electrode plate 100 are adjusted so that they coincide in the width direction W when the foils are collected. Further, the tips 113t of the positive electrode connecting portion 113 of the positive electrode plate 110 are adjusted so that they coincide in the width direction W when the foil is collected. Therefore, uniform conductivity can be obtained. Additionally, mechanical stress can be made uniform. Furthermore, there is an effect that foreign matter is less likely to get mixed into the tips 103t and 113t.

(第2の実施形態)
図4(a)は、第2の実施形態の負極板100を展開した図である。図4(b)は、第2の実施形態の正極板110を展開した図である。
(Second embodiment)
FIG. 4(a) is an expanded view of the negative electrode plate 100 of the second embodiment. FIG. 4(b) is an expanded view of the positive electrode plate 110 of the second embodiment.

第2の実施形態は、第1の実施形態と、負極板100と正極板110の形状が異なる点で相違する。それ以外の構成は、負極板100と正極板110の形状が異なる点に起因する構成の違い以外はなく、共通の構成であるため、その説明は省略する。 The second embodiment differs from the first embodiment in that the shapes of the negative electrode plate 100 and the positive electrode plate 110 are different. The other configurations are the same, with the only difference being that the shapes of the negative electrode plate 100 and the positive electrode plate 110 are different, and therefore the description thereof will be omitted.

図3(a)に示す第1の実施形態では、負極板100の幅Wnは一定であり、負極板100のずれは、負極板100の集箔部103aの先端103tの位置が揃うようにずれている。すなわち、捲回し整形したときに負極板100の負極接続部103は、正極板110の基端部110eで屈曲し、ここから、負極接続部103の集箔部103aまでの屈曲部103bにより接続される。このとき、同じ長さの負極接続部103の先端103tの位置が揃うようにずらしている。このようなずらし量に基づいて負極板100は、曲線により形状が特定されていた。一方、第2の実施形態の負極板100では、図4(a)に示す下部の捲回中心から、上部の外周側に向けて、捲回中心では、ずれ量がゼロの状態から、上端がずれ量がΔNmaxとなるように、直線で構成される。したがって、第2の実施形態では、負極板100は、捲回し整形すると正極板110の基端部110eから、負極接続部103の集箔部103aまでの屈曲部103bの長さが厳密に等しくならない。つまり、負極接続部103の先端103tの位置が揃わない。 In the first embodiment shown in FIG. 3A, the width Wn of the negative electrode plate 100 is constant, and the deviation of the negative electrode plate 100 is such that the positions of the tips 103t of the foil collecting portions 103a of the negative electrode plate 100 are aligned. ing. That is, when the negative electrode plate 100 is wound and shaped, the negative electrode connecting portion 103 of the negative electrode plate 100 is bent at the base end portion 110e of the positive electrode plate 110, and is connected by the bent portion 103b from here to the foil collecting portion 103a of the negative electrode connecting portion 103. Ru. At this time, the tips 103t of the negative electrode connecting portions 103 having the same length are shifted so that their positions are aligned. The shape of the negative electrode plate 100 has been specified by a curved line based on such a shift amount. On the other hand, in the negative electrode plate 100 of the second embodiment, from the lower winding center to the upper outer circumferential side shown in FIG. It is composed of straight lines so that the amount of deviation is ΔNmax. Therefore, in the second embodiment, when the negative electrode plate 100 is wound and shaped, the lengths of the bent portions 103b from the base end 110e of the positive electrode plate 110 to the foil collecting portion 103a of the negative electrode connecting portion 103 are not strictly equal. . In other words, the positions of the tips 103t of the negative electrode connecting portions 103 are not aligned.

しかしながら、第2の実施形態のように直線で構成しても、負極板100は、捲回し整形すると正極板110の基端部110eから、負極接続部103の集箔部103aまでの屈曲部103bの長さが概ね等しくなる。したがって第2の実施形態のリチウムイオン二次電池1が、本発明の接続部を集箔するときの外周部の基材、合材層、セパレータ等の集箔の際の負担を軽減するという課題を解決する手段として、第1の実施形態と概ね同様の効果がある。その一方で、その製造は極めて容易になる。 However, even when configured in a straight line as in the second embodiment, when the negative electrode plate 100 is wound and shaped, the bent portion 103b extends from the base end 110e of the positive electrode plate 110 to the foil collecting portion 103a of the negative electrode connection portion 103. The lengths of are approximately equal. Therefore, the lithium ion secondary battery 1 of the second embodiment has the problem of reducing the burden of foil collecting the base material, composite material layer, separator, etc. on the outer periphery when collecting the foil at the connection part of the present invention. As a means for solving the problem, this embodiment has roughly the same effects as the first embodiment. On the other hand, its manufacture becomes extremely easy.

すなわち、幅Wnの負極板100を形成するためには、ずれの傾きを、「傾きθ」としたとき、幅Wn×Cosθの帯状の金属箔を、幅方向と傾きθで切断するだけで、容易に負極板100を製作することができる。 That is, in order to form the negative electrode plate 100 having a width of Wn, when the slope of the deviation is defined as "inclination θ", a strip-shaped metal foil having a width of Wn×Cos θ is simply cut in the width direction and at an inclination θ. The negative electrode plate 100 can be easily manufactured.

以上、負極板100について説明したが、図4(b)に示す正極板110においても、同じ長さの正極接続部113の先端113tが厳密に位置が揃うわけではない。しかしながら、負極板100と同様に本発明の接続部を集箔するときの外周部の基材、合材層、セパレータ等の集箔の際の負担を軽減するという課題を解決する手段として、第1の実施形態と概ね同様の効果がある。その一方で、その製造は極めて容易になる。正極板110においても、同様に幅Wpの正極板110を形成するためには、ずれの傾きを、「傾きθ´」としたとき、幅Wp×Cosθ´の帯状の金属箔を、幅方向と傾きθ´で切断するだけで、容易に正極板110を製作することができる。 Although the negative electrode plate 100 has been described above, even in the positive electrode plate 110 shown in FIG. 4(b), the positions of the tips 113t of the positive electrode connecting portions 113 having the same length are not exactly aligned. However, as with the negative electrode plate 100, as a means for solving the problem of reducing the burden of foil collecting the base material, composite material layer, separator, etc. on the outer periphery when collecting the connecting portion of the present invention, This embodiment has roughly the same effects as the first embodiment. On the other hand, its manufacture becomes extremely easy. Similarly for the positive electrode plate 110, in order to form the positive electrode plate 110 with a width Wp, a strip-shaped metal foil with a width Wp x Cos θ' is aligned in the width direction, assuming that the slope of the deviation is "inclination θ'". The positive electrode plate 110 can be easily manufactured by simply cutting at the inclination θ'.

(第2実施形態の効果)
(2-1)上述のとおり、簡易な製造方法で、第1の実施形態の効果に近い効果を奏することができる。
(Effects of the second embodiment)
(2-1) As described above, an effect similar to that of the first embodiment can be achieved using a simple manufacturing method.

(第3の実施形態)
図5(a)は、第3の実施形態のリチウムイオン二次電池1の電極体10における負極板100と、正極板110との位置関係を示す模式図である。図5(b)は、(a)のように積層した電極体10の負極接続部103と正極接続部113を集箔して、負極集電体13と正極集電体15をそれぞれ溶接した状態を示す模式図である。
(Third embodiment)
FIG. 5A is a schematic diagram showing the positional relationship between the negative electrode plate 100 and the positive electrode plate 110 in the electrode body 10 of the lithium ion secondary battery 1 of the third embodiment. FIG. 5B shows a state in which the negative electrode connection portion 103 and the positive electrode connection portion 113 of the electrode body 10 stacked as shown in FIG. 5A are collected and the negative electrode current collector 13 and the positive electrode current collector 15 are welded, respectively. FIG.

第1の実施形態のリチウムイオン二次電池1では、負極板100は、曲面中心Cに配置された負極板100が最も幅方向Wが正極接続部側(図上右側)に配置され、外周側に向かって、負極接続部側(左側)にずれるように配置される。 In the lithium ion secondary battery 1 of the first embodiment, the negative electrode plate 100 is arranged at the center C of the curved surface, and the width direction W is located closest to the positive electrode connection portion (right side in the figure), and the negative electrode plate 100 is arranged at the outer peripheral side. toward the negative electrode connection part side (left side).

一方、正極板110は、曲面中心Cに配置された正極板110が最も幅方向Wが負極接続部側(図上左側)に配置され、外周側に向かって、正極接続部側(右側)にずれるように配置される。 On the other hand, in the positive electrode plate 110, the width direction W of the positive electrode plate 110 placed at the center C of the curved surface is placed closest to the negative electrode connection portion side (left side in the figure), and toward the outer circumference, the positive electrode plate 110 is placed at the positive electrode connection portion side (right side). It is arranged so that it shifts.

これに対し、第3の実施形態のリチウムイオン二次電池1も第1の実施形態と同じように、負極板100は、曲面中心Cに配置された負極板100が最も幅方向Wが正極接続部側(図上右側)に配置され、外周側に向かって、負極接続部側(左側)にずれるように配置される。 On the other hand, in the lithium ion secondary battery 1 of the third embodiment, as in the first embodiment, the negative electrode plate 100 disposed at the center C of the curved surface has the most width direction W connected to the positive electrode. side (right side in the figure), and is arranged so as to be shifted toward the outer circumferential side toward the negative electrode connection side (left side).

一方、第3の実施形態の正極板110は、第1の実施形態とは異なり幅方向Wにおけるずれがないように、幅方向Wにおいて同じ位置に揃うように配置されている。
(第3の実施形態の効果)
(3-1)本実施形態のリチウムイオン二次電池では、外周になるにつれて負極接続部103が負極接続部側にずれて捲回される。このため、負極接続部側では、負極接続部側負極合材層端部102nが集箔部103aに近くなるため、強度の低い金属箔のみの部分を短くすることができる。
On the other hand, unlike the first embodiment, the positive electrode plates 110 of the third embodiment are arranged at the same position in the width direction W so that there is no deviation in the width direction W.
(Effects of the third embodiment)
(3-1) In the lithium ion secondary battery of this embodiment, the negative electrode connecting portion 103 is wound toward the negative electrode connecting portion side toward the outer periphery. Therefore, on the negative electrode connecting portion side, the negative electrode composite layer end portion 102n on the negative electrode connecting portion side is located close to the foil collecting portion 103a, so that the portion where only the metal foil with low strength is made can be shortened.

(3-2)また、本実施形態のリチウムイオン二次電池では、外周になるにつれて負極接続部103が負極接続部側にずれて捲回される。このため、外周ほど薄い金属箔のみで構成される正極接続部113の屈曲角度を緩和して、これに伴うセパレータ120の屈曲角度を緩和して、セパレータ120の負荷を軽減することができる。 (3-2) Furthermore, in the lithium ion secondary battery of this embodiment, the negative electrode connecting portion 103 is wound toward the negative electrode connecting portion side as it approaches the outer periphery. Therefore, the bending angle of the positive electrode connecting portion 113 made of only a thinner metal foil toward the outer periphery can be relaxed, and the bending angle of the separator 120 associated with this can be relaxed, thereby reducing the load on the separator 120.

(第4の実施形態)
図6(a)は、第4の実施形態のリチウムイオン二次電池1の電極体10における負極板100と、正極板110との位置関係を示す模式図である。図6(b)は、図6(a)のように積層した電極体10の負極接続部103と正極接続部113を集箔して、負極集電体13と正極集電体15をそれぞれ溶接した状態を示す模式図である。
(Fourth embodiment)
FIG. 6A is a schematic diagram showing the positional relationship between the negative electrode plate 100 and the positive electrode plate 110 in the electrode body 10 of the lithium ion secondary battery 1 of the fourth embodiment. In FIG. 6(b), the negative electrode connection portion 103 and the positive electrode connection portion 113 of the electrode body 10 stacked as shown in FIG. 6(a) are collected, and the negative electrode current collector 13 and the positive electrode current collector 15 are welded, respectively. FIG.

第1の実施形態のリチウムイオン二次電池1では、負極板100は、曲面中心Cに配置された負極板100が最も幅方向Wが正極接続部側(図上右側)に配置され、外周側に向かって、負極接続部側(左側)にずれるように配置される。 In the lithium ion secondary battery 1 of the first embodiment, the negative electrode plate 100 is arranged at the center C of the curved surface, and the width direction W is located closest to the positive electrode connection portion (right side in the figure), and the negative electrode plate 100 is arranged at the outer peripheral side. toward the negative electrode connection part side (left side).

一方、正極板110は、曲面中心Cに配置された正極板110が最も幅方向Wが負極接続部側(図上左側)に配置され、外周側に向かって、正極接続部側(右側)にずれるように配置される。 On the other hand, in the positive electrode plate 110, the width direction W of the positive electrode plate 110 placed at the center C of the curved surface is placed closest to the negative electrode connection portion side (left side in the figure), and toward the outer circumference, the positive electrode plate 110 is placed at the positive electrode connection portion side (right side). It is arranged so that it shifts.

これに対し、第4の実施形態のリチウムイオン二次電池1でも、第1の実施形態と同様に正極板110は、曲面中心Cに配置された正極板110が最も幅方向Wが負極接続部側(図上左側)に配置され、外周側に向かって、負極接続部側(左側)にずれるように配置される。 On the other hand, in the lithium ion secondary battery 1 of the fourth embodiment, as in the first embodiment, the positive electrode plate 110 disposed at the center C of the curved surface has the negative electrode connection portion closest to the width direction W. side (left side in the figure), and is arranged so as to be shifted toward the outer circumferential side and toward the negative electrode connection part side (left side).

一方、第4の実施形態では、第1の実施形態とは異なり、負極板100は、幅方向Wにおけるずれがないように幅方向Wにおいて同じ位置に揃うように配置されている。
(第4の実施形態の効果)
(4-1)第4の実施形態のリチウムイオン二次電池1では、外周になるにつれて正極接続部113が正極接続部側にずれて捲回される。このため、外周ほど薄い金属箔のみで構成される負極接続部103の屈曲角度を緩和して、これに伴うセパレータ120の屈曲角度を緩和して、セパレータ120の負荷を軽減することができる。
On the other hand, in the fourth embodiment, unlike the first embodiment, the negative electrode plates 100 are arranged at the same position in the width direction W so that there is no deviation in the width direction W.
(Effects of the fourth embodiment)
(4-1) In the lithium ion secondary battery 1 of the fourth embodiment, the positive electrode connection portion 113 is wound toward the positive electrode connection portion side toward the outer periphery. Therefore, the bending angle of the negative electrode connecting portion 103 made of only thinner metal foil toward the outer periphery can be relaxed, and the resulting bending angle of the separator 120 can be relaxed, thereby reducing the load on the separator 120.

(4-2)第4の実施形態のリチウムイオン二次電池1では、外周になるにつれて負極接続部103が負極接続部側にずれて捲回される。このため、正極接続部側では、正極接続部側正極合材層端部112pが集箔部113aに近くなるため、強度の低い金属箔のみの部分を短くすることができる。 (4-2) In the lithium ion secondary battery 1 of the fourth embodiment, the negative electrode connecting portion 103 is wound toward the negative electrode connecting portion side toward the outer periphery. Therefore, on the positive electrode connecting portion side, the positive electrode composite layer end portion 112p on the positive electrode connecting portion side is closer to the foil collecting portion 113a, so that the portion where only the metal foil with low strength is made can be shortened.

(その他の別例)
第1~4の実施形態は、以下のように実施することができる。
〇ずらし方は、図3、4のような捲回方向Lに対して側端部が傾きを有した負極板100、正極板110を用いた方法でなく、矩形状の負極板100、正極板110自体を用いて捲回方向を長手方向に対して傾けてずらしてもよい。この場合、矩形状の負極板100、正極板110の捲回基端部と捲回終端部では、捲回方向Lと直交した方向にならない。
(Other examples)
The first to fourth embodiments can be implemented as follows.
〇The shifting method is not a method using a negative electrode plate 100 and a positive electrode plate 110 whose side edges are inclined with respect to the winding direction L as shown in FIGS. 3 and 4, but a method using a rectangular negative electrode plate 100 and a positive electrode plate. 110 itself may be used to tilt and shift the winding direction with respect to the longitudinal direction. In this case, the winding base end and the winding terminal end of the rectangular negative electrode plate 100 and positive electrode plate 110 are not in a direction perpendicular to the winding direction L.

〇また、集箔にあたり、負極板100の負極接続部103の先端103tや、正極板110の正極接続部113の先端113tは、必ずしも第1の実施形態のように、揃える必要はない。 In addition, when collecting foil, the tips 103t of the negative electrode connection portions 103 of the negative electrode plate 100 and the tips 113t of the positive electrode connection portions 113 of the positive electrode plate 110 do not necessarily need to be aligned as in the first embodiment.

〇また、ずれ量は、少なくともセパレータ120に応力が集中することによる負担が軽減されれば、十分である。このため、すべての隣接する極板で均等にずれていなくてもよく、ずれ量が均一でなかったり、一部ずれていない箇所があったりしてもよい。 In addition, the amount of deviation is sufficient as long as at least the burden caused by concentration of stress on the separator 120 is reduced. For this reason, it is not necessary that all adjacent electrode plates are evenly shifted, the amount of shift may not be uniform, or there may be some portions that are not shifted.

○図面で例示した、電極体10の捲回数、積層数や、厚さ・幅・長さのバランス、ずれ量、角度等は、説明のため簡略化若しくはデフォルメされており、本発明は、これらに限定されるものではない。 ○ The number of windings, the number of laminated layers, the balance of thickness, width, and length, amount of deviation, angle, etc. of the electrode body 10 illustrated in the drawings are simplified or deformed for the sake of explanation, and the present invention It is not limited to.

○実施形態では、積層体が捲回されたのちに扁平に整形されたものを例示したが、必ずしも捲回型のリチウムイオン二次電池は扁平に整形されたものに限定されるものではない。例えば、電極体10が円柱形に形成されるものにも本発明は好適に適用できる。 In the embodiment, the laminate is wound and then shaped into a flat shape, but the wound type lithium ion secondary battery is not necessarily limited to one shaped into a flat shape. For example, the present invention can be suitably applied to an electrode body 10 formed in a cylindrical shape.

○本実施形態のリチウムイオン二次電池は本発明の一実施形態であり、特許請求の範囲を逸脱しない限り、実施形態に限定されず当業者によりその構成を付加し、削除し、若しくは変更して実施できることは言うまでもない。 ○The lithium ion secondary battery of this embodiment is one embodiment of the present invention, and is not limited to the embodiment, and a person skilled in the art may add, delete, or change the configuration without departing from the scope of the claims. Needless to say, it can be implemented.

1…リチウムイオン二次電池
10…電極体
11…電池ケース
12…蓋体
13…負極集電体
14…負極外部端子
15…正極集電体
16…正極外部端子
17…非水電解液
100…負極板
100e…基端部
101…負極基材
102…負極合材層
102p…正極接続部側負極合材層端部
102n…負極接続部側負極合材層端部
103…負極接続部
103a…集箔部
103b…屈曲部
103t…先端
110…正極板
110e…基端部
111…正極基材
112…正極合材層
112p…正極接続部側正極合材層端部
112n…負極接続部側正極合材層端部
113…正極接続部
113a…集箔部
113b…屈曲部
113c…平坦部
113t…先端
120…セパレータ
C…曲面中心部
R…曲面部
F…平面部
W…幅方向
Wn…負極合材層の幅
Wp…正極合材層の幅
ΔL…差(=Wn-Wp)
ΔN…負極位置差
ΔNmax…負極最大位置差
ΔP…正極位置差
ΔPmax…正極最大位置差
D…厚さ方向
L…捲回方向(長手方向)
1... Lithium ion secondary battery 10... Electrode body 11... Battery case 12... Lid body 13... Negative electrode current collector 14... Negative electrode external terminal 15... Positive electrode current collector 16... Positive electrode external terminal 17... Nonaqueous electrolyte 100... Negative electrode Plate 100e...Base end portion 101...Negative electrode base material 102...Negative electrode composite material layer 102p...Negative electrode composite material layer end on the positive electrode connection part side 102n...Negative electrode composite material layer end part on the negative electrode connection part side 103...Negative electrode connection part 103a... Foil collection Part 103b...Bending portion 103t...Tip 110...Positive electrode plate 110e...Base end portion 111...Positive electrode base material 112...Positive electrode composite material layer 112p...Positive electrode composite material layer end portion on positive electrode connection portion side 112n…Positive electrode composite material layer on negative electrode connection portion side End portion 113...Positive electrode connection portion 113a...Foil collection portion 113b...Bending portion 113c...Flat portion 113t...Tip 120...Separator C...Curved surface center portion R...Curved surface portion F...Flat portion W...Width direction Wn...Negative electrode composite material layer Width Wp...width of positive electrode composite layer ΔL...difference (=Wn-Wp)
ΔN...Negative electrode position difference ΔNmax...Negative electrode maximum position difference ΔP...Positive electrode position difference ΔPmax...Positive electrode maximum position difference D...Thickness direction L...Winding direction (longitudinal direction)

Claims (5)

幅が略一定の帯状の金属箔からなる負極基材と、前記負極基材の両面に設けられた負極合材層と、前記負極基材の長手方向に直交する幅方向の一端部に設けられ前記負極合材層が設けられていない部分である負極接続部とを有する負極板と、
幅が略一定の帯状の金属箔からなる正極基材と、前記正極基材の両面に設けられた正極合材層と、前記正極基材の長手方向に直交する幅方向の他端部に設けられ前記正極合材層が設けられていない部分である正極接続部とを有する正極板と、
前記正極板及び前記負極板の間に設けられたセパレータと
を備えて積層された積層体が、捲回軸を中心に長手方向に捲回されているとともに、幅方向と直交する方向から扁平に圧縮された電極体と、
該電極体の幅方向の前記一端部の負極接続部が集箔された当該負極接続部に溶接により接合されている負極集電体と、前記他端部の正極接続部が集箔された当該正極接続部に溶接により接合されている正極集電体と、を備える非水電解液二次電池であって、
少なくとも前記負極板が外周になるにつれて負極接続部側にずれて捲回されるか、又は前記正極板が外周になるにつれて正極接続部側にずれて捲回されるとともに、
前記正極板の前記正極合材層は、前記負極板の前記負極合材層に対向しており、
幅方向において、前記負極合材層の幅Wnは前記正極合材層の幅Wpより差ΔLだけ長く形成され、
前記セパレータは、前記負極板の負極合材層全体を覆うように配置され、
捲回された前記電極体の正極端子側の正極合材層の曲面中心部における端部と最外周部における端部との幅方向の位置の差ΔPmaxと、捲回された前記電極体の正極端子側の負極合材層の曲面中心部における端部と最外周部における端部との幅方向の位置の差ΔNmaxとの合計が、前記差ΔLより小さいことを特徴とする非水電解液二次電池。
A negative electrode base material made of a strip-shaped metal foil having a substantially constant width, a negative electrode composite material layer provided on both sides of the negative electrode base material, and a negative electrode composite material layer provided at one end in a width direction perpendicular to the longitudinal direction of the negative electrode base material. a negative electrode plate having a negative electrode connection portion which is a portion where the negative electrode composite material layer is not provided;
A positive electrode base material made of a strip-shaped metal foil having a substantially constant width, a positive electrode composite material layer provided on both sides of the positive electrode base material, and a positive electrode composite material layer provided at the other end in the width direction perpendicular to the longitudinal direction of the positive electrode base material. a positive electrode plate having a positive electrode connecting portion, which is a portion where the positive electrode composite material layer is not provided;
A laminated body including the positive electrode plate and the separator provided between the negative electrode plate is wound longitudinally around a winding axis and compressed flat from a direction perpendicular to the width direction. an electrode body,
a negative electrode current collector whose negative electrode connection portion at the one end in the width direction of the electrode body is joined by welding to the foil-collected negative electrode connection portion; A non-aqueous electrolyte secondary battery comprising: a positive electrode current collector joined to a positive electrode connection portion by welding;
At least the negative electrode plate is wound so as to shift toward the negative electrode connection portion as the outer periphery increases, or the positive electrode plate is wound toward the positive electrode connection portion side as the outer periphery increases, and
The positive electrode composite material layer of the positive electrode plate is opposed to the negative electrode composite material layer of the negative electrode plate,
In the width direction, the width Wn of the negative electrode composite layer is longer than the width Wp of the positive electrode composite layer by a difference ΔL,
The separator is arranged to cover the entire negative electrode composite layer of the negative electrode plate,
The difference ΔPmax in the position in the width direction between the end at the center of the curved surface of the positive electrode composite layer on the positive terminal side of the wound electrode body and the end at the outermost periphery, and the positive electrode of the wound electrode body. A non-aqueous electrolytic solution 2 characterized in that the sum of the widthwise position difference ΔNmax between the end at the center of the curved surface and the end at the outermost periphery of the negative electrode composite layer on the terminal side is smaller than the difference ΔL. Next battery.
幅が略一定の帯状の金属箔からなる負極基材と、前記負極基材の両面に設けられた負極合材層と、前記負極基材の長手方向に直交する幅方向の一端部に設けられ前記負極合材層が設けられていない部分である負極接続部とを有する負極板と、
幅が略一定の帯状の金属箔からなる正極基材と、前記正極基材の両面に設けられた正極合材層と、前記正極基材の長手方向に直交する幅方向の他端部に設けられ前記正極合材層が設けられていない部分である正極接続部とを有する正極板と、
前記正極板及び前記負極板の間に設けられたセパレータと
を備えて積層された積層体が、捲回軸を中心に長手方向に捲回されているとともに、幅方向と直交する方向から扁平に圧縮された電極体と、
該電極体の幅方向の前記一端部の負極接続部が集箔された当該負極接続部に溶接により接合されている負極集電体と、前記他端部の正極接続部が集箔された当該正極接続部に溶接により接合されている正極集電体と、を備える非水電解液二次電池であって、
少なくとも前記負極板が外周になるにつれて負極接続部側にずれて捲回されるか、又は前記正極板が外周になるにつれて正極接続部側にずれて捲回されるとともに、
前記正極板の前記正極合材層は、前記負極板の前記負極合材層に対向しており、
前記正極板及び前記負極板の少なくとも一方は、その両端部が捲回方向に対して設定した傾きを有した平行四辺形に形成されていることを特徴とする非水電解液二次電池。
A negative electrode base material made of a strip-shaped metal foil having a substantially constant width, a negative electrode composite material layer provided on both sides of the negative electrode base material, and a negative electrode composite material layer provided at one end in a width direction perpendicular to the longitudinal direction of the negative electrode base material. a negative electrode plate having a negative electrode connection portion which is a portion where the negative electrode composite material layer is not provided;
A positive electrode base material made of a strip-shaped metal foil having a substantially constant width, a positive electrode composite material layer provided on both sides of the positive electrode base material, and a positive electrode composite material layer provided at the other end in the width direction perpendicular to the longitudinal direction of the positive electrode base material. a positive electrode plate having a positive electrode connecting portion, which is a portion where the positive electrode composite material layer is not provided;
A laminated body including the positive electrode plate and the separator provided between the negative electrode plate is wound longitudinally around a winding axis and compressed flat from a direction perpendicular to the width direction. an electrode body,
a negative electrode current collector whose negative electrode connection portion at the one end in the width direction of the electrode body is joined by welding to the foil-collected negative electrode connection portion; A non-aqueous electrolyte secondary battery comprising: a positive electrode current collector joined to a positive electrode connection portion by welding;
At least the negative electrode plate is wound so as to shift toward the negative electrode connection portion as the outer periphery increases, or the positive electrode plate is wound toward the positive electrode connection portion side as the outer periphery increases, and
The positive electrode composite material layer of the positive electrode plate is opposed to the negative electrode composite material layer of the negative electrode plate,
A non-aqueous electrolyte secondary battery, wherein at least one of the positive electrode plate and the negative electrode plate is formed in the shape of a parallelogram with both ends thereof having an inclination set with respect to the winding direction.
前記正極接続部は、前記正極集電体において溶接するために集箔された先端部の位置が一定になるように、捲回された前記電極体の正極端子側の正極合材層の捲回方向の端部の曲面部分の中心における前記正極接続部の端部と、最外周部における前記正極接続部の端部との幅方向の位置の差ΔPが設定されていることを特徴とする請求項1又は2に記載の非水電解液二次電池。 The positive electrode connection part is formed by winding the positive electrode composite layer on the positive terminal side of the wound electrode body so that the position of the tip of the collected foil for welding on the positive electrode current collector remains constant. A position difference ΔP in the width direction between the end of the positive electrode connecting portion at the center of the curved surface portion of the end in the direction and the end of the positive electrode connecting portion at the outermost periphery is set. Item 2. The non-aqueous electrolyte secondary battery according to item 1 or 2. 前記負極接続部は、前記負極集電体において溶接するために集箔された先端部の位置が一定になるように、捲回された前記電極体の負極端子側の負極合材層の捲回方向の端部の曲面部分の中心における前記負極接続部の端部と、最外周部における前記負極接続部の端部との幅方向の位置の差ΔNが設定されていることを特徴とする請求項1~3のいずれか一項に記載の非水電解液二次電池。 The negative electrode connection part is formed by winding the negative electrode composite material layer on the negative electrode terminal side of the wound electrode body so that the position of the tip of the collected foil for welding on the negative electrode current collector is constant. A difference ΔN between the positions in the width direction between the end of the negative electrode connecting portion at the center of the curved surface portion of the end in the direction and the end of the negative electrode connecting portion at the outermost circumference is set. The non-aqueous electrolyte secondary battery according to any one of Items 1 to 3. 前記非水電解液二次電池が、リチウムイオン二次電池であることを特徴とする請求項1~4のいずれか一項に記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the nonaqueous electrolyte secondary battery is a lithium ion secondary battery.
JP2021092004A 2021-06-01 2021-06-01 Nonaqueous electrolyte secondary battery Active JP7416738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021092004A JP7416738B2 (en) 2021-06-01 2021-06-01 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021092004A JP7416738B2 (en) 2021-06-01 2021-06-01 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2022184263A JP2022184263A (en) 2022-12-13
JP7416738B2 true JP7416738B2 (en) 2024-01-17

Family

ID=84437486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021092004A Active JP7416738B2 (en) 2021-06-01 2021-06-01 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP7416738B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060045A (en) 2012-09-18 2014-04-03 Mitsubishi Motors Corp Electrode structure of secondary battery
JP2015501076A (en) 2012-11-22 2015-01-08 エルジー・ケム・リミテッド ELECTRODE ASSEMBLY COMPRISING ELECTRODE UNITS WITH THE SAME FULL LENGTH AND DIFFERENT FULL LENGTH
JP2016039041A (en) 2014-08-07 2016-03-22 株式会社Gsユアサ Power storage element and manufacturing method for the same
JP2020161293A (en) 2019-03-26 2020-10-01 プライムアースEvエナジー株式会社 Lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060045A (en) 2012-09-18 2014-04-03 Mitsubishi Motors Corp Electrode structure of secondary battery
JP2015501076A (en) 2012-11-22 2015-01-08 エルジー・ケム・リミテッド ELECTRODE ASSEMBLY COMPRISING ELECTRODE UNITS WITH THE SAME FULL LENGTH AND DIFFERENT FULL LENGTH
JP2016039041A (en) 2014-08-07 2016-03-22 株式会社Gsユアサ Power storage element and manufacturing method for the same
JP2020161293A (en) 2019-03-26 2020-10-01 プライムアースEvエナジー株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2022184263A (en) 2022-12-13

Similar Documents

Publication Publication Date Title
CN106997963B (en) Method for manufacturing pouch type battery
US10559843B2 (en) Non-aqueous electrolyte battery, non-aqueous electrolyte battery pack, and vehicle
US8067112B2 (en) Stacked lithium secondary battery and its fabrication utilizing a folded configuration
US20060051669A1 (en) Nonaqueous electrolyte secondary battery
US20130177787A1 (en) Current collector and nonaqueous secondary battery
US20110070477A1 (en) Stack type battery
US9431680B2 (en) Electric storage device, electric storage system, and manufacturing method thereof
US20090229114A1 (en) Method of manufacturing collector and method of manufacturing electric power storage apparatus
US20120202097A1 (en) Lithium ion secondary cell
US20110076544A1 (en) Stack type battery
JP7194940B2 (en) lithium secondary battery
US20210135320A1 (en) Battery and battery pack
JP2013206699A (en) Electrochemical device
WO2017110684A1 (en) Secondary cell and method for manufacturing same
JP3526786B2 (en) Lithium secondary battery
JP2001085042A (en) Lithium secondary battery and fabrication of wound electrode
JPH11120990A (en) Lithium secondary battery
JP7536382B2 (en) Electrodes and electrode assemblies
US20210083316A1 (en) Secondary cell with nonaqueous electrolyte
US20200358069A1 (en) Sealed battery, assembled battery, and method for manufacturing sealed battery
JP7024540B2 (en) Electrochemical element
JP7003775B2 (en) Lithium ion secondary battery
CN110050376B (en) Secondary battery
JP7416738B2 (en) Nonaqueous electrolyte secondary battery
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240104

R150 Certificate of patent or registration of utility model

Ref document number: 7416738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150