JP7415386B2 - Paint alternative film - Google Patents

Paint alternative film Download PDF

Info

Publication number
JP7415386B2
JP7415386B2 JP2019165962A JP2019165962A JP7415386B2 JP 7415386 B2 JP7415386 B2 JP 7415386B2 JP 2019165962 A JP2019165962 A JP 2019165962A JP 2019165962 A JP2019165962 A JP 2019165962A JP 7415386 B2 JP7415386 B2 JP 7415386B2
Authority
JP
Japan
Prior art keywords
film
layer
resin
paint
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019165962A
Other languages
Japanese (ja)
Other versions
JP2021041633A (en
Inventor
大樹 池谷
真司 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2019165962A priority Critical patent/JP7415386B2/en
Publication of JP2021041633A publication Critical patent/JP2021041633A/en
Application granted granted Critical
Publication of JP7415386B2 publication Critical patent/JP7415386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、例えば自動車等の車両の外板などの部品を塗装する代わりにフィルムで被覆し、意匠性と防錆性を両立する塗装代替フィルムに関する。 The present invention relates to a paint substitute film that coats parts such as outer panels of vehicles such as automobiles with a film instead of painting them, and achieves both design and rust prevention properties.

従来、車両の外装部品等(例えば、フェンダ、バンパ、ボンネット、ホイールキャップ等の樹脂成形品)の意匠性を向上させるために、スプレー塗装を用いることが一般的に行われていた。しかし、近年、このようなスプレー塗装を含む塗装工程においては、塗装と乾燥を繰り返して行うために大きな設備とスペースを要し、生産性が低下するため、塗装工程を合理化すること等を目的として、前記外装部品に加飾フィルム(以下、塗装代替フィルムという)を貼合して、製品の外観を向上させる方法が検討されている。 Conventionally, spray painting has been commonly used to improve the design of exterior parts of vehicles (for example, resin molded products such as fenders, bumpers, bonnets, and wheel caps). However, in recent years, the painting process including spray painting requires large equipment and space due to repeated painting and drying, which reduces productivity, so efforts have been made to streamline the painting process. A method of improving the appearance of a product by laminating a decorative film (hereinafter referred to as a paint substitute film) to the exterior parts has been studied.

この種の従来技術による塗装代替フィルム1は、例えば図4に示すように、クリア層19、着色層12および接着層14を順次積層して構成されている(例えば、特許文献1、特許文献2参照)。 A paint substitute film 1 according to this type of conventional technology is constructed by sequentially laminating a clear layer 19, a colored layer 12, and an adhesive layer 14, as shown in FIG. 4, for example. reference).

ここで、クリア層19は、例えばポリウレタン、アクリル樹脂、ポリエステル樹脂、シリコン系樹脂、PVDF(ポリフッ化ビニルデン)又はこれらの混合物による透明性の高い樹脂材料を用いて形成され、着色層12の保護、艶出し等の機能を有する。また、着色層12は、前記クリア層19とほぼ同様の樹脂材料中にメタリック顔料を配合して形成され、これにより着色層12は、スプレー塗装に近いメタリック色の外観を与えている。さらに、接着層14は、塗装代替フィルム1を自動車の外装部品等の表面に接着するものである。 Here, the clear layer 19 is formed using a highly transparent resin material such as polyurethane, acrylic resin, polyester resin, silicone resin, PVDF (polyvinyldene fluoride), or a mixture thereof, and protects the colored layer 12, It has functions such as polishing. Further, the colored layer 12 is formed by blending a metallic pigment into a resin material substantially similar to that of the clear layer 19, thereby giving the colored layer 12 a metallic appearance similar to that of spray painting. Furthermore, the adhesive layer 14 is for adhering the paint substitute film 1 to the surface of an exterior part of an automobile or the like.

そして、この塗装代替フィルム1を前記外装部品等に接着するときには、予め塗装代替フィルム1を赤外線ランプ照射等により加温した後、この塗装代替フィルム1をインモールド成形、真空成形等により外装部品の表面形状に合わせて成形し、接着層14によって外装部品の表面に貼合する。 When adhering this paint substitute film 1 to the exterior parts, etc., the paint substitute film 1 is heated in advance by irradiation with an infrared lamp, etc., and then this paint substitute film 1 is applied to the exterior parts by in-mold molding, vacuum forming, etc. It is molded to match the surface shape and is bonded to the surface of the exterior component using the adhesive layer 14.

しかし、これら従来の技術では自動車等の外装部品のような複雑な形状のものに対して、接着剤を必要とするため被着物の部材によっては接着性が乏しくなり、どのような部材にも優れた接着力を発現する接着剤の選定は実質的に不可能である。その解決手段として、特許文献3に示されているように、車両の外装部品として用いる金属部材の製造方法として、熱可塑性樹脂フィルム、着色層および半硬化ハードコート層をこの順で有する塗装代替フィルムならびにハードコート層の表面に貼りあわされる保護フィルムとからなる積層体と、鋼板とを用い、前記塗装代替フィルムと加熱された鋼板とを熱圧着させてプレス成型するとともに半硬化ハードコート層を硬化させる製造方法が、提供されている。しかしながら、特許文献3等に記載されている金属部材に塗装代替フィルムを貼合せた外装部品は、鋭利な機械的刺激が加わることにより塗装代替フィルム自体にクラックが入ると、そこを起点に金属部材に錆びが発生し、更にその錆びが周辺部まで拡大しまうという問題があった。 However, these conventional techniques require adhesives for objects with complex shapes, such as exterior parts of automobiles, which may result in poor adhesion depending on the adhered material. It is virtually impossible to select an adhesive that exhibits such adhesive strength. As a solution to this problem, as shown in Patent Document 3, a painting alternative film having a thermoplastic resin film, a colored layer, and a semi-hardened hard coat layer in this order is used as a method for manufacturing metal members used as exterior parts of vehicles. Using a laminate consisting of a protective film and a steel plate bonded to the surface of the hard coat layer, the paint alternative film and the heated steel plate are thermocompressed and press-molded, and the semi-hardened hard coat layer is hardened. A manufacturing method is provided. However, in the case of the exterior parts described in Patent Document 3, etc., in which a paint substitute film is bonded to a metal member, if a crack occurs in the paint substitute film itself due to sharp mechanical stimulation, the metal member will be exposed to cracks. There was a problem in that rust occurred on the surface of the steel, and the rust spread to the surrounding areas.

特開昭63-123469号公報Japanese Unexamined Patent Publication No. 123469/1983 特開平9-183136号公報Japanese Patent Application Publication No. 9-183136 国際公開第2019/078369号パンフレットInternational Publication No. 2019/078369 pamphlet

本発明の目的は、鋭利な機械的刺激が加わることにより塗装代替フィルムに自体にクラックが入っても、そこを起点に金属部材に錆びが発生しづらく、更に錆びが周辺部まで拡大しづらい高度な防錆性を有する、塗装代替フィルムを提供することである。 The purpose of the present invention is to prevent rust from forming on metal components even if a paint substitute film cracks due to the application of sharp mechanical stimulation, and furthermore to prevent rust from spreading to the surrounding areas. An object of the present invention is to provide a paint substitute film that has excellent rust prevention properties.

本発明者らは上記課題を解決しようと鋭意研究した結果、熱可塑性樹脂フィルム、着色層およびハードコート層を、この順で有する塗装代替フィルムにおいて、熱可塑性樹脂フィルムの少なくとも一層をガラス転移温度が115℃以上である耐熱樹脂層とすることで、驚くべきことに、塗装代替フィルム自体にクラックが入っても、そこを起点に金属部材に錆びが発生しづらく、更にその錆びが周辺部まで拡大しづらい高い防錆性を高度に発現させることができることを見出した。 As a result of intensive research aimed at solving the above problems, the present inventors have developed a painting alternative film having a thermoplastic resin film, a colored layer, and a hard coat layer in this order, in which at least one layer of the thermoplastic resin film has a glass transition temperature. Surprisingly, by using a heat-resistant resin layer that is resistant to temperatures above 115°C, even if the paint substitute film itself cracks, it is difficult for the metal parts to rust from that point, and the rust spreads to the surrounding areas. It has been found that it is possible to achieve a high degree of rust prevention, which is difficult to achieve.

すなわち、本発明は、以下の要件により達成される。
1.熱可塑性樹脂フィルム、着色層およびハードコート層を、この順で有する塗装代替フィルムであって、熱可塑性樹脂フィルムの少なくとも一層がガラス転移温度が115℃以上である耐熱樹脂層であることを特徴とする塗装代替フィルム。
2.耐熱樹脂層に用いる樹脂がポリエチレンナフタレートである上記1に記載の塗装代替フィルム。
3.熱可塑性樹脂フィルムに用いる樹脂がポリエチレンナフタレートである上記1または2に記載の塗装代替フィルム。
4.熱可塑性樹脂フィルムが、耐熱樹脂層の着色層と接しない側の表面にガラス転移温度が120℃未満の接着性樹脂を用いてなる接着層と有する上記1~3のいずれかに記載の塗装代替フィルム。
That is, the present invention is achieved by the following requirements.
1. A painting alternative film comprising a thermoplastic resin film, a colored layer, and a hard coat layer in this order, characterized in that at least one layer of the thermoplastic resin film is a heat-resistant resin layer having a glass transition temperature of 115°C or higher. Painting alternative film.
2. 1. The paint alternative film as described in 1 above, wherein the resin used for the heat-resistant resin layer is polyethylene naphthalate.
3. 3. The paint alternative film as described in 1 or 2 above, wherein the resin used for the thermoplastic resin film is polyethylene naphthalate.
4. The coating alternative according to any one of 1 to 3 above, wherein the thermoplastic resin film has an adhesive layer made of an adhesive resin having a glass transition temperature of less than 120° C. on the surface of the heat-resistant resin layer on the side not in contact with the colored layer. film.

本発明の塗装代替フィルムは、熱可塑性樹脂フィルムの少なくとも一層をガラス転移温度が115℃以上である耐熱樹脂層とすることで、金属に貼合せた後に鋭利な機械刺激が加わることにより塗装代替フィルム自体にクラックが入ったとしても、そこを起点に金属部材に錆びが発生しづらく、更に錆びが周辺部まで拡大しづらい高度な防錆性を具備する。 The paint alternative film of the present invention has at least one layer of a thermoplastic resin film as a heat-resistant resin layer with a glass transition temperature of 115°C or higher, and after being laminated to metal, sharp mechanical stimulation can be applied to the paint alternative film. Even if a crack occurs in the metal member itself, it is difficult for the metal member to rust from that point, and it also has a high level of rust prevention that prevents rust from spreading to the surrounding areas.

本発明の塗装代替フィルムの拡大断面図の一例An example of an enlarged cross-sectional view of the paint substitute film of the present invention 本発明の他の塗装代替フィルムの拡大断面図Enlarged sectional view of another paint substitute film of the present invention 本発明の他の塗装代替フィルムの拡大断面図Enlarged sectional view of another paint substitute film of the present invention 従来の製造方法で用いる塗装代替フィルムの部分拡大断面図Partially enlarged cross-sectional view of a paint substitute film used in the conventional manufacturing method

本発明の塗装代替フィルムについて以下でそれぞれを構成する各成分、調整方法について、順次具体的に説明する。 Regarding the paint substitute film of the present invention, the components constituting each component and the adjustment method will be specifically explained below.

<熱可塑性樹脂フィルム>
本発明の塗装代替フィルムにおける熱可塑性樹脂フィルムは、少なくとも一層がガラス転移温度115℃以上である耐熱樹脂層である必要があり、該条件を満たせば、単層フィルムでも複層フィルムであってもよい。
耐熱樹脂層のガラス転移温度が115℃以上であることによって、鋭利な機械刺激によって塗装代替フィルムにクラックが入り、腐食性の物質に基材の金属が暴露されても錆びの発生と拡大を抑制し、高度な防錆性を発現する。
<Thermoplastic resin film>
The thermoplastic resin film in the paint alternative film of the present invention must have at least one heat-resistant resin layer with a glass transition temperature of 115°C or higher, and as long as this condition is met, it may be a single-layer film or a multi-layer film. good.
The glass transition temperature of the heat-resistant resin layer is 115°C or higher, which suppresses the occurrence and spread of rust even if the paint substitute film cracks due to sharp mechanical stimulation and the base metal is exposed to corrosive substances. and exhibits a high degree of rust prevention.

耐熱樹脂層に用いる樹脂組成物のガラス転移温度(Tgと略称)の下限は、115℃以上であり、118℃以上であることが好ましく、120℃以上であることがより好ましい。他方、Tgの上限は、155℃以下であることが好ましく、140℃以下であることがより好ましく、130℃以下であることが、さらに好ましい。
そのメカニズムは明らかではないが、Tgが、下限以上では、耐熱樹脂層におけるフィルム中の分子が動きづらく、塗装代替フィルム自体にクラックが入り、基材の金属が腐食性の強い酸などに長時間暴露された際にも、腐食性の酸性物質がフィルム中を浸透しづらく金属部の錆びの拡大をさせ難いためと推定される。他方、Tgが上限以下では耐熱樹脂層の成形性が良好となり好ましい。
The lower limit of the glass transition temperature (abbreviated as Tg) of the resin composition used for the heat-resistant resin layer is 115°C or higher, preferably 118°C or higher, and more preferably 120°C or higher. On the other hand, the upper limit of Tg is preferably 155°C or less, more preferably 140°C or less, and even more preferably 130°C or less.
The mechanism is not clear, but when Tg exceeds the lower limit, molecules in the film in the heat-resistant resin layer have difficulty moving, cracks occur in the paint substitute film itself, and the base metal is exposed to highly corrosive acids for a long time. This is presumed to be due to the fact that even when exposed, corrosive acidic substances are difficult to penetrate through the film, making it difficult for metal parts to spread rust. On the other hand, when Tg is below the upper limit, the moldability of the heat-resistant resin layer becomes good, which is preferable.

Tgは、上記樹脂組成物の未延伸フィルムを20℃/minの昇温速度で室温から未延伸フィルムの融点プラス35℃の温度まで昇温し、該温度で3分間溶融保持した後取出し直ちに氷の上に移して急冷し、そして再び20℃/minの昇温速度で昇温する方法で求めた。ガラス転移温度の読み取り位置は、示差走査熱量測定チャートのガラス転移の階段状の変化部分において、低温側のベースラインを高温側に延長した直線と,階段部分曲線の勾配が最大になるような点から引いた接線との交点の温度とする。 Tg is determined by heating an unstretched film of the above resin composition from room temperature at a heating rate of 20°C/min to a temperature of 35°C above the melting point of the unstretched film, keeping it melted at that temperature for 3 minutes, and then taking it out and immediately putting it on ice. The temperature was determined by transferring the temperature to a glass plate, rapidly cooling it, and raising the temperature again at a temperature increase rate of 20° C./min. The reading position for the glass transition temperature is the straight line extending the baseline on the low temperature side to the high temperature side and the point where the gradient of the step curve is maximum in the step-like change part of the glass transition on the differential scanning calorimetry chart. The temperature at the intersection with the tangent line drawn from

上記耐熱樹脂層の樹脂成分は、上記のガラス転移点の要件を満たしていれば、特に制限されないが、ポリオレフィン樹脂、ポリアミド樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリアリーレンスルフィド樹脂、ポリエステル樹脂を好ましい樹脂として挙げることができる。これらの中でも厚み斑を抑えた均一な製膜ができる点でポリエステル樹脂が好ましく、ポリエステル樹脂のなかでも、防錆性の点でポリエチレンナフタレートが好ましい。ポリエチレンナフタレートは、ホモポリエステルでも共重合ポリエステルでも良い。共重合成分は、酸成分でもジオール成分でも好ましく用いることができる。酸成分としては、2,6-ナフタレンジカルボン酸等の如き主たる酸成分以外のイソフタル酸、フタル酸、テレフタル酸、ジフェニルエーテルジカルボン酸等である芳香族ジカルボン酸やアジピン酸、アゼライン酸、セバシン酸、シュウ酸、コハク酸等の如き脂肪族ジカルボン酸および、p-オキシ安息香酸、p-オキシエトキシ安息香酸等のオキシカルボン酸が好ましく、ジオール成分としては、プロピレングリコール、トリメチレングリコール、1,6-ヘキサンジオールの如き脂肪族ジオール、1,4-ヘキサメチレンジメタノールの如き脂環族ジオールが好ましく用いることができる。これらは単独または2種以上を使用することができる。これらの中、酸成分として、テレフタル酸がより好ましい。本発明の塗装代替フィルムに用いる耐熱樹脂層は、フィルムの質量を基準として、少なくとも50重量%が上記で列挙した樹脂群から選ばれた樹脂であることが好ましい。 The resin component of the heat-resistant resin layer is not particularly limited as long as it satisfies the glass transition point requirements described above, but preferred resins include polyolefin resin, polyamide resin, acrylic resin, polycarbonate resin, polyarylene sulfide resin, and polyester resin. can be mentioned. Among these, polyester resins are preferred because they allow uniform film formation with reduced thickness unevenness, and among polyester resins, polyethylene naphthalate is preferred from the standpoint of rust prevention. Polyethylene naphthalate may be a homopolyester or a copolyester. The copolymerization component can be preferably used as either an acid component or a diol component. Examples of acid components include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, terephthalic acid, diphenyl ether dicarboxylic acid, etc., as well as adipic acid, azelaic acid, sebacic acid, sulfuric acid, etc., in addition to the main acid components such as 2,6-naphthalene dicarboxylic acid. Acid, aliphatic dicarboxylic acids such as succinic acid, and oxycarboxylic acids such as p-oxybenzoic acid and p-oxyethoxybenzoic acid are preferred, and diol components include propylene glycol, trimethylene glycol, and 1,6-hexane. Aliphatic diols such as diol and alicyclic diols such as 1,4-hexamethylene dimethanol can be preferably used. These can be used alone or in combination of two or more. Among these, terephthalic acid is more preferred as the acid component. The heat-resistant resin layer used in the paint substitute film of the present invention preferably contains at least 50% by weight of a resin selected from the resin group listed above, based on the mass of the film.

ポリエチレンナフタレートの中でも、防錆性の点で、ポリエチレン-2,6-ナフタレート樹脂が好ましく、該樹脂について製造方法の詳細を後述する。 Among polyethylene naphthalates, polyethylene-2,6-naphthalate resins are preferred from the viewpoint of rust prevention, and the details of the manufacturing method for this resin will be described later.

上記耐熱樹脂層に用いる樹脂組成物の固有粘度は、ポリエチレンナフタレートから成る場合は、好ましくは0.45~0.70であり、より好ましくは、0.50~0.60である。固有粘度が、下限以上ではフィルムの機械的強度に優れるため好ましい。また、上限以下では成形加工性に優れるため好ましい。 The intrinsic viscosity of the resin composition used for the heat-resistant resin layer is preferably 0.45 to 0.70, more preferably 0.50 to 0.60 when it is made of polyethylene naphthalate. It is preferable that the intrinsic viscosity is equal to or higher than the lower limit because the mechanical strength of the film is excellent. Further, below the upper limit, it is preferable because moldability is excellent.

熱可塑性樹脂フィルムは、製膜のしやすさの点では、単層フィルムであることが好ましく、なかでもポリエチレンナフタレートフィルムの単層フィルムであることが防錆性のためより好ましく、二軸延伸ポリエチレンナフタレートフィルムの単層フィルムであることがフィルム強度向上および防錆性のためさらに好ましい。 The thermoplastic resin film is preferably a single-layer film from the viewpoint of ease of film formation, and particularly a single-layer film of polyethylene naphthalate film is more preferable from the viewpoint of rust prevention. A single layer film of polyethylene naphthalate film is more preferable for improving film strength and rust prevention.

一方、熱可塑性樹脂フィルムは、金属基材に貼合わせしやすくする点では、耐熱樹脂層と耐熱樹脂層よりもガラス転移温度の低い層(以下、低Tg樹脂層と略称)との複層フィルムであることが好ましく、なかでもポリエチレンナフタレートとポリエチレンテレフタレートの複層フィルムであることが層間密着性のためより好ましく、二軸延伸ポリエチレンナフタレートと二軸延伸ポリエチレンテレフタレートの複層フィルムであることがフィルム強度向上および層間密着性のためさらに好ましい。複層フィルムは、共押出機で2層または3層フィルム製膜することで製造することが好ましい。ここで、金属基材を貼合せる面は、耐熱樹脂層よりもガラス転移温度の低い、低Tg樹脂層であることが好ましい。金属基材との貼合せ面が低Tg樹脂層であっても、鋭利な機械刺激によって塗装代替フィルムにクラックが入り、腐食性の物質に基材の金属が暴露された際に錆びの発生と拡大を抑制し、高度な防錆性を発現するメカニズムは明らかではないが、暴露箇所での腐食物質の鋼板面水平方向の拡散を耐熱樹脂、特にポリエチレンナフタレートが抑制しているためと推定される。 On the other hand, a thermoplastic resin film is a multilayer film consisting of a heat-resistant resin layer and a layer with a glass transition temperature lower than that of the heat-resistant resin layer (hereinafter referred to as a low Tg resin layer) in order to make it easier to bond to a metal substrate. A multilayer film of polyethylene naphthalate and polyethylene terephthalate is particularly preferable because of interlayer adhesion, and a multilayer film of biaxially oriented polyethylene naphthalate and biaxially oriented polyethylene terephthalate is particularly preferable. It is more preferred for improving film strength and interlayer adhesion. The multilayer film is preferably produced by forming a two-layer or three-layer film using a coextruder. Here, the surface to which the metal base material is bonded is preferably a low Tg resin layer having a glass transition temperature lower than that of the heat-resistant resin layer. Even if the surface to be bonded to the metal substrate is a low-Tg resin layer, the paint substitute film will crack due to sharp mechanical stimulation, and rust may occur when the base metal is exposed to corrosive substances. Although the mechanism by which corrosion is suppressed and high rust prevention properties are achieved is not clear, it is presumed that the heat-resistant resin, especially polyethylene naphthalate, suppresses the horizontal diffusion of corrosive substances at exposed locations. Ru.

熱可塑性樹脂フィルムの厚みは、10~250μmであることが好ましい。熱可塑性樹脂フィルムの厚みは、金属基材とのラミネート時に、鋼板の加熱温度によってフィルムの金属とは反対面側まで瞬時に加熱されたりすることを防ぐため、上記下限より厚いことが好ましい。一方、熱可塑性樹脂フィルムの厚みは、製膜時の生産性の悪化や成形加工時に必要な応力を過度に大きくしないため、上限以下であることが好ましい。好ましい熱可塑性樹脂フィルムの厚みの下限は、12μm、より好ましくは20μm、特に好ましくは25μmであり、上限は188μm、より好ましくは125μm、特に好ましくは100μmである。 The thickness of the thermoplastic resin film is preferably 10 to 250 μm. The thickness of the thermoplastic resin film is preferably thicker than the above lower limit in order to prevent the film from being instantaneously heated to the side opposite to the metal due to the heating temperature of the steel plate when laminated with a metal base material. On the other hand, the thickness of the thermoplastic resin film is preferably below the upper limit in order to prevent deterioration of productivity during film formation and excessive stress required during molding. The lower limit of the thickness of the thermoplastic resin film is preferably 12 μm, more preferably 20 μm, particularly preferably 25 μm, and the upper limit is 188 μm, more preferably 125 μm, particularly preferably 100 μm.

また、耐熱樹脂層の厚みは、5~250μmであることが防錆性のため好ましい。好ましい耐熱樹脂層の下限の厚みは5μm、より好ましくは10μm、更に好ましくは20μmであり、好ましい耐熱樹脂層の上限の厚みは、188μm、より好ましくは175μm、更に好ましくは100μmである。 Further, the thickness of the heat-resistant resin layer is preferably 5 to 250 μm for rust prevention. The minimum thickness of the heat-resistant resin layer is preferably 5 μm, more preferably 10 μm, and even more preferably 20 μm, and the upper limit of the thickness of the heat-resistant resin layer is preferably 188 μm, more preferably 175 μm, and still more preferably 100 μm.

さらに、本発明の塗装代替フィルムにおける熱可塑性樹脂フィルムは、表面改質を行う目的で耐熱樹脂層の着色層と接しない側の表面にガラス転移温度が120℃未満の接着性樹脂を用いてなる接着層を設けることもできる。 Furthermore, the thermoplastic resin film in the paint alternative film of the present invention is formed by using an adhesive resin with a glass transition temperature of less than 120°C on the surface of the heat-resistant resin layer on the side that does not contact the colored layer for the purpose of surface modification. An adhesive layer can also be provided.

(ポリエチレン-2,6-ナフタレート樹脂の製造方法)
上記耐熱樹脂層に用いるポリエチレン-2,6-ナフタレート樹脂の製造方法は、例えば芳香族ジカルボン酸もしくはそのエステル形成性誘導体とアルキレングリコールとをエステル化反応もしくはエステル交換反応させてポリエステルの前駆体を合成する第一反応と、該前駆体を重縮合反応させる第二反応とからなり、それ自体公知の方法を採用できる。
(Production method of polyethylene-2,6-naphthalate resin)
The method for producing the polyethylene-2,6-naphthalate resin used for the heat-resistant resin layer is, for example, synthesizing a polyester precursor by subjecting an aromatic dicarboxylic acid or its ester-forming derivative to an esterification reaction or transesterification reaction with an alkylene glycol. The first reaction consists of a first reaction in which the precursor is subjected to a polycondensation reaction, and a method known per se can be adopted.

上記耐熱樹脂層に用いるポリエチレン-2,6-ナフタレート樹脂の具体的な原料として用いられるポリエチレン-2,6-ナフタレートは、その繰り返し単位がエチレン-2,6-ナフタレートから構成されているものであり、ナフタレン-2,6-ジカルボン酸またはその誘導体と、エチレングリコールとを、触媒の存在下で適当な反応条件下でエステル化、重合化せしめることによって製造できる。 The polyethylene-2,6-naphthalate used as a specific raw material for the polyethylene-2,6-naphthalate resin used in the heat-resistant resin layer is one whose repeating unit is composed of ethylene-2,6-naphthalate. It can be produced by esterifying and polymerizing naphthalene-2,6-dicarboxylic acid or a derivative thereof, and ethylene glycol under appropriate reaction conditions in the presence of a catalyst.

好ましい第一反応の条件については、常圧下で行ってもよいが、0.05MPa~0.5MPaの加圧下で行うことが反応速度をより速めやすいことから好ましい。また、第一反応の温度は、210℃~270℃の範囲で行うことが好ましい。反応圧力を上記範囲内とすることで反応の進行を進みやすくしつつ、ジアルキレングリコールに代表される副生物の発生を抑制できる。このとき、アルキレングリコール成分は、第一反応を行う反応系に存在する酸成分に対し1.1~6モル倍用いることが、反応速度及び樹脂の物性維持の点から好ましい。より好ましくは2~5モル倍、さらに好ましくは3~5モル倍である。 Regarding the preferable conditions for the first reaction, it may be carried out under normal pressure, but it is preferable to carry out it under an increased pressure of 0.05 MPa to 0.5 MPa because the reaction rate can be more easily increased. Further, the temperature of the first reaction is preferably carried out in the range of 210°C to 270°C. By setting the reaction pressure within the above range, it is possible to facilitate the progress of the reaction while suppressing the generation of by-products typified by dialkylene glycol. At this time, it is preferable to use the alkylene glycol component in 1.1 to 6 times the amount of the acid component present in the reaction system performing the first reaction, from the viewpoint of reaction rate and maintaining the physical properties of the resin. More preferably 2 to 5 times the mole, still more preferably 3 to 5 times the mole.

また、第一反応の反応速度をより早くするには、それ自体公知の触媒を用いることが好ましく、たとえばLi,Na,K,Mg,Ca,Mn、Co、Tiなどの金属成分を有する金属化合物が好ましく挙げられ、これらの中でも加圧下で行う場合は、反応の進みやすさの点からMnやTi化合物が好ましい。特にTi化合物は、さらに重縮合反応触媒としても使用でき、かつ触媒残渣の析出も少ないことから好ましい。本発明で用いるチタン化合物としては、触媒残渣の析出による不溶性粗大異物の発生を抑制する観点からポリエステル中に可溶な有機チタン化合物が好ましい。特に好ましいチタン化合物としては、チタンテトライソプロポキシド、チタンテトラプロポキシド、チタンテトラブトキシド、チタンテトラエトキシド、チタンテトラフェノキシド、トリメリット酸チタンなどが例示できる。 In order to increase the reaction rate of the first reaction, it is preferable to use a catalyst known per se, for example, a metal compound having a metal component such as Li, Na, K, Mg, Ca, Mn, Co, or Ti. Among these, when the reaction is carried out under pressure, Mn and Ti compounds are preferred from the viewpoint of the ease with which the reaction proceeds. In particular, Ti compounds are preferred because they can further be used as polycondensation reaction catalysts and cause less catalyst residue to be deposited. The titanium compound used in the present invention is preferably an organic titanium compound that is soluble in polyester from the viewpoint of suppressing the generation of insoluble coarse foreign matter due to precipitation of catalyst residues. Particularly preferred titanium compounds include titanium tetraisopropoxide, titanium tetrapropoxide, titanium tetrabutoxide, titanium tetraethoxide, titanium tetraphenoxide, titanium trimellitate, and the like.

また、添加する触媒量は、第一反応中に存在する全酸成分のモル数を基準として、金属元素換算で、10~150ミリモル%の範囲が好ましく、20~100ミリモル%の範囲がより好ましく、特に30~70ミリモル%の範囲が反応速度を促進しつつ、触媒起因の粗大不溶性異物の生成を抑制でき、さらに得られる共重合芳香族ポリエステルの耐熱性を高度に維持できることからさらに好ましい。なお、チタン化合物を添加する場合の添加時期は、第一反応のエステル化反応開始時から存在するように添加し、前述のとおり、引き続き重縮合反応触媒として使用することが好ましい。もちろん、重縮合反応速度をコントロールする目的で2回以上に分けて添加してもよい。 Further, the amount of the catalyst added is preferably in the range of 10 to 150 mmol%, more preferably in the range of 20 to 100 mmol%, in terms of metal element, based on the number of moles of the total acid component present during the first reaction. In particular, a range of 30 to 70 mmol % is more preferable because it can accelerate the reaction rate, suppress the formation of coarse insoluble foreign substances caused by the catalyst, and maintain a high degree of heat resistance of the resulting copolymerized aromatic polyester. In addition, when adding the titanium compound, it is preferable to add the titanium compound so that it is present from the start of the esterification reaction of the first reaction, and as described above, it is preferably used subsequently as a polycondensation reaction catalyst. Of course, it may be added in two or more portions for the purpose of controlling the polycondensation reaction rate.

つぎに、第一反応で得られた前駆体を重縮合反応させる第二反応について説明する。
上記耐熱樹脂層における樹脂は、高度の熱安定性を付与させる目的で、第二反応における重縮合反応の開始以前に、反応系にリン化合物からなる熱安定剤を添加することが好ましい。具体的なリン化合物としては、化合物中にリン元素を有するものであれば特に限定されず、例えば、リン酸、亜リン酸、リン酸トリメチルエステル、リン酸トリブチルエステル、リン酸トリフェニルエステル、リン酸モノメチルエステル、リン酸ジメチルエステル、フェニルホスホン酸、フェニルホスホン酸ジメチルエステル、フェニルホスホン酸ジエチルエステル、リン酸アンモニウム、トリエチルホスホノアセテート、メチルジエチルホスホノアセテートなどが好ましく挙げることができ、これらのリン化合物は二種以上を併用してもよい。なお、リン化合物の添加時期は、第一反応が実質的に終了してから第二反応である重縮合反応初期の間に行うことが好ましく、添加は一度に行ってもよいし、2回以上に分割して行ってもよい。
Next, a second reaction in which the precursor obtained in the first reaction undergoes a polycondensation reaction will be described.
In order to impart a high degree of thermal stability to the resin in the heat-resistant resin layer, it is preferable to add a thermal stabilizer consisting of a phosphorus compound to the reaction system before the start of the polycondensation reaction in the second reaction. Specific phosphorus compounds are not particularly limited as long as they contain a phosphorus element, and examples include phosphoric acid, phosphorous acid, trimethyl phosphate, tributyl phosphate, triphenyl phosphate, and phosphorus. Preferred examples include acid monomethyl ester, phosphoric acid dimethyl ester, phenylphosphonic acid, phenylphosphonic acid dimethyl ester, phenylphosphonic acid diethyl ester, ammonium phosphate, triethylphosphonoacetate, methyldiethylphosphonoacetate, and the like. Two or more types of compounds may be used in combination. The phosphorus compound is preferably added after the first reaction is substantially completed and at the beginning of the second reaction, which is the polycondensation reaction, and the addition may be carried out at once or twice or more. It may be divided into two parts.

上記耐熱樹脂層におけるポリエステル樹脂を製造する際、重縮合反応の温度は270℃~300℃の範囲で行うのが好ましく、重縮合反応中の圧力は50Pa以下の減圧下で行うのが好ましい。重縮合反応中の圧力が上限より高いと重縮合反応に要する時間が長くなり且つ重合度の高い共重合芳香族ポリエステルを得ることが困難になる。重縮合触媒としては、それ自体公知のTi,Al,Sb,Geなどの金属化合物を好適に使用でき、それらの中でもエステル化反応やエステル交換反応時に添加されたチタン化合物を引き続き使用することが触媒残渣による不溶性粗大異物の発生を抑制できることから好ましい。 When producing the polyester resin for the heat-resistant resin layer, the temperature of the polycondensation reaction is preferably carried out in the range of 270° C. to 300° C., and the pressure during the polycondensation reaction is preferably carried out under reduced pressure of 50 Pa or less. If the pressure during the polycondensation reaction is higher than the upper limit, the time required for the polycondensation reaction becomes longer and it becomes difficult to obtain a copolymerized aromatic polyester with a high degree of polymerization. As the polycondensation catalyst, metal compounds such as Ti, Al, Sb, and Ge, which are known per se, can be suitably used. Among them, it is preferable to continue using the titanium compound added during the esterification reaction or the transesterification reaction. This is preferable because generation of insoluble coarse foreign matter due to residue can be suppressed.

<着色層>
本発明の塗装代替フィルムにおける着色層は、バインダー樹脂および顔料もしくは染料を含有することが好ましい。バインダー樹脂を使用しない場合、成形時の伸度によって容易に着色層にクラックが生じてしまう結果、美観が損なわれる。また顔料もしくは染料を用いることで、美麗に優れた外観が形成できる。使用される顔料もしくは染料には、カーボンブラック(墨)、鉄黒、チタン白、アンチモン白、黄鉛、チタン黄、弁柄、カドミウム赤、群青、コバルトブルー、キナクリドンレッド、イソインドリノンイエロー、フタロシアニンブルー、アルミニウム、真鍮、二酸化チタン、真珠光沢顔料からなる群より選ばれる1種であることが好ましい。調色のために、その他顔料や、添加剤を使用することは、本発明を損なわない限り、好ましい態様である。着色層の形成方法は特に制限されないが、コーティングによって積層する方法が簡便で好ましい。着色層と熱可塑性樹脂フィルムの密着性は、熱可塑性樹脂フィルムの種類や、着色層に使用するバインダー樹脂によって、適宜調整できる。その際、熱可塑性樹脂フィルムに、コーティングにより表面処理を行い、密着性を補助するような表面改質層をつけることが好ましい。当然、熱可塑性樹脂フィルム自体で接着力を確保できるのであれば、何らの問題はない。
<Colored layer>
The colored layer in the paint substitute film of the present invention preferably contains a binder resin and a pigment or dye. If a binder resin is not used, cracks will easily occur in the colored layer due to the elongation during molding, resulting in poor appearance. Furthermore, by using pigments or dyes, a beautiful and excellent appearance can be formed. Pigments or dyes used include carbon black, iron black, titanium white, antimony white, yellow lead, titanium yellow, Bengara, cadmium red, ultramarine blue, cobalt blue, quinacridone red, isoindolinone yellow, and phthalocyanine. Preferably, it is one selected from the group consisting of blue, aluminum, brass, titanium dioxide, and pearlescent pigments. It is a preferable embodiment to use other pigments and additives for toning, as long as they do not impair the present invention. The method of forming the colored layer is not particularly limited, but a method of laminating by coating is simple and preferred. The adhesion between the colored layer and the thermoplastic resin film can be adjusted as appropriate by the type of thermoplastic resin film and the binder resin used for the colored layer. In this case, it is preferable to perform surface treatment on the thermoplastic resin film by coating to provide a surface modification layer that assists in adhesion. Naturally, there is no problem as long as the thermoplastic resin film itself can ensure adhesive strength.

本発明の塗装代替フィルムにおける表面改質層は、前述の通り、厚みが1μmを超えないことが好ましい。表面改質層は、厚ければ厚いほど、生産性や、耐久性の確保の点で劣る。表面改質層は、熱可塑性樹脂フィルムのフィルム製膜中にコーティングを行うインラインコーティングによって付与されても良いし、熱可塑性樹脂フィルムを製膜後一旦ロール状に巻きとり、その後、再度繰り出しを行ってオフラインコーティングを行っても良い。 As mentioned above, the surface modified layer in the paint substitute film of the present invention preferably has a thickness of not more than 1 μm. The thicker the surface modified layer, the worse it is in productivity and durability. The surface modification layer may be applied by in-line coating during the film formation of the thermoplastic resin film, or by winding the thermoplastic resin film into a roll after forming the film and then rolling it out again. Off-line coating may also be performed.

本発明の塗装代替フィルムにおける表面改質層には、着色層と熱可塑性樹脂フィルムの間の接着力が確保できるものが使用されるが、バインダー樹脂としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂からなる群より選ばれる樹脂を少なくとも1種類用いることが好ましい。接着力の調整のため、各樹脂に共重合を施したり、互いに異なる樹脂をブレンドして接着力を向上させたりすることは好適に利用できる。 The surface modified layer in the paint substitute film of the present invention uses a material that can ensure adhesive strength between the colored layer and the thermoplastic resin film, and the binder resin is selected from polyester resin, acrylic resin, and urethane resin. It is preferable to use at least one resin selected from the group consisting of: In order to adjust the adhesive strength, it is suitable to copolymerize each resin or blend different resins to improve the adhesive strength.

また、美麗な意匠を発現させるために、着色層を複層化することも良く、例えば、顔料から成る着色層の上に、バインダー樹脂に光輝材顔料を含有した着色層を光輝材層として設けることで2層着色層とすることも好ましく、また視認側からの反射特性を考慮して、着色層の最も熱可塑性樹脂フィルムに近い側にアルミニウム顔料からなる着色反射層、有色顔料層、クリア塗膜の光輝材顔料層という3層着色層とすることも好ましい。必要とする意匠性を付与する上で、着色層を単層として、もしくは複層として使用することは、本発明の目的をなんら否定するものではない。 In addition, in order to create a beautiful design, it is good to have a multi-layered colored layer. For example, a colored layer containing a glitter material pigment in a binder resin is provided as a glitter material layer on top of a colored layer made of a pigment. Therefore, it is preferable to have a two-layer colored layer, and in consideration of reflection characteristics from the viewing side, a colored reflective layer made of aluminum pigment, a colored pigment layer, and a clear coating are provided on the side of the colored layer closest to the thermoplastic resin film. It is also preferable that the film has a three-layer colored layer, that is, a bright material pigment layer. The purpose of the present invention is not negated in any way by using the colored layer as a single layer or as a multilayer in order to impart the necessary design properties.

<ハードコート層>
本発明の塗装代替フィルムにおけるハードコート層に用いる樹脂は、熱硬化樹脂であることが好ましい。特に、耐候性、耐傷つき性、透明性のため、アクリル系樹脂が使用されることが好ましい。
<Hard coat layer>
The resin used for the hard coat layer in the paint substitute film of the present invention is preferably a thermosetting resin. In particular, acrylic resin is preferably used because of its weather resistance, scratch resistance, and transparency.

本発明におけるハードコート樹脂は、前述の着色層に塗工によって積層することが好ましく挙げられ、その手法は、公知のコーティング手法で良い。 The hard coat resin in the present invention is preferably laminated on the above-mentioned colored layer by coating, and the method may be any known coating method.

ハードコート層の厚みは、乾燥後の膜厚で5~50μmになるようにすることが好ましい。ハードコート層の厚みが上記下限以上であることで、樹脂材料が少なく経済性には優れているが、内側の着色層や熱可塑性樹脂フィルム、また、部材となった後の傷や薬品に対する保護性能を高度に維持することができる。一方で、上記厚みが上限以下であることで、ハードコート塗膜としての光沢の発現や保護性能という点で優れているものの、樹脂を必要以上使用することで経済性に優れない。好ましいハードコート層の厚みは、下限が10μm、より好ましくは15μmで、他方上限は40μmであり、より好ましくは35μmである。 The thickness of the hard coat layer is preferably 5 to 50 μm after drying. Since the thickness of the hard coat layer is at least the above lower limit, it uses less resin material and is highly economical, but it also protects the inner colored layer and thermoplastic resin film, as well as protection against scratches and chemicals after it is made into a component. Performance can be maintained at a high level. On the other hand, when the thickness is below the upper limit, although it is excellent in terms of gloss development and protective performance as a hard coat film, it is not economical because more resin is used than necessary. The lower limit of the thickness of the hard coat layer is preferably 10 μm, more preferably 15 μm, and the upper limit is 40 μm, more preferably 35 μm.

さらに、本発明の塗装代替フィルムにおけるハードコート層は、単層で構成しても良いし、複層で構成しても良い。例えば、2度同じ樹脂を複層でコーティングする際に、乾燥条件を異なるようにすることで硬化度合を調整することができ、結果、後述する保護フィルムとの密着性を確保しやすくなったり、保護フィルムからの転写を抑制したりすることができる。また、上述の範囲内で、複層化することで、光沢のある表面を発現させることもできる。 Furthermore, the hard coat layer in the paint substitute film of the present invention may be composed of a single layer or a multilayer. For example, when coating the same resin twice in multiple layers, it is possible to adjust the degree of curing by changing the drying conditions, making it easier to ensure adhesion with the protective film described below. Transfer from the protective film can be suppressed. Furthermore, a glossy surface can be achieved by forming multiple layers within the above-mentioned range.

本発明における塗装代替フィルムは、熱可塑性樹脂フィルム、着色層、ハードコート層をこの順で有し、必要に応じて表面改質層、防汚層、光輝材層など他の機能層を有していても良い。同様に、熱可塑性樹脂や、ハードコート層を必要に応じて、複層化することも可能である。 The paint substitute film in the present invention has a thermoplastic resin film, a colored layer, and a hard coat layer in this order, and if necessary, has other functional layers such as a surface modification layer, an antifouling layer, and a glitter material layer. You can leave it there. Similarly, it is also possible to form multiple layers of thermoplastic resin and hard coat layers, if necessary.

[熱圧着]
鋼板は通常ロール状に巻きとられており、塗装代替フィルムもロール状で製品とすることができるため、それらを用いればロールtоロールでのラミネートが可能である。例えば、鋼板を加熱して、供給した塗装代替フィルムの熱可塑性樹脂フィルム側を熱圧着することで、鋼板にフィルムを貼り合わせすればよい。この時、熱可塑性樹脂フィルム内で、溶融および冷却固化を終了させるため、塗装代替フィルムを貼り合わせる際のラミネートロールは塗装代替フィルムを溶かさない程度に低温にしておくことが好ましい。つまり塗装代替フィルムを介して、鋼板側は加熱状態、ハードコート層側は冷却状態となることで、熱可塑性樹脂フィルム内で溶融と冷却固化を完了させることが可能となり、溶融樹脂内で界面混合が行われ、強固な接着力を有することが可能となる。
[Thermocompression bonding]
Steel plates are usually wound up into rolls, and paint substitute films can also be made into rolls, so if they are used, lamination with rolls is possible. For example, the film may be bonded to the steel plate by heating the steel plate and thermocompression bonding the thermoplastic resin film side of the supplied paint substitute film. At this time, in order to complete the melting and cooling solidification within the thermoplastic resin film, it is preferable to keep the laminating roll when laminating the paint substitute film at a low temperature to the extent that the paint substitute film is not melted. In other words, by heating the steel plate side and cooling the hard coat layer side through the paint substitute film, it is possible to complete melting and cooling solidification within the thermoplastic resin film, and interfacial mixing within the molten resin. This makes it possible to have strong adhesive strength.

また、さらに接着力を強固にするために、鋼板側もしくは熱可塑性樹脂フィルム側に表面改質層を付与することも好ましい態様である。 Furthermore, in order to further strengthen the adhesive strength, it is also a preferred embodiment to provide a surface modification layer on the steel plate side or the thermoplastic resin film side.

熱圧着に用いられる鋼鈑は、車両の外装に使用されるものであればよい。一般に、成形性が良く、厚みが0.3~0.6mm程度の鋼材が使用されるため、そうしたグレードを使用することが好ましい。また、車両の外装に用いられる鋼材は、防錆状の処理として、亜鉛合金めっきを施されていること好ましい態様である。 The steel plate used for thermocompression bonding may be any steel plate used for the exterior of a vehicle. Generally, a steel material with good formability and a thickness of about 0.3 to 0.6 mm is used, so it is preferable to use such a grade. Further, it is preferable that the steel used for the exterior of the vehicle be subjected to zinc alloy plating as a rust-preventive treatment.

[プレス成型]
上記の熱圧着によって鋼板と積層体が一体化されたラミネート鋼板は、プレス成型される。プレス成型としては、先述の通り冷間プレスが好ましい。上述のラミネート鋼板で冷間プレス成形を行う際、鋼板の端部を高圧でホールドする張り出し成形であっても、低圧でホールドし、鋼板が成形によって吸い込まれていく成形であっても、上述のように熱可塑性樹脂フィルムを熱融着させることで金属部材の被覆が可能となる。
[Press molding]
A laminated steel plate in which the steel plate and the laminate are integrated by the above-described thermocompression bonding is press-molded. As for press molding, cold pressing is preferable as described above. When performing cold press forming on the above-mentioned laminated steel sheets, whether it is stretch forming where the ends of the steel sheet are held under high pressure or forming where the edges of the steel sheet are held under low pressure and the steel sheet is sucked into the forming process, the above-mentioned process is performed. By heat-sealing a thermoplastic resin film, metal members can be covered.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれにより何等限定を受けるものではない。
(1)樹脂組成物のガラス転移温度(Tg)
未延伸フィルムを20℃/minの昇温速度で室温から未延伸フィルムの融点より35℃高い温度まで昇温し、該温度で3分間溶融保持した後取出し直ちに氷の上に移して急冷し、そして再び20℃/minの昇温速度で昇温する方法で求めた。Tgの読み取り位置は、示差走査熱量測定チャートのガラス転移の階段状の変化部分において、低温側のベースラインを高温側に延長した直線と,階段部分曲線の勾配が最大になるような点から引いた接線との交点の温度とする。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto in any way.
(1) Glass transition temperature (Tg) of resin composition
The unstretched film is heated from room temperature to a temperature 35° C. higher than the melting point of the unstretched film at a heating rate of 20° C./min, and after being melted and held at this temperature for 3 minutes, it is taken out and immediately transferred to ice for quenching. Then, the temperature was again determined by increasing the temperature at a rate of 20° C./min. The Tg reading position is drawn from the straight line extending the baseline on the low temperature side to the high temperature side and the point where the slope of the step curve is maximum in the step-like change part of the glass transition on the differential scanning calorimetry chart. The temperature at the intersection with the tangent line.

[実施例1]
塗装代替フィルムを作成するため、まず熱可塑性樹脂フィルムを作成した。熱可塑性樹脂フィルムは、ジカルボン酸成分として2,6-ナフタレンジカルボン酸とグリコール成分としてエチレングリコールからなるポリエチレン-2,6-ナフタレート樹脂を用いた。該ポリエチレン-2,6-ナフタレート樹脂を180℃で5時間乾燥後、押出機に供給し、ダイからシート状に溶融押出した。シート状に押し出した後、冷却ロールでガラス化した後、130℃で縦延伸を行った後、130℃で横延伸を行い、面倍11倍の熱可塑性樹脂フィルムをロール状に巻きとった。
[Example 1]
In order to create a paint substitute film, we first created a thermoplastic resin film. The thermoplastic resin film used was a polyethylene-2,6-naphthalate resin consisting of 2,6-naphthalene dicarboxylic acid as a dicarboxylic acid component and ethylene glycol as a glycol component. After drying the polyethylene-2,6-naphthalate resin at 180° C. for 5 hours, it was supplied to an extruder and melt-extruded from a die into a sheet. After extruding into a sheet, it was vitrified with a cooling roll, longitudinally stretched at 130°C, and laterally stretched at 130°C, and a thermoplastic resin film with an area magnification of 11 times was wound into a roll.

得られた熱可塑性樹脂フィルムを巻出し、まず着色層をコンマコーターで塗工した。着色層にはバインダー成分にアクリルウレタン系樹脂、顔料にチタン粒子を20%含有し、不揮発成分が35%の溶剤塗料を用いた。厚み20μmになるように塗工を行い、90℃の乾燥炉で乾燥後巻き取りした。 The obtained thermoplastic resin film was unwound, and first a colored layer was applied using a comma coater. For the colored layer, a solvent paint containing an acrylic urethane resin as a binder component, 20% titanium particles as a pigment, and 35% nonvolatile components was used. The coating was applied to a thickness of 20 μm, dried in a drying oven at 90° C., and then wound up.

着色層を塗工した原反を再度繰り出し、続いて、ハードコート層を形成するため、後述のハードコート用塗料(HC-1)をコンマコーターにより不揮発成分で30%のHC-1を、15μm(硬化後の厚み)で塗工したのち、90℃の乾燥炉に設定して十分に乾燥を行い、巻き取り前に、ポリエチレンテレフタレート樹脂から成る二軸延伸フィルムを保護フィルムとして用い、ラミネートをして、ロール状に巻きとり、塗装代替フィルムを得た。 The raw fabric coated with the colored layer is fed out again, and then, in order to form a hard coat layer, the hard coat paint (HC-1) described below is coated with 30% HC-1 in non-volatile components in a thickness of 15 μm using a comma coater. (thickness after curing), dry thoroughly in a drying oven at 90°C, and before winding up, laminate using a biaxially stretched film made of polyethylene terephthalate resin as a protective film. Then, the film was wound up into a roll to obtain a paint substitute film.

得られた塗装代替フィルムを用いて後述する防錆性の評価A,Bを行ったところ、表1に示すとおり、優れた性能を有するものであった。 When the obtained paint substitute film was used for the rust prevention evaluations A and B described later, it was found to have excellent performance as shown in Table 1.

<ハードコート用塗料(HC-1)>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコに、メチルイソブチルケトン(MIBK)を150部仕込み、窒素雰囲気下で攪拌しながら昇温した。フラスコ内の温度が74℃になったらこの温度を合成温度として維持し、メタクリル酸メチル3部、メタクリル酸n-ブチル82.54部、アクリル酸-4-ヒドロキシブチル12.85部、メタクリル酸0.61部、ファンクリルFA-711MM(日立化成社製、メタクリル酸-ペンタメチルピペリジニル)を1部、アゾビスイソブチロニトリル0.1部を混合したモノマー溶液を2時間掛けて滴下した。モノマー滴下終了1時間後から1時間毎に、アゾビスイソブチロニトリルを0.02部ずつ加えて反応を続け、溶液中の未反応モノマーが1%以下になるまで反応を続けた。未反応モノマーが1%以下になったら冷却して反応を終了し、固形分約40%のアクリル系共重合体溶液を得た。このアクリル系共重合体溶液に、ポリイソシアネート化合物としてデュラネート「P301-75E」(旭化成ケミカルズ社製、ヘキサメチレンジイソシアネートのポリイソシアネート体、以下、硬化剤1という)59.9質量部(固形質量)を加え、さらに固形分が30%となるようにメチルイソブチルケトン(MIBK)を加えて撹拌し、ハードコート用塗料(HC-1)を得た。
<Hard coat paint (HC-1)>
150 parts of methyl isobutyl ketone (MIBK) was charged into a four-necked flask equipped with a cooling tube, a stirring device, a thermometer, and a nitrogen introduction tube, and the temperature was raised while stirring under a nitrogen atmosphere. When the temperature inside the flask reaches 74°C, maintain this temperature as the synthesis temperature and add 3 parts of methyl methacrylate, 82.54 parts of n-butyl methacrylate, 12.85 parts of 4-hydroxybutyl acrylate, and 0 parts of methacrylic acid. A monomer solution containing 0.61 parts of Fancryl FA-711MM (manufactured by Hitachi Chemical Co., Ltd., pentamethylpiperidinyl methacrylate), and 0.1 part of azobisisobutyronitrile was added dropwise over 2 hours. . The reaction was continued by adding 0.02 part of azobisisobutyronitrile every hour from 1 hour after the monomer dropwise addition was completed until the unreacted monomer in the solution became 1% or less. When the unreacted monomer content became 1% or less, the reaction was terminated by cooling to obtain an acrylic copolymer solution with a solid content of about 40%. To this acrylic copolymer solution, 59.9 parts by mass (solid mass) of Duranate "P301-75E" (manufactured by Asahi Kasei Chemicals, polyisocyanate of hexamethylene diisocyanate, hereinafter referred to as curing agent 1) was added as a polyisocyanate compound. In addition, methyl isobutyl ketone (MIBK) was added so that the solid content was 30% and stirred to obtain a hard coat paint (HC-1).

[実施例2]
実施例1記載の塗装代替フィルムの熱可塑性樹脂フィルムをポリエチレン-2,6-ナフタレート樹脂と、ジカルボン酸成分としてテレフタル酸およびイソフタル酸と、グリコール成分としてエチレングリコールからなる共重合ポリエチレンテレフタレート樹脂を用いてなる2層積層フィルムとした以外は、実施例1と同様の方法で塗装代替フィルムを得た。ここで、2層積層フィルムは、ポリエチレン-2,6-ナフタレート樹脂を180℃で5時間、共重合ポリエチレンテレフタレート樹脂を160℃で4時間乾燥後、別々の押出機に供給し、フィードブロックを用いて2層に積層し、ダイからシート状に溶融押出した。
[Example 2]
The thermoplastic resin film of the paint substitute film described in Example 1 was prepared by using a copolymerized polyethylene terephthalate resin consisting of polyethylene-2,6-naphthalate resin, terephthalic acid and isophthalic acid as the dicarboxylic acid component, and ethylene glycol as the glycol component. A paint substitute film was obtained in the same manner as in Example 1, except that a two-layer laminated film was obtained. Here, the two-layer laminated film is made by drying the polyethylene-2,6-naphthalate resin at 180°C for 5 hours and the copolymerized polyethylene terephthalate resin at 160°C for 4 hours, then supplying them to separate extruders and using a feed block. The mixture was laminated into two layers, and melt-extruded from a die into a sheet.

得られた塗装代替フィルムを用いて後述する防錆性の評価A,Bを行ったところ、表1に示すとおり、優れた性能を有するものであった。 When the obtained paint substitute film was used for the rust prevention evaluations A and B described later, it was found to have excellent performance as shown in Table 1.

[比較例1]
実施例1記載の塗装代替フィルムの熱可塑性樹脂フィルムをジカルボン酸成分としてテレフタル酸とグリコール成分としてエチレングリコールからなるポリエチレンテレフタレート樹脂に変更した以外は、実施例1と同様の方法で塗装代替フィルムを得た。ここで、ポリエチレンテレフタレート樹脂は、160℃で4時間乾燥後、押出機に供給し、ダイからシート状に溶融押出した。シート状に押し出した後、冷却ロールでガラス化した後、90℃で縦延伸を行った後、100℃で横延伸を行い、面倍11倍の熱可塑性樹脂フィルムをロール状に巻きとった。
[Comparative example 1]
A paint substitute film was obtained in the same manner as in Example 1, except that the thermoplastic resin film of the paint substitute film described in Example 1 was changed to a polyethylene terephthalate resin consisting of terephthalic acid as a dicarboxylic acid component and ethylene glycol as a glycol component. Ta. Here, the polyethylene terephthalate resin was dried at 160° C. for 4 hours, then supplied to an extruder, and melt-extruded from a die into a sheet shape. After extruding into a sheet, it was vitrified with a cooling roll, longitudinally stretched at 90°C, and laterally stretched at 100°C, and a thermoplastic resin film with an area magnification of 11 times was wound into a roll.

得られた塗装代替フィルムを用いて後述する防錆性の評価A,Bを行ったところ、表1に示すとおり、防錆性が悪化した。 When the obtained paint substitute film was used for the rust prevention evaluations A and B described later, as shown in Table 1, the rust prevention was deteriorated.

[比較例2]
実施例1記載の塗装代替フィルムの熱可塑性フィルムを、シンジオタクチックポリスチレン(SPS)に変更した以外は、実施例1と同様の方法で塗装代替フィルムを得た。
[Comparative example 2]
A paint substitute film was obtained in the same manner as in Example 1, except that the thermoplastic film of the paint substitute film described in Example 1 was changed to syndiotactic polystyrene (SPS).

得られた塗装代替フィルムを用いて後述する防錆性の評価A,Bを行ったところ、表1に示すとおり、防錆性が悪化した。 When the obtained paint substitute film was used for the rust prevention evaluations A and B described later, as shown in Table 1, the rust prevention was deteriorated.

[防錆性の評価A]
実施例1、2および比較例1、2で得られた塗装代替フィルムを、めっき鋼板JAC270F45/45にラミネートを行い、ラミネート鋼板を作成した。具体的には、塗装代替フィルムをアンワインド(巻出し)し、鋼板を290℃に加熱して導き、ラミネートロールを常温にして、0.3MPaの圧力でフィルムと熱圧着によりラミネートをおこなった。ラミネートされたラミネート鋼鈑は、冷却水で急冷し、ラミネート鋼板を得た。
[Rust prevention evaluation A]
The paint substitute films obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were laminated on a plated steel plate JAC270F45/45 to create a laminated steel plate. Specifically, the paint substitute film was unwound, the steel plate was heated to 290° C., the laminating roll was brought to room temperature, and the film was laminated by thermocompression bonding at a pressure of 0.3 MPa. The laminated steel sheet was rapidly cooled with cooling water to obtain a laminated steel sheet.

得られたラミネート鋼板における塗装代替フィルムには、カッターナイフの刃先で鋼板の下地に達するように交差する2本の対角線(スクラッチマーク)を引いた。該ラミネート鋼板に対し、5w/v%の中性塩化ナトリウム溶液(食塩水)のミストを噴霧させ、同雰囲気中35℃でラミネート鋼板を96時間保持し、以下の基準で目視評価した。
〇:全10個のうち、いずれもスクラッチマークの部分のみ鋼板が錆びるものの、明瞭な拡大はない
△:全10個のうち、いずれかでスクラッチマークの部分の鋼板錆びに明瞭な拡大がみられる
×:全10個のうち、いずれかでスクラッチマークの部分に加え、それ以外の部分でも錆びが発生し、かつフィルムの剥離が発生
Two intersecting diagonal lines (scratch marks) were drawn on the resulting paint substitute film on the laminated steel plate using the cutting edge of a cutter knife so as to reach the base of the steel plate. A mist of 5 w/v % neutral sodium chloride solution (saline solution) was sprayed onto the laminated steel plate, and the laminated steel plate was held at 35°C in the same atmosphere for 96 hours, and visually evaluated using the following criteria.
○: Out of all 10 items, the steel plate is rusted only at the scratch mark, but there is no clear expansion. △: Out of all 10 items, there is a clear expansion of the rust on the steel plate at the scratch mark area. ×: Out of all 10 pieces, rust occurred in the scratch mark area and other areas as well, and the film peeled off.

[防錆性の評価B]
防錆性の評価Aと同様の方法で得られたラミネート鋼板における塗装代替フィルムに、カッターナイフの刃先で鋼板の下地に達するように交差する2本の対角線(スクラッチマーク)を塗装代替フィルムに引いき、該ラミネート鋼板をレトルト釜に入れ、3%酢酸+2%食塩水を満注し、125℃の加圧水蒸気で90分間レトルト処理を施した。ラミネート鋼板を取り出して、その状態を目視確認した。
〇:全10個のうち、いずれもスクラッチマークの部分のみ鋼板が錆びるものの、明瞭な拡大はない
△:全10個のうち、いずれかでスクラッチマークの部分の鋼板錆びに明瞭な拡大がみられる
×:全10個のうち、いずれかでスクラッチマークの部分に加え、それ以外の部分でも錆びが発生し、かつフィルムの剥離が発生
[Rust prevention evaluation B]
Two intersecting diagonal lines (scratch marks) were drawn on the paint substitute film for a laminated steel plate obtained using the same method as in rust prevention evaluation A using the cutting edge of a cutter knife to reach the base of the steel plate. Then, the laminated steel plate was placed in a retort pot, filled with 3% acetic acid + 2% saline solution, and subjected to retort treatment with pressurized steam at 125° C. for 90 minutes. The laminated steel plate was taken out and its condition was visually checked.
○: Out of all 10 items, the steel plate is rusted only at the scratch mark, but there is no clear expansion. △: Out of all 10 items, there is a clear expansion of the rust on the steel plate at the scratch mark area. ×: Out of all 10 pieces, rust occurred in the scratch mark area and other areas as well, and the film peeled off.

Figure 0007415386000001
Figure 0007415386000001

本発明の塗装代替フィルムは、鋼板に貼り合わせて成形加工した後に、鋭利な機械刺激によってフィルムにクラックが入っても、加飾外観を維持することに優れることから金属に貼合せた後に鋭利な機械刺激が加わることにより塗装代替フィルム自体にクラックが入ったとしても、そこを起点に金属部材に錆びが発生しづらく、更に錆びが周辺部まで拡大しづらい高度な防錆性を具備するため、自動車の外装部品等の用途に好適に用いることができる。 The paint substitute film of the present invention maintains its decorative appearance even if cracks occur in the film due to sharp mechanical stimulation after it is bonded to a steel plate and formed. Even if the paint substitute film itself cracks due to mechanical stimulation, it is difficult for metal parts to rust from there, and it also has advanced rust prevention properties that prevent rust from spreading to the surrounding areas. It can be suitably used for applications such as automobile exterior parts.

1 塗装代替フィルム
11 熱可塑性樹脂フィルム
11A 耐熱樹脂層
11B 低TG樹脂層
11C 接着層
12 着色層
13 ハードコート層
14 クリア層
1 Paint alternative film 11 Thermoplastic resin film 11A Heat-resistant resin layer 11B Low TG resin layer 11C Adhesive layer 12 Colored layer 13 Hard coat layer 14 Clear layer

Claims (3)

熱可塑性樹脂フィルム、着色層および熱硬化未完のハードコート層を、この順で有する塗装代替フィルムであって、
熱可塑性樹脂フィルムの少なくとも一層が、ガラス転移温度が115℃以上である耐熱樹脂層であり、
耐熱樹脂層に用いる樹脂がポリエチレンナフタレートである、
塗装代替フィルム。
A paint substitute film comprising a thermoplastic resin film, a colored layer, and an unfinished thermoset hard coat layer in this order,
At least one layer of the thermoplastic resin film is a heat-resistant resin layer having a glass transition temperature of 115° C. or higher,
The resin used for the heat-resistant resin layer is polyethylene naphthalate,
Paint alternative film.
熱可塑性樹脂フィルムに用いる樹脂がポリエチレンナフタレートである請求項1に記載の塗装代替フィルム。 The paint substitute film according to claim 1, wherein the resin used for the thermoplastic resin film is polyethylene naphthalate. 熱可塑性樹脂フィルムが、耐熱樹脂層の着色層と接しない側の表面にガラス転移温度が120℃未満の接着性樹脂を用いてなる接着層を有する請求項1または2に記載の塗装代替フィルム。 3. The paint substitute film according to claim 1, wherein the thermoplastic resin film has an adhesive layer formed of an adhesive resin having a glass transition temperature of less than 120° C. on the surface of the heat-resistant resin layer on the side not in contact with the colored layer.
JP2019165962A 2019-09-12 2019-09-12 Paint alternative film Active JP7415386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165962A JP7415386B2 (en) 2019-09-12 2019-09-12 Paint alternative film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165962A JP7415386B2 (en) 2019-09-12 2019-09-12 Paint alternative film

Publications (2)

Publication Number Publication Date
JP2021041633A JP2021041633A (en) 2021-03-18
JP7415386B2 true JP7415386B2 (en) 2024-01-17

Family

ID=74861894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165962A Active JP7415386B2 (en) 2019-09-12 2019-09-12 Paint alternative film

Country Status (1)

Country Link
JP (1) JP7415386B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219776A (en) 2001-01-26 2002-08-06 Toyo Kohan Co Ltd Decorative film and decorative laminated sheet laminated with decorative film
JP2009056621A (en) 2007-08-30 2009-03-19 Toray Ind Inc Laminated polyester film
JP2011011543A (en) 2009-06-01 2011-01-20 Asahi Kasei Chemicals Corp Alternative film for coating and laminated molding having the same
JP2011021720A (en) 2009-07-17 2011-02-03 Nissan Motor Co Ltd Control device of vehicle continuously variable transmission
JP2012147880A (en) 2011-01-18 2012-08-09 Arnest Kk Cooker
WO2019078369A1 (en) 2017-10-20 2019-04-25 帝人フィルムソリューション株式会社 Method for producing metal member, method for producing resin member, and method for producing exterior part

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798921B2 (en) * 2009-08-21 2015-10-21 帝人株式会社 Decorative sheet for injection molding
JPWO2012147880A1 (en) * 2011-04-28 2014-07-28 テクノポリマー株式会社 Decorative resin sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219776A (en) 2001-01-26 2002-08-06 Toyo Kohan Co Ltd Decorative film and decorative laminated sheet laminated with decorative film
JP2009056621A (en) 2007-08-30 2009-03-19 Toray Ind Inc Laminated polyester film
JP2011011543A (en) 2009-06-01 2011-01-20 Asahi Kasei Chemicals Corp Alternative film for coating and laminated molding having the same
JP2011021720A (en) 2009-07-17 2011-02-03 Nissan Motor Co Ltd Control device of vehicle continuously variable transmission
JP2012147880A (en) 2011-01-18 2012-08-09 Arnest Kk Cooker
WO2019078369A1 (en) 2017-10-20 2019-04-25 帝人フィルムソリューション株式会社 Method for producing metal member, method for producing resin member, and method for producing exterior part

Also Published As

Publication number Publication date
JP2021041633A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
CN101426646B (en) Biaxially oriented polyester film for molded part
JP5458819B2 (en) Colored laminated metal plate for containers
KR101248299B1 (en) Biaxially oriented polyester film and metal-like laminated films
KR100474041B1 (en) Biaxially Stretched Polyester Film for Container Molding
CN111246998B (en) Method for manufacturing metal member, resin member, and exterior member
JP5428337B2 (en) Biaxially oriented polyester film for molded members, molded laminate using the same, and method for producing the same
US4948654A (en) Sheet material useful in forming protective and decorative coatings
CN102369104B (en) Resin-coated metal sheet and the seamless tank manufactured by it
US6132864A (en) Films provided with several coating layers and the use thereof in automobile manufacturing
JP2008088410A (en) Surface protective polyester film for molding
JP7415386B2 (en) Paint alternative film
JP7307398B2 (en) laminated film
JP3608956B2 (en) Metal thin film laminate for molding
JP5347343B2 (en) Polyester resin coated metal sheet for containers
US6150012A (en) White film to be laminated to metal surface and method of producing same
JP3859108B2 (en) Polyester film for metal plate lamination molding
JP4059966B2 (en) White film for metal lamination
JP4364630B2 (en) Polyester film for bonding metal plates
JP3849826B2 (en) Film-coated metal sheet for forming process
JP5605012B2 (en) Resin-coated metal plate for containers
JP4590886B2 (en) Multi-layer film for laminating, laminating material, can resistance and can lid
JP2000177085A (en) Sticking polyester film
JP4121316B2 (en) White laminated polyester film for metal plate lamination
JP7185013B2 (en) LAMINATED PRODUCT, METHOD FOR MANUFACTURING METAL MEMBER, AND METHOD FOR MANUFACTURING RESIN MEMBER
JP7238236B2 (en) Film for metal lamination molding

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190926

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R151 Written notification of patent or utility model registration

Ref document number: 7415386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151