JP7414201B2 - Biometric information acquisition device - Google Patents

Biometric information acquisition device Download PDF

Info

Publication number
JP7414201B2
JP7414201B2 JP2020133527A JP2020133527A JP7414201B2 JP 7414201 B2 JP7414201 B2 JP 7414201B2 JP 2020133527 A JP2020133527 A JP 2020133527A JP 2020133527 A JP2020133527 A JP 2020133527A JP 7414201 B2 JP7414201 B2 JP 7414201B2
Authority
JP
Japan
Prior art keywords
acoustic
biological information
heart rate
sensor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020133527A
Other languages
Japanese (ja)
Other versions
JP2022029919A (en
JP2022029919A5 (en
Inventor
浩士 中村
旭 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020133527A priority Critical patent/JP7414201B2/en
Publication of JP2022029919A publication Critical patent/JP2022029919A/en
Publication of JP2022029919A5 publication Critical patent/JP2022029919A5/ja
Priority to JP2023209311A priority patent/JP2024015365A/en
Application granted granted Critical
Publication of JP7414201B2 publication Critical patent/JP7414201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、生体情報取得装置に関する。 The present invention relates to a biological information acquisition device.

従来、呼吸器や循環器系疾患の早期発見を目的として、体導音(例えば、血流音、心音、呼吸音等)や加速度信号に基づく診断システムの研究・開発が進められている。そして、血流音は手首の近く、心音は胸部又は腹部の近く、呼吸音は頬の近くで採取すれば明瞭な信号を取得し易い。しかし、3箇所にマイクロホンを装着し、それぞれの体導音を採取することは、時間、コスト、手間がかかり、被検者の負担も大きい。 BACKGROUND ART Research and development of diagnostic systems based on body-conducted sounds (eg, blood flow sounds, heart sounds, breathing sounds, etc.) and acceleration signals have been progressing for the early detection of respiratory and circulatory system diseases. Clear signals can be easily obtained by collecting blood flow sounds near the wrist, heart sounds near the chest or abdomen, and breathing sounds near the cheeks. However, attaching microphones to three locations and collecting body-conducted sound from each location is time-consuming, costly, and labor-intensive, and places a heavy burden on the subject.

そこで、特許文献1に記載されるように、1箇所で採取された混合音響信号から特定の成分を高精度に分離することのできる音響信号分離装置が提案されている。また、特許文献2に記載されるように、1つの加速度センサで被検者の生体情報を得て、呼吸数や心拍数を検出する睡眠診断装置も提案されている。 Therefore, as described in Patent Document 1, an acoustic signal separation device that can highly accurately separate a specific component from a mixed acoustic signal sampled at one location has been proposed. Further, as described in Patent Document 2, a sleep diagnosis device has been proposed that obtains biological information of a subject using one acceleration sensor and detects breathing rate and heart rate.

しかし、特許文献1の音響信号分離装置においては、音響センサ11が頸動脈上皮部に装着されているため、装着に手間がかかり、体導音以外の音を拾いやすいという欠点があった。また、特許文献2の睡眠診断装置においては、寝姿変化、呼吸数及び心拍数以外の情報は導出できないという問題があった。 However, in the acoustic signal separation device of Patent Document 1, since the acoustic sensor 11 is attached to the carotid artery epithelium, it takes time and effort to attach it, and there are disadvantages in that it is easy to pick up sounds other than body-conducted sound. Further, the sleep diagnosis device of Patent Document 2 has a problem in that information other than changes in sleeping posture, breathing rate, and heart rate cannot be derived.

また、特許文献3の加速度心拍計や特許文献4の心拍動計測装置では、加速度センサを使って、そこから得られた加速度信号に信号処理を施して心拍数を計測することができる。しかし、特許文献3の加速度心拍計や特許文献4の心拍動計測装置では拍動によって発生した振動加速度を直接測定しているため、振動加速度と重力加速度が混在してしまい、うまく拍動の情報を取り出せないという問題がある。 Further, in the accelerometer heart rate meter of Patent Document 3 and the heartbeat measuring device of Patent Document 4, the heart rate can be measured by using an acceleration sensor and performing signal processing on the acceleration signal obtained therefrom. However, since the accelerometer heart rate monitor of Patent Document 3 and the heartbeat measuring device of Patent Document 4 directly measure the vibration acceleration generated by the pulsation, the vibration acceleration and gravitational acceleration are mixed, and the pulsation information is not properly measured. There is a problem that it cannot be taken out.

特開2015-31889号公報Japanese Patent Application Publication No. 2015-31889 特許第3809847号公報Patent No. 3809847 特許第2849711号公報Patent No. 2849711 特許第3682254号公報Patent No. 3682254

本発明はかかる問題点に鑑みてなされたものであって、簡易な手法により的確に生体情報を取得することができる生体情報取得装置を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a biological information acquisition device that can accurately acquire biological information using a simple method.

本発明にかかる生体情報取得装置は、小型センサヘッド有する生体情報取得装置であって、前記小型センサヘッドは、
被検者の身体に取付可能な取付部と、体導音を検知し音響信号を取得する体導音センサと、前記体導音センサにより取得された音響信号を計測する体導音振動信号計測手段と、
前記音響信号から生体情報を算出する生体情報算出手段と、を備えることを特徴とする。
A biological information acquisition device according to the present invention is a biological information acquisition device having a small sensor head, the small sensor head comprising :
A mounting part that can be attached to the body of a subject, a body-conducted sound sensor that detects body-conducted sound and acquires an acoustic signal, and a body-conducted sound vibration signal measurement that measures the acoustic signal acquired by the body-conducted sound sensor. means and
A biological information calculating means for calculating biological information from the acoustic signal.

本発明によれば、簡易な手法により的確に生体情報を取得できる。 According to the present invention, biological information can be accurately acquired using a simple method.

本発明にかかる生体情報取得装置の外観を説明する図である。FIG. 1 is a diagram illustrating the appearance of a biological information acquisition device according to the present invention. 取付部及び体導音センサを説明する図である。It is a figure explaining an attachment part and a body conduction sound sensor. 被験者に取り付けられた生体情報取得装置を説明する図である。FIG. 2 is a diagram illustrating a biological information acquisition device attached to a subject. 体導音振動信号計測手段及び外部機器を説明する図である。It is a figure explaining a body-conducted sound vibration signal measuring means and external equipment.

以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings, but the embodiments are intended to facilitate understanding of the principles of the present invention, and the scope of the present invention is limited to the following: The present invention is not limited to these embodiments, and other embodiments in which the configurations of the following embodiments are appropriately replaced by those skilled in the art are also included within the scope of the present invention.

本発明にかかる生体情報取得装置900は、図1に示されるように、小型センサヘッド100と、端末に接続可能なケーブル200とを有する。 As shown in FIG. 1, a biological information acquisition device 900 according to the present invention includes a small sensor head 100 and a cable 200 connectable to a terminal.

小型センサヘッド100は、被検者の身体に取付可能な取付部110と、体導音を検知し音響信号を取得する体導音センサ120と、体導音センサ120により取得された音響信号を計測する体導音振動信号計測手段130と、音響信号から生体情報を算出する生体情報算出手段140と、を備える。 The small sensor head 100 includes an attachment part 110 that can be attached to the body of a subject, a body-conducted sound sensor 120 that detects body-conducted sound and acquires an acoustic signal, and a body-conducted sound sensor 120 that detects body-conducted sound and acquires an acoustic signal. It includes body-conducted sound vibration signal measuring means 130 for measuring, and biological information calculating means 140 for calculating biological information from the acoustic signal.

(1)取付部
図2に示されるように、小型センサヘッド100は、被検者の身体に取付可能な取付部110を有する。取付部110は、生体皮膚粘着保護シート111と、生体皮膚粘着ゲル材112と、軟性支持体113と、硬性支持体114とを有する。生体皮膚粘着保護シート111は生体皮膚粘着ゲル材112の粘着面を保護する剥離可能なシート部材である。生体皮膚粘着ゲル材112はシリコンゲル等の人体に無害な粘着性ゲルにて形成される。軟性支持体113は軟性を有するポリウレタン等の軟性高分子基材で形成され、小型センサヘッド100を被験者に取り付けた際に被験者への装着感を向上させる。硬性支持体114はポリスチレン等の硬性高分子基材で形成される。
(1) Attachment part As shown in FIG. 2, the small sensor head 100 has an attachment part 110 that can be attached to the body of the subject. The attachment part 110 includes a biological skin adhesive protection sheet 111, a biological skin adhesive gel material 112, a soft support 113, and a hard support 114. The biological skin adhesive protection sheet 111 is a removable sheet member that protects the adhesive surface of the biological skin adhesive gel material 112. The biological skin adhesive gel material 112 is made of an adhesive gel that is harmless to the human body, such as silicone gel. The soft support 113 is made of a soft polymer base material such as polyurethane, and improves the feeling of wearing the small sensor head 100 on the subject when it is attached to the subject. The rigid support 114 is formed of a rigid polymer base material such as polystyrene.

(2)体導音センサ120
小型センサヘッド100は、体導音を検知し音響信号を取得する体導音センサ120を有する。体導音センサ120は、MEMSセンサ121と、充填材122と、被覆材123とを有する。
(2) Body conduction sound sensor 120
The small sensor head 100 includes a body-conducted sound sensor 120 that detects body-conducted sound and acquires acoustic signals. Body-conducted sound sensor 120 includes a MEMS sensor 121, a filler 122, and a covering material 123.

MEMSセンサ121は、シリコンウエハを反応性イオンエッチングにて深掘りする3D-MEMS(3次元MEMS)技術により形成される。MEMSセンサ121は、センサーボードを搭載しており、センサーボードは特に限定されるものではないが例えばGY-521である。GY-521はMPU-6050を利用するためのブレイクアウト・ボードである。 The MEMS sensor 121 is formed using 3D-MEMS (three-dimensional MEMS) technology in which a silicon wafer is deeply etched by reactive ion etching. The MEMS sensor 121 is equipped with a sensor board, and the sensor board is, for example, GY-521, although it is not particularly limited. GY-521 is a breakout board for utilizing MPU-6050.

体導音センサ120は、被検者の体動の加速度を検知し加速度信号を取得する加速度センサを有する。加速度センサは、複数の異なる検出軸を有し、例えば3軸加速度センサである。 The body-conducted sound sensor 120 includes an acceleration sensor that detects the acceleration of the subject's body movement and obtains an acceleration signal. The acceleration sensor has a plurality of different detection axes, and is, for example, a three-axis acceleration sensor.

例えば、小型センサヘッド100が被験者の胸部に取り付けられた場合、被験者が呼吸をする毎に胸部が振動し、これにより体導音センサ120内の加速度センサの傾斜角が呼吸周期に合わせて変化する。また、被験者の心拍に合わせて加速度センサ傾斜角が変化する。加速度センサの傾斜角を演算して計数処理を施すことで、被験者の心拍数や呼吸数のデータが得られる。 For example, when the small sensor head 100 is attached to the subject's chest, the chest vibrates every time the subject breathes, which causes the inclination angle of the acceleration sensor in the body-conducted sound sensor 120 to change in accordance with the breathing cycle. . Furthermore, the acceleration sensor inclination angle changes in accordance with the subject's heartbeat. By calculating the inclination angle of the acceleration sensor and performing counting processing, data on the subject's heart rate and breathing rate can be obtained.

3軸分の加速度データからの傾斜角の演算処理は、特に限定されるものではないが、例えば、加速度センサの検出軸を定義し、X軸の水平面に対する傾斜角をφと定義すると、φは以下の式で計算可能である。 The calculation process of the inclination angle from the acceleration data for three axes is not particularly limited, but for example, if the detection axis of the acceleration sensor is defined and the inclination angle of the X-axis with respect to the horizontal plane is defined as φ, φ is It can be calculated using the following formula.

Figure 0007414201000001
Y軸の水平面に対する傾斜角をρと定義すると、ρは以下の式で計算可能である。
Figure 0007414201000001
When the inclination angle of the Y-axis with respect to the horizontal plane is defined as ρ, ρ can be calculated using the following formula.

Figure 0007414201000002
なおa,a,aは、それぞれ、X軸、Y軸、Z軸の加速度データである。
Figure 0007414201000002
Note that a x , a y , and a z are acceleration data of the X axis, Y axis, and Z axis, respectively.

加速度センサが検出した加速度からX軸とY軸の水平面に対する傾斜角φ,ρの少なくとも一方の変化を捉えることで、例えば呼吸のようなゆっくりとした動きを捉えることができる。これにより、心拍数や呼吸数を安定して計測することができる。 By capturing changes in at least one of the inclination angles φ and ρ of the X-axis and Y-axis with respect to the horizontal plane from the acceleration detected by the acceleration sensor, it is possible to capture slow movements such as breathing, for example. This makes it possible to stably measure heart rate and breathing rate.

また体導音センサ120は、被検者の体動の角速度を検知し角速度信号を取得する角速度センサを有することも可能である。角速度センサは、複数の異なる検出軸を有し、例えば3軸角速度センサである。角速度センサからは、角速度センサの検出軸回りの角速度又は角度の時間変化の情報が取得される。角速度センサが検出する角速度の時間変化や角速度の積分処理により得られる角度の時間変化は、それ自体が姿勢変化を表す。従って、被験者の所定部位の動きを角速度又は角度の変化で捉えることで、例えば呼吸のようなゆっくりとした動きも捉えることができる。 Further, the body-conducted sound sensor 120 can also include an angular velocity sensor that detects the angular velocity of the subject's body movement and obtains an angular velocity signal. The angular velocity sensor has a plurality of different detection axes, and is, for example, a three-axis angular velocity sensor. Information about time changes in angular velocity or angle around the detection axis of the angular velocity sensor is acquired from the angular velocity sensor. A temporal change in angular velocity detected by an angular velocity sensor or a temporal change in an angle obtained by integral processing of angular velocity itself represents a posture change. Therefore, by capturing the movement of a predetermined part of the subject in terms of changes in angular velocity or angle, it is possible to capture even slow movements such as breathing, for example.

例えば、小型センサヘッド100が被験者の胸部に取り付けられた場合、被験者が呼吸をする毎に胸部が振動し、これにより体導音センサ120内の角速度センサからの角速度データが呼吸周期に合わせて変化する。同様に、被験者の心拍に合わせて角速度センサからの角速度データが変化する。角速度センサからの角速度データに対して計数処理を施すことで、被験者の心拍数や呼吸数のデータが得られる。具体的には得られた角速度データに対してフィルタリング処理を行い、フィルタリング処理された波形に対して閾値処理を行い、波数のカウントまたは波の周期の計測を行い、心拍数または呼吸数として出力する。 For example, when the small sensor head 100 is attached to the subject's chest, the chest vibrates every time the subject breathes, which causes the angular velocity data from the angular velocity sensor in the body-conducted sound sensor 120 to change in accordance with the breathing cycle. do. Similarly, the angular velocity data from the angular velocity sensor changes in accordance with the subject's heartbeat. By performing counting processing on the angular velocity data from the angular velocity sensor, data on the subject's heart rate and breathing rate can be obtained. Specifically, the obtained angular velocity data is filtered, the filtered waveform is subjected to threshold processing, the wave number is counted or the wave period is measured, and the result is output as heart rate or respiration rate. .

体導音センサ120は、被検者の体導の加速度を検知し加速度信号を取得する加速度センサ、及び、被検者の体導の角速度を検知し角速度信号を取得する角速度センサを有することが可能である。 The body conduction sound sensor 120 may include an acceleration sensor that detects the acceleration of the body conduction of the subject and acquires an acceleration signal, and an angular velocity sensor that detects the angular velocity of the body conduction of the subject and acquires the angular velocity signal. It is possible.

本実施形態では、3軸加速度センサや3軸角速度センサを使う形態を示したが、1軸又は2軸の加速度センサや1軸又は2軸の角速度センサを使用することも可能である。なお、加速度センサや角速度センサの検出軸の方向が重力方向と平行になると変化が小さくなるため捉えにくくなるが、複数の検出軸を有する場合は、被験者がどのように動いても、重力方向と平行にならない検出軸が存在するので、3軸加速度センサや3軸角速度センサを使用することが好ましい。 In this embodiment, a configuration using a 3-axis acceleration sensor or a 3-axis angular velocity sensor is shown, but it is also possible to use a 1-axis or 2-axis acceleration sensor or a 1-axis or 2-axis angular velocity sensor. Note that if the direction of the detection axis of the acceleration sensor or angular velocity sensor is parallel to the direction of gravity, the change will be small and difficult to detect, but if the sensor has multiple detection axes, no matter how the subject moves, the direction of gravity will change. Since there are detection axes that are not parallel, it is preferable to use a 3-axis acceleration sensor or a 3-axis angular velocity sensor.

(3)体導音振動信号計測手段
小型センサヘッド100は、体導音センサ120により取得された音響信号を計測する体導音振動信号計測手段130を有する。
(3) Body-conducted sound vibration signal measuring means The small sensor head 100 has a body-conducted sound vibration signal measuring means 130 that measures the acoustic signal acquired by the body-conducted sound sensor 120.

図3に示されるように、体導音振動信号計測手段130は、音響心拍数を計測する振動心拍数計測部131と、音響呼吸数を計測する振動呼吸数計測部132と、を有する。 As shown in FIG. 3, the body-conducted sound vibration signal measuring means 130 includes a vibratory heart rate measuring section 131 that measures the acoustic heart rate, and a vibratory respiration rate measuring section 132 that measures the acoustic respiration rate.

図4に示されるように、体導音振動信号計測手段130は、体導音センサ120からの音響信号を受けると、所定時間における音響信号を送受信部133から記録部134を介し、制御部135にてフーリエ変換した音響変換信号を、振動心拍数計測部131及び振動呼吸数計測部132に送信する。制御部135は、体導音振動信号計測手段130の動作を制御するように構成されており、メモリとプロセッサを備えている。メモリは、コンピュータ可読命令(プログラム)を記憶するように構成されている。例えば、メモリは、各種プログラム等が格納されたROMやプロセッサにより実行される各種プログラム等が格納される複数ワークエリアを有するRAM等から構成されてもよい。また、メモリは、フラッシュメモリ等によって構成されてもよい。プロセッサは、例えばCPU、MPU及び/又はGPUである。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。記録部134は、例えば、HDD、SSD、フラッシュメモリ等のストレージであって、プログラムや各種データを格納するように構成されている。 As shown in FIG. 4, when the body-conducted sound vibration signal measuring means 130 receives the acoustic signal from the body-conducted sound sensor 120, the body-conducted sound vibration signal measuring means 130 transmits the acoustic signal at a predetermined time from the transmitting/receiving section 133 to the recording section 134, and sends the acoustic signal to the control section 135. The acoustic conversion signal subjected to Fourier transformation is transmitted to the oscillating heart rate measuring section 131 and the oscillating respiration rate measuring section 132. The control unit 135 is configured to control the operation of the body-conducted sound vibration signal measuring means 130, and includes a memory and a processor. The memory is configured to store computer readable instructions (programs). For example, the memory may include a ROM that stores various programs and the like, a RAM that has multiple work areas that store various programs that are executed by the processor, and the like. Further, the memory may be configured by a flash memory or the like. The processor is, for example, a CPU, MPU and/or GPU. The CPU may be composed of multiple CPU cores. A GPU may be composed of multiple GPU cores. The recording unit 134 is, for example, a storage such as an HDD, an SSD, or a flash memory, and is configured to store programs and various data.

振動心拍数計測部131においては、ハイパスフィルタによって受信した音響変換信号から所定周波数未満の信号を除去し、低周波除去信号がピークとなる周波数を判定して音響心拍数を演算する。また、振動呼吸数計測部132においては、ローパスフィルタによって受信した音響変換信号から所定周波数以上の信号を除去し、高周波除去信号がピークとなる周波数を判定して音響呼吸数を演算する。 The vibrational heart rate measurement unit 131 removes signals below a predetermined frequency from the received acoustic conversion signal using a high-pass filter, determines the frequency at which the low frequency removed signal peaks, and calculates the acoustic heart rate. In addition, in the oscillatory respiration rate measurement unit 132, a signal having a predetermined frequency or higher is removed from the received acoustic conversion signal using a low-pass filter, and the frequency at which the high frequency removed signal reaches a peak is determined to calculate the acoustic respiration rate.

なお本実地形態においては、体導音振動信号計測手段130は、音響心拍数を計測する振動心拍数計測部131と、音響呼吸数を計測する振動呼吸数計測部132と、を有するものであるが、本発明にかかる生体情報取得装置は心拍数及び呼吸数を計測するものに限定されず、例えば腸の蠕動運動情報等を計測することも可能である。 In this practical embodiment, the body-conducted sound vibration signal measuring means 130 includes a vibratory heart rate measuring section 131 that measures the acoustic heart rate, and a vibratory respiration rate measuring section 132 that measures the acoustic respiration rate. However, the biological information acquisition device according to the present invention is not limited to measuring heart rate and respiration rate, but can also measure information on intestinal peristalsis, for example.

(4)生体情報算出手段
図3に示されるように、小型センサヘッド100は、音響信号から生体情報を算出する生体情報算出手段140を有する。
(4) Biological information calculation means As shown in FIG. 3, the small sensor head 100 has a biological information calculation means 140 that calculates biological information from acoustic signals.

生体情報は、特に限定されるものではないが、例えばストレス指数、疲労度、腸の蠕動度、血圧等が挙げられ、好ましくはストレス指数ある。 The biological information is not particularly limited, but includes, for example, stress index, degree of fatigue, degree of intestinal peristalsis, blood pressure, etc., and preferably includes stress index.

自律神経系は、血液循環・呼吸・体温調節等、意識の介在なしに制御するシステムで、交感神経系と副交感神経系がある。交感神経系は身体の活動レベルや運動能力を高める方向に働き、副交感神経系は心身の鎮静化・エネルギーの消費抑制と蓄えの方向に働く。心拍変動交感神経と副交感神経の両方に影響を与える。即ちストレス指数は下記式にて考えられる。 The autonomic nervous system is a system that controls blood circulation, breathing, body temperature regulation, etc. without conscious intervention, and includes the sympathetic nervous system and the parasympathetic nervous system. The sympathetic nervous system works to increase the body's activity level and athletic ability, while the parasympathetic nervous system works to calm the mind and body and suppress and save energy. Heart rate variability affects both the sympathetic and parasympathetic nervous systems. That is, the stress index can be considered using the following formula.

Figure 0007414201000003
心電図を周波数解析してパワースペクトルにしたときに、LF(Low Frequency)とHF(High Frequency)の2つの領域に分けられる。LF成分は交感神経または副交感神経が活性化しているときに増加し、HF成分は副交感神経が活性化している場合に増加する。そのためLF/HFを指標とすることにより、数値が高いときはストレスがあり低いときはリラックスしていると判定することができる。
Figure 0007414201000003
When an electrocardiogram is frequency-analyzed into a power spectrum, it can be divided into two regions: LF (Low Frequency) and HF (High Frequency). The LF component increases when the sympathetic or parasympathetic nerves are activated, and the HF component increases when the parasympathetic nerve is activated. Therefore, by using LF/HF as an index, it can be determined that when the value is high, you are stressed, and when the value is low, you are relaxed.

また、呼吸変動に対応する高周波変動成分(HF成分)と血圧変動であるメイヤー波(Mayer wave)に対応する低周波成分(LF成分)を抽出し、両者の大きさを比較することによりストレス指数を評価することも可能である。即ち、生体情報算出手段140は、振動呼吸数計測部132により計測された呼吸変動に対応する高周波変動成分(HF成分)と、振動心拍数計測部131により計測された血圧変動であるメイヤー波(Mayer wave)に対応する低周波成分(LF成分)との比であるLF/HFをストレス指数として生体情報を算出可能である。例えばパワースペクトルのLF成分の領域(0.05Hzから0.15Hzまで)、及びHF成分の領域(0.15Hzから0.40Hzまで)の強度を合計した値(積分値)を用いてLF/HFを評価することができる。 In addition, by extracting high frequency fluctuation components (HF component) corresponding to respiratory fluctuations and low frequency components (LF component) corresponding to Mayer waves, which are blood pressure fluctuations, and comparing the magnitude of the two, we can calculate the stress index. It is also possible to evaluate That is, the biological information calculation means 140 calculates the high frequency fluctuation component (HF component) corresponding to the respiratory fluctuation measured by the oscillating respiration rate measuring section 132 and the Mayer wave (HF component) which is the blood pressure fluctuation measured by the oscillating heart rate measuring section 131. Biological information can be calculated using LF/HF, which is the ratio of the low frequency component (LF component) corresponding to the Mayer wave), as a stress index. For example, evaluate LF/HF using the sum value (integral value) of the intensities of the LF component region (0.05Hz to 0.15Hz) and the HF component region (0.15Hz to 0.40Hz) of the power spectrum. Can be done.

リラックスしている状態、つまり副交感神経が活性化しているときには、呼吸変動を反映したHF成分と血圧変動を反映したLF成分も現れるが、ストレス状態にある場合、つまり交感神経が活性化しているときには、LF成分が現れる一方、HF成分が減少する。従って、リラックス状態にあると相対的にHF成分が大きくなるのでLF/HFの値は小さくなり、反対に、ストレス状態にあるとHFに対してLF成分が大きくなるのでLF/HFの値が大きくなる。 In a relaxed state, that is, when the parasympathetic nervous system is activated, an HF component that reflects respiratory fluctuations and a LF component that reflects blood pressure fluctuations also appear, but in a state of stress, that is, when the sympathetic nervous system is activated. , the HF component decreases while the LF component appears. Therefore, when you are in a relaxed state, the HF component becomes relatively large, so the value of LF/HF becomes small.On the other hand, when you are in a state of stress, the LF component becomes large relative to HF, so the value of LF/HF becomes large. Become.

算出された生体情報は接続された外部機器へ送信される。外部機器は図4 に示されるように電源部810、表示部820、報知部830を有する。送信された生体情報は表示部820に表示され、報知部830により測定者に報知される。 The calculated biometric information is sent to the connected external device. The external device includes a power supply section 810, a display section 820, and a notification section 830, as shown in FIG. The transmitted biometric information is displayed on the display section 820, and is notified to the measurer by the notification section 830.

生体情報の取得に利用できる。 It can be used to obtain biological information.

100:小型センサヘッド
110:取付部
111:生体皮膚粘着保護シート
112:生体皮膚粘着ゲル材
113:軟性支持体
114:硬性支持体
120:体導音センサ
121:MEMSセンサ
122:充填材
123:被覆材
130:体導音振動信号計測手段
131:振動心拍数計測部
132:振動呼吸数計測部
133:送受信部
134:記録部
135:制御部
140:生体情報算出手段
200:ケーブル
810:電源部
820:表示部
830:報知部
900:生体情報取得装置
100: Small sensor head
110: Mounting part
111: Biological skin adhesive protection sheet
112: Biological skin adhesive gel material
113: Soft support
114: Rigid support
120: Body conduction sound sensor
121:MEMS sensor
122: Filling material
123: Covering material
130: Body-conducted sound vibration signal measurement means
131: Vibratory heart rate measurement section
132: Vibratory respiration rate measuring section
133: Transmission/reception section
134: Recording Department
135:Control unit
140: Biological information calculation means
200: Cable
810: Power supply section
820:Display section
830: Information department
900: Biological information acquisition device

Claims (2)

小型センサヘッドを有する生体情報取得装置であって、
前記小型センサヘッドは、
被検者の身体に取付可能な取付部と、
体導音を検知し音響信号として取得する加速度センサとしてのMEMSセンサと、
前記MEMSセンサにより取得された音響信号に基づいて音響心拍数を計測する振動心拍数計測部及び音響呼吸数を計測する振動呼吸数計測部を有する体導音振動信号計測手段と、
前記音響信号から生体情報を算出する生体情報算出手段と、を備え
前記生体情報算出手段は、振動呼吸数計測部により計測された呼吸変動と、振動心拍数計測部により計測された心拍変動との比である呼吸変動/心拍変動をストレス指数として生体情報を算出する、
とを特徴とする生体情報取得装置。
A biological information acquisition device having a small sensor head,
The small sensor head is
an attachment part that can be attached to the body of the subject;
A MEMS sensor as an acceleration sensor that detects body-conducted sound and acquires it as an acoustic signal,
Body-conducted sound vibration signal measuring means having a vibratory heart rate measuring section that measures an acoustic heart rate based on the acoustic signal acquired by the MEMS sensor and a vibratory respiration rate measuring section that measures an acoustic respiration rate;
A biological information calculation means for calculating biological information from the acoustic signal ,
The biological information calculation means calculates biological information using respiratory fluctuation/heart rate fluctuation, which is a ratio of respiratory fluctuation measured by the oscillating respiration rate measuring section and heart rate fluctuation measured by the oscillating heart rate measuring section, as a stress index. ,
A biological information acquisition device characterized by :
前記体導音振動信号計測手段は、前記MEMSセンサにより取得された音響信号をフーリエ変換する音響信号変換部を有し、
前記振動心拍数計測部は、前記音響信号変換部で得られた音響変換信号から低周波成分を除去する低周波除去部と、該低周波除去部で得られた低周波除去信号に基づいて音響心拍数を演算する音響心拍数演算部を有し、
前記振動呼吸数計測部は、前記音響信号変換部で得られた音響変換信号から高周波成分を除去する高周波除去部と、該高周波除去部で得られた高周波除去信号に基づいて音響呼吸数を演算する音響呼吸数演算部を有していることを特徴とする請求項1に記載の生体情報取得装置。
The body-conducted sound vibration signal measuring means includes an acoustic signal converter that performs Fourier transform on the acoustic signal acquired by the MEMS sensor,
The vibration heart rate measuring section includes a low frequency removal section that removes a low frequency component from the acoustic conversion signal obtained by the acoustic signal conversion section, and an acoustic It has an acoustic heart rate calculation section that calculates the heart rate,
The oscillatory respiration rate measurement unit includes a high frequency removal unit that removes high frequency components from the acoustic conversion signal obtained by the acoustic signal conversion unit, and calculates an acoustic respiration rate based on the high frequency removed signal obtained by the high frequency removal unit. 2. The biological information acquisition device according to claim 1, further comprising an acoustic respiration rate calculation unit.
JP2020133527A 2020-08-06 2020-08-06 Biometric information acquisition device Active JP7414201B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020133527A JP7414201B2 (en) 2020-08-06 2020-08-06 Biometric information acquisition device
JP2023209311A JP2024015365A (en) 2020-08-06 2023-12-12 Biometric information acquisition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020133527A JP7414201B2 (en) 2020-08-06 2020-08-06 Biometric information acquisition device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023209311A Division JP2024015365A (en) 2020-08-06 2023-12-12 Biometric information acquisition device

Publications (3)

Publication Number Publication Date
JP2022029919A JP2022029919A (en) 2022-02-18
JP2022029919A5 JP2022029919A5 (en) 2022-04-20
JP7414201B2 true JP7414201B2 (en) 2024-01-16

Family

ID=80323752

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020133527A Active JP7414201B2 (en) 2020-08-06 2020-08-06 Biometric information acquisition device
JP2023209311A Pending JP2024015365A (en) 2020-08-06 2023-12-12 Biometric information acquisition device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023209311A Pending JP2024015365A (en) 2020-08-06 2023-12-12 Biometric information acquisition device

Country Status (1)

Country Link
JP (2) JP7414201B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009138923A1 (en) 2008-05-12 2009-11-19 Koninklijke Philips Electronics N.V. A method and apparatus for measuring and reducing mental stress
JP2010234000A (en) 2009-03-31 2010-10-21 Yamaguchi Prefectural Industrial Technology Institute Mental stress evaluation, device using the same, mental stress evaluation method, and program for the same
JP2012105762A (en) 2010-11-16 2012-06-07 Seiko Epson Corp Vital sign measurement apparatus and body motion detection apparatus
JP2013244287A (en) 2012-05-28 2013-12-09 Bifristec Kk Specimen information processor
JP2016535643A (en) 2013-08-09 2016-11-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Processing apparatus and processing method for determining a respiratory signal of a subject
WO2017141976A1 (en) 2016-02-15 2017-08-24 ヘルスセンシング株式会社 Device and method for measuring sleep state, phase coherence calculation device, body vibration signal measurement device, stress level mesaurement device, sleep state measurement device, and cardiac waveform extraction method
JP2018047023A (en) 2016-09-21 2018-03-29 国立大学法人 筑波大学 Biological data measuring system and data acquisition device
JP2018068465A (en) 2016-10-26 2018-05-10 セイコーエプソン株式会社 Biological information processing device and biological information processing method
US20180214030A1 (en) 2015-08-28 2018-08-02 Université Libre de Bruxelles Relating to heart monitoring
JP2018126511A (en) 2017-02-07 2018-08-16 国立大学法人山口大学 Cardiac rate and respiration rate measuring device
CN110772225A (en) 2019-10-21 2020-02-11 思澜科技(成都)有限公司 Human body physiological signal acquisition equipment and method
JP2020092817A (en) 2018-11-30 2020-06-18 株式会社リコー Biological function evaluation device, biological function evaluation method, and program

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009138923A1 (en) 2008-05-12 2009-11-19 Koninklijke Philips Electronics N.V. A method and apparatus for measuring and reducing mental stress
JP2010234000A (en) 2009-03-31 2010-10-21 Yamaguchi Prefectural Industrial Technology Institute Mental stress evaluation, device using the same, mental stress evaluation method, and program for the same
JP2012105762A (en) 2010-11-16 2012-06-07 Seiko Epson Corp Vital sign measurement apparatus and body motion detection apparatus
JP2013244287A (en) 2012-05-28 2013-12-09 Bifristec Kk Specimen information processor
JP2016535643A (en) 2013-08-09 2016-11-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Processing apparatus and processing method for determining a respiratory signal of a subject
US20180214030A1 (en) 2015-08-28 2018-08-02 Université Libre de Bruxelles Relating to heart monitoring
WO2017141976A1 (en) 2016-02-15 2017-08-24 ヘルスセンシング株式会社 Device and method for measuring sleep state, phase coherence calculation device, body vibration signal measurement device, stress level mesaurement device, sleep state measurement device, and cardiac waveform extraction method
JP2018047023A (en) 2016-09-21 2018-03-29 国立大学法人 筑波大学 Biological data measuring system and data acquisition device
JP2018068465A (en) 2016-10-26 2018-05-10 セイコーエプソン株式会社 Biological information processing device and biological information processing method
JP2018126511A (en) 2017-02-07 2018-08-16 国立大学法人山口大学 Cardiac rate and respiration rate measuring device
JP2020092817A (en) 2018-11-30 2020-06-18 株式会社リコー Biological function evaluation device, biological function evaluation method, and program
CN110772225A (en) 2019-10-21 2020-02-11 思澜科技(成都)有限公司 Human body physiological signal acquisition equipment and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孟子薇、中村浩士 他,体導音センサを用いた簡易なSAS検知システム,産業応用工学会全国大会2019 講演論文集,日本,産業応用工学会,2019年09月18日,pp.29-30

Also Published As

Publication number Publication date
JP2024015365A (en) 2024-02-01
JP2022029919A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
US10178964B2 (en) Heart monitoring system
KR101656611B1 (en) Method for obtaining oxygen desaturation index using unconstrained measurement of bio-signals
US10335080B2 (en) Biomechanical activity monitoring
RU2515404C2 (en) Respiration monitors and methods of respiration monitoring
FI126600B (en) Detection of sleep phenomenon using ballistocardiography
JP5797208B2 (en) Method and apparatus for determining respiratory signals
CN110251133B (en) Method and apparatus for respiratory monitoring
EP3927234B1 (en) A sleep monitoring system and method
US20170265799A1 (en) Fetal movement measuring device
US10631739B2 (en) Monitoring vital signs
WO2013132844A1 (en) Pulse monitor and program
WO2004103176A1 (en) Balance function diagnostic system and method balance function diagnostic system and method
WO2013179189A1 (en) Separating cardiac signal and respiratory signal from vital signs
JP5578515B2 (en) Biological information processing program, biological information processing apparatus, biological information processing method, and biological information processing system
Zhang et al. Monitoring cardio-respiratory and posture movements during sleep: What can be achieved by a single motion sensor
JP7414201B2 (en) Biometric information acquisition device
JP6191284B2 (en) Determination apparatus, method and program
US20210228098A1 (en) Pulse wave conduction parameter measurement system and method
US20210127991A1 (en) Pulse wave conduction parameter measuring method and pulse wave conduction parameter processing device
Miletić et al. Validation of the new wearable instrument for the pendulum test based on inertial sensors
JP2022029919A5 (en)
CN115363535A (en) Sleep detection device, sleep detection data collection platform and sleep quality analysis system
CN117860223A (en) Heart rate variability parameter acquisition and calculation method based on IMU signals

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201223

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231214

R150 Certificate of patent or registration of utility model

Ref document number: 7414201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150