JP7412887B2 - Air conditioner and flow path switching valve - Google Patents

Air conditioner and flow path switching valve Download PDF

Info

Publication number
JP7412887B2
JP7412887B2 JP2019008841A JP2019008841A JP7412887B2 JP 7412887 B2 JP7412887 B2 JP 7412887B2 JP 2019008841 A JP2019008841 A JP 2019008841A JP 2019008841 A JP2019008841 A JP 2019008841A JP 7412887 B2 JP7412887 B2 JP 7412887B2
Authority
JP
Japan
Prior art keywords
flow path
port
refrigerant
switching valve
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019008841A
Other languages
Japanese (ja)
Other versions
JP2020109342A (en
Inventor
重貴 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2019008841A priority Critical patent/JP7412887B2/en
Priority to CN201980087572.9A priority patent/CN113227663B/en
Priority to PCT/JP2019/045808 priority patent/WO2020141582A1/en
Priority to EP19908011.0A priority patent/EP3889515A4/en
Publication of JP2020109342A publication Critical patent/JP2020109342A/en
Priority to US17/356,910 priority patent/US20210318041A1/en
Application granted granted Critical
Publication of JP7412887B2 publication Critical patent/JP7412887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves

Description

本開示は、空気調和機及び流路切換弁に関する。 The present disclosure relates to an air conditioner and a flow path switching valve.

特許文献1には、室内ユニットと、室外ユニットとを備えた空気調和機が開示されている。室内ユニットと繋がる冷媒配管には、電磁弁や膨張弁が接続される。冷媒漏洩検知器が室内ユニットでの冷媒の漏洩を検知すると、電磁弁や膨張弁が閉鎖される。 Patent Document 1 discloses an air conditioner that includes an indoor unit and an outdoor unit. A solenoid valve and an expansion valve are connected to the refrigerant pipe connected to the indoor unit. When the refrigerant leak detector detects a refrigerant leak in the indoor unit, the solenoid valve and expansion valve are closed.

特開2012-13339号公報Japanese Patent Application Publication No. 2012-13339

特許文献1に開示のような電磁弁や膨張弁は、内部流路を弁によって開閉する構造である。このため、その構造上、内部流路は比較的狭くなる。特許文献1に開示のような遮断弁は、冷媒漏洩時においては閉状態となるが、それ以外の通常運転時には基本的には開状態となる。このため、遮断弁を設けることに起因して、通常運転における冷媒流路の圧力損失が増大してしまう問題があった。 A solenoid valve or an expansion valve as disclosed in Patent Document 1 has a structure in which an internal flow path is opened and closed by a valve. Therefore, due to its structure, the internal flow path is relatively narrow. A shutoff valve as disclosed in Patent Document 1 is in a closed state when a refrigerant leaks, but is basically in an open state during normal operation other than that. For this reason, there is a problem in that the pressure loss in the refrigerant flow path during normal operation increases due to the provision of the cutoff valve.

本開示は、遮断弁による圧力損失を低減することである。 The present disclosure is to reduce pressure loss through isolation valves.

第1の態様は、圧縮機(21)及び熱源熱交換器(22)が接続される熱源回路(20a)と、利用熱交換器(31)が接続される利用回路(30a)とを含み、冷凍サイクルが行われる冷媒回路(10a)を備えた空気調和機であって、前記冷媒回路(10a)は、前記利用回路(30a)の両端にそれぞれ接続される冷媒流路(41,42)を含み、2つの前記冷媒流路(41,42)の各々に接続される遮断弁をさらに備え、2つの前記遮断弁の少なくとも一方は、前記利用回路(30a)で冷媒の漏洩が生じると、前記冷媒流路(41,42)を遮断するように流路を切り換える流路切換弁(V1,V2)で構成されることを特徴とする空気調和機である。 The first aspect includes a heat source circuit (20a) to which a compressor (21) and a heat source heat exchanger (22) are connected, and a utilization circuit (30a) to which a utilization heat exchanger (31) is connected, The air conditioner is equipped with a refrigerant circuit (10a) in which a refrigeration cycle is performed, and the refrigerant circuit (10a) has refrigerant channels (41, 42) connected to both ends of the utilization circuit (30a), respectively. further comprising a cutoff valve connected to each of the two refrigerant flow paths (41, 42), and at least one of the two cutoff valves is configured to shut off the refrigerant when leakage occurs in the utilization circuit (30a). This air conditioner is characterized by being configured with flow path switching valves (V1, V2) that switch the flow paths so as to block the refrigerant flow paths (41, 42).

第1の態様では、遮断弁が流路切換弁(V1,V2)で構成されるため、例えば電磁弁や膨張弁と比較して、遮断弁による圧力損失を低減できる。 In the first aspect, since the cutoff valve is composed of the flow path switching valve (V1, V2), pressure loss due to the cutoff valve can be reduced compared to, for example, a solenoid valve or an expansion valve.

第2の態様は、第1の態様において、前記冷媒流路(41,42)は、前記流路切換弁(V1,V2)における前記熱源回路(20a)側に形成される第1流路(41a,42a)と、前記流路切換弁(V1,V2)における前記利用回路(30a)側に形成される第2流路(41b,42b)とを含み、前記流路切換弁(V1,V2)は、前記第1流路(41a,42a)に接続する第1ポート(P1)と、前記第2流路(41b,42b)に接続する第2ポート(P2)と、第3ポート(P3)と、第4ポート(P4)とを有する四方切換弁(51,52)で構成されることを特徴とする空気調和機である。 In a second aspect, in the first aspect, the refrigerant flow path (41, 42) is a first flow path (41, 42) formed on the heat source circuit (20a) side of the flow path switching valve (V1, V2). 41a, 42a) and a second flow path (41b, 42b) formed on the usage circuit (30a) side of the flow path switching valve (V1, V2), ) is a first port (P1) connected to the first flow path (41a, 42a), a second port (P2) connected to the second flow path (41b, 42b), and a third port (P3). ), and a four-way switching valve (51, 52) having a fourth port (P4).

第2の態様では、流路切換弁(V1,V2)が四方切換弁(51,52)で構成される。四方切換弁(51,52)を第1状態にすると、各冷媒流路(41,42)がそれぞれ導通する。四方切換弁(51,52)を第2状態にすると、各冷媒流路(41,42)がそれぞれ遮断される。 In the second aspect, the flow path switching valves (V1, V2) are constituted by four-way switching valves (51, 52). When the four-way switching valve (51, 52) is placed in the first state, each refrigerant flow path (41, 42) becomes conductive. When the four-way switching valve (51, 52) is placed in the second state, each refrigerant flow path (41, 42) is blocked.

第3の態様は、第2の態様において、前記冷媒回路(10a)は、前記第1流路(41a,42a)の高圧冷媒を前記第3ポート(P3)に導入する高圧導入回路(60)を含み、前記四方切換弁(51,52)は、前記第3ポート(P3)に導入された高圧冷媒を駆動源とする差圧駆動式であることを特徴とする空気調和機である。 In a third aspect, in the second aspect, the refrigerant circuit (10a) is a high-pressure introduction circuit (60) that introduces the high-pressure refrigerant in the first flow path (41a, 42a) into the third port (P3). The air conditioner is characterized in that the four-way switching valve (51, 52) is a differential pressure drive type driven by the high-pressure refrigerant introduced into the third port (P3).

第3の態様では、第1流路(41a,42a)を流れる高圧冷媒が第3ポート(P3)に導入される。この高圧冷媒の圧力を駆動源として四方切換弁(51,52)の流路が切り換えられる。 In the third aspect, the high-pressure refrigerant flowing through the first flow path (41a, 42a) is introduced into the third port (P3). The flow paths of the four-way switching valves (51, 52) are switched using the pressure of this high-pressure refrigerant as a driving source.

第4の態様は、第3の態様において、前記冷媒回路(10a)は、前記熱源熱交換器(22)を放熱器とし前記利用熱交換器(31)を蒸発器とする第1冷凍サイクルと、前記利用熱交換器(31)を放熱器とし前記熱源熱交換器(22)を蒸発器とする第2冷凍サイクルとを行うように構成され、前記高圧導入回路(60)は、少なくとも、2つの前記第1流路(41a,42a)のうち圧力の高い第1流路(41a,42a)の高圧冷媒を、前記第3ポート(P3)に導入するように構成されることを特徴とする空気調和機である。 In a fourth aspect, in the third aspect, the refrigerant circuit (10a) is a first refrigeration cycle in which the heat source heat exchanger (22) is a radiator and the utilization heat exchanger (31) is an evaporator. , a second refrigeration cycle in which the utilization heat exchanger (31) is a radiator and the heat source heat exchanger (22) is an evaporator, and the high pressure introduction circuit (60) has at least two The high-pressure refrigerant in the first flow path (41a, 42a) having a higher pressure among the two first flow paths (41a, 42a) is introduced into the third port (P3). It is an air conditioner.

第4の態様では、第1冷凍サイクル及び第2冷凍サイクルの双方において、圧力の高い高圧冷媒を第3ポート(P3)に導入できる。この高圧冷媒を四方切換弁(51,52)の駆動源として利用できる。 In the fourth aspect, high-pressure refrigerant can be introduced into the third port (P3) in both the first refrigeration cycle and the second refrigeration cycle. This high-pressure refrigerant can be used as a driving source for the four-way switching valves (51, 52).

第5の態様は、第4の態様において、前記高圧導入回路(60)は、液側の前記冷媒流路(41)の第1流路(41a,42a)と前記第3ポート(P3)とを連通させる液側導入路(61)と、ガス側の前記冷媒流路(42)の第1流路(41a,42a)と前記第3ポート(P3)とを連通させるガス側導入路(62)とを含み、前記液側導入路(61)には、前記第1冷凍サイクル時に開放される第1開閉弁(64)が設けられ、前記ガス側導入路(62)には、前記第2冷凍サイクル時に開放される第2開閉弁(65)が設けられることを特徴とする空気調和機である。 In a fifth aspect, in the fourth aspect, the high pressure introduction circuit (60) connects the first flow path (41a, 42a) of the refrigerant flow path (41) on the liquid side and the third port (P3). and a gas side introduction path (62) that connects the first flow path (41a, 42a) of the refrigerant flow path (42) on the gas side with the third port (P3). ), the liquid side introduction path (61) is provided with a first on-off valve (64) that is opened during the first refrigeration cycle, and the gas side introduction path (62) is provided with a first on-off valve (64) that is opened during the first refrigeration cycle. This air conditioner is characterized by being provided with a second on-off valve (65) that is opened during the refrigeration cycle.

第5の態様では、第1冷凍サイクル時に第1開閉弁(64)が開放されることで、高圧の液冷媒を第3ポート(P3)に導入できる。第2冷凍サイクル時に第2開閉弁(65)が開放されることで、高圧のガス冷媒を第3ポート(P3)に導入できる。 In the fifth aspect, by opening the first on-off valve (64) during the first refrigeration cycle, high-pressure liquid refrigerant can be introduced into the third port (P3). By opening the second on-off valve (65) during the second refrigeration cycle, high-pressure gas refrigerant can be introduced into the third port (P3).

第6の態様は、第3乃至第5のいずれか1つにおいて、前記四方切換弁(51,52)は、閉塞された第4ポート(P4)を有し、第1状態の前記四方切換弁(51,52)は、第1ポート(P1)と第2ポート(P2)とを連通させ且つ第3ポート(P3)と第4ポート(P4)とを連通させ、
第2状態の前記四方切換弁(51,52)は、第1ポート(P1)と第3ポート(P3)とを連通させ且つ第2ポート(P2)と第4ポート(P4)とを連通させることを特徴とする。
In a sixth aspect, in any one of the third to fifth aspects, the four-way switching valve (51, 52) has a closed fourth port (P4), and the four-way switching valve is in a first state. (51, 52) communicates between the first port (P1) and the second port (P2) and communicates between the third port (P3) and the fourth port (P4),
The four-way switching valve (51, 52) in the second state communicates between the first port (P1) and the third port (P3) and communicates between the second port (P2) and the fourth port (P4). It is characterized by

第6の態様では、四方切換弁(51,52)が第1状態になると、第1ポート(P1)と第2ポート(P2)とが連通し、冷媒流路(41,42)が導通する。第3ポート(P3)側の冷媒は、閉塞された第4ポート(P4)を通過しない。四方切換弁(51,52)が第2状態になると、利用回路(30a)は実質的に第4ポート(P4)に閉塞される。利用回路(30a)は閉回路になる。 In the sixth aspect, when the four-way switching valve (51, 52) enters the first state, the first port (P1) and the second port (P2) communicate with each other, and the refrigerant flow path (41, 42) becomes conductive. . The refrigerant on the third port (P3) side does not pass through the blocked fourth port (P4). When the four-way switching valve (51, 52) enters the second state, the utilization circuit (30a) is substantially closed to the fourth port (P4). The utilized circuit (30a) becomes a closed circuit.

第7の態様は、第2乃至6の態様のいずれか1つにおいて、前記四方切換弁(51,52)は、前記利用回路(30a)に連通する低圧管(55,56)を有し、高圧冷媒と前記低圧管(55,56)の内圧との差圧によって第2状態に切り換わることを特徴とする空気調和機である。 In a seventh aspect, in any one of the second to sixth aspects, the four-way switching valve (51, 52) has a low pressure pipe (55, 56) communicating with the utilization circuit (30a), The air conditioner is characterized in that the air conditioner is switched to the second state by a pressure difference between the high pressure refrigerant and the internal pressure of the low pressure pipes (55, 56).

第7の態様では、利用回路(30a)で冷媒の漏洩が発生すると、利用回路(30a)の内圧が低下し、ひいては低圧管(55,56)の内圧が下がる。四方切換弁(51,52)は、高圧冷媒と、この状態の低圧管(55,56)の内圧との差圧を利用して第2状態に切り換わる。冷媒が漏洩すると、四方切換弁(51,52)を自動的に第2状態に切り換えることができる。 In the seventh aspect, when refrigerant leakage occurs in the utilization circuit (30a), the internal pressure of the utilization circuit (30a) decreases, and as a result, the internal pressure of the low pressure pipes (55, 56) decreases. The four-way switching valve (51, 52) switches to the second state using the pressure difference between the high-pressure refrigerant and the internal pressure of the low-pressure pipe (55, 56) in this state. When refrigerant leaks, the four-way switching valve (51, 52) can be automatically switched to the second state.

第8の態様は、第1の態様において、前記冷媒流路(41,42)は、前記流路切換弁(V1,V2)における前記熱源回路(20a)側に形成される第1流路(41a,42a)と、前記流路切換弁(V1,V2)における前記利用回路(30a)側に形成される第2流路(41b,42b)とを含み、前記流路切換弁(V1,V2)は、前記第1流路(41a,42a)に接続する第1ポート(P1)と、前記第2流路(41b,42b)に接続する第2ポート(P2)と、内部流路(77)が形成される回転部(76)と、前記回転部(76)を回転駆動する電動機(75)とを有する電動回転式であり、前記流路切換弁(V1,V2)の前記回転部(76)は、前記内部流路(77)を介して前記第1ポート(P1)と前記第2ポート(P2)とを連通させる第1状態の回転角度位置と、前記第1ポート(P1)及び前記第2ポート(P2)を閉塞する第2状態の回転角度位置になる。 In an eighth aspect, in the first aspect, the refrigerant passage (41, 42) is a first passage (41, 42) formed on the heat source circuit (20a) side of the passage switching valve (V1, V2). 41a, 42a) and a second flow path (41b, 42b) formed on the usage circuit (30a) side of the flow path switching valve (V1, V2), ) includes a first port (P1) connected to the first flow path (41a, 42a), a second port (P2) connected to the second flow path (41b, 42b), and an internal flow path (77). ) of the flow path switching valves (V1, V2). 76) is a rotation angle position in a first state where the first port (P1) and the second port (P2) communicate with each other via the internal flow path (77), and the first port (P1) and the second port (P2) communicate with each other. The rotation angle position is a second state in which the second port (P2) is closed.

第8の態様では、電動機(75)によって回転部(76)の回転角度位置が変更されることで、電動回転式の流路切換弁(V1,V2)が第1状態と第2状態とに切り換えられる。 In the eighth aspect, the electric motor (75) changes the rotation angle position of the rotating part (76), so that the electric rotary flow path switching valves (V1, V2) are switched between the first state and the second state. Can be switched.

第9の態様は、第8の態様において、前記流路切換弁(V1,V2)は、閉塞された第3ポート(P3)を有する電動回転式の三方切換弁(71,72)で構成され、前記第1状態の前記三方切換弁(71,72)の前記回転部(76)は、前記内部流路(77)を介して前記第1ポート(P1)と前記第2ポート(P2)とを連通させる回転角度位置となり、前記第2状態の前記三方切換弁(71,72)の前記回転部(76)は、前記第1ポート(P1)及び前記第2ポート(P2)の一方が前記内部流路(77)を介して第3ポート(P3)と連通し、該第1ポート(P1)及び第2ポート(P2)の他方が回転部(76)によって閉塞される回転角度位置になることを特徴とする空気調和機である。 In a ninth aspect, in the eighth aspect, the flow path switching valves (V1, V2) are configured with electric rotary three-way switching valves (71, 72) having a closed third port (P3). , the rotating part (76) of the three-way switching valve (71, 72) in the first state connects the first port (P1) and the second port (P2) via the internal flow path (77). The rotary part (76) of the three-way switching valve (71, 72) in the second state is at a rotational angle position where one of the first port (P1) and the second port (P2) communicates with the other. It communicates with the third port (P3) via the internal flow path (77), and is in a rotational angular position where the other of the first port (P1) and the second port (P2) is closed by the rotating part (76). This air conditioner is characterized by:

第9の態様では、電動機(75)によって回転部(76)の回転角度位置が変更されることで、電動回転式の三方切換弁(71,72)が第1状態と第2状態とに切り換えられる。 In the ninth aspect, the electric rotary three-way switching valve (71, 72) is switched between the first state and the second state by changing the rotation angle position of the rotating part (76) by the electric motor (75). It will be done.

第10の態様は、第1乃至9の態様のいずれか1つにおいて、前記流路切換弁(V1,V2)は、前記2つの冷媒流路(41,42)のうちガス側の前記冷媒流路(42)に少なくとも接続されることを特徴とする空気調和機である。 In a tenth aspect, in any one of the first to ninth aspects, the flow path switching valve (V1, V2) is configured to control the refrigerant flow on the gas side of the two refrigerant flow paths (41, 42). The air conditioner is characterized in that it is connected at least to a channel (42).

第10の態様では、液側の冷媒流路(41)と比較して配管径の大きいガス側の冷媒流路(42)に流路切換弁(V1,V2)が接続される。このため、ガス側の冷媒流路(42)における圧力損失の低下を抑制できる。 In the tenth aspect, flow path switching valves (V1, V2) are connected to the gas side refrigerant flow path (42), which has a larger piping diameter than the liquid side refrigerant flow path (41). Therefore, a decrease in pressure loss in the gas-side refrigerant flow path (42) can be suppressed.

第11の態様は、第1乃至10のいずれか1つの態様の空気調和機(10)の冷媒流路(41,42)に接続される流路切換弁(V1,V2)であることを特徴とする流路切換弁である。 An eleventh aspect is a flow path switching valve (V1, V2) connected to the refrigerant flow path (41, 42) of the air conditioner (10) according to any one of the first to tenth aspects. This is a flow path switching valve.

図1は、実施形態に係る空気調和機の概略構成を示す配管系統図である。FIG. 1 is a piping system diagram showing a schematic configuration of an air conditioner according to an embodiment. 図2は、遮断ユニットを拡大した回路図である。通常の冷房運転時の冷媒の流れを表している。FIG. 2 is an enlarged circuit diagram of the cutoff unit. This shows the flow of refrigerant during normal cooling operation. 図3は、遮断ユニットを拡大した回路図である。通常の暖房運転時の冷媒の流れを表している。FIG. 3 is an enlarged circuit diagram of the cutoff unit. This shows the flow of refrigerant during normal heating operation. 図4は、遮断ユニットを拡大した回路図である。冷媒が漏洩した状態を表している。FIG. 4 is an enlarged circuit diagram of the cutoff unit. This indicates a state in which refrigerant has leaked. 図5は、変形例2の遮断ユニットを拡大した回路図である。図5(A)は通常運転時を表す。図5(B)は冷媒漏洩時を表す。FIG. 5 is an enlarged circuit diagram of the cutoff unit of Modification 2. FIG. 5(A) shows normal operation. FIG. 5(B) shows the state when the refrigerant leaks. 図6は、変形例3の遮断ユニットを拡大した回路図である。図6(A)は通常運転時を表す。図6(B)は冷媒漏洩時を表す。FIG. 6 is an enlarged circuit diagram of the cutoff unit of Modification 3. FIG. 6(A) shows normal operation. FIG. 6(B) shows the state when the refrigerant leaks. 図7は、その他の第1の例に係る空気調和機の概略構成を示す配管系統図である。FIG. 7 is a piping system diagram showing a schematic configuration of an air conditioner according to another first example. 図8は、その他の第2の例に係る空気調和機の概略構成を示す配管系統図である。FIG. 8 is a piping system diagram showing a schematic configuration of an air conditioner according to another second example. 図9は、実施形態、各変形例、その他の実施形態の空気調和機の冷媒回路に使用される冷媒に関する表である。FIG. 9 is a table regarding the refrigerant used in the refrigerant circuit of the air conditioner of the embodiment, each modification, and other embodiments.

以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Embodiments of the present disclosure will be described below with reference to the drawings. Note that the following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its applications, or its uses.

《実施形態》
〈空気調和機の概要〉
本実施形態の空気調和機(10)は、対象空間である室内空間の空気調和を行う。図1に示すように、本例の空気調和機(10)は、室外ユニット(20)と、複数の室内ユニット(30)とを有するマルチ式に構成される。本例の空気調和機(10)は、対象空間の冷房と暖房とを切り換えて行う。室内ユニット(30)の台数は、3台以上であってもよい。
《Embodiment》
<Overview of air conditioner>
The air conditioner (10) of this embodiment performs air conditioning of an indoor space, which is a target space. As shown in FIG. 1, the air conditioner (10) of this example has a multi-type configuration including an outdoor unit (20) and a plurality of indoor units (30). The air conditioner (10) of this example switches between cooling and heating the target space. The number of indoor units (30) may be three or more.

室外ユニット(20)は、室外に設置される。室外ユニット(20)は、熱源ユニットを構成する。室外ユニット(20)には、熱源回路(20a)が設けられる。各室内ユニット(30)は、室内に設置される。各室内ユニット(30)は、利用ユニットを構成する。室内ユニット(30)には、利用回路(30a)がそれぞれ設けられる。空気調和機(10)では、室外ユニット(20)と室内ユニット(30)とが連絡配管(11,15)を介して互いに接続される。 The outdoor unit (20) is installed outdoors. The outdoor unit (20) constitutes a heat source unit. The outdoor unit (20) is provided with a heat source circuit (20a). Each indoor unit (30) is installed indoors. Each indoor unit (30) constitutes a utilization unit. The indoor units (30) are each provided with a utilization circuit (30a). In the air conditioner (10), an outdoor unit (20) and an indoor unit (30) are connected to each other via connecting pipes (11, 15).

空気調和機(10)は、冷媒回路(10a)を備える。冷媒回路(10a)には、冷媒が充填される。冷媒回路(10a)では、冷媒が循環することで蒸気圧縮式の冷凍サイクルが行われる。冷媒回路(10a)は、室外ユニット(20)の熱源回路(20a)と、各室内ユニット(30)の複数の利用回路(30a)とを含む。冷媒回路(10a)では、複数の利用回路(30a)が互いに並列に接続される。熱源回路(20a)と複数の利用回路(30a)とは、連絡配管(11,15)を介して接続される。 The air conditioner (10) includes a refrigerant circuit (10a). The refrigerant circuit (10a) is filled with refrigerant. In the refrigerant circuit (10a), a vapor compression type refrigeration cycle is performed by circulating refrigerant. The refrigerant circuit (10a) includes a heat source circuit (20a) of the outdoor unit (20) and a plurality of utilization circuits (30a) of each indoor unit (30). In the refrigerant circuit (10a), a plurality of utilization circuits (30a) are connected in parallel to each other. The heat source circuit (20a) and the plurality of utilization circuits (30a) are connected via connecting pipes (11, 15).

〈連絡配管〉
連絡配管は、液連絡配管(11)とガス連絡配管(15)とを含んでいる。
<Connection piping>
The communication pipe includes a liquid communication pipe (11) and a gas communication pipe (15).

液連絡配管(11)は、主液管(12)と複数の液分岐管(13)とを含む。液連絡配管(11)の一端は熱源回路(20a)の液閉鎖弁(25)に接続される。液分岐管(13)の一端は主液管(12)に接続される。液分岐管(13)の他端は利用回路(30a)の液端(液側継手)に接続される。 The liquid communication pipe (11) includes a main liquid pipe (12) and a plurality of liquid branch pipes (13). One end of the liquid communication pipe (11) is connected to the liquid shutoff valve (25) of the heat source circuit (20a). One end of the liquid branch pipe (13) is connected to the main liquid pipe (12). The other end of the liquid branch pipe (13) is connected to the liquid end (liquid side joint) of the utilization circuit (30a).

ガス連絡配管(15)は、主ガス管(16)と複数のガス分岐管(17)とを含む。ガス連絡配管(15)の一端は熱源回路(20a)のガス閉鎖弁(26)に接続される。ガス分岐管(17)の一端は主ガス管(16)に接続される。ガス分岐管(17)の他端は利用回路(30a)のガス端(ガス側継手)に接続される。 The gas communication pipe (15) includes a main gas pipe (16) and a plurality of gas branch pipes (17). One end of the gas communication pipe (15) is connected to the gas shutoff valve (26) of the heat source circuit (20a). One end of the gas branch pipe (17) is connected to the main gas pipe (16). The other end of the gas branch pipe (17) is connected to the gas end (gas side joint) of the utilization circuit (30a).

液分岐管(13)は、利用回路(30a)の液端に接続される液冷媒流路(41)を構成する。ガス分岐管(17)は、利用回路(30a)のガス端に接続されるガス冷媒流路(42)を構成する。ガス冷媒流路(42)の配管径は、液冷媒流路(41)の配管径より大きい。ガス冷媒流路(42)の配管の外径は、例えば12.7mmや15.9mmである。 The liquid branch pipe (13) constitutes a liquid refrigerant flow path (41) connected to the liquid end of the utilization circuit (30a). The gas branch pipe (17) constitutes a gas refrigerant flow path (42) connected to the gas end of the utilization circuit (30a). The pipe diameter of the gas refrigerant flow path (42) is larger than the pipe diameter of the liquid refrigerant flow path (41). The outer diameter of the piping of the gas refrigerant flow path (42) is, for example, 12.7 mm or 15.9 mm.

〈室外ユニット〉
図1に示すように、空気調和機(10)は、1つの室外ユニット(20)を備える。室外ユニット(20)は、熱源回路(20a)を収容するケーシング(図示省略)を備える。熱源回路(20a)には、圧縮機(21)、室外熱交換器(22)、室外四方切換弁(23)、室外膨張弁(24)、ガス閉鎖弁(26)、及び液閉鎖弁(25)が接続される。圧縮機(21)は、吸入された冷媒を圧縮し、圧縮した冷媒を吐出する。室外熱交換器(22)は、冷媒と室外空気とを熱交換させる熱源熱交換器を構成する。室外熱交換器(22)の近傍には、室外ファン(22a)が設けられる。室外ファン(22a)は、室外熱交換器(22)を通過する室外空気を搬送する。
<Outdoor unit>
As shown in FIG. 1, the air conditioner (10) includes one outdoor unit (20). The outdoor unit (20) includes a casing (not shown) that accommodates a heat source circuit (20a). The heat source circuit (20a) includes a compressor (21), an outdoor heat exchanger (22), an outdoor four-way switching valve (23), an outdoor expansion valve (24), a gas closing valve (26), and a liquid closing valve (25). ) are connected. The compressor (21) compresses the sucked refrigerant and discharges the compressed refrigerant. The outdoor heat exchanger (22) constitutes a heat source heat exchanger that exchanges heat between the refrigerant and outdoor air. An outdoor fan (22a) is provided near the outdoor heat exchanger (22). The outdoor fan (22a) transports outdoor air passing through the outdoor heat exchanger (22).

室外四方切換弁(23)は、図1の実線で示す第1状態と、図1の破線で示す第2状態とに切り換わる。第1状態の室外四方切換弁(23)は、圧縮機(21)の吐出側と室外熱交換器(22)のガス端とを連通させ、且つ圧縮機(21)の吸入側とガス閉鎖弁(26)とを連通させる。第2状態の室外四方切換弁(23)は、圧縮機(21)の吐出側とガス閉鎖弁(26)とを連通させ、且つ圧縮機(21)の吸入側と室外熱交換器(22)のガス端とを連通させる。 The outdoor four-way switching valve (23) switches between a first state shown by a solid line in FIG. 1 and a second state shown by a broken line in FIG. The outdoor four-way switching valve (23) in the first state communicates the discharge side of the compressor (21) with the gas end of the outdoor heat exchanger (22), and communicates the suction side of the compressor (21) with the gas shutoff valve. (26). The outdoor four-way switching valve (23) in the second state communicates the discharge side of the compressor (21) with the gas shutoff valve (26), and communicates the suction side of the compressor (21) with the outdoor heat exchanger (22). communicate with the gas end of the

室外膨張弁(24)は、熱源回路(20a)における室外熱交換器(22)と液閉鎖弁(25)との間に接続される。室外膨張弁(24)は、開度が調節可能な電子膨張弁で構成される。 The outdoor expansion valve (24) is connected between the outdoor heat exchanger (22) and the liquid shutoff valve (25) in the heat source circuit (20a). The outdoor expansion valve (24) is an electronic expansion valve whose opening degree can be adjusted.

室外ユニット(20)には、室外コントローラ(27)が設けられる。室外コントローラ(27)は、室外ユニット(20)の圧縮機(21)、室外膨張弁(24)、室外ファン(22a)を含む構成機器を制御する。室外コントローラ(27)は、制御基板上に搭載されたマイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを含む。 The outdoor unit (20) is provided with an outdoor controller (27). The outdoor controller (27) controls components of the outdoor unit (20) including the compressor (21), outdoor expansion valve (24), and outdoor fan (22a). The outdoor controller (27) includes a microcomputer mounted on a control board and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.

〈室内ユニット〉
図1に示すように、空気調和機(10)は、複数の室内ユニット(30)を備える。室内ユニット(30)は、天井設置式で構成される。ここでいう天井設置式は、天井埋込式及び天井吊り下げ式を含む。室外ユニット(20)は、利用回路(30a)を収容するケーシング(図示省略)を備える。利用回路(30a)には、室内熱交換器(31)及び室内膨張弁(32)が接続される。室内熱交換器(31)は、冷媒と室内空気とを熱交換させる利用熱交換器を構成する。室内熱交換器(31)の近傍には、室内ファン(31a)が設けられる。室内ファン(31a)は、室内熱交換器(31)を通過する室内空気を搬送する。
<Indoor unit>
As shown in FIG. 1, the air conditioner (10) includes a plurality of indoor units (30). The indoor unit (30) is configured to be installed on the ceiling. The ceiling-mounted type herein includes a ceiling-embedded type and a ceiling-suspended type. The outdoor unit (20) includes a casing (not shown) that accommodates the utilization circuit (30a). An indoor heat exchanger (31) and an indoor expansion valve (32) are connected to the utilization circuit (30a). The indoor heat exchanger (31) constitutes a utilization heat exchanger that exchanges heat between the refrigerant and indoor air. An indoor fan (31a) is provided near the indoor heat exchanger (31). The indoor fan (31a) transports indoor air passing through the indoor heat exchanger (31).

室内膨張弁(32)は、利用回路(30a)における液側継手と室内熱交換器(31)との間に接続される。室内膨張弁(32)は、開度が調節可能な電子膨張弁で構成される。 The indoor expansion valve (32) is connected between the liquid side joint and the indoor heat exchanger (31) in the utilization circuit (30a). The indoor expansion valve (32) is an electronic expansion valve whose opening degree can be adjusted.

室内ユニット(30)には、室内コントローラ(33)が設けられる。室内コントローラ(33)は、室内ユニット(30)の室内膨張弁(32)、室内ファン(31a)を含む構成機器を制御する。室内コントローラ(33)は、制御基板上に搭載されたマイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを含む。 The indoor unit (30) is provided with an indoor controller (33). The indoor controller (33) controls the components of the indoor unit (30), including the indoor expansion valve (32) and the indoor fan (31a). The indoor controller (33) includes a microcomputer mounted on a control board and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.

室内ユニット(30)には、リモコン(34)が接続されている。リモコン(34)を操作することで、対応する室内ユニット(30)の運転モードや設定温度が切り換えられる。 A remote control (34) is connected to the indoor unit (30). By operating the remote control (34), the operating mode and temperature setting of the corresponding indoor unit (30) can be switched.

室内ユニット(30)は、LEDライト(図示省略)を備える。LEDライトは、空気調和機(10)の運転時において、遮断ユニット(50)の開弁時及び閉弁時に点灯する。閉弁時と開弁時は異なる態様で点灯する。ユーザがLEDの点灯状態を確認することで、遮断ユニット(50)(厳密には、流路切換弁(V1,V2))が開いているか閉じているかを判別できる。 The indoor unit (30) includes an LED light (not shown). The LED light lights up when the shutoff unit (50) is opened and closed when the air conditioner (10) is in operation. It lights up in different ways when the valve is closed and when it is open. By checking the lighting state of the LED, the user can determine whether the cutoff unit (50) (strictly speaking, the flow path switching valves (V1, V2)) is open or closed.

〈冷媒漏洩検知センサ〉
空気調和機(10)は、冷媒漏洩検知センサ(35)を備えている。本例の冷媒漏洩検知センサ(35)は、各室内ユニット(30)に1つずつ設けられる。本例の冷媒漏洩検知センサ(35)は、室内ユニット(30)のケーシングの内部に配置される。冷媒漏洩検知センサ(35)は、対応する室内ユニット(30)の利用回路(30a)の冷媒の漏洩を検知する検知部を構成する。冷媒漏洩検知センサ(35)は、室内ユニット(30)のケーシングの外部に配置してもよい。
<Refrigerant leak detection sensor>
The air conditioner (10) is equipped with a refrigerant leak detection sensor (35). One refrigerant leak detection sensor (35) of this example is provided in each indoor unit (30). The refrigerant leak detection sensor (35) of this example is arranged inside the casing of the indoor unit (30). The refrigerant leakage detection sensor (35) constitutes a detection unit that detects refrigerant leakage from the utilization circuit (30a) of the corresponding indoor unit (30). The refrigerant leak detection sensor (35) may be placed outside the casing of the indoor unit (30).

〈遮断ユニット〉
空気調和機(10)は、遮断ユニット(50)を備えている。遮断ユニット(50)は、対応する利用回路(30a)で冷媒が漏洩した際、液冷媒流路(41)及びガス冷媒流路(42)を遮断するように構成される。遮断ユニット(50)は、液冷媒流路(41)と、ガス冷媒流路(42)と、第1流路切換弁(V1)と、第2流路切換弁(V2)と、高圧導入回路(60)とを含んでいる。
<Shutoff unit>
The air conditioner (10) includes a shutoff unit (50). The shutoff unit (50) is configured to shut off the liquid refrigerant flow path (41) and the gas refrigerant flow path (42) when refrigerant leaks in the corresponding usage circuit (30a). The shutoff unit (50) includes a liquid refrigerant flow path (41), a gas refrigerant flow path (42), a first flow path switching valve (V1), a second flow path switching valve (V2), and a high pressure introduction circuit. (60).

第1流路切換弁(V1)は液冷媒流路(41)に接続される。第1流路切換弁(V1)は液冷媒流路(41)を遮断する遮断弁を構成する。第2流路切換弁(V2)はガス冷媒流路(42)に接続される。第2流路切換弁(V2)はガス冷媒流路(42)を遮断する遮断弁を構成する。第1流路切換弁(V1)及び第2流路切換弁(V2)は、室内ユニット(30)のケーシングの外部に配置される。 The first flow path switching valve (V1) is connected to the liquid refrigerant flow path (41). The first flow path switching valve (V1) constitutes a cutoff valve that shuts off the liquid refrigerant flow path (41). The second flow path switching valve (V2) is connected to the gas refrigerant flow path (42). The second flow path switching valve (V2) constitutes a cutoff valve that shuts off the gas refrigerant flow path (42). The first flow path switching valve (V1) and the second flow path switching valve (V2) are arranged outside the casing of the indoor unit (30).

液冷媒流路(41)は、第1流路である第1液流路(41a)と、第2流路である第2液流路(41b)とを含む。第1液流路(41a)は、液冷媒流路(41)における熱源回路(20a)側に形成される。第2液流路(41b)は、液冷媒流路(41)における利用回路(30a)側に形成される。 The liquid refrigerant flow path (41) includes a first liquid flow path (41a) that is a first flow path and a second liquid flow path (41b) that is a second flow path. The first liquid flow path (41a) is formed on the heat source circuit (20a) side of the liquid refrigerant flow path (41). The second liquid flow path (41b) is formed on the utilization circuit (30a) side of the liquid refrigerant flow path (41).

ガス冷媒流路(42)は、第1流路である第1ガス流路(42a)と、第2流路である第2ガス流路(42b)とを含む。第1ガス流路(42a)は、ガス冷媒流路(42)における熱源回路(20a)側に形成される。第2ガス流路(42b)は、ガス冷媒流路(42)における利用回路(30a)側に形成される。 The gas refrigerant flow path (42) includes a first gas flow path (42a) that is a first flow path and a second gas flow path (42b) that is a second flow path. The first gas flow path (42a) is formed on the heat source circuit (20a) side of the gas refrigerant flow path (42). The second gas flow path (42b) is formed on the utilization circuit (30a) side of the gas refrigerant flow path (42).

高圧導入回路(60)は、液側導入路(61)、ガス側導入路(62)、及び主導入路(63)を含む。液側導入路(61)の一端は、第1液流路(41a)の途中に接続される。液側導入路(61)の他端は、主導入路(63)の一端に接続される。ガス側導入路(62)の一端は、第2ガス流路(42b)の途中に接続される。ガス側導入路(62)の他端は、主導入路(63)の一端に接続される。主導入路(63)の他端側は、第1分岐導入部(63a)と第2分岐導入部(63b)とに分岐している。 The high pressure introduction circuit (60) includes a liquid side introduction path (61), a gas side introduction path (62), and a main introduction path (63). One end of the liquid side introduction path (61) is connected to the middle of the first liquid flow path (41a). The other end of the liquid side introduction path (61) is connected to one end of the main introduction path (63). One end of the gas side introduction path (62) is connected to the middle of the second gas flow path (42b). The other end of the gas side introduction path (62) is connected to one end of the main introduction path (63). The other end side of the main introduction path (63) branches into a first branch introduction part (63a) and a second branch introduction part (63b).

液側導入路(61)には、第1開閉弁である第1逆止弁(64)が接続される。ガス側導入路(62)には、第2開閉弁である第2逆止弁(65)が接続される。第1逆止弁(64)は、液側導入路(61)から主導入路(63)に向かう冷媒の流れを許容し、その逆の冷媒の流れを禁止する。第2逆止弁(65)は、ガス側導入路(62)から主導入路(63)に向かう冷媒の流れを許容し、その逆の冷媒の流れを禁止する。 A first check valve (64), which is a first on-off valve, is connected to the liquid side introduction path (61). A second check valve (65), which is a second on-off valve, is connected to the gas side introduction path (62). The first check valve (64) allows the refrigerant to flow from the liquid side introduction path (61) toward the main introduction path (63), and prohibits the refrigerant from flowing in the opposite direction. The second check valve (65) allows the refrigerant to flow from the gas side introduction path (62) toward the main introduction path (63), and prohibits the refrigerant from flowing in the opposite direction.

本例の第1流路切換弁(V1)は、差圧駆動式の第1四方切換弁(51)で構成される。本例の第2流路切換弁(V2)は、差圧駆動式の第2四方切換弁(52)で構成される。 The first flow path switching valve (V1) of this example is comprised of a differential pressure driven first four-way switching valve (51). The second flow path switching valve (V2) of this example is comprised of a differential pressure driven second four-way switching valve (52).

図1及び図2に示すように、各四方切換弁(51,52)は、第1ポート(P1)、第2ポート(P2)、第3ポート(P3)、及び第4ポート(P4)を備えている。 As shown in FIGS. 1 and 2, each four-way switching valve (51, 52) has a first port (P1), a second port (P2), a third port (P3), and a fourth port (P4). We are prepared.

図1及び図2に示すように、第1四方切換弁(51)の第1ポート(P1)は、第1液流路(41a)に接続する。第1四方切換弁(51)の第2ポート(P2)は、第2液流路(41b)に接続する。第1四方切換弁(51)の第3ポート(P3)は、高圧導入回路(60)に連通する。厳密には、第1四方切換弁(51)の第3ポート(P3)は、高圧導入回路(60)の第1分岐導入部(63a)に接続する。第1四方切換弁(51)の第4ポート(P4)は、第1閉塞部材(53)によって閉塞される(図2を参照)。 As shown in FIGS. 1 and 2, the first port (P1) of the first four-way switching valve (51) is connected to the first liquid flow path (41a). The second port (P2) of the first four-way switching valve (51) is connected to the second liquid flow path (41b). The third port (P3) of the first four-way switching valve (51) communicates with the high pressure introduction circuit (60). Strictly speaking, the third port (P3) of the first four-way switching valve (51) is connected to the first branch introduction section (63a) of the high pressure introduction circuit (60). The fourth port (P4) of the first four-way switching valve (51) is closed by the first closing member (53) (see FIG. 2).

第2四方切換弁(52)の第1ポート(P1)は、第1ガス流路(42a)に接続する。第2四方切換弁(52)の第2ポート(P2)は、第2ガス流路(42b)に接続する。第2四方切換弁(52)の第3ポート(P3)は、高圧導入回路(60)に連通する。厳密には、第2四方切換弁(52)の第3ポート(P3)は、高圧導入回路(60)の第2分岐導入部(63b)に接続する。第2四方切換弁(52)の第4ポート(P4)は、第2閉塞部材(54)によって閉塞される(図2を参照)。 The first port (P1) of the second four-way switching valve (52) is connected to the first gas flow path (42a). The second port (P2) of the second four-way switching valve (52) is connected to the second gas flow path (42b). The third port (P3) of the second four-way switching valve (52) communicates with the high pressure introduction circuit (60). Strictly speaking, the third port (P3) of the second four-way switching valve (52) is connected to the second branch introduction section (63b) of the high pressure introduction circuit (60). The fourth port (P4) of the second four-way switching valve (52) is closed by the second closing member (54) (see FIG. 2).

各四方切換弁(51,52)は、第1ポート(P1)と第2ポート(P2)とが連通し、且つ第3ポート(P3)と第4ポート(P4)とが連通する第1状態(図1の実線で示す状態)と、第1ポート(P1)と第3ポート(P3)が連通し、且つ第2ポート(P2)と第4ポート(P4)とが連通する第2状態(図1の破線で示す状態)とに切り換わる。 Each four-way switching valve (51, 52) is in a first state in which a first port (P1) and a second port (P2) communicate with each other, and a third port (P3) and a fourth port (P4) communicate with each other. (the state shown by the solid line in FIG. 1) and a second state (shown by the solid line in FIG. 1) in which the first port (P1) and the third port (P3) communicate with each other, and the second port (P2) and the fourth port (P4) communicate with each other 1).

図2~図4に示すように、第1四方切換弁(51)は、第1低圧管(55)を有する。第1低圧管(55)の一端は、第1四方切換弁(51)の第2ポート(P2)に接続される。第1低圧管(55)は、第2液流路(41b)を介して利用回路(30a)と連通する。第1低圧管(55)の他端は第1四方切換弁(51)の内部の圧力室に接続される。 As shown in FIGS. 2 to 4, the first four-way switching valve (51) has a first low pressure pipe (55). One end of the first low pressure pipe (55) is connected to the second port (P2) of the first four-way switching valve (51). The first low pressure pipe (55) communicates with the utilization circuit (30a) via the second liquid flow path (41b). The other end of the first low pressure pipe (55) is connected to a pressure chamber inside the first four-way switching valve (51).

第2四方切換弁(52)は、第2低圧管(56)を有する。第2低圧管(56)の一端は、第2四方切換弁(52)の第2ポート(P2)に接続される。第2低圧管(56)は、第2ガス流路(42b)を介して利用回路(30a)と連通する。第2低圧管(56)の他端は第2四方切換弁(52)の内部の圧力室に接続される。なお、図2~図4の各四方切換弁(51,52)では、4つのポート(P1,P2,P3,P4)を連通させるための内部流路を破線で示している。 The second four-way switching valve (52) has a second low pressure pipe (56). One end of the second low pressure pipe (56) is connected to the second port (P2) of the second four-way switching valve (52). The second low pressure pipe (56) communicates with the utilization circuit (30a) via the second gas flow path (42b). The other end of the second low pressure pipe (56) is connected to a pressure chamber inside the second four-way switching valve (52). In each of the four-way switching valves (51, 52) shown in FIGS. 2 to 4, the internal flow paths for communicating the four ports (P1, P2, P3, P4) are shown with broken lines.

遮断ユニット(50)は、制御ユニット(57)を備えている。制御ユニット(57)は、制御基板上に搭載されたマイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを含む。 The cutoff unit (50) includes a control unit (57). The control unit (57) includes a microcomputer mounted on a control board and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.

-運転動作-
空気調和機(10)は、冷房運転と暖房運転とを実行する。以下には、冷媒の漏洩が生じていない通常運転時の冷房運転と暖房運転とについて、図1を参照しながら説明する。
-Driving behavior-
The air conditioner (10) performs cooling operation and heating operation. Cooling operation and heating operation during normal operation in which no refrigerant leakage occurs will be described below with reference to FIG. 1.

〈冷房運転〉
冷房運転では、室外四方切換弁(23)が第1状態、第1四方切換弁(51)が第1状態、第2四方切換弁(52)が第1状態となる。室外膨張弁(24)が開放される。各室内膨張弁(32)は,対応する室内熱交換器(31)の過熱度に基づいて開度が制御される。室外ファン(22a)及び室内ファン(31a)が作動する。冷房運転では、室外熱交換器(22)で冷媒が放熱・凝縮し、室内熱交換器(31)で冷媒が蒸発する第1冷凍サイクル(冷房サイクル)が行われる。
<Cooling operation>
In the cooling operation, the outdoor four-way switching valve (23) is in the first state, the first four-way switching valve (51) is in the first state, and the second four-way switching valve (52) is in the first state. The outdoor expansion valve (24) is opened. The opening degree of each indoor expansion valve (32) is controlled based on the degree of superheating of the corresponding indoor heat exchanger (31). The outdoor fan (22a) and the indoor fan (31a) operate. In the cooling operation, a first refrigeration cycle (cooling cycle) is performed in which the refrigerant radiates heat and condenses in the outdoor heat exchanger (22) and evaporates in the indoor heat exchanger (31).

圧縮機(21)で圧縮された冷媒は、室外熱交換器(22)で放熱・凝縮し、室外膨張弁(24)を通過する。この冷媒は、主液管(12)から各液冷媒流路(41)に分流し、第1四方切換弁(51)の第1ポート(P1)、第2ポート(P2)を順に流れ、各利用回路(30a)に流入する。各利用回路(30a)では、冷媒が室内膨張弁(32)で減圧された後、室内熱交換器(31)で蒸発する。室内熱交換器(31)では、蒸発する冷媒によって空気が冷却される。冷却された空気は、室内空間へ供給される。 The refrigerant compressed by the compressor (21) radiates heat and condenses in the outdoor heat exchanger (22), and passes through the outdoor expansion valve (24). This refrigerant is branched from the main liquid pipe (12) to each liquid refrigerant flow path (41), flows sequentially through the first port (P1) and second port (P2) of the first four-way switching valve (51), and flows through each liquid refrigerant flow path (41) in order. It flows into the utilization circuit (30a). In each utilization circuit (30a), the refrigerant is depressurized by the indoor expansion valve (32) and then evaporated in the indoor heat exchanger (31). In the indoor heat exchanger (31), air is cooled by the evaporating refrigerant. The cooled air is supplied to the indoor space.

各室内熱交換器(31)で蒸発した冷媒は、各ガス冷媒流路(42)を流れ、第2四方切換弁(52)の第2ポート(P2)、第1ポート(P1)を順に流れる。この冷媒は、主ガス管(16)で合流し、圧縮機(21)に吸入される。 The refrigerant evaporated in each indoor heat exchanger (31) flows through each gas refrigerant flow path (42), and sequentially flows through the second port (P2) and the first port (P1) of the second four-way switching valve (52). . This refrigerant joins in the main gas pipe (16) and is sucked into the compressor (21).

〈暖房運転〉
暖房運転では、室外四方切換弁(23)が第2状態、第1四方切換弁(51)が第1状態、第2四方切換弁(52)が第1状態となる。室外膨張弁(24)は、室外熱交換器(22)を流出する冷媒の過熱度に基づいて開度が制御される。各室内膨張弁(32)は,対応する室内熱交換器(31)を流出する過冷却度に基づいて開度が制御される。室外ファン(22a)及び室内ファン(31a)が作動する。暖房運転では、室内熱交換器(31)で冷媒が放熱・凝縮し、室内熱交換器(31)で冷媒が蒸発する第2冷凍サイクル(暖房サイクル)が行われる。
<Heating operation>
In the heating operation, the outdoor four-way switching valve (23) is in the second state, the first four-way switching valve (51) is in the first state, and the second four-way switching valve (52) is in the first state. The opening degree of the outdoor expansion valve (24) is controlled based on the degree of superheating of the refrigerant flowing out of the outdoor heat exchanger (22). The opening degree of each indoor expansion valve (32) is controlled based on the degree of supercooling flowing out of the corresponding indoor heat exchanger (31). The outdoor fan (22a) and the indoor fan (31a) operate. In the heating operation, a second refrigeration cycle (heating cycle) is performed in which the refrigerant radiates heat and condenses in the indoor heat exchanger (31) and evaporates in the indoor heat exchanger (31).

圧縮機(21)で圧縮された冷媒は、主ガス管(16)から各ガス冷媒流路(42)に分流し、第2四方切換弁(52)の第1ポート(P1)、第2ポート(P2)を順に流れ、各利用回路(30a)に流入する。各利用回路(30a)では、冷媒が室内熱交換器(31)で放熱・凝縮する。室内熱交換器(31)では、放熱する冷媒によって空気が加熱される。加熱された空気は、室内空間へ供給される。 The refrigerant compressed by the compressor (21) is branched from the main gas pipe (16) to each gas refrigerant flow path (42), and is then divided into the first port (P1) and the second port of the second four-way switching valve (52). (P2) and flows into each utilized circuit (30a). In each utilization circuit (30a), the refrigerant radiates heat and condenses in the indoor heat exchanger (31). In the indoor heat exchanger (31), air is heated by the refrigerant that radiates heat. The heated air is supplied to the indoor space.

各室内熱交換器(31)で放熱した冷媒は、各液冷媒流路(41)を流れ、第1四方切換弁(51)の第2ポート(P2)、第1ポート(P1)を順に流れる。この冷媒は、主液管(12)で合流し、室外膨張弁(24)で減圧される。減圧された冷媒は室外熱交換器(22)を流れる。室外熱交換器(22)では、冷媒が室外空気から吸熱して蒸発する。蒸発した冷媒は、圧縮機(21)に吸入される。 The refrigerant that radiated heat in each indoor heat exchanger (31) flows through each liquid refrigerant flow path (41), and sequentially flows through the second port (P2) and the first port (P1) of the first four-way switching valve (51). . This refrigerant joins in the main liquid pipe (12) and is depressurized in the outdoor expansion valve (24). The depressurized refrigerant flows through the outdoor heat exchanger (22). In the outdoor heat exchanger (22), the refrigerant absorbs heat from the outdoor air and evaporates. The evaporated refrigerant is sucked into the compressor (21).

-冷媒漏洩時の流路切換弁の動作-
本例の第1四方切換弁(51)及び第2四方切換弁(52)は、通常運転時において、上述した第1状態に維持されるように構成される。具体的には、例えば各四方切換弁(51,52)の内部のスプール弁が、第3ポート(P3)から導入された高圧冷媒やバネなどの付勢手段によって押し付けられ、第1ポート(P1)と第2ポート(P2)とを連通させ、且つ第3ポート(P3)と第4ポート(P4)とを連通させる位置となる(図2及び図3を参照)。これにより、液冷媒流路(41)、利用回路(30a)、及びガス冷媒流路(42)が連通し、上述した冷房サイクル及び暖房運転を行うことができる。なお、スプール弁の弁座部分は摺動抵抗の低い樹脂材料で構成するのが好ましい。樹脂材料は、例えばテフロン(登録商標)とするとよい。
-Operation of flow path switching valve when refrigerant leaks-
The first four-way switching valve (51) and the second four-way switching valve (52) of this example are configured to be maintained in the above-described first state during normal operation. Specifically, for example, the spool valve inside each four-way switching valve (51, 52) is pressed by the high-pressure refrigerant introduced from the third port (P3) or a biasing means such as a spring, ) and the second port (P2), and the third port (P3) and the fourth port (P4) (see FIGS. 2 and 3). Thereby, the liquid refrigerant flow path (41), the utilization circuit (30a), and the gas refrigerant flow path (42) are communicated with each other, and the above-mentioned cooling cycle and heating operation can be performed. The valve seat portion of the spool valve is preferably made of a resin material with low sliding resistance. The resin material may be, for example, Teflon (registered trademark).

本例の高圧導入回路(60)では、冷房運転と暖房運転との双方において、高圧冷媒を第3ポート(P3)に導入するように構成される。 The high-pressure introduction circuit (60) of this example is configured to introduce high-pressure refrigerant into the third port (P3) during both cooling operation and heating operation.

図2に示す冷房運転では、液冷媒流路(41)を高圧の液冷媒が流れ、ガス冷媒流路(42)を減圧後の低圧のガス冷媒が流れる。従って、冷房運転中の高圧導入回路(60)では、液側導入路(61)の高圧液冷媒が開放状態の第1逆止弁(64)を流れ、主導入路(63)を経由して各四方切換弁(51,52)の第3ポート(P3)に導入される。この際、第2逆止弁(65)は基本的には閉状態となる。 In the cooling operation shown in FIG. 2, high-pressure liquid refrigerant flows through the liquid refrigerant flow path (41), and low-pressure gas refrigerant after pressure reduction flows through the gas refrigerant flow path (42). Therefore, in the high-pressure introduction circuit (60) during cooling operation, the high-pressure liquid refrigerant in the liquid side introduction path (61) flows through the first check valve (64) in the open state, and passes through the main introduction path (63). It is introduced into the third port (P3) of each four-way switching valve (51, 52). At this time, the second check valve (65) is basically in a closed state.

図3に示す暖房運転では、ガス冷媒流路(42)を高圧のガス冷媒が流れ、液冷媒流路(41)を該ガス冷媒よりもやや圧力の低い液冷媒が流れる。従って、暖房運転中の高圧導入回路(60)では、ガス側導入路(62)の高圧ガス冷媒が開放状態の第2逆止弁(65)を流れ、主導入路(63)を経由して各四方切換弁(51,52)の第3ポート(P3)に導入される。この際、第2逆止弁(65)は閉鎖状態、あるいは開放状態となる。 In the heating operation shown in FIG. 3, a high-pressure gas refrigerant flows through the gas refrigerant flow path (42), and a liquid refrigerant whose pressure is slightly lower than that of the gas refrigerant flows through the liquid refrigerant flow path (41). Therefore, in the high-pressure introduction circuit (60) during heating operation, the high-pressure gas refrigerant in the gas side introduction path (62) flows through the second check valve (65) in the open state, and passes through the main introduction path (63). It is introduced into the third port (P3) of each four-way switching valve (51, 52). At this time, the second check valve (65) is in a closed state or an open state.

このように冷房運転及び暖房運転では、各四方切換弁(51,52)の駆動源となる高圧冷媒を第3ポート(P3)に確実に供給できる。 In this way, in the cooling operation and the heating operation, the high-pressure refrigerant that serves as the driving source for each of the four-way switching valves (51, 52) can be reliably supplied to the third port (P3).

冷房運転や暖房運転中において、室内ユニット(30)の利用回路(30a)で冷媒の漏洩が生じると、第1四方切換弁(51)及び第2四方切換弁(52)が第2状態となる(図4を参照)。この動作により、液冷媒流路(41)及びガス冷媒流路(42)が遮断される。この結果、熱源回路(20a)、主液管(12)、及び主ガス管(16)の冷媒が利用回路(30a)から室内空間などへ漏れてしまうことを速やかに回避できる。 When refrigerant leaks in the utilization circuit (30a) of the indoor unit (30) during cooling or heating operation, the first four-way switching valve (51) and the second four-way switching valve (52) enter the second state. (See Figure 4). This operation blocks the liquid refrigerant flow path (41) and the gas refrigerant flow path (42). As a result, it is possible to quickly prevent the refrigerant in the heat source circuit (20a), the main liquid pipe (12), and the main gas pipe (16) from leaking from the usage circuit (30a) into the indoor space or the like.

具体的には、利用回路(30a)で冷媒の漏洩が生じると、利用回路(30a)、液冷媒流路(41)、及びガス冷媒流路(42)の内圧が下がる。第1四方切換弁(51)では、液冷媒流路(41)の内圧の低下に伴い第1低圧管(55)の内圧が下がる。第1四方切換弁(51)では、第3ポート(P3)から導入された高圧冷媒と、第1低圧管(55)の内圧との差圧により、スプール弁が移動する。この結果、図4に示すように、第1四方切換弁(51)は、第1ポート(P1)と第3ポート(P3)とが連通し、且つ第2ポート(P2)と第4ポート(P4)とが連通する第2状態となる。これにより、第1四方切換弁(51)によって液冷媒流路(41)が遮断される。 Specifically, when refrigerant leaks in the utilization circuit (30a), the internal pressures of the utilization circuit (30a), the liquid refrigerant flow path (41), and the gas refrigerant flow path (42) decrease. In the first four-way switching valve (51), the internal pressure of the first low pressure pipe (55) decreases as the internal pressure of the liquid refrigerant flow path (41) decreases. In the first four-way switching valve (51), the spool valve moves due to the pressure difference between the high-pressure refrigerant introduced from the third port (P3) and the internal pressure of the first low-pressure pipe (55). As a result, as shown in FIG. 4, in the first four-way switching valve (51), the first port (P1) and the third port (P3) communicate with each other, and the second port (P2) and the fourth port ( P4) is in a second state where it communicates. As a result, the liquid refrigerant flow path (41) is blocked by the first four-way switching valve (51).

同様に、第2四方切換弁(52)では、ガス冷媒流路(42)の内圧の低下に伴い第2低圧管(56)の内圧が下がる。第2四方切換弁(52)では、第3ポート(P3)から導入された高圧冷媒と、第2低圧管(56)の内圧との差圧により、スプール弁が移動する。この結果、図4に示すように、第2四方切換弁(52)は、第1ポート(P1)と第3ポート(P3)とが連通し、且つ第2ポート(P2)と第4ポート(P4)とが連通する第2状態となる。これにより、第1四方切換弁(51)によって液冷媒流路(41)が遮断される。 Similarly, in the second four-way switching valve (52), the internal pressure of the second low pressure pipe (56) decreases as the internal pressure of the gas refrigerant flow path (42) decreases. In the second four-way switching valve (52), the spool valve moves due to the pressure difference between the high-pressure refrigerant introduced from the third port (P3) and the internal pressure of the second low-pressure pipe (56). As a result, as shown in FIG. 4, in the second four-way switching valve (52), the first port (P1) and the third port (P3) communicate with each other, and the second port (P2) and the fourth port ( P4) is in a second state where it communicates. As a result, the liquid refrigerant flow path (41) is blocked by the first four-way switching valve (51).

このように本実施形態の各四方切換弁(51,52)は、利用回路(30a)で冷媒の漏洩が生じると、低圧管(55,56)の内圧の低下を利用して自動的に第2状態に切り換わる。これにより、利用回路(30a)を確実に閉回路に切り換えることができる。 In this way, each of the four-way switching valves (51, 52) of this embodiment automatically shuts down when refrigerant leaks in the utilization circuit (30a) by utilizing the decrease in the internal pressure of the low-pressure pipes (55, 56). Switches to 2 states. Thereby, the utilized circuit (30a) can be reliably switched to a closed circuit.

なお、差圧駆動式の四方切換弁(51,52)を第1状態から第2状態に切り換える際、公知のパイロット管、及びパイロット弁を利用してもよい。 In addition, when switching the differential pressure driven four-way switching valve (51, 52) from the first state to the second state, a known pilot pipe and pilot valve may be used.

-冷媒漏洩時の他の動作-
利用回路(30a)で冷媒の漏洩が生じると、冷媒漏洩検知センサ(35)がこの冷媒の漏洩を検知する。室内コントローラ(33)に冷媒漏洩検知センサ(35)の検知信号が受信されると、このことを示すサインが表示部に表示される。表示部は、例えばリモコン(34)に設けられてもよいし、室内ユニット(30)の化粧パネルに設けられてもよい。表示部では、冷媒の漏洩が生じている異常状態の表示と、冷媒の漏洩が生じていない正常状態の表示とが切り換えられる。
-Other actions when refrigerant leaks-
When a refrigerant leak occurs in the utilization circuit (30a), a refrigerant leak detection sensor (35) detects this refrigerant leak. When the indoor controller (33) receives a detection signal from the refrigerant leak detection sensor (35), a sign indicating this is displayed on the display section. The display section may be provided, for example, on the remote control (34) or on a decorative panel of the indoor unit (30). The display section is switched between displaying an abnormal state in which refrigerant leakage has occurred and displaying a normal state in which no refrigerant leakage has occurred.

-実施形態の効果-
実施形態は、圧縮機(21)及び室外熱交換器(22)が接続される熱源回路(20a)と、室内熱交換器(31)が接続される利用回路(30a)とを含み、冷凍サイクルが行われる冷媒回路(10a)と、前記熱源回路(20a)が設けられる室外ユニット(20)と、前記利用回路(30a)が設けられる室内ユニット(30)とを備えた空気調和機であって、前記冷媒回路(10a)は、前記利用回路(30a)の両端にそれぞれ接続される冷媒流路(41,42)を含み、2つの前記冷媒流路(41,42)の各々に接続される遮断弁をさらに備え、2つの前記遮断弁の少なくとも一方は、前記利用回路(30a)で冷媒の漏洩が生じると、前記冷媒流路(41,42)を遮断するように流路を切り換える前記流路切換弁(V1,V2)で構成される。
-Effects of embodiment-
The embodiment includes a heat source circuit (20a) to which a compressor (21) and an outdoor heat exchanger (22) are connected, and a utilization circuit (30a) to which an indoor heat exchanger (31) is connected, and includes a refrigeration cycle. An air conditioner comprising a refrigerant circuit (10a) in which the heat source circuit (20a) is provided, an outdoor unit (20) in which the heat source circuit (20a) is provided, and an indoor unit (30) in which the utilization circuit (30a) is provided. , the refrigerant circuit (10a) includes refrigerant flow paths (41, 42) connected to both ends of the utilization circuit (30a), and is connected to each of the two refrigerant flow paths (41, 42). It further includes a shutoff valve, and at least one of the two shutoff valves switches the flow path to shut off the refrigerant flow path (41, 42) when a refrigerant leak occurs in the utilization circuit (30a). It consists of road switching valves (V1, V2).

液冷媒流路(41)及びガス冷媒流路(42)の遮断弁が、流路切換弁(V1,V2)で構成される。流路切換弁(V1,V2)は、その構造上、電磁弁や膨張弁と比して流路が比較的広い。冷房運転及び暖房運転において、冷媒が流路切換弁(V1,V2)を通過する際、圧力損失を低減できる。このため、空気調和機(10)の消費電力を低減できる。冷媒漏洩時、流路切換弁(V1,V2)の流路を切り換えることで、冷媒の流れを遮断することができる。 The cutoff valves for the liquid refrigerant flow path (41) and the gas refrigerant flow path (42) are configured with flow path switching valves (V1, V2). Due to their structure, the flow path switching valves (V1, V2) have relatively wide flow paths compared to electromagnetic valves and expansion valves. In cooling operation and heating operation, pressure loss can be reduced when the refrigerant passes through the flow path switching valves (V1, V2). Therefore, power consumption of the air conditioner (10) can be reduced. When refrigerant leaks, the flow of refrigerant can be cut off by switching the flow paths of the flow path switching valves (V1, V2).

実施形態では、前記冷媒流路(41,42)は、前記流路切換弁(V1,V2)における前記熱源回路(20a)側に形成される第1流路(41a,42a)と、前記流路切換弁(V1,V2)における前記利用回路(30a)側に形成される第2流路(41b,42b)とを含み、前記流路切換弁(V1,V2)は、前記第1流路(41a,42a)に接続する第1ポート(P1)と、前記第2流路(41b,42b)に接続する第2ポート(P2)と、第3ポート(P3)と、第4ポート(P4)とを有する四方切換弁(51,52)で構成される。 In the embodiment, the refrigerant flow path (41, 42) is connected to a first flow path (41a, 42a) formed on the heat source circuit (20a) side of the flow path switching valve (V1, V2), a second flow path (41b, 42b) formed on the utilization circuit (30a) side of the path switching valve (V1, V2), the flow path switching valve (V1, V2) includes a second flow path (41b, 42b) formed on the utilization circuit (30a) side; (41a, 42a), a second port (P2) connected to the second flow path (41b, 42b), a third port (P3), and a fourth port (P4). ) and is composed of four-way switching valves (51, 52).

流路切換弁(V1,V2)が四方切換弁(51,52)で構成される。四方切換弁(51,52)は、その構造上、電磁弁や膨張弁と比して流路が比較的広い。冷房運転及び暖房運転において、冷媒が流路切換弁(V1,V2)を通過する際、圧力損失を低減できる。このため、空気調和機(10)の消費電力を低減できる。四方切換弁(51,52)は、上述したとおり、外径が12.7mmや15.9mmの管に接続される。一般的に、マルチ式の空気調和機(10)の室外四方切換弁(23)においても、同じ外径の管が接続される場合がある。実施形態では、室外四方切換弁(23)として用いられる弁と同じ弁を、四方切換弁(51,52)として用いることができる。また、電磁弁や膨張弁を遮断弁として、外径が12.7mmや15.9mmの管に接続して用いる場合と比べて、閉弁時の冷媒の漏れ量を少なくすることができる。 The flow path switching valves (V1, V2) are composed of four-way switching valves (51, 52). Due to its structure, the four-way switching valve (51, 52) has a relatively wide flow path compared to a solenoid valve or an expansion valve. In cooling operation and heating operation, pressure loss can be reduced when the refrigerant passes through the flow path switching valves (V1, V2). Therefore, power consumption of the air conditioner (10) can be reduced. As described above, the four-way switching valves (51, 52) are connected to a pipe having an outer diameter of 12.7 mm or 15.9 mm. Generally, pipes having the same outer diameter may be connected to the outdoor four-way switching valve (23) of the multi-type air conditioner (10) as well. In the embodiment, the same valve used as the outdoor four-way switching valve (23) can be used as the four-way switching valve (51, 52). Furthermore, the amount of refrigerant leaking when the valve is closed can be reduced compared to when a solenoid valve or an expansion valve is used as a cutoff valve and connected to a pipe having an outer diameter of 12.7 mm or 15.9 mm.

実施形態では、前記冷媒回路(10a)は、前記第1流路(41a,42a)の高圧冷媒を前記第3ポート(P3)に導入する高圧導入回路(60)を含み、前記四方切換弁(51,52)は、前記第3ポート(P3)に導入された高圧冷媒を駆動源とする差圧駆動式である。 In the embodiment, the refrigerant circuit (10a) includes a high-pressure introduction circuit (60) that introduces the high-pressure refrigerant in the first flow path (41a, 42a) to the third port (P3), and the four-way switching valve ( 51, 52) are differential pressure drive types whose driving source is the high-pressure refrigerant introduced into the third port (P3).

第1流路(41a,42a)の高圧冷媒は四方切換弁(51,52)の第3ポート(P3)に導入される。この高圧冷媒の圧力を利用して四方切換弁(51,52)の状態を切り換えることができる。これにより、電動機等の別の駆動源を用いずとも、冷媒流路(41,42)を遮断できる。 The high-pressure refrigerant in the first flow path (41a, 42a) is introduced into the third port (P3) of the four-way switching valve (51, 52). The state of the four-way switching valve (51, 52) can be switched using the pressure of this high-pressure refrigerant. Thereby, the refrigerant flow path (41, 42) can be shut off without using another drive source such as an electric motor.

実施形態では、前記冷媒回路(10a)は、前記室外熱交換器(22)が放熱器となり前記室内熱交換器(31)が蒸発器となる第1冷凍サイクル(冷房サイクル)と、前記室内熱交換器(31)が放熱器となり前記室外熱交換器(22)が蒸発器となる第2冷凍サイクル(暖房サイクル)とを行うように構成され、前記高圧導入回路(60)は、前記2つの冷媒流路(41,42)の前記第1流路(41a,42a)のうち圧力の高い第1流路(41a,42a)の高圧冷媒を、少なくとも前記第3ポート(P3)に導入するように構成される。 In the embodiment, the refrigerant circuit (10a) includes a first refrigeration cycle (cooling cycle) in which the outdoor heat exchanger (22) serves as a radiator and the indoor heat exchanger (31) serves as an evaporator; The exchanger (31) is configured to perform a second refrigeration cycle (heating cycle) in which the exchanger (31) serves as a radiator and the outdoor heat exchanger (22) serves as an evaporator, and the high pressure introduction circuit (60) The high-pressure refrigerant in the first flow path (41a, 42a) having a high pressure among the first flow paths (41a, 42a) of the refrigerant flow path (41, 42) is introduced into at least the third port (P3). It is composed of

この構成では、冷房運転及び暖房運転の双方において、圧力の高い冷媒を確実に四方切換弁(51,52)の第3ポート(P3)に導入できる。これにより、この高圧冷媒の圧力を利用して、四方切換弁(51,52)を確実に切り換えることができる。 With this configuration, high-pressure refrigerant can be reliably introduced into the third port (P3) of the four-way switching valve (51, 52) in both the cooling operation and the heating operation. Thereby, the four-way switching valves (51, 52) can be reliably switched using the pressure of this high-pressure refrigerant.

実施形態では、前記高圧導入回路(60)は、液冷媒流路(41)の第1液流路(41a)と第3ポート(P3)とを連通させる液側導入路(61)と、ガス冷媒流路(42)の第1ガス流路(41b)と第3ポート(P3)とを連通させるガス側導入路(62)とを含み、前記液側導入路(61)には、前記第1冷凍サイクル時に開放される第1逆止弁(64)が設けられ、ガス側導入路(62)には、第2冷凍サイクル時に開放される第2逆止弁(65)が設けられる。 In the embodiment, the high pressure introduction circuit (60) includes a liquid side introduction path (61) that connects the first liquid flow path (41a) and the third port (P3) of the liquid refrigerant flow path (41), and a gas The liquid side introduction path (61) includes a gas side introduction path (62) that communicates the first gas flow path (41b) and the third port (P3) of the refrigerant flow path (42), and the liquid side introduction path (61) includes A first check valve (64) that is opened during the first refrigeration cycle is provided, and a second check valve (65) that is opened during the second refrigeration cycle is provided in the gas side introduction path (62).

この構成では、第1冷凍サイクル(冷房サイクル)時において液冷媒流路(41)の圧力が高くなると、第1逆止弁(64)が開放され、第3ポート(P3)に高圧冷媒が導入される。第2冷凍サイクル(暖房サイクル)時においてガス冷媒流路(42)の圧力が高くなると、第2逆止弁(65)が開放され、第3ポート(P3)に高圧冷媒が導入される。 In this configuration, when the pressure in the liquid refrigerant flow path (41) increases during the first refrigeration cycle (cooling cycle), the first check valve (64) is opened and high-pressure refrigerant is introduced into the third port (P3). be done. When the pressure in the gas refrigerant flow path (42) increases during the second refrigeration cycle (heating cycle), the second check valve (65) is opened and high-pressure refrigerant is introduced into the third port (P3).

実施形態では、四方切換弁(51,52)は、閉塞された第4ポート(P4)を有し、第1状態の前記四方切換弁(51,52)は、第1ポート(P1)と第2ポート(P2)とを連通させ且つ第3ポート(P3)と第4ポート(P4)とを連通させ、第2状態の前記四方切換弁(51,52)は、第1ポート(P1)と第3ポート(P3)とを連通させ且つ第2ポート(P2)と第4ポート(P4)とを連通させる。 In the embodiment, the four-way switching valve (51, 52) has a closed fourth port (P4), and the four-way switching valve (51, 52) in the first state has the first port (P1) and the fourth port (P4) closed. The four-way switching valve (51, 52) in the second state communicates with the first port (P1) by communicating with the second port (P2) and communicating with the third port (P3) and the fourth port (P4). The third port (P3) is brought into communication with the third port (P3), and the second port (P2) and the fourth port (P4) are brought into communication with each other.

この構成では、四方切換弁(51,52)が第1状態になると、第1ポート(P1)と第2ポート(P2)とが連通し、冷媒流路(41,42)が導通する。この状態において、冷房運転や暖房運転が行われる。四方切換弁(51,52)が第2状態になると、第2ポート(P2)と閉塞状態の第4ポート(P4)とが連通する。この状態では、液冷媒流路(41)及びガス冷媒流路(42)が遮断され、利用回路(30a)が冷媒回路(10a)から切り離される。 In this configuration, when the four-way switching valve (51, 52) enters the first state, the first port (P1) and the second port (P2) communicate with each other, and the refrigerant flow path (41, 42) becomes conductive. In this state, cooling operation and heating operation are performed. When the four-way switching valve (51, 52) enters the second state, the second port (P2) and the closed fourth port (P4) communicate with each other. In this state, the liquid refrigerant flow path (41) and the gas refrigerant flow path (42) are cut off, and the utilization circuit (30a) is separated from the refrigerant circuit (10a).

実施形態では、前記四方切換弁(51,52)は、前記利用回路(30a)に連通する低圧管(55,56)を有し、高圧冷媒と前記低圧管(55,56)の内圧との差圧によって第2状態に切り換わる。 In the embodiment, the four-way switching valve (51, 52) has a low pressure pipe (55, 56) communicating with the utilization circuit (30a), and the high pressure refrigerant and the internal pressure of the low pressure pipe (55, 56) are connected to each other. The pressure difference switches to the second state.

利用回路(30a)の冷媒が漏洩すると、利用回路(30a)の内圧が低下する。これに伴い低圧管(55,56)の内圧が低下する。四方切換弁(51,52)では、高圧冷媒と低圧管(55,56)の内圧との差圧が大きくなり、第1状態の四方切換弁(51,52)が第2状態に切り換わる。四方切換弁(51,52)は、利用回路(30a)の冷媒の漏洩に伴い自動的に第2状態に切り換わる。 When the refrigerant in the utilization circuit (30a) leaks, the internal pressure of the utilization circuit (30a) decreases. Accordingly, the internal pressure of the low pressure pipes (55, 56) decreases. In the four-way switching valves (51, 52), the pressure difference between the high-pressure refrigerant and the internal pressure of the low-pressure pipes (55, 56) increases, and the four-way switching valves (51, 52) in the first state switch to the second state. The four-way switching valves (51, 52) automatically switch to the second state in response to leakage of refrigerant in the utilization circuit (30a).

実施形態は、流路切換弁(V1,V2)が、前記2つの冷媒流路(41,42)のうちガス冷媒流路(42)に少なくとも接続される。ガス冷媒流路(42)の配管径は、液冷媒流路(41)の配管径よりも大きい。このため、ガス冷媒流路(42)に流路切換弁(V1,V2)を設けることで、遮蔽弁に起因する圧力損失の増大を効果的に抑制できる。 In the embodiment, the flow path switching valve (V1, V2) is connected to at least the gas refrigerant flow path (42) of the two refrigerant flow paths (41, 42). The pipe diameter of the gas refrigerant flow path (42) is larger than the pipe diameter of the liquid refrigerant flow path (41). Therefore, by providing the flow path switching valves (V1, V2) in the gas refrigerant flow path (42), it is possible to effectively suppress the increase in pressure loss caused by the shield valve.

〈変形例1〉
上記実施形態では、高圧導入回路(60)の液側導入路(61)に第1開閉弁である第1逆止弁(64)が設けられる。高圧導入回路(60)のガス側導入路(62)に第2開閉弁である第2逆止弁(65)が設けられる。変形例1では、第1逆止弁(64)に代わって、第1開閉弁が第1電磁開閉弁で構成される。第2逆止弁(65)に代わって、第2開閉弁が第2電磁開閉弁で構成される。第1電磁開閉弁は、第1冷凍サイクル(冷房サイクル)時に開放され、第2冷凍サイクル(暖房サイクル)時に閉鎖される。第2電磁開閉弁は、第1冷凍サイクル(冷房サイクル)時に閉鎖され、第2冷凍サイクル(暖房サイクル)時に閉鎖される。これにより、上記実施形態と同様、冷房運転と暖房運転との双方において、圧力の高い高圧冷媒を四方切換弁(51,52)の第3ポート(P3)に導入できる。
<Modification 1>
In the above embodiment, the first check valve (64), which is the first on-off valve, is provided in the liquid side introduction path (61) of the high pressure introduction circuit (60). A second check valve (65), which is a second on-off valve, is provided in the gas side introduction path (62) of the high pressure introduction circuit (60). In Modification 1, the first on-off valve is configured with a first electromagnetic on-off valve instead of the first check valve (64). Instead of the second check valve (65), the second on-off valve is constituted by a second electromagnetic on-off valve. The first electromagnetic on-off valve is opened during the first refrigeration cycle (cooling cycle) and closed during the second refrigeration cycle (heating cycle). The second electromagnetic on-off valve is closed during the first refrigeration cycle (cooling cycle) and closed during the second refrigeration cycle (heating cycle). Thereby, as in the above embodiment, high-pressure refrigerant can be introduced into the third port (P3) of the four-way switching valve (51, 52) in both the cooling operation and the heating operation.

〈変形例2〉
図5に示す変形例2は、上記実施形態と遮断ユニット(50)の構成が異なる。遮断ユニット(50)の遮断弁は、三方切換弁(71,72)で構成される。本例の三方切換弁(71,72)は、電動回転式のいわゆるロータリ弁である。
<Modification 2>
Modification 2 shown in FIG. 5 differs from the above embodiment in the configuration of the cutoff unit (50). The cutoff valve of the cutoff unit (50) is composed of a three-way switching valve (71, 72). The three-way switching valves (71, 72) of this example are electrically rotary so-called rotary valves.

液冷媒流路(41)には、第1三方切換弁(71)が接続される。ガス冷媒流路(42)には、第2三方切換弁(72)が接続される。各三方切換弁(71,72)は、第1ポート(P1)、第2ポート(P2)、及び第3ポート(P3)を有している。 A first three-way switching valve (71) is connected to the liquid refrigerant flow path (41). A second three-way switching valve (72) is connected to the gas refrigerant flow path (42). Each three-way switching valve (71, 72) has a first port (P1), a second port (P2), and a third port (P3).

第1三方切換弁(71)の第1ポート(P1)は、第1液流路(41a)に接続する。第1三方切換弁(71)の第2ポート(P2)は、第2液流路(41b)に接続する。第1三方切換弁(71)の第3ポート(P3)は第3閉塞部材(83)によって閉塞される。第2三方切換弁(72)の第1ポート(P1)は、第1ガス流路(42a)に接続する。第2三方切換弁(72)の第2ポート(P2)は、第2ガス流路(42b)に接続する。第2三方切換弁(72)の第3ポート(P3)は、第4閉塞部材(84)によって閉塞される。 The first port (P1) of the first three-way switching valve (71) is connected to the first liquid flow path (41a). The second port (P2) of the first three-way switching valve (71) is connected to the second liquid flow path (41b). The third port (P3) of the first three-way switching valve (71) is closed by the third closing member (83). The first port (P1) of the second three-way switching valve (72) is connected to the first gas flow path (42a). The second port (P2) of the second three-way switching valve (72) is connected to the second gas flow path (42b). The third port (P3) of the second three-way switching valve (72) is closed by the fourth closing member (84).

各三方切換弁(71,72)は、電動機(75)と、該電動機(75)によって回転駆動される回転部(76)と、該回転部(76)を収容するケース(78)とを有する。ケース(78)には、上述した第1ポート(P1)、第2ポート(P2)、及び第3ポート(P3)が形成される。回転部(76)には、内部流路(77)が形成される。本例の内部流路(77)は、軸直角断面から視た形状が略L字状に形成される。 Each three-way switching valve (71, 72) includes an electric motor (75), a rotating part (76) rotationally driven by the electric motor (75), and a case (78) that accommodates the rotating part (76). . The case (78) is formed with the above-described first port (P1), second port (P2), and third port (P3). An internal flow path (77) is formed in the rotating part (76). The internal flow path (77) in this example has a substantially L-shape when viewed from a cross section perpendicular to the axis.

各三方切換弁(71,72)は、冷媒流路(41,42)を導通させる第1状態と、冷媒流路(41,42)を遮断する第2状態とに切り換えられる。 Each three-way switching valve (71, 72) is switched between a first state in which the refrigerant flow path (41, 42) is made conductive and a second state in which the refrigerant flow path (41, 42) is cut off.

図5(A)に示す通常運転時(冷房運転及び暖房運転)では、制御ユニット(57)により各三方切換弁(71,72)が第1状態に制御される。制御ユニット(57)は、各三方切換弁(71,72)が第1状態となるように電動機(75)を制御する。第1状態の各三方切換弁(71,72)の回転部(76)は、内部流路(77)を介して第1ポート(P1)と第2ポート(P2)とを連通させる回転角度位置となる。これにより、冷房運転及び暖房運転では、液冷媒流路(41)及びガス冷媒流路(42)を冷媒が流れる。 During normal operation (cooling operation and heating operation) shown in FIG. 5(A), each three-way switching valve (71, 72) is controlled to the first state by the control unit (57). The control unit (57) controls the electric motor (75) so that each three-way switching valve (71, 72) is in the first state. The rotating part (76) of each three-way switching valve (71, 72) in the first state is at a rotational angular position that communicates the first port (P1) and the second port (P2) via the internal flow path (77). becomes. Thereby, in the cooling operation and the heating operation, the refrigerant flows through the liquid refrigerant flow path (41) and the gas refrigerant flow path (42).

利用回路(30a)で冷媒が漏洩し、冷媒漏洩検知センサ(35)が冷媒の漏洩を検知すると、室内コントローラ(33)から制御ユニット(57)に信号が出力される。図5(B)に示すように、この信号を受信した制御ユニット(57)は、各三方切換弁(71,72)を第2状態に切り換える。制御ユニット(57)は、各三方切換弁(71,72)が第2状態となるように電動機(75)を制御する。第2状態の各三方切換弁(71,72)の回転部(76)は、内部流路(77)を介して第1ポート(P1)と第3ポート(P3)とを連通させる回転角度位置となる。これにより、冷媒漏洩時には、第2ポート(P2)が実質的に閉塞され、利用回路(30a)が冷媒回路(10a)から切り離される。 When refrigerant leaks in the utilization circuit (30a) and the refrigerant leak detection sensor (35) detects the refrigerant leak, a signal is output from the indoor controller (33) to the control unit (57). As shown in FIG. 5(B), the control unit (57) receiving this signal switches each three-way switching valve (71, 72) to the second state. The control unit (57) controls the electric motor (75) so that each three-way switching valve (71, 72) is in the second state. The rotating part (76) of each three-way switching valve (71, 72) in the second state is at a rotation angle position that communicates the first port (P1) and the third port (P3) via the internal flow path (77). becomes. As a result, in the event of a refrigerant leak, the second port (P2) is substantially closed and the utilization circuit (30a) is separated from the refrigerant circuit (10a).

変形例2では、前記流路切換弁(V1,V2)は、前記第1流路(41a,42a)に接続する第1ポート(P1)と、前記第2流路(41b,42b)に接続する第2ポート(P2)と、内部流路(77)が形成される回転部(76)と、前記回転部(76)を回転駆動する電動機(75)とを有する電動回転式であり、前記流路切換弁(V1,V2)の前記回転部(76)は、前記内部流路(77)を介して前記第1ポート(P1)と前記第2ポート(P2)とを連通させる第1状態の回転角度位置と、前記第1ポート(P1)及び前記第2ポート(P2)を閉塞する第2状態の回転角度位置になる。 In modification 2, the flow path switching valve (V1, V2) is connected to a first port (P1) connected to the first flow path (41a, 42a) and to the second flow path (41b, 42b). It is an electric rotary type having a second port (P2) that rotates, a rotating part (76) in which an internal flow path (77) is formed, and an electric motor (75) that rotationally drives the rotating part (76). The rotating portion (76) of the flow path switching valve (V1, V2) is in a first state in which the first port (P1) and the second port (P2) communicate with each other via the internal flow path (77). and a rotational angular position of a second state in which the first port (P1) and the second port (P2) are closed.

電動回転式の流路切換弁(V1,V2)は、電磁弁や電動弁と比較して流路が広い。このため、遮断弁の圧力損失を低減できる。 The electric rotary flow path switching valves (V1, V2) have wider flow paths than electromagnetic valves and motorized valves. Therefore, the pressure loss of the shutoff valve can be reduced.

変形例2は、前記冷媒流路(41,42)は、前記流路切換弁(V1,V2)における前記熱源回路(20a)側に形成される第1流路(41a,42a)と、前記流路切換弁(V1,V2)における前記利用回路(30a)側に形成される第2流路(41b,42b)とを含み、前記流路切換弁(V1,V2)は、閉塞された第3ポート(P3)を有する電動回転式の三方切換弁(71,72)で構成され、前記第1状態の前記三方切換弁(71,72)の前記回転部(76)は、前記内部流路(77)を介して前記第1ポート(P1)と前記第2ポート(P2)とを連通させる回転角度位置となり、前記第2状態の前記三方切換弁(71,72)の前記回転部(76)は、前記第1ポート(P1)及び前記第2ポート(P2)の一方が前記内部流路(77)を介して第3ポート(P3)と連通し、該第1ポート(P1)及び第2ポート(P2)の他方が回転部(76)によって閉塞される回転角度位置になる。 In Modification 2, the refrigerant flow path (41, 42) includes a first flow path (41a, 42a) formed on the heat source circuit (20a) side of the flow path switching valve (V1, V2); a second flow path (41b, 42b) formed on the usage circuit (30a) side of the flow path switching valve (V1, V2), and the flow path switching valve (V1, V2) It is composed of an electric rotary three-way switching valve (71, 72) having three ports (P3), and the rotating part (76) of the three-way switching valve (71, 72) in the first state is connected to the internal flow path. (77), the rotation angle position is such that the first port (P1) and the second port (P2) communicate with each other, and the rotating portion (76) of the three-way switching valve (71, 72) is in the second state. ), one of the first port (P1) and the second port (P2) communicates with the third port (P3) via the internal flow path (77), and the first port (P1) and the second port The other of the two ports (P2) is at the rotational angle position where it is closed by the rotating part (76).

この構成により、冷媒流路(41,42)の導通と冷媒流路(41,42)の遮断とを三方切換弁(71,72)によって切り換えることができる。 With this configuration, the three-way switching valve (71, 72) can switch between conducting the refrigerant flow path (41, 42) and blocking the refrigerant flow path (41, 42).

なお、三方切換弁(71,72)は、第2状態において、第1ポート(P1)と、閉塞された第3ポート(P3)とが連通し、第2ポート(P2)が回転部(76)の表面によって閉塞される構成であってもよい。この構成においても、冷房運転及び暖房運転においては、冷媒流路(41,42)を冷媒が流れ、冷媒の漏洩時には利用回路(30a)を冷媒回路(10a)から切り離すことができる。 In addition, in the three-way switching valve (71, 72), in the second state, the first port (P1) and the closed third port (P3) communicate with each other, and the second port (P2) communicates with the rotating part (76). ) may be occluded by the surface. Also in this configuration, the refrigerant flows through the refrigerant flow path (41, 42) during cooling operation and heating operation, and in the event of refrigerant leakage, the utilization circuit (30a) can be separated from the refrigerant circuit (10a).

〈変形例3〉
図6に示す変形例3は、上記実施形態と遮断ユニット(50)の構成が異なる。遮断ユニット(50)の遮断弁は、二方切換弁(81,82)で構成される。本例の二方切換弁(81,82)は、電動回転式のいわゆるロータリ弁である。
<Modification 3>
Modification 3 shown in FIG. 6 differs from the above embodiment in the configuration of the cutoff unit (50). The cutoff valve of the cutoff unit (50) is composed of a two-way switching valve (81, 82). The two-way switching valves (81, 82) of this example are electrically rotary so-called rotary valves.

液冷媒流路(41)には、第1二方切換弁(81)が接続される。ガス冷媒流路(42)には、第2二方切換弁(82)が接続される。各二方切換弁(81,82)は、第1ポート(P1)及び第2ポート(P2)を有している。 A first two-way switching valve (81) is connected to the liquid refrigerant flow path (41). A second two-way switching valve (82) is connected to the gas refrigerant flow path (42). Each two-way switching valve (81, 82) has a first port (P1) and a second port (P2).

第1二方切換弁(81)の第1ポート(P1)は、第1液流路(41a)に接続する。第1二方切換弁(81)の第2ポート(P2)は、第2液流路(41b)に接続する。第2二方切換弁(82)の第1ポート(P1)は、第1ガス流路(42a)に接続する。第2二方切換弁(82)の第2ポート(P2)は、第2ガス流路(42b)に接続する。第2二方切換弁(82)の第3ポート(P3)は、第4閉塞部材(84)によって閉塞される。 The first port (P1) of the first two-way switching valve (81) is connected to the first liquid flow path (41a). The second port (P2) of the first two-way switching valve (81) is connected to the second liquid flow path (41b). The first port (P1) of the second two-way switching valve (82) is connected to the first gas flow path (42a). The second port (P2) of the second two-way switching valve (82) is connected to the second gas flow path (42b). The third port (P3) of the second two-way switching valve (82) is closed by the fourth closing member (84).

各二方切換弁(81,82)は、電動機(75)と、該電動機(75)によって回転駆動される回転部(76)と、該回転部(76)を収容するケース(78)とを有する。ケース(78)には、上述した第1ポート(P1)及び第2ポート(P2)が形成される。回転部(76)には、内部流路(77)が形成される。本例の内部流路(77)は、軸直角断面から視た形状が直線状に形成される。 Each two-way switching valve (81, 82) includes an electric motor (75), a rotating part (76) rotationally driven by the electric motor (75), and a case (78) that houses the rotating part (76). have The above-described first port (P1) and second port (P2) are formed in the case (78). An internal flow path (77) is formed in the rotating part (76). The internal flow path (77) in this example has a linear shape when viewed from a cross section perpendicular to the axis.

各二方切換弁(81,82)は、冷媒流路(41,42)を導通させる第1状態と、冷媒流路(41,42)を遮断する第2状態とに切り換えられる。 Each two-way switching valve (81, 82) is switched between a first state in which the refrigerant flow path (41, 42) is made conductive and a second state in which the refrigerant flow path (41, 42) is cut off.

図6(A)に示す通常運転時(冷房運転及び暖房運転)では、制御ユニット(57)により各二方切換弁(81,82)が第1状態に制御される。制御ユニット(57)は、各二方切換弁(81,82)が第1状態となるように電動機(75)を制御する。第1状態の各二方切換弁(81,82)の回転部(76)は、内部流路(77)を介して第1ポート(P1)と第2ポート(P2)とを連通させる回転角度位置となる。これにより、冷房運転及び暖房運転では、液冷媒流路(41)及びガス冷媒流路(42)を冷媒が流れる。 During normal operation (cooling operation and heating operation) shown in FIG. 6(A), each two-way switching valve (81, 82) is controlled to the first state by the control unit (57). The control unit (57) controls the electric motor (75) so that each two-way switching valve (81, 82) is in the first state. The rotating part (76) of each two-way switching valve (81, 82) in the first state has a rotation angle that allows communication between the first port (P1) and the second port (P2) via the internal flow path (77). position. Thereby, in the cooling operation and the heating operation, the refrigerant flows through the liquid refrigerant flow path (41) and the gas refrigerant flow path (42).

利用回路(30a)で冷媒が漏洩し、冷媒漏洩検知センサ(35)が冷媒の漏洩を検知すると、室内コントローラ(33)から制御ユニット(57)に信号が出力される。図6(B)に示すように、この信号を受信した制御ユニット(57)は、各二方切換弁(81,82)を第2状態に切り換える。制御ユニット(57)は、各二方切換弁(81,82)が第2状態となるように電動機(75)を制御する。第2状態の各二方切換弁(81,82)の回転部(76)は、第1ポート(P1)及び第2ポート(P2)が回転部(76)によって閉塞される回転角度位置となる。本例では、内部流路(77)が、第1ポート(P1)及び第2ポート(P2)と直交する。これにより、冷媒漏洩時には、第1ポート(P1)及び第2ポート(P2)が回転部(76)の表面によって閉塞される。利用回路(30a)が冷媒回路(10a)から切り離される。 When refrigerant leaks in the utilization circuit (30a) and the refrigerant leak detection sensor (35) detects the refrigerant leak, a signal is output from the indoor controller (33) to the control unit (57). As shown in FIG. 6(B), the control unit (57) receiving this signal switches each two-way switching valve (81, 82) to the second state. The control unit (57) controls the electric motor (75) so that each two-way switching valve (81, 82) is in the second state. The rotating part (76) of each two-way switching valve (81, 82) in the second state is at a rotation angle position where the first port (P1) and the second port (P2) are closed by the rotating part (76). . In this example, the internal flow path (77) is perpendicular to the first port (P1) and the second port (P2). As a result, in the event of a refrigerant leak, the first port (P1) and the second port (P2) are blocked by the surface of the rotating part (76). The utilization circuit (30a) is separated from the refrigerant circuit (10a).

二方切換弁は、水配管などに適用されるボールバルブ式であってもよい。 The two-way switching valve may be a ball valve type applied to water piping and the like.

〈変形例4〉
電動式回転式の流路切換弁は、4つのポートを有する四方切換弁であってもよい。この場合、四方切換弁のうちの例えば2つのポートを閉塞部材によって閉塞させる。四方切換弁は、第1ポート(P1)と第2ポート(P2)とを連通させる第1状態と、第2ポート(P2)が閉塞される状態とに切り換わる。
<Modification 4>
The electric rotary flow path switching valve may be a four-way switching valve having four ports. In this case, for example, two ports of the four-way switching valve are closed by the closing member. The four-way switching valve switches between a first state in which the first port (P1) and the second port (P2) communicate with each other and a state in which the second port (P2) is closed.

《その他の実施形態》
図7に示すように、空気調和機(10)において、一対の冷媒流路(41,42)に複数の室内ユニット(30)を並列に接続してもよい。厳密には、一組の液冷媒流路(41)とガス冷媒流路(42)とに、複数の利用回路(30a)を並列に接続してもよい。
《Other embodiments》
As shown in FIG. 7, in the air conditioner (10), a plurality of indoor units (30) may be connected in parallel to a pair of refrigerant channels (41, 42). Strictly speaking, a plurality of utilization circuits (30a) may be connected in parallel to a set of liquid refrigerant flow path (41) and gas refrigerant flow path (42).

図8に示すように、空気調和機(10)は、1台の室外ユニット(20)の熱源回路(20a)と、1台の室内ユニット(30)の利用回路(30a)とが液連絡配管(11)とガス連絡配管(15)とを介して互いに接続される構成であってもよい。換言すると、空気調和機(10)は、いわゆるペア式であってもよい。この構成では、液連絡配管(11)が液側の冷媒流路(41)を構成し、ガス連絡配管(15)がガス側の冷媒流路(42)を構成する。 As shown in FIG. 8, in the air conditioner (10), the heat source circuit (20a) of one outdoor unit (20) and the usage circuit (30a) of one indoor unit (30) are connected to a liquid communication pipe. (11) and the gas communication pipe (15) may be connected to each other. In other words, the air conditioner (10) may be of a so-called pair type. In this configuration, the liquid communication pipe (11) forms a liquid-side refrigerant flow path (41), and the gas communication pipe (15) forms a gas-side refrigerant flow path (42).

室内ユニット(30)は、天井設置式に限らず、壁掛け式、床置き式などの他の方式であってもよい。 The indoor unit (30) is not limited to a ceiling-mounted type, but may be of other types such as a wall-mounted type or a floor-mounted type.

上述した実施形態、及び各変形例における流路切換弁(V1,V2)を如何なるパターンで組み合わせてもよい。2つの冷媒流路(41,42)のうち一方のみに本開示の流路切換弁を採用し、他方に電磁弁や膨張弁を採用してもよい。 The flow path switching valves (V1, V2) in the above-described embodiment and each modification may be combined in any pattern. The flow path switching valve of the present disclosure may be used in only one of the two refrigerant flow paths (41, 42), and a solenoid valve or an expansion valve may be used in the other.

〈冷媒について〉
上記実施形態、各変形例、及びその他の実施形態に係る空気調和機(10)の冷媒回路(10a)に使用される冷媒は、可燃性の冷媒である。なお、ここでは、可燃性の冷媒には、米国のASHRAE34 Designation and safety classification of refrigerantの規格又はISO817 Refrigerants-Designation and safety classificationの規格でClass3(強燃性)、Class2(弱燃性)、Subclass2L(微燃性)に該当する冷媒を含む。上記実施形態及び各変形例で使用される冷媒の具体例を図9に示す。図9中の“ASHRAE Number”はISO817で定められた冷媒のアシュレイ番号を、“成分”は冷媒に含まれる物質のアシュレイ番号を、“質量%”は冷媒に含まれる各物質の質量パーセント濃度を、“Alternative”は、その冷媒によって代替されることの多い冷媒の物質の名称を示す。本実施形態では、使用される冷媒はR32とする。なお、図9に例示した冷媒は、空気より密度が大きいという特徴を有する。
<About refrigerant>
The refrigerant used in the refrigerant circuit (10a) of the air conditioner (10) according to the above embodiment, each modification, and other embodiments is a flammable refrigerant. Here, the flammable refrigerant is based on the American ASHRAE34 Designation and Safety Classification of Refrigerants or the ISO817 Refrigerants-Designation and Safety Classification of Refrigerants. Classification standards include Class 3 (strong flammability), Class 2 (weak flammability), and Subclass 2L ( Contains refrigerants classified as mildly flammable. A specific example of the refrigerant used in the above embodiment and each modification is shown in FIG. In Figure 9, "ASHRAE Number" is the Ashley number of the refrigerant defined by ISO817, "component" is the Ashley number of the substance contained in the refrigerant, and "mass%" is the mass percent concentration of each substance contained in the refrigerant. , "Alternative" indicates the name of a refrigerant substance that is often substituted by the refrigerant. In this embodiment, the refrigerant used is R32. Note that the refrigerant illustrated in FIG. 9 has a characteristic that it has a higher density than air.

以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the claims. In addition, the above embodiments, modifications, and other embodiments may be combined or replaced as appropriate, as long as the functionality of the object of the present disclosure is not impaired. The descriptions of “first,” “second,” “third,” etc. mentioned above are used to distinguish the words to which these descriptions are given, and even the number and order of the words are limited. It's not something you do.

本開示は、空気調和機及び流路切換弁について有用である。 The present disclosure is useful for air conditioners and flow path switching valves.

10 空気調和機
10a 冷媒回路
20 室外ユニット(熱源ユニット)
20a 熱源回路
21 圧縮機
22 室外熱交換器(熱源熱交換器)
30 室内ユニット(利用ユニット)
30a 利用回路
31 室内熱交換器(利用熱交換器)
41 冷媒流路
42 冷媒流路
41a,42a 第1流路
41b,42b 第2流路
51,52 四方切換弁
55,56 低圧管
60 高圧導入回路
61 液側導入路
62 ガス側導入路
62 ガス側導入路
64 第1逆止弁(第1開閉弁)
65 第2逆止弁(第2開閉弁)
71,72 三方切換弁
75 電動機
76 回転部
77 内部流路
V1,V2 流路切換弁
10 Air conditioner 10a Refrigerant circuit 20 Outdoor unit (heat source unit)
20a Heat source circuit 21 Compressor 22 Outdoor heat exchanger (heat source heat exchanger)
30 Indoor unit (Used unit)
30a Usage circuit 31 Indoor heat exchanger (usage heat exchanger)
41 Refrigerant flow path 42 Refrigerant flow path 41a, 42a First flow path 41b, 42b Second flow path 51, 52 Four-way switching valve 55, 56 Low pressure pipe 60 High pressure introduction circuit 61 Liquid side introduction path 62 Gas side introduction path 62 Gas side Introduction path 64 First check valve (first opening/closing valve)
65 Second check valve (second on-off valve)
71, 72 Three-way switching valve 75 Electric motor 76 Rotating part 77 Internal channels V1, V2 Channel switching valve

Claims (11)

圧縮機(21)及び熱源熱交換器(22)が接続される熱源回路(20a)と、利用熱交換器(31)が接続される利用回路(30a)とを含み、冷凍サイクルが行われる冷媒回路(10a)とを備えた空気調和機であって、
前記冷媒回路(10a)は、前記利用回路(30a)の両端にそれぞれ接続される冷媒流路(41,42)を含み、
2つの前記冷媒流路(41,42)の各々に接続される遮断弁をさらに備え、
2つの前記遮断弁の少なくとも一方は、前記利用回路(30a)で冷媒の漏洩が生じると、前記冷媒流路(41,42)を遮断するように流路を切り換える流路切換弁(V1,V2)で構成され
前記冷媒流路(41,42)は、前記流路切換弁(V1,V2)における前記熱源回路(20a)側に形成される第1流路(41a,42a)と、前記流路切換弁(V1,V2)における前記利用回路(30a)側に形成される第2流路(41b,42b)とを含み、
前記流路切換弁(V1,V2)は、前記第1流路(41a,42a)に接続する第1ポート(P1)と、前記第2流路(41b,42b)に接続する第2ポート(P2)と、第3ポート(P3)と、第4ポート(P4)とを有するとともに、第1ポート(P1)と第2ポート(P2)とを連通させる状態と、第1ポート(P1)と第2ポート(P2)とを遮断する状態とに切り換わる四方切換弁(51,52)で構成されることを特徴とする空気調和機。
A refrigerant in which a refrigeration cycle is performed, including a heat source circuit (20a) to which a compressor (21) and a heat source heat exchanger (22) are connected, and a utilization circuit (30a) to which a utilization heat exchanger (31) is connected. An air conditioner comprising a circuit (10a),
The refrigerant circuit (10a) includes refrigerant flow paths (41, 42) respectively connected to both ends of the utilization circuit (30a),
further comprising a shutoff valve connected to each of the two refrigerant flow paths (41, 42),
At least one of the two cutoff valves is a flow path switching valve (V1, V2) that switches the flow path to shut off the refrigerant flow path (41, 42) when refrigerant leaks in the usage circuit (30a). ) consists of
The refrigerant flow path (41, 42) includes a first flow path (41a, 42a) formed on the heat source circuit (20a) side of the flow path switching valve (V1, V2), and a first flow path (41a, 42a) formed on the heat source circuit (20a) side of the flow path switching valve (V1, V2). a second flow path (41b, 42b) formed on the utilization circuit (30a) side in V1, V2),
The flow path switching valves (V1, V2) have a first port (P1) connected to the first flow path (41a, 42a) and a second port (P1) connected to the second flow path (41b, 42b). P2), a third port (P3), and a fourth port (P4), and a state in which the first port (P1) and the second port (P2) communicate with each other, and a state in which the first port (P1) and the second port (P2) communicate with each other. An air conditioner characterized by comprising a four-way switching valve (51, 52) that switches between a state in which a second port (P2) is cut off.
請求項1において、
前記冷媒回路(10a)は、前記第1流路(41a,42a)の高圧冷媒を前記第3ポート(P3)に導入する高圧導入回路(60)を含み、
前記四方切換弁(51,52)は、前記第3ポート(P3)に導入された高圧冷媒を駆動源とする差圧駆動式であることを特徴とする空気調和機。
In claim 1,
The refrigerant circuit (10a) includes a high-pressure introduction circuit (60) that introduces the high-pressure refrigerant in the first flow path (41a, 42a) to the third port (P3),
The air conditioner is characterized in that the four-way switching valve (51, 52) is a differential pressure drive type driven by a high-pressure refrigerant introduced into the third port (P3).
請求項2において、
前記冷媒回路(10a)は、前記熱源熱交換器(22)を放熱器とし前記利用熱交換器(31)を蒸発器とする第1冷凍サイクルと、前記利用熱交換器(31)を放熱器とし前記熱源熱交換器(22)を蒸発器とする第2冷凍サイクルとを行うように構成され、
前記高圧導入回路(60)は、少なくとも、前記2つの冷媒流路(41,42)の前記第1流路(41a,42a)のうち圧力の高い第1流路(41a,42a)の高圧冷媒を、前記第3ポート(P3)に導入するように構成されることを特徴とする空気調和機。
In claim 2,
The refrigerant circuit (10a) includes a first refrigeration cycle in which the heat source heat exchanger (22) is a radiator and the utilization heat exchanger (31) is an evaporator, and the utilization heat exchanger (31) is a radiator. and a second refrigeration cycle using the heat source heat exchanger (22) as an evaporator,
The high-pressure introduction circuit (60) at least supplies the high-pressure refrigerant in the first flow path (41a, 42a) having a higher pressure among the first flow paths (41a, 42a) of the two refrigerant flow paths (41, 42). An air conditioner characterized in that the air conditioner is configured to introduce into the third port (P3).
請求項3において、
前記高圧導入回路(60)は、
液側の前記冷媒流路(41)の第1流路(41a,42a)と前記第3ポート(P3)とを連通させる液側導入路(61)と、
ガス側の前記冷媒流路(42)の第1流路(41a,42a)と前記第3ポート(P3)とを連通させるガス側導入路(62)とを含み、
前記液側導入路(61)には、前記第1冷凍サイクル時に開放される第1開閉弁(64)が設けられ、
前記ガス側導入路(62)には、前記第2冷凍サイクル時に開放される第2開閉弁(65)が設けられることを特徴とする空気調和機。
In claim 3,
The high voltage introduction circuit (60) is
a liquid-side introduction path (61) that communicates the first flow path (41a, 42a) of the refrigerant flow path (41) on the liquid side with the third port (P3);
a gas side introduction path (62) that communicates the first flow path (41a, 42a) of the refrigerant flow path (42) on the gas side with the third port (P3);
The liquid side introduction path (61) is provided with a first on-off valve (64) that is opened during the first refrigeration cycle,
The air conditioner is characterized in that the gas side introduction path (62) is provided with a second on-off valve (65) that is opened during the second refrigeration cycle.
請求項1乃至4のいずれか1つにおいて、
前記四方切換弁(51,52)は、閉塞された第4ポート(P4)を有し、
第1状態の前記四方切換弁(51,52)は、第1ポート(P1)と第2ポート(P2)とを連通させ且つ第3ポート(P3)と第4ポート(P4)とを連通させ、
第2状態の前記四方切換弁(51,52)は、第1ポート(P1)と第3ポート(P3)とを連通させ且つ第2ポート(P2)と第4ポート(P4)とを連通させることを特徴とする空気調和機。
In any one of claims 1 to 4,
The four-way switching valve (51, 52) has a closed fourth port (P4),
The four-way switching valve (51, 52) in the first state allows communication between the first port (P1) and the second port (P2) and communication between the third port (P3) and the fourth port (P4). ,
The four-way switching valve (51, 52) in the second state communicates between the first port (P1) and the third port (P3) and communicates between the second port (P2) and the fourth port (P4). An air conditioner characterized by:
請求項1乃至5のいずれか1つにおいて、
前記四方切換弁(51,52)は、前記利用回路(30a)に連通する低圧管(55,56)を有し、高圧冷媒と前記低圧管(55,56)の内圧との差圧によって第2状態に切り換わることを特徴とする空気調和機。
In any one of claims 1 to 5,
The four-way switching valve (51, 52) has a low-pressure pipe (55, 56) that communicates with the utilization circuit (30a), and the four-way switching valve (51, 52) has a low-pressure pipe (55, 56) that communicates with the utilization circuit (30a). An air conditioner characterized by switching between two states.
請求項1~6のいずれか1つにおいて、
前記四方切換弁(51,52)は、スプール弁の移動に伴い、前記冷媒流路(41,42)を遮断するように流路を切り換えることを特徴とする空気調和機。
In any one of claims 1 to 6,
The air conditioner is characterized in that the four-way switching valve (51, 52) switches the flow path so as to block the refrigerant flow path (41, 42) as the spool valve moves.
圧縮機(21)及び熱源熱交換器(22)が接続される熱源回路(20a)と、利用熱交換器(31)が接続される利用回路(30a)とを含み、冷凍サイクルが行われる冷媒回路(10a)とを備えた空気調和機であって、
前記冷媒回路(10a)は、前記利用回路(30a)の両端にそれぞれ接続される冷媒流路(41,42)を含み、
2つの前記冷媒流路(41,42)の各々に接続される遮断弁をさらに備え、
2つの前記遮断弁の少なくとも一方は、前記利用回路(30a)で冷媒の漏洩が生じると、前記冷媒流路(41,42)を遮断するように流路を切り換える流路切換弁(V1,V2)で構成され、
前記冷媒流路(41,42)は、前記流路切換弁(V1,V2)における前記熱源回路(20a)側に形成される第1流路(41a,42a)と、前記流路切換弁(V1,V2)における前記利用回路(30a)側に形成される第2流路(41b,42b)とを含み、
前記流路切換弁(V1,V2)は、前記第1流路(41a,42a)に接続する第1ポート(P1)と、前記第2流路(41b,42b)に接続する第2ポート(P2)と、内部流路(77)が形成される回転部(76)と、前記回転部(76)を回転駆動する電動機(75)とを有する電動回転式であり、
前記流路切換弁(V1,V2)の前記回転部(76)は、前記内部流路(77)を介して前記第1ポート(P1)と前記第2ポート(P2)とを連通させる第1状態の回転角度位置と、前記第1ポート(P1)及び前記第2ポート(P2)を閉塞する第2状態の回転角度位置になり
前記流路切換弁(V1,V2)は、閉塞された第3ポート(P3)を有する電動回転式の三方切換弁(71,72)で構成され、
前記第1状態の前記三方切換弁(71,72)の前記回転部(76)は、前記内部流路(77)を介して前記第1ポート(P1)と前記第2ポート(P2)とを連通させる回転角度位置となり、
前記第2状態の前記三方切換弁(71,72)の前記回転部(76)は、前記第1ポート(P1)及び前記第2ポート(P2)の一方が前記内部流路(77)を介して第3ポート(P3)と連通し、該第1ポート(P1)及び第2ポート(P2)の他方が回転部(76)によって閉塞される回転角度位置になる
ことを特徴とする空気調和機。
A refrigerant in which a refrigeration cycle is performed, including a heat source circuit (20a) to which a compressor (21) and a heat source heat exchanger (22) are connected, and a utilization circuit (30a) to which a utilization heat exchanger (31) is connected. An air conditioner comprising a circuit (10a),
The refrigerant circuit (10a) includes refrigerant flow paths (41, 42) respectively connected to both ends of the utilization circuit (30a),
further comprising a shutoff valve connected to each of the two refrigerant flow paths (41, 42),
At least one of the two cutoff valves is a flow path switching valve (V1, V2) that switches the flow path to shut off the refrigerant flow path (41, 42) when refrigerant leaks in the usage circuit (30a). ) consists of
The refrigerant flow path (41, 42) includes a first flow path (41a, 42a) formed on the heat source circuit (20a) side of the flow path switching valve (V1, V2), and a first flow path (41a, 42a) formed on the heat source circuit (20a) side of the flow path switching valve (V1, V2). a second flow path (41b, 42b) formed on the utilization circuit (30a) side in V1, V2),
The flow path switching valves (V1, V2) have a first port (P1) connected to the first flow path (41a, 42a) and a second port (P1) connected to the second flow path (41b, 42b). P2), a rotating part (76) in which an internal flow path (77) is formed, and an electric motor (75) that rotationally drives the rotating part (76),
The rotating part (76) of the flow path switching valve (V1, V2) is configured to connect the first port (P1) and the second port (P2) through the internal flow path (77). and a rotational angular position of a second state in which the first port (P1) and the second port (P2) are closed ,
The flow path switching valves (V1, V2) are composed of electric rotary three-way switching valves (71, 72) having a closed third port (P3),
The rotating part (76) of the three-way switching valve (71, 72) in the first state connects the first port (P1) and the second port (P2) via the internal flow path (77). This is the rotational angle position for communication,
The rotating part (76) of the three-way switching valve (71, 72) in the second state has one of the first port (P1) and the second port (P2) connected through the internal flow path (77). and communicates with the third port (P3), and the other of the first port (P1) and the second port (P2) is in a rotational angular position where it is closed by the rotating part (76).
An air conditioner characterized by:
請求項おいて、
前記利用回路(30a)で冷媒の漏洩が生じると、前記第1状態の回転角度位置の前記流路切換弁(V1,V2)を、前記第2状態の回転角度位置に切り換える制御部(57)を備えていることを特徴とする流路切換弁。
In claim 8 ,
A control unit (57) that switches the flow path switching valves (V1, V2) at the rotational angular position of the first state to the rotational angular position of the second state when a refrigerant leak occurs in the utilization circuit (30a). A flow path switching valve characterized by comprising:
請求項1乃至のいずれか1つにおいて、
前記流路切換弁(V1,V2)は、前記2つの冷媒流路(41,42)のうちガス側の前記冷媒流路(42)に少なくとも接続されることを特徴とする空気調和機。
In any one of claims 1 to 9 ,
The air conditioner is characterized in that the flow path switching valve (V1, V2) is connected at least to the gas side refrigerant flow path (42) of the two refrigerant flow paths (41, 42).
請求項1乃至10のいずれか1つの空気調和機(10)の冷媒流路(41,42)に接続される流路切換弁(V1,V2)であることを特徴とする流路切換弁。 A flow path switching valve (V1, V2) connected to a refrigerant flow path (41, 42) of an air conditioner (10) according to any one of claims 1 to 10 .
JP2019008841A 2019-01-02 2019-01-02 Air conditioner and flow path switching valve Active JP7412887B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019008841A JP7412887B2 (en) 2019-01-02 2019-01-02 Air conditioner and flow path switching valve
CN201980087572.9A CN113227663B (en) 2019-01-02 2019-11-22 Air conditioner and flow path switching valve
PCT/JP2019/045808 WO2020141582A1 (en) 2019-01-02 2019-11-22 Air conditioner and flow path switching valve
EP19908011.0A EP3889515A4 (en) 2019-01-02 2019-11-22 Air conditioner and flow path switching valve
US17/356,910 US20210318041A1 (en) 2019-01-02 2021-06-24 Air conditioner and flow path switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008841A JP7412887B2 (en) 2019-01-02 2019-01-02 Air conditioner and flow path switching valve

Publications (2)

Publication Number Publication Date
JP2020109342A JP2020109342A (en) 2020-07-16
JP7412887B2 true JP7412887B2 (en) 2024-01-15

Family

ID=71407188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008841A Active JP7412887B2 (en) 2019-01-02 2019-01-02 Air conditioner and flow path switching valve

Country Status (5)

Country Link
US (1) US20210318041A1 (en)
EP (1) EP3889515A4 (en)
JP (1) JP7412887B2 (en)
CN (1) CN113227663B (en)
WO (1) WO2020141582A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102438931B1 (en) * 2020-12-11 2022-08-31 엘지전자 주식회사 Air conditioner and the controlling method for the same
BE1030293B1 (en) * 2022-02-23 2023-09-18 Daikin Europe Nv AIR CONDITIONING SYSTEM AND METHOD FOR ESTABLISHING A CONTROL LOGIC FOR OPERATING THE SHUT-OFF VALVE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148817A (en) 2001-11-06 2003-05-21 Mitsubishi Electric Corp Regenerative air conditioner and refrigerant collecting method for the same
JP2003227664A (en) 2002-02-05 2003-08-15 Mitsubishi Electric Corp Air conditioner and operation method of air conditioner
EP2728280A1 (en) 2012-11-02 2014-05-07 LG Electronics, Inc. Air conditioner and control method thereof
JP2015152275A (en) 2014-02-18 2015-08-24 株式会社Nttファシリティーズ Air conditioning device and control method of air conditioning device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141469A (en) * 1985-12-14 1987-06-24 ダイキン工業株式会社 Heat pump type air conditioner
JP3060770B2 (en) * 1993-02-26 2000-07-10 ダイキン工業株式会社 Refrigeration equipment
JPH09264641A (en) * 1996-03-29 1997-10-07 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JPH11182895A (en) * 1997-12-17 1999-07-06 Mitsubishi Electric Corp Air-conditioning equipment
JP3530370B2 (en) * 1998-01-20 2004-05-24 株式会社鷺宮製作所 Method and apparatus for supplying electric power for driving cooling / heating unit
JP4265868B2 (en) * 2000-12-11 2009-05-20 東芝キヤリア株式会社 Air conditioner
EP1475588A4 (en) * 2002-01-15 2008-04-09 Toshiba Kk Refrigerator having alarm device for alarming leakage of refrigerant
JP2007163011A (en) * 2005-12-13 2007-06-28 Daikin Ind Ltd Refrigeration unit
JP5211894B2 (en) * 2008-06-27 2013-06-12 ダイキン工業株式会社 Air conditioner
WO2011048724A1 (en) * 2009-10-22 2011-04-28 ダイキン工業株式会社 Flow path switching valve, and air conditioner provided therewith
US20130014525A1 (en) * 2010-05-12 2013-01-17 Mitsubishi Electric Corporation Switching device and air-conditioning apparatus
JP5517789B2 (en) 2010-07-02 2014-06-11 日立アプライアンス株式会社 Air conditioner
WO2012008148A1 (en) * 2010-07-13 2012-01-19 ダイキン工業株式会社 Refrigerant flow path switching unit
JP2012127519A (en) * 2010-12-13 2012-07-05 Panasonic Corp Air conditioner
CN102213463B (en) * 2011-05-26 2013-11-06 广东美的电器股份有限公司 Air conditioner using combustible refrigerant and control method thereof
KR101678324B1 (en) * 2012-08-27 2016-11-21 다이킨 고교 가부시키가이샤 Refrigeration system
JP5837231B2 (en) * 2012-11-30 2015-12-24 三菱電機株式会社 Air conditioner
JP6285172B2 (en) * 2013-12-19 2018-02-28 日立ジョンソンコントロールズ空調株式会社 Air conditioner outdoor unit
JP6252332B2 (en) * 2014-04-18 2017-12-27 ダイキン工業株式会社 Refrigeration equipment
JP6604051B2 (en) * 2015-06-26 2019-11-13 ダイキン工業株式会社 Air conditioning system
WO2018061188A1 (en) * 2016-09-30 2018-04-05 三菱電機株式会社 Indoor unit and air conditioner
JP7215819B2 (en) * 2017-01-11 2023-01-31 ダイキン工業株式会社 Air conditioner and indoor unit
WO2019146070A1 (en) * 2018-01-26 2019-08-01 三菱電機株式会社 Refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148817A (en) 2001-11-06 2003-05-21 Mitsubishi Electric Corp Regenerative air conditioner and refrigerant collecting method for the same
JP2003227664A (en) 2002-02-05 2003-08-15 Mitsubishi Electric Corp Air conditioner and operation method of air conditioner
EP2728280A1 (en) 2012-11-02 2014-05-07 LG Electronics, Inc. Air conditioner and control method thereof
JP2015152275A (en) 2014-02-18 2015-08-24 株式会社Nttファシリティーズ Air conditioning device and control method of air conditioning device

Also Published As

Publication number Publication date
JP2020109342A (en) 2020-07-16
CN113227663B (en) 2023-05-23
WO2020141582A1 (en) 2020-07-09
US20210318041A1 (en) 2021-10-14
EP3889515A1 (en) 2021-10-06
CN113227663A (en) 2021-08-06
EP3889515A4 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
US20210131706A1 (en) Air conditioner and indoor unit
US10712061B2 (en) Air conditioning apparatus
KR101678324B1 (en) Refrigeration system
JP6701337B2 (en) Air conditioner
CN113366270B (en) Refrigerant cycle device
US20210318041A1 (en) Air conditioner and flow path switching valve
CN113994151A (en) Refrigerant cycle device
CN113412401A (en) Refrigerant cycle device
KR102150441B1 (en) Air conditioner
CN113260822B (en) Air conditioner and stop valve
CN114729768A (en) Air conditioning system
US20220373205A1 (en) Air-conditioning system
JP6906708B2 (en) Water-cooled air conditioner
WO2023026639A1 (en) Air conditioning system
WO2023026638A1 (en) Outdoor unit, indoor unit, and air conditioning system
WO2023276535A1 (en) Air conditioning system
JP7445140B2 (en) Air conditioner, installation method of air conditioner, and outdoor unit
WO2022202571A1 (en) Air conditioner
WO2020179825A1 (en) Refrigerant cycle system and method
WO2020250987A1 (en) Refrigerant cycle system
WO2023276584A1 (en) Air conditioning system
JP6778888B1 (en) Repeater and air conditioner
US20240044533A1 (en) Air conditioning system, operation control method therefor, and operation control device for air conditioning system
WO2024018594A1 (en) Multi-type air-conditioning device
JP2023007076A (en) air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221206

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231227

R150 Certificate of patent or registration of utility model

Ref document number: 7412887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150