JP7411319B1 - Soil cement manufacturing method - Google Patents

Soil cement manufacturing method Download PDF

Info

Publication number
JP7411319B1
JP7411319B1 JP2023146577A JP2023146577A JP7411319B1 JP 7411319 B1 JP7411319 B1 JP 7411319B1 JP 2023146577 A JP2023146577 A JP 2023146577A JP 2023146577 A JP2023146577 A JP 2023146577A JP 7411319 B1 JP7411319 B1 JP 7411319B1
Authority
JP
Japan
Prior art keywords
mixture
soil cement
soil
day
crushed material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023146577A
Other languages
Japanese (ja)
Inventor
祥克 秋山
克之 酒巻
和樹 松村
瑞穂 小林
Original Assignee
株式会社インバックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社インバックス filed Critical 株式会社インバックス
Priority to JP2023146577A priority Critical patent/JP7411319B1/en
Application granted granted Critical
Publication of JP7411319B1 publication Critical patent/JP7411319B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

【課題】本発明は、変形追従性が高く、かつ再掘削が容易であり、また、用途や利活用先を拡大できるソイルセメントの製造方法を提供する。【解決手段】本発明は、下記(A)~(D)工程を少なくとも含む、ソイルセメントの製造方法である。(A)土砂に、少なくとも固化材を、ソイルセメント1m3当たり50~400kg添加して混合し混合物を作製する、混合物の作製工程(B)前記混合物が解砕可能である期間、該混合物を仮置きして養生する、混合物の仮置き養生工程(C)前記仮置き養生を終えた混合物を、粒径が200mm以下に解砕して解砕物を得る、混合物の解砕工程(D)前記解砕物を転圧してソイルセメントを得る、解砕物の転圧工程【選択図】図1The present invention provides a method for producing soil cement that has high deformation followability, is easy to re-excavate, and can expand its uses and applications. The present invention is a method for producing soil cement, which includes at least the following steps (A) to (D). (A) Mixture preparation step of adding at least 50 to 400 kg of solidifying agent per 1 m3 of soil cement to soil cement to prepare a mixture. (B) Temporarily storing the mixture for a period when the mixture can be crushed. (C) Temporary curing step of the mixture, in which the mixture after the temporary curing is crushed to a particle size of 200 mm or less to obtain a crushed product (D) The crushed product Compaction process of crushed material to obtain soil cement [Selected diagram] Figure 1

Description

本発明は、変形追従性が高く、かつ再掘削が容易であり、また、用途や利活用先を拡大できるソイルセメントを製造する方法である。 The present invention is a method for producing soil cement that has high deformation followability, is easy to re-excavate, and can expand its uses and applications.

ソイルセメントとは、広義には、土砂に固化材および水等を混合した混合物(フレッシュ状態)、並びに、該固化材の水和により硬化した固化体を云う。
そして、昨今では環境問題への配慮から、各種建設工事に伴う発生土砂を用いたソイルセメントが多用されている。これにより発生土を建設現場と同じ場所か、または異なる建設現場で有効活用できるため、土砂の処分場所が延命し、土砂の搬出・処分・調達に要する費用と、土砂の搬出時の騒音・振動等の環境問題を抑制できる。したがって、ソイルセメントは、経済的であるとともに、前記環境問題が生じ難いという特長がある。
Soil cement, in a broad sense, refers to a mixture (fresh state) of earth and sand mixed with a solidifying agent, water, etc., and a solidified body that is hardened by hydration of the solidifying agent.
Nowadays, due to environmental concerns, soil cement, which is made from earth and sand generated during various types of construction work, is often used. This allows the generated soil to be effectively used at the same site as the construction site or at a different construction site, extending the life of the soil disposal site and reducing the costs of transporting, disposing, and procuring the soil, as well as noise and vibration when transporting the soil. Environmental problems such as these can be suppressed. Therefore, soil cement has the advantage of being economical and less likely to cause the above-mentioned environmental problems.

従来、ソイルセメントの製造において、土砂に固化材を添加する方法は、固化材の全量を土砂に一括して添加する一括添加方法(特許文献1、特許文献2)と、固化材を二度に分けて、土砂に一次および二次添加する分割添加方法(特許文献3)がある。
しかし、前記一括添加方法は、土砂が、火山灰質粘性土、および有機質土等の固化難土や、重粘土等の高粘性土の場合、目標強度を発現するために必要な固化材量が、粗粒土や低含水比土等のその他の土砂に比べ多くなる。
Conventionally, in the production of soil cement, there are two methods for adding a solidifying agent to soil and sand: a one-time addition method in which the entire amount of the solidifying agent is added to the soil at once (Patent Document 1, Patent Document 2), and a method in which the solidifying agent is added twice. There is a divided addition method (Patent Document 3) in which primary and secondary additions are made to soil and sand separately.
However, in the case of the bulk addition method, when the soil is difficult to solidify such as volcanic ash clay and organic soil, or highly viscous soil such as heavy clay, the amount of solidified material required to achieve the target strength is It is more abundant than other soils such as coarse-grained soil and low moisture content soil.

また、前記分割添加方法は、一括添加方法で用いる固化材の添加量よりも少ない添加量で、一括添加方法と同程度の強度が得られるという利点はあるが、比較的、強度が高いため、地下埋設管の埋め戻し等の再掘削が必要な工事では、再掘削が困難になる場合があり、当該用途に適さなかった。さらに、分割添加方法で製造したソイルセメントは、破壊ひずみが小さく、地震等で生じるひずみ(変形)に対する追従性が低いという欠点がある。
したがって、分割添加方法では、用途や利活用先が限定されるほか、固化材の添加量の適正化が難しいため、ソイルセメント中の固化材が過剰または不足する場合がある。
In addition, the split addition method has the advantage that the same strength as the batch addition method can be obtained with a smaller amount of solidifying agent added than the batch addition method, but since the strength is relatively high, In construction work that requires re-excavation, such as backfilling underground pipes, re-excavation may become difficult, so it was not suitable for the application. Furthermore, soil cement produced by the divided addition method has the disadvantage of having a small fracture strain and poor followability to strain (deformation) caused by earthquakes and the like.
Therefore, with the divided addition method, applications and applications are limited, and it is difficult to optimize the amount of solidifying agent added, which may result in excess or shortage of solidifying agent in soil cement.

特開2019-15022号公報JP 2019-15022 Publication 特開2018-21303号公報JP 2018-21303 Publication 特許第704216号公報Patent No. 704216

したがって、本発明は、変形追従性が高く、かつ再掘削が容易であり、また、用途や利活用先を拡大できるソイルセメントの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing soil cement that has high deformation followability, is easy to re-excavate, and can expand its uses and applications.

そこで、本発明者らは、前記目的を達成すべく鋭意検討した結果、下記の構成を有するソイルセメントの製造方法は、前記目的を達成できることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the inventors of the present invention have found that the method for producing soil cement having the following configuration can achieve the above object, and have completed the present invention.

[1]下記(A)~(D)工程を少なくとも含む、ソイルセメントの製造方法。
(A)土砂に、少なくとも固化材を、ソイルセメント1m当たり50~400kg添加して混合し混合物を作製する、混合物の作製工程。だだし、前記固化材の添加は1回限り(1次添加のみ)であり、2次添加は行わない。
(B)前記混合物の圧縮強さが、0.03~1.5N/mm になる期間、該混合物を仮置きして養生する、混合物の仮置き養生工程
(C)前記仮置き養生を終えた混合物を、粒径が200mm以下に解砕して解砕物を得る、混合物の解砕工程
(D)前記解砕物を転圧して成型して、
(d1)成型28日後の圧縮強さが、材齢3日の解砕物の成形体で0.04~0.45N/mm 、材齢7日の解砕物の成形体で0.07~0.55N/mm 、材齢28日の解砕物の成形体で0.07~0.66N/mm 、および、材齢365日の解砕物の成形体で0.12~0.44N/mm であり、
(d2)成型91日後の圧縮強さが、材齢3日の解砕物の成形体で0.07~0.56N/mm 、材齢7日の解砕物の成形体で0.11~0.78N/mm 、材齢28日の解砕物の成形体で0.18~1.09N/mm 、および、材齢365日の解砕物の成形体で0.18~0.69N/mm である、
ソイルセメントを得る、解砕物の転圧工程
[2]前記(C)工程において、解砕物を使用するまで保管する、前記[1]に記載のソイルセメントの製造方法。
[3]前記(D)工程において、転圧したソイルセメントをさらに養生する、前記[1]または[2]に記載のソイルセメントの製造方法。
[1] A method for producing soil cement, which includes at least the following steps (A) to (D).
(A) A process for producing a mixture, in which at least 50 to 400 kg of a solidifying agent is added to soil cement per 1 m 3 of soil cement and mixed to produce a mixture. However, the solidifying agent is added only once (first addition only), and no second addition is performed.
(B) Temporary curing step of the mixture, in which the mixture is temporarily placed and cured for a period in which the compressive strength of the mixture becomes 0.03 to 1.5 N/mm 2 (C) The temporary curing is carried out. Crushing the finished mixture to obtain a crushed product with a particle size of 200 mm or less, (D) crushing step of the mixture, rolling and molding the crushed product,
(d1) The compressive strength after 28 days of molding is 0.04 to 0.45 N/mm 2 for the 3-day-old crushed material, and 0.07 to 0 for the 7-day-old crushed material. .55 N/mm 2 , 0.07 to 0.66 N/mm 2 for a 28-day-old crushed material , and 0.12 to 0.44 N/mm for a 365-day-old crushed material 2 ,
(d2) The compressive strength after 91 days of molding is 0.07 to 0.56 N/mm 2 for the 3-day-old crushed material, and 0.11 to 0 for the 7-day-old crushed material. .78 N/mm 2 , 0.18 to 1.09 N/mm 2 for a 28-day-old crushed material , and 0.18 to 0.69 N/mm for a 365-day-old crushed material 2 ,
Compression step of crushed material to obtain soil cement [2] The method for producing soil cement according to the above [1], wherein in the step (C), the crushed material is stored until used.
[3] The method for producing soil cement according to [1] or [2] above, wherein in the step (D), the compacted soil cement is further cured.

本発明により製造したソイルセメントは、変形に対する追従性が高く、かつ再掘削できる強度である。
また、前記(A)工程で作製した混合物を、一定期間、仮置き養生するため、および(C)工程で解砕した解砕物を使用するまで保管するため、使用期間を長く確保できるから、ソイルセメントの用途や利活用先を拡大できる。
The soil cement produced according to the present invention has high deformation followability and is strong enough to be re-excavated.
In addition, since the mixture prepared in step (A) is temporarily cured for a certain period of time, and the crushed material crushed in step (C) is stored until it is used, a long period of use can be ensured. The applications and uses of cement can be expanded.

(C)工程で仮置き養生を終えた混合物の状態を示す写真であって、左の写真は強度が高くて解砕できない状態を示し、中央の写真は解砕が容易で解砕した状態を示し、右の写真は泥濘化して解砕できない状態を示す。(C) Photographs showing the state of the mixture after temporary curing in the process. The left photograph shows a state in which the mixture is too strong to be crushed, and the center photograph shows a state in which it is easy to crush and has been crushed. The photo on the right shows a state in which it has become muddy and cannot be crushed.

本発明は、前記したとおり、(A)混合物の作製工程、(B)混合物の仮置き養生工程、(C)混合物の解砕工程、および(D)解砕物の転圧工程を少なくとも含む、ソイルセメントの製造方法である。
以下、前記(A)~(D)工程に分けて、本発明を詳細に説明する。
As described above, the present invention provides a soil soil that includes at least (A) a step of preparing a mixture, (B) a step of temporarily curing the mixture, (C) a step of crushing the mixture, and (D) a step of compacting the crushed material. This is a method of manufacturing cement.
Hereinafter, the present invention will be explained in detail by dividing into the steps (A) to (D).

(A)混合物の作製工程
前記(A)工程は、土砂に、少なくとも固化材を添加して混合し混合物を作製する工程である。次に、土砂、固化材、混合装置、および加水の順に説明する。
(i)土砂
該土砂は、建物等の建設現場や道路工事現場等から発生する土砂、残土、および廃土等の土砂、並びに、掘削等の施工現場で発生する土砂、および施工現場付近で採取できる土砂等から選ばれる1種以上が挙げられる。また、該土砂の種類は、特に限定されず、粗粒土、細粒土、火山灰質粘性土、有機質土、および高有機質土等の固化難土、並びに、粘土等の高粘性土から選ばれる1種以上が挙げられる。
(A) Step of Preparing a Mixture The step (A) is a step of adding and mixing at least a solidifying agent to earth and sand to prepare a mixture. Next, the earth and sand, solidification material, mixing device, and water addition will be explained in this order.
(i) Earth and sand Earth and sand includes earth and sand generated from construction sites such as buildings and road construction sites, leftover soil, waste soil, etc., earth and sand generated at construction sites such as excavation, and earth and sand collected near construction sites. One or more types selected from the soil and sand that can be used can be mentioned. The type of soil is not particularly limited, and is selected from coarse-grained soil, fine-grained soil, volcanic ash clay soil, organic soil, soil that is difficult to solidify such as highly organic soil, and highly viscous soil such as clay. One or more types may be mentioned.

(ii)固化材
該固化材は、高炉セメントB種、高炉セメントA種、高炉セメントC種、ポルトランドセメント、シリカセメント、フライアッシュセメント、エコセメント、およびセメント系固化材から選ばれる1種以上である。ここで、前記セメント系固化材はセメントを母材とする複合材であり、一般軟弱土用、特殊土用(汎用型)、および高有機質土用等の固化の用途や固化現場の状況等に応じて決めるとよい。
前記セメント系固化材は、市販のセメント系固化材を例にすれば、汎用型ではジオセット200(登録商標、太平洋セメント社製)、高有機質土用ではジオセット225(登録商標、太平洋セメント社製)等が挙げられる。なお、コストの低さや固化性能の高さを勘案すると、前記固化材は、好ましくは高炉セメントB種、およびセメント系固化材である。
(ii) Solidification material The solidification material is one or more selected from blast furnace cement type B, blast furnace cement type A, blast furnace cement type C, Portland cement, silica cement, fly ash cement, ecocement, and cementitious solidification materials. be. Here, the cement-based solidification material is a composite material with cement as a base material, and is suitable for solidification purposes such as general soft soil, special soil (general purpose type), and high organic content soil, and the conditions at the solidification site. You should decide accordingly.
As an example of commercially available cement-based solidifying materials, the general-purpose type is Geoset 200 (registered trademark, manufactured by Taiheiyo Cement Co., Ltd.), and the one for high organic soil is Geoset 225 (registered trademark, manufactured by Taiheiyo Cement Co., Ltd.). (manufactured by), etc. In addition, in consideration of low cost and high solidification performance, the solidification material is preferably blast furnace cement type B and a cement-based solidification material.

該固化材の添加量は、前記ソイルセメント1m当たり50~400kgである。該添加量がソイルセメント1m当たり50kg未満では、後掲の表1中の比較例1および表3中の比較例10が示すようにソイルセメントの強度は十分ではなく、400kgを超えると、後掲の表1中の比較例6および表3中の比較例13が示すようにソイルセメントの強度は過大になり、前記(C)工程において解砕が容易でない場合がある。なお、前記固化材の添加量は、ソイルセメント1m当たり、好ましくは80~300kgである。また、前記添加量は、室内配合試験等により、事前に適正量を決めるとよい。 The amount of the solidifying agent added is 50 to 400 kg per 1 m 3 of the soil cement. If the amount added is less than 50 kg per 1 m3 of soil cement, the strength of the soil cement will not be sufficient, as shown in Comparative Example 1 in Table 1 and Comparative Example 10 in Table 3 below, and if it exceeds 400 kg, the soil cement will not have sufficient strength. As shown in Comparative Example 6 in Table 1 and Comparative Example 13 in Table 3, the strength of soil cement becomes excessive, and it may not be easy to crush it in the step (C). The amount of the solidifying agent added is preferably 80 to 300 kg per 1 m 3 of soil cement. Further, the appropriate amount to be added may be determined in advance by an indoor mixing test or the like.

(iii)混合装置
前記土砂と固化材を混合するための装置は、特に限定されず、一般に、コンクリートやモルタルの混練に用いるミキサーでよく、例えば、可傾式ミキサー、強制練りミキサー、ドラムミキサー、重力式ミキサー、およびハンドミキサー等が挙げられる。また、建設現場等では、該混合装置は、バックホウ、バケットミキシング、およびソイルセメント専用のバッチ式または連続式のミキサー等が挙げられる。
ちなみに、土砂に、固化材を添加することにより生じる効果は、以下の点が挙げられる。
(a)見掛けの含水比が低下する。
(b)土砂中の土粒子が団粒化するから、土性が改質される。
(c)締固め等の施工性が向上する。
(d)固化材中のカルシウムイオンと、土砂中のフミン酸等の腐食酸が反応して、ソイルセメントの固化阻害物である腐食酸を固定するため、固化反応がより促進する。
(iii) Mixing device The device for mixing the earth and sand and the solidifying material is not particularly limited, and may be a mixer generally used for mixing concrete or mortar, such as a tilting mixer, a forced mixing mixer, a drum mixer, Examples include gravity mixers and hand mixers. Further, at construction sites and the like, examples of the mixing device include a backhoe, a bucket mixer, a batch type or continuous type mixer exclusively for soil cement, and the like.
By the way, the following points can be cited as the effects produced by adding a solidifying agent to earth and sand.
(a) The apparent water content ratio decreases.
(b) The soil properties are improved because the soil particles in the soil aggregate.
(c) Workability such as compaction is improved.
(d) Calcium ions in the solidification material react with corrosive acids such as humic acid in the soil to fix the corrosive acids that inhibit solidification of soil cement, thereby further promoting the solidification reaction.

(iv)加水
該(A)工程において、土砂の粘性が高いため固化材の攪拌・混合が困難、または不可能な場合や、土砂の含水比が低く、固化材の水和に必要な水分が不足する場合は、混合物の混練時に加水するのが好ましい。
ここで、前記の土砂の粘性が高いため固化材の攪拌・混合が困難、または不可能な場合とは、攪拌・混合が混合装置の性能に依存するから一義的には云えないが、例えば、攪拌・混合できないか、または均一に混合しない場合をいう。
また、前記加水に用いる水は、上水道水、河川水、湖沼水、海水、および下水処理水等である。なお、加水量は、使用する水を用いて実際に混合物を調製して決めるとよい。その際、上水道水以外を使用する場合は、固化性能に悪影響を及ぼさないことを事前に確認することが好ましい。
(iv) Addition of water In the step (A), there are cases where it is difficult or impossible to stir and mix the solidification material due to the high viscosity of the soil, or where the moisture content of the soil is low and the water required for hydration of the solidification material is insufficient. If the amount is insufficient, it is preferable to add water when kneading the mixture.
Here, the case where it is difficult or impossible to stir and mix the solidification material due to the high viscosity of the earth and sand cannot be unambiguously stated because the stirring and mixing depends on the performance of the mixing device, but for example, This refers to cases where stirring/mixing is not possible, or when the mixture is not uniform.
Moreover, the water used for the addition of water includes tap water, river water, lake water, seawater, treated sewage water, and the like. Note that the amount of water to be added is preferably determined by actually preparing a mixture using the water to be used. When using water other than tap water, it is preferable to confirm in advance that it will not adversely affect solidification performance.

(B)混合物の仮置き養生工程
前記(B)工程は、混合物が解砕可能である期間、該混合物を仮置きして養生する工程である。
前記「解砕可能である期間」とは、粉砕に用いる器具や装置の性能にもよるが、例えば、混合物の圧縮強さで云えば、0.03~1.5N/mmとなる期間である。該圧縮強さが0.03N/mm未満では、前記混合物の強度が解砕できる強度に達せず、力を加えると泥濘化する場合があり、また1.5N/mmを超えると、解砕が容易でなくなるか、解砕後の転圧が困難になる場合がある。なお、前記圧縮強さは、好ましくは0.08~1.0N/mmである。ちなみに、後掲の表1~3に基づけば、仮置き養生の期間は、3~365日の範囲内である。
固化材量が多いほど、また養生期間が長いほど、原則として強度は高くなるため解砕は困難になる。ただし、固化材量が多い場合でも養生期間が短ければ、強度の増加度が小さいために解砕は容易な場合がある。一方、固化材量が少ない場合でも養生期間が長ければ強度の増加度が大きくなるため、解砕が困難となる場合もある。即ち、[強度(主に固化材量に依存)/養生期間/解砕の難易度]は相互に関係するため、用途や利活用先を考慮してそれぞれを決定することが重要である。したがって、実際の土砂を用いて事前の配合試験を実施することが好ましい。
また、仮置き養生の方法は特に限定されず、シート掛け、密封養生、および封緘養生等が挙げられる。
(B) Step of temporary curing of mixture The step (B) is a step of temporarily curing the mixture for a period during which the mixture can be crushed.
The above-mentioned "period during which crushing is possible" depends on the performance of the instruments and equipment used for crushing, but for example, in terms of compressive strength of the mixture, it is a period during which the compressive strength of the mixture is 0.03 to 1.5 N/mm 2 . be. If the compressive strength is less than 0.03 N/mm 2 , the strength of the mixture will not reach the strength that can be crushed, and it may turn into mud when force is applied. It may not be easy to crush or it may be difficult to compact the material after crushing. Note that the compressive strength is preferably 0.08 to 1.0 N/mm 2 . Incidentally, based on Tables 1 to 3 below, the period of temporary curing is within the range of 3 to 365 days.
As a general rule, the greater the amount of solidified material and the longer the curing period, the greater the strength and therefore the difficulty of crushing. However, even if the amount of solidified material is large, if the curing period is short, crushing may be easy because the increase in strength is small. On the other hand, even if the amount of solidified material is small, if the curing period is long, the degree of increase in strength will be large, which may make crushing difficult. In other words, since [strength (mainly dependent on the amount of solidified material)/curing period/difficulty of crushing] are interrelated, it is important to determine each in consideration of the purpose and place of use. Therefore, it is preferable to conduct a preliminary mixing test using actual soil.
Further, the method of temporary curing is not particularly limited, and examples include sheeting, sealed curing, and sealed curing.

(C)混合物の解砕工程
該工程は、前記仮置き養生を終えた混合物を、粒径が200mm以下に解砕して解砕物を得る工程である。該粒径が200mmを超えると転圧が困難になる場合がある。なお、該粒径は、好ましくは150mm以下、より好ましくは100mm以下、さらに好ましくは50mm以下、さらに好ましくは10mm以下である。
また、本発明で用いる解砕方法は特に限定されないが、前記仮置き養生を終えた混合物を、篩が装着された解砕機を用いて砕く方法、および、バックホウのバケットまたはキャタピラで押し潰す方法等が挙げられる。
(C) Step of crushing the mixture This step is a step of crushing the mixture that has been temporarily cured into particles having a particle size of 200 mm or less to obtain a crushed product. If the particle size exceeds 200 mm, rolling may become difficult. The particle size is preferably 150 mm or less, more preferably 100 mm or less, even more preferably 50 mm or less, and still more preferably 10 mm or less.
Further, the crushing method used in the present invention is not particularly limited, but includes a method of crushing the mixture after the temporary curing using a crusher equipped with a sieve, a method of crushing the mixture with a backhoe bucket or a caterpillar, etc. can be mentioned.

なお、解砕時における混合物の圧縮強さが1.0N/mmを超える場合は、解砕物の締固め性(充填性)を高めることによりソイルセメントの強度が向上するから、解砕物に加水するのが好ましい。
前記加水に用いる水は、上水道水、河川水、湖沼水、海水、および下水処理水等を用いることができる。なお、加水量は、使用する水を用いて実際に混合物を調製して決めるとよい。その際、上水道水以外を使用する場合は、固化性能に悪影響を及ぼさないことを確認することが好ましい。
前記解砕物は、解砕物を使用するときまで保管すると便利である。保管した解砕物は、適時、転圧等を行って使用することにより、将来に渡って、ソイルセメントの用途や利活用先を拡大できる。
In addition, if the compressive strength of the mixture at the time of crushing exceeds 1.0 N/ mm2 , the strength of soil cement will be improved by increasing the compaction property (filling property) of the crushed material, so add water to the crushed material. It is preferable to do so.
The water used for the water addition can be tap water, river water, lake water, seawater, treated sewage water, or the like. Note that the amount of water to be added is preferably determined by actually preparing a mixture using the water to be used. At that time, when using water other than tap water, it is preferable to confirm that it does not adversely affect solidification performance.
It is convenient to store the crushed material until it is used. By using the stored crushed material through compaction, etc. in a timely manner, it is possible to expand the uses and uses of soil cement in the future.

(D)解砕物の転圧工程
該工程は、前記解砕物を転圧してソイルセメントを得る工程である。
本発明で用いる転圧方法は特に限定されず、振動ローラや振動ダンパによる転圧が挙げられる。また、より高い強度を要する用途には、解砕物に固化材を添加して転圧するとよい。
また、ソイルセメントの強度が不足する場合は、該転圧工程において、解砕物に固化材を添加してソイルセメントを得ることもできる。
該工程において、冬期の施工後の凍結防止や、夏期の施工後の打設面の乾燥を防ぐため、養生することが好ましい。該養生は、養生シートや養生マットの使用、および、これらの養生と散水や吸熱養生の併用が挙げられる。
(D) Step of rolling the crushed material This step is a step of rolling the crushed material to obtain soil cement.
The rolling method used in the present invention is not particularly limited, and examples include rolling using a vibrating roller or a vibration damper. In addition, for applications requiring higher strength, it is preferable to add a solidifying agent to the crushed material and compact it.
Moreover, when the strength of soil cement is insufficient, soil cement can also be obtained by adding a solidifying agent to the crushed material in the compaction step.
In this step, curing is preferably performed to prevent freezing after construction in the winter and to prevent drying of the pouring surface after construction in the summer. The curing includes the use of curing sheets and curing mats, and the combination of these curing with watering and endothermic curing.

以下、本発明を実施例により詳細に説明するが、本発明は該実施例に限定されない。
1.使用材料
(1)試料土
用いた試料土は、神奈川県産の土砂(表1)、静岡県産の土砂(表2中のA)、広島県産の土砂(表2中のB)、北海道産の土砂(表2中のC)、および熊本県産の土砂(表3)である。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples.
1. Materials used (1) Sample soil The sample soils used were soil from Kanagawa Prefecture (Table 1), soil from Shizuoka Prefecture (A in Table 2), soil from Hiroshima Prefecture (B in Table 2), and soil from Hokkaido. soil from Kumamoto prefecture (C in Table 2), and soil from Kumamoto prefecture (Table 3).

(2)固化材
用いた固化材は、ジオセット225[登録商標、太平洋セメント社製](表1、表3)、および高炉セメントB種[太平洋セメント社製](表2)である。
(2) Solidifying material The solidifying materials used were Geoset 225 [registered trademark, manufactured by Taiheiyo Cement Co., Ltd.] (Tables 1 and 3) and Blast Furnace Cement B type [manufactured by Taiheiyo Cement Co., Ltd.] (Table 2).

2.解砕の難易度の判定
表1~3に示す配合に従い、前記試料土と1次添加用の固化材をホバート型ミキサを用いて混練し、混合物を作製した。ただし、混練が困難な場合は、混練できるまで加水した。
次に、該混合物をポリ袋に入れて、該混合物の圧縮強さが0.02(比較例1等)~2.07(比較例6)N/mmになるまで密封養生して仮置きした後、目開き9.5mmのフルイを通過させて、表1~3に記載の材齢の混合物を解砕した。
解砕の難易度は、各混合物の解砕時の状況により判定した。また、解砕時の強度が、0.01N/mmである比較例10、並びに、0.02N/mmである比較例1および比較例11は、フルイを通過させるために圧力を掛けると泥濘化して解砕できなかった。
2. Determination of Difficulty of Crushing According to the formulations shown in Tables 1 to 3, the sample soil and the solidification material for primary addition were kneaded using a Hobart mixer to prepare a mixture. However, if kneading was difficult, water was added until kneading was possible.
Next, the mixture is placed in a plastic bag, and the mixture is sealed and cured temporarily until the compressive strength of the mixture becomes 0.02 (Comparative Example 1, etc.) to 2.07 (Comparative Example 6) N/ mm2 . After that, the mixtures having the ages listed in Tables 1 to 3 were crushed by passing through a sieve with an opening of 9.5 mm.
The difficulty level of crushing was determined based on the conditions at the time of crushing each mixture. In addition, in Comparative Example 10, in which the strength at the time of crushing is 0.01 N/mm 2 , and Comparative Examples 1 and 11, in which the strength at the time of crushing is 0.02 N/mm 2 , when pressure is applied to pass through the sieve, It turned into mud and could not be crushed.

3.供試体の作製
次に、表1~3に示す配合に従い、該解砕物単独(実施例)、または該解砕物と2次添加用の固化材(比較例)をホバート型ミキサを用いて混練した混練物を内径50mm、高さ100mmのモールドにセメント協会標準試験方法(JCAS L-01)により転圧し、実施例および比較例の供試体を作製した。
また、参考例1~3の供試体は、固化材を添加せずに転圧のみで作製した。
3. Preparation of Specimen Next, the crushed material alone (Example) or the crushed material and a solidifying material for secondary addition (Comparative Example) were kneaded using a Hobart mixer according to the formulations shown in Tables 1 to 3. The kneaded material was compacted into a mold with an inner diameter of 50 mm and a height of 100 mm according to the Japan Cement Association Standard Test Method (JCAS L-01) to prepare specimens for Examples and Comparative Examples.
Further, the test specimens of Reference Examples 1 to 3 were produced only by compaction without adding a solidifying agent.

4.耐水性試験
前記供試体(表1~3中では固化体と記載した。)の耐水性は、降雨等によるソイルセメントの耐水性を評価するため、供試体の泥化や崩壊の有無を目視により判定して、耐水性の良・不良を判定した。なお、前記固化体の耐水性の良・不良は、表1、2では、材齢7日の混合物を解砕して得た解砕物を転圧して作製した成型28日後の供試体を用い、また、表3では、材齢28日の混合物を解砕して得た解砕物を転圧して作製した成型28日後の供試体を用いた。
4. Water Resistance Test The water resistance of the above-mentioned specimen (described as solidified material in Tables 1 to 3) was determined by visually observing whether or not the specimen turned into mud or collapsed, in order to evaluate the water resistance of soil cement due to rainfall, etc. The water resistance was determined to be good or bad. In addition, in Tables 1 and 2, the water resistance of the solidified material is determined by using a test specimen 28 days after molding, which was prepared by compacting a crushed material obtained by crushing a 7-day-old mixture. Moreover, in Table 3, a test piece after 28 days of molding was used, which was prepared by rolling a crushed material obtained by crushing a mixture of 28 days old.

5.圧縮強さ試験および破壊ひずみ試験
前記供試体の圧縮強さ(表中では「強度」で表す。)、および、材齢7日の混合物の解砕物を用いた成型28日後の供試体の破壊ひずみは、JIS A 1216「土の一軸圧縮試験方法」に準拠して測定した。
なお、表3中の比較例13は、固化材を一次添加した直後に転圧して成型し、成型28日後、および成型91日後の成形体(通常の圧縮強さ試験に用いる供試体)の圧縮強さと破壊ひずみ、および耐水性を測定した。また、比較例13の解砕の難易度は、この測定した強度に基づき判定した。
以上の結果を表1~3に示すとともに、ソイルセメントの物性に影響する、土砂の種類(産地)、並びに、固化材の種類および添加量が同じ実施例と比較例同士を、おもに比較しながら、試験結果の評価を以下に論じる。
5. Compressive strength test and fracture strain test Compressive strength of the specimen (expressed as "strength" in the table), and fracture strain of the specimen 28 days after molding using the crushed material of the 7-day-old mixture was measured in accordance with JIS A 1216 "Unconfined compression test method for soil".
In addition, in Comparative Example 13 in Table 3, the compacting material was molded immediately after the primary addition of the solidifying material, and the compaction of the molded product (specimen used for normal compressive strength tests) was performed 28 days after molding and 91 days after molding. Strength, fracture strain, and water resistance were measured. Furthermore, the difficulty of crushing in Comparative Example 13 was determined based on the measured strength.
The above results are shown in Tables 1 to 3, and we will mainly compare examples and comparative examples in which the type of soil (production area) and the type and amount of solidification agent, which affect the physical properties of soil cement, are the same. , the evaluation of the test results is discussed below.

Figure 0007411319000002
Figure 0007411319000002

(1)表1について
(i)実施例5と比較例2、3の比較
固化材の(全)添加量が250kg/mと同じであるにもかかわらず、成型28日後および91日後の、実施例5/比較例2、および実施例5/比較例3の強度比(カッコ内の数値)は、材齢7日解砕物および材齢28日解砕物において、0.10~0.20と低かった。なお、表1のカッコ内の数値は、例えば、比較例2の材齢7日解砕物の「0.20」では、実施例5/比較例2の強度比を示す。表1中のその他も同様。
また、破壊ひずみは、材齢7日解砕物および材齢28日解砕物のいずれも、比較例2、3に比べ実施例5は4倍程度と高く、変形追従性に優れていた。さらに、該実施例および比較例の耐水性は良好だった。
(1) Regarding Table 1 (i) Comparison of Example 5 and Comparative Examples 2 and 3 Even though the (total) amount of solidifying agent added was the same as 250 kg/ m3 , after 28 days and 91 days of molding, The strength ratios (numbers in parentheses) of Example 5/Comparative Example 2 and Example 5/Comparative Example 3 are 0.10 to 0.20 for the 7-day-old material and the 28-day-old material. It was low. Note that the numerical value in parentheses in Table 1, for example, "0.20" of the 7-day-old crushed material of Comparative Example 2 indicates the strength ratio of Example 5/Comparative Example 2. The same applies to the others in Table 1.
In addition, the fracture strain of Example 5 was about 4 times higher than that of Comparative Examples 2 and 3 for both the 7-day-old and 28-day-old pieces, indicating excellent deformation followability. Furthermore, the water resistance of the Examples and Comparative Examples was good.

(ii)実施例7と比較例4、5の比較
固化材の(全)添加量が350kg/mと同じであるにもかかわらず、成型28日後および91日後の、実施例7/比較例4および実施例7/比較例5の強度比(カッコ内の数値)は、材齢7日解砕物および材齢28日解砕物において、0.11~0.22と低かった。
また、破壊ひずみは、材齢7日解砕物および材齢28日解砕物のいずれも、比較例4、5に比べ実施例7は5倍程度と高く、変形追従性に優れていた。さらに、該実施例および比較例の耐水性は良好だった。
なお、参考例1(固化材無添加)の圧縮強さと破壊ひずみはいずれも、同じ土砂を用いた比較例1(固化材添加)と同程度であるにもかかわらず、固化材で改質されていないため、耐水性は不良であった。
(ii) Comparison of Example 7 and Comparative Examples 4 and 5 Even though the (total) amount of solidifying agent added was the same as 350 kg/ m3 , Example 7/Comparative Example 28 days and 91 days after molding The strength ratios (numerical values in parentheses) of Example 4 and Example 7/Comparative Example 5 were as low as 0.11 to 0.22 in the 7-day-old and 28-day-old pieces.
In addition, the fracture strain of Example 7 was about 5 times higher than that of Comparative Examples 4 and 5 for both the 7-day-old and 28-day-old pieces, indicating excellent deformation followability. Furthermore, the water resistance of the Examples and Comparative Examples was good.
In addition, although both the compressive strength and fracture strain of Reference Example 1 (no solidifying agent added) were comparable to those of Comparative Example 1 (with solidifying agent added) using the same earth and sand, it was not modified with a solidifying agent. The water resistance was poor.

(iii)比較例1について
比較例1では、ソイルセメント1m当たり固化材の添加量は40kg/mと少ないため、解砕時に泥濘化して解砕が困難であった。したがって、本発明では、強度を低くするために固化材の添加量をソイルセメント1m当たり50kg/m未満にすると、解砕が困難になる。
(iii) Regarding Comparative Example 1 In Comparative Example 1, since the amount of solidifying agent added per 1 m 3 of soil cement was as small as 40 kg/m 3 , it turned into mud during crushing, making crushing difficult. Therefore, in the present invention, if the amount of solidifying agent added is less than 50 kg/m 3 per 1 m 3 of soil cement in order to lower the strength, crushing becomes difficult.

Figure 0007411319000003
Figure 0007411319000003

(3)表2について
実施例11と比較例7の比較
固化材の(全)添加量が240kg/mと同じであるにもかかわらず、実施例11/比較例7の強度比(カッコ内の数値)は、材齢7日解砕物および材齢28日解砕物において、0.43~0.86と低かった。なお、表2のカッコ内の数値は、例えば、実施例11の材齢7日解砕物の「0.86」では、実施例11/比較例7の強度比を示す。表2中のその他も同様。
また、破壊ひずみは、比較例7に比べ実施例11では1.3倍程度と高く、変形追従性に優れていた。さらに、実施例11と比較例7の耐水性はいずれも良好だった。
また、試料土が広島産(実施例12、比較例8)や北海道産(実施例13、比較例9)と、土砂の種類が変わっても、前記静岡産(実施例11、比較例7)と同様のことが云える。
なお、参考例2(固化材無添加)の圧縮強さと破壊ひずみはいずれも、同じ土砂を用いた実施例9(固化材添加)と同程度であるにもかかわらず、固化材で改質されていないため、耐水性は不良であった。
(3) Regarding Table 2 Comparison of Example 11 and Comparative Example 7 Despite the (total) addition amount of solidifying agent being the same as 240 kg/ m3 , the strength ratio of Example 11/Comparative Example 7 (in parentheses) ) was as low as 0.43 to 0.86 in the 7-day-old and 28-day-old materials. Note that the numerical value in parentheses in Table 2, for example, "0.86" for the 7-day-old crushed material of Example 11 indicates the strength ratio of Example 11/Comparative Example 7. The same applies to the others in Table 2.
Further, the fracture strain was approximately 1.3 times higher in Example 11 than in Comparative Example 7, and the deformation followability was excellent. Furthermore, both Example 11 and Comparative Example 7 had good water resistance.
Moreover, even if the type of soil changes, such as when the sample soil is from Hiroshima (Example 12, Comparative Example 8) or from Hokkaido (Example 13, Comparative Example 9), the sample soil is from Shizuoka (Example 11, Comparative Example 7). The same thing can be said.
In addition, although both the compressive strength and fracture strain of Reference Example 2 (no solidifying agent added) were comparable to those of Example 9 (with solidifying agent added) using the same earth and sand, it was not modified with a solidifying agent. The water resistance was poor.

Figure 0007411319000004
Figure 0007411319000004

(4)表3について
(i)実施例14と比較例11の比較
固化材の(全)添加量が150kg/mと同じであるにもかかわらず、実施例14/比較例11の強度比(カッコ内の数値)は、材齢28日解砕物および材齢365日解砕物において、0.38~0.76と低かった。なお、表3のカッコ内の数値は、例えば、実施例14の材齢28日解砕物の「0.76」では、実施例14/比較例11の強度比を示す。表3中のその他も同様。
また、破壊ひずみは、比較例11に比べ実施例14では1.1倍程度と高く、変形追従性が高い。さらに、実施例14と比較例11の耐水性はいずれも良好だった。
これらのことから、仮置き養生の期間が365日の解砕物を用いても、適切な強度を有し、変形追従性と耐水性が高いソイルセメントを製造できることが分かる。
なお、参考例3(固化材無添加)の圧縮強さと破壊ひずみはいずれも、同じ土砂を用いた比較例10(固化材添加)と同程度であるにもかかわらず、固化材で改質されていないため、耐水性は不良であった。
(4) About Table 3 (i) Comparison of Example 14 and Comparative Example 11 Despite the (total) addition amount of solidifying agent being the same as 150 kg/ m3 , the strength ratio of Example 14/Comparative Example 11 (Numbers in parentheses) were low at 0.38 to 0.76 for the 28-day-old material and the 365-day-old material. Note that the numerical value in parentheses in Table 3, for example, "0.76" of the 28-day-old crushed material of Example 14 indicates the strength ratio of Example 14/Comparative Example 11. The same applies to the others in Table 3.
Moreover, the fracture strain in Example 14 is about 1.1 times higher than that in Comparative Example 11, and the deformation followability is high. Furthermore, both Example 14 and Comparative Example 11 had good water resistance.
From these results, it can be seen that even if the crushed material is used for a temporary curing period of 365 days, it is possible to produce soil cement that has appropriate strength, has high deformation followability, and is highly water resistant.
Although both the compressive strength and fracture strain of Reference Example 3 (no solidifying agent added) were comparable to those of Comparative Example 10 (with solidifying agent added) using the same earth and sand, it was not modified with a solidifying agent. The water resistance was poor.

(ii)実施例16と比較例12の比較
固化材の(全)添加量が250kg/mと同じであるにもかかわらず、実施例16/比較例12の強度比(カッコ内の数値)は、材齢28日解砕物および材齢365日解砕物において、0.34~0.88と低かった。
また、破壊ひずみは、比較例12に比べ実施例16では1.8倍と高く、変形追従性が優れている。さらに、実施例16と比較例12の耐水性はいずれも良好だった。
これらのことから、仮置き養生の期間が365日の解砕物を用いても、適切な強度を有し、変形追従性と耐水性が高いソイルセメントを製造できることが分かる。
(iii)比較例10について
比較例10では、ソイルセメント1m当たり固化材の添加量は30kg/mと少ないため、解砕時に泥濘化して解砕が困難であった。
(iv)比較例13について
比較例13は、前記のとおり、固化材を一次添加した直後に転圧して成型した成形体(通常の圧縮強さ試験に用いる供試体)であるが、本発明のソイルセメントに比べ、圧縮強さは高く解砕は困難で、破壊ひずみが低いため変形追従性に劣る。


(ii) Comparison of Example 16 and Comparative Example 12 Even though the (total) amount of solidifying agent added is the same as 250 kg/ m3 , the strength ratio of Example 16/Comparative Example 12 (value in parentheses) was as low as 0.34 to 0.88 in the 28-day-old and 365-day-old materials.
Further, the fracture strain in Example 16 is 1.8 times higher than that in Comparative Example 12, and the deformation followability is excellent. Furthermore, both Example 16 and Comparative Example 12 had good water resistance.
From these results, it can be seen that even if the crushed material is used for a temporary curing period of 365 days, it is possible to produce soil cement that has appropriate strength, has high deformation followability, and is highly water resistant.
(iii) Regarding Comparative Example 10 In Comparative Example 10, since the amount of solidifying agent added per 1 m 3 of soil cement was as small as 30 kg/m 3 , it turned into mud during crushing, making crushing difficult.
(iv) Regarding Comparative Example 13 As mentioned above, Comparative Example 13 is a compact molded by compaction immediately after the primary addition of the solidifying material (a specimen used in a normal compressive strength test). Compared to soil cement, it has a high compressive strength and is difficult to crush, and its fracture strain is low, so it is inferior in deformation followability.


Claims (3)

下記(A)~(D)工程を少なくとも含む、ソイルセメントの製造方法。
(A)土砂に、少なくとも固化材を、ソイルセメント1m当たり50~400kg添加して混合し混合物を作製する、混合物の作製工程。だだし、前記固化材の添加は1回限り(1次添加のみ)であり、2次添加は行わない。
(B)前記混合物の圧縮強さが、0.03~1.5N/mm になる期間、該混合物を仮置きして養生する、混合物の仮置き養生工程
(C)前記仮置き養生を終えた混合物を、粒径が200mm以下に解砕して解砕物を得る、混合物の解砕工程
(D)前記解砕物を転圧して成型して、
(d1)成型28日後の圧縮強さが、材齢3日の解砕物の成形体で0.04~0.45N/mm 、材齢7日の解砕物の成形体で0.07~0.55N/mm 、材齢28日の解砕物の成形体で0.07~0.66N/mm 、および、材齢365日の解砕物の成形体で0.12~0.44N/mm であり、
(d2)成型91日後の圧縮強さが、材齢3日の解砕物の成形体で0.07~0.56N/mm 、材齢7日の解砕物の成形体で0.11~0.78N/mm 、材齢28日の解砕物の成形体で0.18~1.09N/mm 、および、材齢365日の解砕物の成形体で0.18~0.69N/mm である、
ソイルセメントを得る、解砕物の転圧工程
A method for producing soil cement, comprising at least the following steps (A) to (D).
(A) A process for producing a mixture, in which at least 50 to 400 kg of a solidifying agent is added to soil cement per 1 m 3 of soil cement and mixed to produce a mixture. However, the solidifying agent is added only once (first addition only), and no second addition is performed.
(B) Temporary curing step of the mixture, in which the mixture is temporarily placed and cured for a period in which the compressive strength of the mixture becomes 0.03 to 1.5 N/mm 2 (C) The temporary curing is carried out. Crushing the finished mixture to obtain a crushed product with a particle size of 200 mm or less, (D) crushing step of the mixture, rolling and molding the crushed product,
(d1) The compressive strength after 28 days of molding is 0.04 to 0.45 N/mm 2 for the 3-day-old crushed material, and 0.07 to 0 for the 7-day-old crushed material. .55 N/mm 2 , 0.07 to 0.66 N/mm 2 for a 28-day-old crushed material , and 0.12 to 0.44 N/mm for a 365-day-old crushed material 2 ,
(d2) The compressive strength after 91 days of molding is 0.07 to 0.56 N/mm 2 for the 3-day-old crushed material, and 0.11 to 0 for the 7-day-old crushed material. .78 N/mm 2 , 0.18 to 1.09 N/mm 2 for a 28-day-old crushed material , and 0.18 to 0.69 N/mm for a 365-day-old crushed material 2 ,
Compaction process of crushed material to obtain soil cement
前記(C)工程において、解砕物を使用するまで保管する、請求項1に記載のソイルセメントの製造方法。 The method for producing soil cement according to claim 1, wherein in the step (C), the crushed material is stored until used. 前記(D)工程において、転圧したソイルセメントをさらに養生する、請求項1または2に記載のソイルセメントの製造方法。
The method for producing soil cement according to claim 1 or 2, wherein in the step (D), the compacted soil cement is further cured.
JP2023146577A 2023-09-09 2023-09-09 Soil cement manufacturing method Active JP7411319B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023146577A JP7411319B1 (en) 2023-09-09 2023-09-09 Soil cement manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023146577A JP7411319B1 (en) 2023-09-09 2023-09-09 Soil cement manufacturing method

Publications (1)

Publication Number Publication Date
JP7411319B1 true JP7411319B1 (en) 2024-01-11

Family

ID=89451815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023146577A Active JP7411319B1 (en) 2023-09-09 2023-09-09 Soil cement manufacturing method

Country Status (1)

Country Link
JP (1) JP7411319B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042016B1 (en) 2021-03-16 2022-03-25 株式会社インバックス How to make soil cement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042016B1 (en) 2021-03-16 2022-03-25 株式会社インバックス How to make soil cement

Similar Documents

Publication Publication Date Title
Sekhar et al. Utilization of granulated blast furnace slag and cement in the manufacture of compressed stabilized earth blocks
Taha et al. Evaluation of controlled low strength materials containing industrial by-products
Bassani et al. Environmental assessment and geomechanical properties of controlled low-strength materials with recycled and alternative components for cements and aggregates
JP2011038104A (en) Chemical agent for improving engineering properties of soil
KR100900779B1 (en) A manufacturing method of artifical soil using coal dust
Atoyebi et al. Evaluation of laterized earth moist concrete in construction works
JP7411319B1 (en) Soil cement manufacturing method
Dean et al. Use of mine tailings in construction materials
JP4188378B2 (en) Method for manufacturing specimen for bending strength test
EP2773597A2 (en) Glass fiber reinforced thermoset plastic waste doped concrete composition and process for preparation the same
JP2004155636A (en) Construction or building material using slag or fly ash as main material
Raja et al. Experimental study on partial replacement of fine aggregate by granite powder in concrete
JP2004345885A (en) Hydraulic composition, backfill material for ground using the same, non-high strength hardened part structural material and backfill process for excavated ground
WO2007049136A2 (en) Method of making constructional elements
JP2022142105A (en) Production method of soil cement
Van Dang et al. Experimental study on use fly ash in underground construction concrete
JP2890389B2 (en) Filler and manufacturing method thereof
JP2017133255A (en) Construction method of drainage pavement
Wong et al. Unconfined compressive strength of cemented peat
JP2006274765A (en) Plastic grout made by using ready-mixed concrete sludge and plastic grouting method
JP7441685B2 (en) Fluidized soil and its manufacturing method
Naidu et al. A study on the properties of concrete on partial replacement of cement and sand with copper slag
Nemali et al. INVESTIGATION IN DEVELOPING LOW-COST CONCRETE BY USING BRICK POWDER AND QUARRY STONE DUST
Kumar et al. INVESTIGATION IN DEVELOPING LOW-COST CONCRETE BY USING BRICK POWDER AND QUARRY STONE DUST
Topacio et al. Use of Recycled Rubber Tire Crumbs for Waterproofing of Concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230915

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231223

R150 Certificate of patent or registration of utility model

Ref document number: 7411319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150