JP7408063B2 - Predictive power generation charging control method for range extender vehicles - Google Patents

Predictive power generation charging control method for range extender vehicles Download PDF

Info

Publication number
JP7408063B2
JP7408063B2 JP2018194138A JP2018194138A JP7408063B2 JP 7408063 B2 JP7408063 B2 JP 7408063B2 JP 2018194138 A JP2018194138 A JP 2018194138A JP 2018194138 A JP2018194138 A JP 2018194138A JP 7408063 B2 JP7408063 B2 JP 7408063B2
Authority
JP
Japan
Prior art keywords
driving
power generation
generator
vehicle
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018194138A
Other languages
Japanese (ja)
Other versions
JP2020062906A5 (en
JP2020062906A (en
Inventor
吉用茂
清水庄一
稲葉均
茅野圭三
Original Assignee
エーシーテクノロジーズ株式会社
株式会社サニックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーシーテクノロジーズ株式会社, 株式会社サニックス filed Critical エーシーテクノロジーズ株式会社
Priority to JP2018194138A priority Critical patent/JP7408063B2/en
Publication of JP2020062906A publication Critical patent/JP2020062906A/en
Publication of JP2020062906A5 publication Critical patent/JP2020062906A5/ja
Application granted granted Critical
Publication of JP7408063B2 publication Critical patent/JP7408063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、エンジン発電機で二次電池を充電し、その二次電池によってモーターを駆動して走行するレンジエクステンダーEV(Range Extended-Electrical Vehicle)車両に搭載する予測発電充電制御方式に関してである。 The present invention relates to a predictive power generation and charging control system installed in a range extender EV (Range Extended-Electrical Vehicle) vehicle that charges a secondary battery with an engine generator and drives a motor using the secondary battery.

二次電池駆動によるEV車両は二酸化炭素(CO2)の排出がないクリーン交通機関として注目されている。第一の理由は内燃機関で走行する車両と異なり、二次電池に蓄積された電力でモーターを駆動して走行するので、CO2排出がなく静かであり乗り心地も優れてことによる。第二の理由として燃料代を含む維持費はディーゼルエンジン等の車両に比べて安いことから導入する利点は大きいと考えられている。 EV vehicles powered by secondary batteries are attracting attention as a clean means of transportation that does not emit carbon dioxide (CO2). The first reason is that unlike vehicles that run on internal combustion engines, they run by driving motors using electricity stored in secondary batteries, so they emit no CO2, are quieter, and offer superior ride comfort. The second reason is that maintenance costs, including fuel costs, are lower than diesel engine vehicles, which is why it is considered to be a great advantage to introduce them.

しかし、現状のEV車両の一種であるEVバスの価格は、ディーゼルエンジン搭載のバスの改造に頼っているので高価な二次電池を大量に搭載する必要があるために、同席数のディーゼルエンジンのバスと比較して初期投資が数倍と高価となり、なかなかその導入が進んでいない。また、EVトラックにおいては、大量の二次電池のスペースがトラックの搭載積載量を減少させてしまう等、使い勝手が悪い等の理由により普及が遅れている。 However, the price of the current EV bus, which is a type of EV vehicle, depends on the modification of a bus equipped with a diesel engine, so it is necessary to install a large number of expensive secondary batteries. Compared to buses, the initial investment is several times more expensive, so their introduction has not progressed slowly. Furthermore, the widespread use of EV trucks has been delayed due to reasons such as the large amount of space for secondary batteries, which reduces the truck's loading capacity and makes them inconvenient to use.

また、現在の二次電池技術では走行距離が十分でなく、充電時間が長いなどの使い勝手が悪い。充電時間の問題を改良した超急速充電技術の採用も実証はされているが、充電設備を路線上に設置するのが困難なためバス事業者やトラック事業者がメンテナンス可能な場所などに置くしかなく、充電するためにそこに立ち寄るまでの運行が無駄になるなどの問題がある。また、バスやトラック事業者の経費の中で、運転手の賃金が大きな比率を占めるため、充電時間や充電に向かうための時間は無駄な時間であり経費増加となる。一方で充電容量が大きく充電時間が短い次世代の二次電池の開発が進めてられるが、現時点で決定打と呼べるものはなく技術開発の加速に期待するところである。 Additionally, current secondary battery technology does not provide sufficient mileage and is not user-friendly due to long charging times. Although the adoption of ultra-fast charging technology that improves the charging time problem has been demonstrated, it is difficult to install charging equipment on routes, so bus operators and truck operators have no choice but to place it in locations where maintenance can be performed. There are problems with this, such as the time it takes to stop there to charge. Furthermore, since driver wages account for a large proportion of the expenses of bus and truck operators, charging time and time spent traveling to charge are wasted time and increase expenses. On the other hand, the development of next-generation secondary batteries with large charging capacity and short charging time is progressing, but there is currently no definitive solution, and we look forward to accelerating technological development.

先行技術文献として、”電気バスおよび充電システム(特開2016-181965)”等が提案されている。しかし本提案では2次電池への充電タイミングを、搭乗員の昇降の時間を利用して行うとしているが一般的に昇降時間は短いので十分な充電を行えない恐れがある。 As a prior art document, "Electric bus and charging system (Japanese Patent Application Laid-Open No. 2016-181965)" has been proposed. However, in this proposal, the charging timing of the secondary battery is determined by using the time when the passenger goes up and down, but since the time taken to go up and down is generally short, there is a risk that sufficient charging may not be possible.

EVは走行距離を確保するため大容量の電池が必要で、充電時間が長くなるという課題がある事はすでに述べたが、この解決策としてシリーズハイブリッド方式が乗用車に適用されている。一般的にはこの技術は既存のエンジンを発電機として使用し、小容量の二次電池を搭載し、ほとんど常にエンジンを駆動して二次電池に充電し、その二次電池の電力でモーターを駆動させて車両を動かすものである。しかし、バスやトラック等の商用車に適用しようとすると、急な上り坂等で要する過大な瞬時電力を供給する必要があるため、大型発電機と大量の二次電池が必要となる。その結果スペースが取られ、バスでは座席数の削減、トラックでは貨物積載量が制限されるため、商用車のシリーズハイブリッド化は極めて困難である。 As already mentioned, EVs require large-capacity batteries in order to maintain their driving range, which causes the problem of long charging times, but the series hybrid system is being applied to passenger cars as a solution to this problem. Generally, this technology uses an existing engine as a generator, is equipped with a small-capacity secondary battery, and almost always drives the engine to charge the secondary battery, and the secondary battery's power is used to power the motor. It is driven to move the vehicle. However, when applied to commercial vehicles such as buses and trucks, it is necessary to supply an excessive amount of instantaneous power required for steep uphill slopes, etc., which requires a large generator and a large amount of secondary batteries. As a result, series hybridization of commercial vehicles is extremely difficult because it takes up space, reduces the number of seats in buses, and limits the cargo capacity of trucks.

それに対して、本技術のレンジエクステンダーEV(RE_EV)車両は地理情報システム(GIS)とGNSS(Global Navigation Satellite System/全地球測位衛星システム)を活用する事で走行ルート上の位置情報や高度差等の路面情報を収集している。さらにこれまでの走行時に蓄積した走行データを用いる事で、走行前に発電計画(走行計画)の策定を行う。このように走行前にその日の走行計画に立てる事で、必要な発電量を事前に計算出来るので、適切な発電及び充電が行える事から発電機と二次電池の小型化が可能となる。そして、走行開始後は、走行途中で逐次得られる走行データに基づいて走行計画を修正しながら走行する事で計画に沿った走行を行える。また、走行途中での外部充電を行う事が出来ればさらに燃費を向上させる事が可能である。 In contrast, the Range Extender EV (RE_EV) vehicle of this technology utilizes Geographic Information System (GIS) and GNSS (Global Navigation Satellite System) to collect position information on the driving route, altitude difference, etc. road surface information is being collected. Furthermore, by using the driving data accumulated during previous driving, a power generation plan (driving plan) is formulated before driving. By making a driving plan for the day before driving in this way, the required amount of power generation can be calculated in advance, which allows for appropriate power generation and charging, making it possible to downsize the generator and secondary battery. After the vehicle starts traveling, the vehicle can travel according to the plan by modifying the travel plan based on the travel data sequentially obtained during the travel. Additionally, if it is possible to perform external charging while driving, fuel efficiency can be further improved.

このように本レンジエクステンダー車両は、二次電池の充電量が少なくなった場合にのみエンジンを駆動させて二次電池に充電する。通常はエンジンを駆動せずに二次電池のみでモーター駆動を行うので、EV車両の様に走行中での電欠の心配がなく、EV車両の課題であった走行距離の制限を撤廃する事が可能となり、非常に使い勝手の良い車両となり得る。さらに本レンジエクステンダーEV車両は走行時間の多くの割合は二次電池によるモーターで走るので、通常のエンジン駆動車両に比較して二酸化炭素の排出が大幅に少ないクリーンな交通機関であり、さらに内燃機関からのエンジン音は限定的であり、その結果、かなりの走行時間において静かで乗り心地も優れている。そして燃料代を含む維持費はディーゼルエンジンの車両に比べて安いことから導入する利点は大きいと考えられて来た。 In this way, the present range extender vehicle drives the engine to charge the secondary battery only when the amount of charge in the secondary battery becomes low. Normally, the motor is driven only by the secondary battery without driving the engine, so there is no need to worry about running out of power while driving, unlike EV vehicles, and eliminates the limit on mileage that was an issue with EV vehicles. This makes it possible to make the vehicle extremely user-friendly. Furthermore, because this Range Extender EV vehicle runs on a motor powered by a secondary battery for a large portion of its driving time, it is a clean means of transportation that emits significantly less carbon dioxide than a regular engine-powered vehicle. Engine noise is limited, resulting in a quiet and comfortable ride for considerable driving time. Since maintenance costs, including fuel costs, are lower than diesel engine vehicles, it has been thought that there are great advantages to introducing them.

提案者は以前にこのようなレンジエクステンダー技術を公共交通システムの主要車両の1つであるバスに応用した特許提案を行っている(特願2017-204209)。今回の提案は、バスのような予定された周回ルートを走行しないトラック等においても、走行ルート上の位置情報や高度差等の路面情報を用いる事で走行前に発電計画を策定出来るので、本レンジエクステンダー技術を商用車にも適用可能とするものである。 The proponent has previously proposed a patent applying such range extender technology to buses, which are one of the main vehicles in the public transportation system (Patent Application No. 2017-204209). This proposal allows even trucks that do not travel on a scheduled loop route, such as buses, to formulate a power generation plan before driving by using road surface information such as location information and altitude differences on the travel route. This makes range extender technology applicable to commercial vehicles.

本提案と同様な先行技術として、地図情報やGPS情報、及び電池の残容量を検知して車両に搭載した発電機の駆動を制御するとした“電気自動車ナビゲーションシステム(特開平8-240435)がある。この提案はそれまでのハイブリッド自動車は電池容量が少なくなった時点で車両に搭載した発電機を駆動させることで無公害地域でも排気ガスを出してしまう課題に対して、無公害地域に近接してかつ電池残量が少ない場合には発電機を駆動して充電をしておき、無公害地域では発電機を停止して排気ガスを出さないようにできるナビゲーションシステムを活用した技術である。これにより無公害地域では出来るだけ排気ガスを防止できるということを主張している。しかし、本提案の予測発電充電制御技術を用いたエクステンダーEV車両は、発電量を抑制するためのモデリングや制御方法を駆使する事で発電機の小型化と小容量の二次電池の使用が可能となり積載量に影響を与えないので、商用車においても所謂シリーズハイブリッド技術を活用可能にするものである。 As a prior art similar to this proposal, there is an "electric vehicle navigation system (Japanese Patent Laid-Open No. 8-240435) that detects map information, GPS information, and remaining battery capacity to control the drive of a generator installed in the vehicle. This proposal solves the problem of conventional hybrid cars, which emit exhaust gas even in non-polluting areas by driving the on-board generator when the battery capacity becomes low. This technology utilizes a navigation system that can run a generator to charge the vehicle when the battery is low, and in non-polluting areas, shut down the generator to prevent exhaust gas from being emitted. It is claimed that exhaust gas can be prevented as much as possible in pollution-free areas.However, the extender EV vehicle using the predictive power generation and charging control technology proposed in this proposal requires modeling and control methods to suppress the amount of power generation. By making full use of this system, it is possible to downsize the generator and use a small-capacity secondary battery without affecting the payload, making it possible to utilize so-called series hybrid technology in commercial vehicles as well.

なお、エンジンは以下の記述では小型のディーゼルエンジンを想定しているが、それに限ったものではなく、ガソリンエンジンでも燃料発電機(所謂燃料電池)等でも構わない。 Although the following description assumes that the engine is a small diesel engine, it is not limited to this, and may be a gasoline engine, a fuel generator (so-called fuel cell), or the like.

特開2016-181965JP2016-181965 特開平8-240435JP 8-240435

本発明によって解決しようとする課題は、これまでのシリーズハイブリッド車両では長い急な坂道を走行する場合に備えて、搭載する大量の二次電池と大型発電機のためにバスでは座席数が、トラックでは貨物搭載容量を犠牲にしてしまう課題があった。さらに、大型発電機用のエンジンは燃料消費量とそれに比例するCO2削減に課題があった。 The problem to be solved by the present invention is that conventional series hybrid vehicles are equipped with a large number of secondary batteries and large generators in case of traveling on long steep slopes, so the number of seats in buses is limited, while the number of seats in trucks is limited. However, there was the issue of sacrificing cargo carrying capacity. Furthermore, engines for large power generators have had issues with fuel consumption and proportional CO2 reduction.

本提案は、走行前にGISやGNSSなどのICTを活用する事により、走行ルート上の様々な情報を得る事で走行前に発電計画を策定する事から、最適なタイミングで二次電池への充電開始及び停止が行える結果、より小型のエンジン発電機と小容量の二次電池の搭載を可能としたレンジエクステンダー車両に活用した予測発電充電制御技術について述べている。
先の先行技術である特開平8-240435では走行中にある無公害地域での排気ガス削減のために、その区間だけエンジンを止める事に主眼をおいているので、本提案の様に走行ルート全体の走行条件(例えば坂道、渋滞情報、静音区間等)を考慮しているわけでない。
This proposal utilizes ICT such as GIS and GNSS before driving to obtain various information on the driving route and formulate a power generation plan before driving. This article describes a predictive power generation and charging control technology utilized in a range extender vehicle that can start and stop charging, making it possible to install a smaller engine generator and a smaller capacity secondary battery.
The previous prior art, JP-A-8-240435, focuses on stopping the engine only in that section in order to reduce exhaust gas in the non-polluting areas where the vehicle is traveling, so the driving route as proposed in this proposal is It does not take into account the overall driving conditions (for example, slopes, traffic congestion information, quiet sections, etc.).

また、先の提案(特開2016-181965)においては、定期運行バスの場合に走行ルートが決まっている事を利用することによって、走行状態、走行環境に合わせて発電機の駆動と停止制御を最適となるように制御を行っていた。しかし、配送トラックの様にその日毎に目的地が変わる場合であっても、走行前に目的地までの走行ルート情報及び走行上の様々な条件を抽出する事により、定期運行バスと同様な計画的な走行が可能となる。その結果、燃料消費の削減(CO2排出の削減)と共に、地域の住環境に配慮した走行が可能となり、バス事業者及びトラック配送業者ともにレンジエクステンダー車両を導入し易くなる。 In addition, in the previous proposal (Japanese Patent Application Laid-open No. 2016-181965), by taking advantage of the fact that the traveling route is fixed in the case of regularly operating buses, the drive and stop control of the generator can be controlled according to the traveling conditions and driving environment. It was controlled to be optimal. However, even if the destination changes daily, such as with a delivery truck, by extracting information on the route to the destination and various driving conditions before driving, it is possible to make a plan similar to that of a regularly scheduled bus. This makes it possible to drive with ease. As a result, in addition to reducing fuel consumption (reducing CO2 emissions), it becomes possible to drive with consideration to the local living environment, making it easier for both bus operators and truck delivery companies to introduce range extender vehicles.

近年、GIS等の地図情報は水平位置のデータに加えて標高データも利用可能である。これらはインターネット経由で容易に入手可能であり、国内では国土地理院が5m毎の標高データを提供しており、民間でこのデータを使いやすく加工して使用している。海外でもこのようなサービスが今後拡大すると期待される。本提案ではこれらのデータを使用した次に示すエネルギーモデルを作り、発電機を制御することによりシステムを小型化した結果、商用車へのレンジエクステンダー技術の適用を実現している。 In recent years, map information such as GIS can use not only horizontal position data but also elevation data. These are easily available via the Internet, and in Japan, the Geospatial Information Authority of Japan provides elevation data every 5 m, and this data is processed and used by the private sector to make it easier to use. It is expected that such services will expand overseas as well in the future. In this proposal, we created the energy model shown below using these data, and as a result of downsizing the system by controlling the generator, we have realized the application of range extender technology to commercial vehicles.

走行ルートを微小な区間nの集合とみなし、これらの微小な区間を単位区間とする。単位区間の移動に必要な電力を、水平方向の移動に必要な電力Ph(n)と垂直方向の移動に必要な電力Pv(n)に分けると、走行に必要な総電力Pnは以下となる。
目的地
Pn = Σ(Ph(n)+ Pv(n))
出発地
また、水平方向移動の単位区間の平均電費をC(n)、距離をL(n)とするば水平方向の移動に必要な単位区間毎の電力は以下となる。

Ph(n) = L(n)/C(n)

また、垂直方向の移動に必要な電力は以下で求める事が出来る。

P(v) = K(n)*m(n)*g*h(n)

ここで、Kは区間が登坂ならK(n)=+1、下坂ではKは回生係数を表しK(n)は負となる。また、gは重力加速度 9.81m/S2である。以上により、走行に必要な総電力Pnを求める事が出来る。
A travel route is regarded as a set of minute sections n, and these minute sections are defined as a unit section. If the power required to move a unit section is divided into the power Ph (n) required for horizontal movement and the power Pv (n) required for vertical movement, the total power Pn required for travel is as follows. .
Destination
Pn = Σ(Ph(n) + Pv(n))
Point of departure
Furthermore, if the average electricity cost per unit section of horizontal movement is C(n) and the distance is L(n), then the electric power required for each unit section of horizontal movement is as follows.

Ph(n) = L(n)/C(n)

Also, the power required for vertical movement can be calculated as follows.

P(v) = K(n)*m(n)*g*h(n)

Here, K is K(n)=+1 if the section is uphill, and K represents the regeneration coefficient when the section is downhill, and K(n) is negative. Also, g is the gravitational acceleration of 9.81m/S 2 . From the above, the total power Pn required for running can be determined.

一方、走行中において車両の走行モーターや補機類の消費を賄う為の電力Psは、走行前の外部充電での電力量Piと走行中の発電区間の発電電力量の総和ΣPg(n)となる。

Ps=Pi+ΣPg(n)

ここで、単位区間nの発電電力Pg(n)は、その区間の平均速度をSPD(n)、発電機出力をG(kW/h)、区間距離をL(n)とすれば以下で表される。

Pg(n)=G*L(n)/SPD(n)

これらにより、走行中に使用可能な電力Psを求めることができる。以上から走行可能な条件はPs>Pnであり、この条件が成り立つように外部充電での電力量Piを考慮した発電計画を作成すればよいことになる。
On the other hand, the electric power Ps required to cover the consumption of the vehicle's driving motor and auxiliary equipment while driving is the sum of the electric power Pi from external charging before driving and the electric power generated in the power generation section during driving, ΣPg(n). Become.

Ps=Pi+ΣPg(n)

Here, the generated power Pg(n) for unit section n is expressed as follows, assuming that the average speed of the section is SPD(n), the generator output is G (kW/h), and the section distance is L(n). be done.

Pg(n)=G*L(n)/SPD(n)

From these, it is possible to determine the electric power Ps that can be used while the vehicle is running. From the above, the condition for driving is Ps>Pn, and it is sufficient to create a power generation plan that takes into account the amount of electric power Pi for external charging so that this condition holds.

発電電力の総和ΣPg(n)をどのようなタイミングで発電するかの発電計画の作成は次の様に行う。GISを活用して、単位区間の標高差データを取得し、単位区間毎の距離L(n) 、水平移動の区間平均電費C(n)、車速SPD(n)、車重m(n)、標高差h(n)、回生係数k(n)を使って次のように作成する。走行中に必要な総発電電力量ΣPg(n)はこれまでに示した式から以下のように求められる。

ΣPg(n)=Ps-Pi

この総発電電力量ΣPg(n)は、静音区間、回生電力回収区間を考慮して、どの区間でどの程度発電するべきかの発電量(発電力x発電区間)を走行ルート中に適切に配分する。
A power generation plan for when to generate the total generated power ΣPg(n) is created as follows. Utilize GIS to obtain elevation difference data for unit sections, and calculate distance L(n) for each unit section, average electricity cost for horizontal movement C(n), vehicle speed SPD(n), vehicle weight m(n), It is created as follows using the altitude difference h(n) and the regeneration coefficient k(n). The total amount of power generated ΣPg(n) required during driving can be obtained from the equations shown above as follows.

ΣPg(n)=Ps−Pi

This total power generation amount ΣPg(n) is determined by appropriately distributing the power generation amount (generated power x power generation section) over the driving route, taking into account quiet sections and regenerative power recovery sections, and how much power should be generated in which sections. do.

適切な配分の仕方として、二次電池のSOC(State Of Charge)が下限値に達したら発電を開始し、上限値に達したら発電機を停止する。基本的には下限値は二次電池の充電に必要な最低値(例として10%)であり、上限値は許容される充電状態の最高値(例として90%)である。基本的な走行計画ではSOC値は二次電池の最小値と最高値を往復するように設定されているが、走行先に急な長い登坂が存在する場合は大きな電力量が必要となるので、下限値になる直前に発動機を駆動して充電を開始する。また、走行先に急な長い下坂があり、大きな回生電力が見込める場合は、充電器の充電可能な上限に達する前に発電機を停止して回生電力を無駄なく回収出来るように制御を行う。
An appropriate method of distribution is to start power generation when the SOC (State of Charge) of the secondary battery reaches the lower limit, and stop the generator when it reaches the upper limit. Basically, the lower limit is the minimum value required to charge the secondary battery (10%, for example), and the upper limit is the highest allowable state of charge (90%, for example). In a basic driving plan, the SOC value is set to go back and forth between the minimum and maximum values of the secondary battery, but if there is a steep and long climb in the destination, a large amount of electric power is required. The engine is driven to start charging just before the lower limit is reached. In addition, if there is a steep, long downhill slope in the destination and a large amount of regenerated power is expected, the generator is stopped before the charger reaches its maximum charging limit and control is performed so that the regenerated power can be recovered without waste.

図1に走行計画で作成した二次電池の充電状態を示すSOCの走行距離に対する変化の一例を示す。縦軸はSOC、横軸は走行距離である。走行前に二次電池を満充電にしてから走行開始する場合を示している。走り始めのA区間は発電機を停止した状態のEV走行を行う。このまま下限値まで走行する事も考えられるが、走行前方に発電機を駆動出来ない領域(例えば病院エリアなどの静音区間)がある事が分かっているので、Bの区間で発電機を駆動して二次電池の充電を行う。Cは静音区域であるため発電機は停止している。Dは静音区間を超えたので充電を行うがFの区間に長い急な下り坂があり、大きな回生電力の回収が見込まれるため上限値に行く前に発電機を停止する。EはEV走行区間であり、Fは長い下り坂で回生電力による二次電池への充電状態を示している。回生電力により上限値まで充電出来たのでGではEV走行を行っているが前方に急な登り坂(I領域)があるのでHの区間は発電を行う。Iは急な登り坂であるためSOCの減少率が大きくなっている。目的地ではSOC(State of Charge)を下限値になるように計画されているのでJ区間で再度発電を行い、その後EV走行を行いながら終点に到達する。 Figure 1 shows an example of the change in SOC, which indicates the state of charge of the secondary battery created in the travel plan, with respect to the travel distance. The vertical axis is SOC, and the horizontal axis is mileage. This shows the case where the secondary battery is fully charged before starting the journey. During section A at the beginning of the run, EV driving is performed with the generator stopped. It is possible to continue driving until the lower limit is reached, but since it is known that there are areas in front of the vehicle where the generator cannot be driven (for example, quiet sections such as hospital areas), drive the generator in section B. Charge the secondary battery. Since C is a quiet area, the generator is stopped. Since D has exceeded the quiet section, it will be charged, but there is a long steep downhill slope in section F, and a large amount of regenerated power is expected to be recovered, so the generator will be stopped before reaching the upper limit. E indicates the EV driving section, and F indicates the charging state of the secondary battery using regenerated power during a long downhill slope. Since I was able to charge up to the upper limit using the regenerated power, I am driving in EV mode in G, but since there is a steep uphill slope ahead (I area), I am generating electricity in section H. I has a steep uphill slope, so the SOC decrease rate is large. At the destination, the SOC (State of Charge) is planned to be at the lower limit, so power will be generated again in section J, and then the train will reach the final destination while driving on an EV.

以上の様に発電機の起動及び停止の時期と区間は走行前に走行計画として作成し、これに沿って車両は走行を開始する。そして、実際の走行中に走行計画とのずれ(エラー)が生じるので、GISとGNSSによる情報等を用いて逐次修正を行いながら走行をする。実際の商用運行させる場合は、配送計画に基づいて出発地点と目的地点の位置情報、並びに、ナビを使ったルート設定と、到着予定時刻、そしてルート走行時の各区間での速度が加味して走行計画が作成する。 As described above, the timing and section for starting and stopping the generator are created as a travel plan before driving, and the vehicle starts traveling in accordance with this plan. During actual driving, deviations (errors) from the driving plan may occur, so the driver uses information from GIS and GNSS to continually make corrections while driving. In the case of actual commercial operation, based on the delivery plan, the location information of the departure point and destination point, the route setting using the navigation system, the estimated arrival time, and the speed at each section during the route are taken into account. A travel plan is created.

図2は走行計画に従って、車両の走行予定のルートを単位区間毎にGIS及びGNSSから位置データ及び標高データを入手し、同時に単位区間の距離L(n)と速度SPD(n)から通過する時刻Tps(n)を算出することで、単位距離毎に必要となる水平方向と垂直方向の移動エネルギーを求めるイメージを示している。左図は車両の水平方向の移動エネルギーの算出イメージである。カーブでは半径rに比例した回転エネルギーが発生する。また右図は垂直方向の移動エネルギーを求めるイメージである。
当初の計画には予期出来ない不測の渋滞等による影響で大きなズレがないかを検証する為にこの移動エネルギーの算出は走行中にも実施する。
Figure 2 shows the route the vehicle is scheduled to travel according to the travel plan, by obtaining position data and elevation data from GIS and GNSS for each unit section, and at the same time, the time of passage based on the distance L (n) and speed SPD (n) of the unit section. The image shows how to calculate the horizontal and vertical movement energy required for each unit distance by calculating Tps(n). The figure on the left is an image of calculating the horizontal movement energy of a vehicle. A curve generates rotational energy proportional to the radius r. The figure on the right is an image of finding the vertical movement energy.
This calculation of travel energy is also carried out while driving in order to verify that there are no major deviations from the original plan due to unanticipated traffic jams.

図3に本システムの制御方法を遷移図として示す。出発地点からスタートし、左側の発電機停止のサークルに入る。ここで発電起動条件の中で成立する項目があれば右側に移動して発電機を駆動させる。その後、発電停止条件に合致すれば発電機を停止して左側の領域に移動する。このように発電機の停止状態と駆動状態を繰り返し、目的地の終点に達したら発電器停止のサークルから抜ける。 Figure 3 shows the control method of this system as a transition diagram. Start from the starting point and enter the generator stop circle on the left. If there is an item that satisfies the generation start conditions, it is moved to the right and the generator is driven. After that, if the generation stop conditions are met, the generator is stopped and moved to the left area. In this way, the generator is repeatedly stopped and driven, and when it reaches its destination, it exits the generator stop circle.

図4には本システムの制御の簡潔化したフローチャートを示す。走行前にGIS及びGNSSから現在位置から目的地までの走行ルート上の情報を取得し、これまでの走行実績で得られた車両の走行データ(車速、電費等)を考慮して走行計画を作成する。その後はフローチャートに沿って制御を開始する。まず発電機が起動状態か停止状態を判断する(通常は走行開始時では停止状態)。 FIG. 4 shows a simplified flow chart of the control of this system. Before driving, information on the driving route from the current location to the destination is obtained from GIS and GNSS, and a driving plan is created taking into account the vehicle driving data (vehicle speed, electricity consumption, etc.) obtained from past driving records. do. After that, control starts according to the flowchart. First, it is determined whether the generator is started or stopped (normally it is stopped at the start of driving).

もし、停止状態であれば左側のフローに従う。充電器のSOCの電力量を示す数値(Sc)と、SOCの電力量の下限値(ScL)+その区間での坂道を登るに必要なエネルギー(α)+静音区域を通過するに必要なエネルギー(q)を比較して、もしScの方が多ければ発電機は停止したまま走行し、終点に達したか否かを判断する。しかし終点に達していなければフローの最初に戻り、その時までの走行時に得られた車速、電費、SOC情報、電池残量等を用いて走行計画からのずれを修正して走行計画を更新する。再びScと必要エネルギーを比較し、もし電池残量が不足していると判断すれば、フローの右側に移行して発電機による充電を開始する。 If it is stopped, follow the flow on the left. A value indicating the SOC power amount of the charger (Sc) and the lower limit of the SOC power amount (ScL) + the energy required to climb the slope in that section (α) + the energy required to pass through the quiet area Compare (q), and if Sc is greater, the generator continues traveling while stopped, and it is determined whether the end point has been reached. However, if the end point has not been reached, the system returns to the beginning of the flow and updates the travel plan by correcting any deviations from the travel plan using the vehicle speed, electricity consumption, SOC information, remaining battery power, etc. obtained during driving up to that point. It compares Sc with the required energy again, and if it determines that the remaining battery power is insufficient, it moves to the right side of the flow and starts charging with a generator.

一方、フローの最初のところの判断において、発電機が起動している場合は、右側のフローに移行する。ここで電池の残り電力量(Sc)が、SOCの電力量の上限値(ScH)-その区間の回生エネルギー、よりも大きい場合は発電機を停止して左側のフローに移る。しかし、Scが少ない場合はそのまま発電機を駆動して走行するが、静音区間に到達した時は発電機を停止して左側のフローに移る。そして静音区間でない場合はフローに従い、終点(目的地)でScが設定した電池残量よりも大きい場合はそのままフローに従い、終点地点でScが設定値に収束する地点まで発電機を駆動させ、その地点以後は発電機を停止して終点に向かう。 On the other hand, if it is determined at the beginning of the flow that the generator is activated, the flow shifts to the right side. Here, if the remaining battery power (Sc) is greater than the upper limit of SOC power (ScH) - the regenerated energy in that section, the generator is stopped and the process moves to the flow on the left. However, if Sc is low, the vehicle continues driving with the generator running, but when it reaches a quiet section, the generator is stopped and the vehicle shifts to the left flow. Then, if it is not a quiet section, follow the flow, and if Sc is higher than the set battery level at the end point (destination), continue to follow the flow, drive the generator until the end point where Sc converges to the set value, and then After this point, the generator is stopped and the train heads towards the final point.

しかし、もし発電機を駆動させても終点で設定値に達しないと判明した場合は、発電機の出力を増加させてフローの上方に戻る。当初の計画発電に沿った走行を行う限りは、Scが目的地の終点で設定値に収束する設定だが、例えば走行中に補器(エアコン等)を予定以上に使用したため電池残量が予定値よりも低下した場合等ではSOCが予想以上に低下する場合が考えられる。 However, if it turns out that even if the generator is driven, the set point will not be reached at the end point, then the output of the generator will be increased and the flow will return to the upper level. As long as you drive according to the originally planned power generation, the Sc will converge to the set value at the end of the destination, but for example, if you use an auxiliary device (air conditioner, etc.) more than planned while driving, the battery level may drop to the planned value. In cases where the SOC decreases more than expected, the SOC may decrease more than expected.

図5a、図5bは図4の(2)の状況を示したものである。Scの下限値ScLと設定値ScT1に対しては発電機を走行途中のXL又はXT1で停止すればそれぞれの設定値に近づける事が出来る。しかし、設定値がScT2の場合は発電機を駆動させたままでもその値に近づける事が出来ないため(2)のように発電機の出力を増加させている。どの地点で発電器を停止するかは図5bに示す。また、図中の(3)は走行前の初期充電で目的地まで走行可能な状況を示している。 5a and 5b show the situation (2) in FIG. 4. The lower limit value ScL of Sc and the set value ScT1 can be brought closer to the respective set values by stopping the generator at XL or XT1 while running. However, if the set value is ScT2, it is not possible to approach that value even if the generator is kept running, so the output of the generator is increased as in (2). Figure 5b shows where to stop the generator. In addition, (3) in the figure shows a situation where the vehicle can travel to the destination with initial charging before driving.

図6はITを活用した予測発電充電制御の入力情報、処理アルゴリズム、出力情報を表している。初期情報として、車両クラスの情報は本予測発電充電制御システム装置がその車両に最初に搭載した時にのみに、その車両の大きさ、タイプ等の情報を入力する事で行う。その後、その日の走行目的地とルートが決定されていれば走行ルートを入力するが、もし走行ルートが決まっていない場合は本システムが最適なルート並びにその他の候補ルートを提示し、管理者若しくは運転者が選択する事が出来る。あるいは最適ルートを自動的にシステムが決定する事も可能である。 Figure 6 shows the input information, processing algorithm, and output information of predictive power generation and charging control using IT. As initial information, vehicle class information is obtained by inputting information such as the size and type of the vehicle only when this predictive power generation and charging control system device is first installed in the vehicle. After that, if the driving destination and route for that day have been determined, the driving route is entered, but if the driving route is not determined, this system presents the optimal route and other candidate routes, and the administrator or driver person can choose. Alternatively, it is also possible for the system to automatically determine the optimal route.

走行中は自動的に現在位置、SOC、車速、エアコンなどの使用動作状態が入力される。また車重も燃費に影響を与える。車体自体の重量は一定と考えられるが、トラックでは貨物の積載や荷卸しによって総重量が変化し、バスでは乗客の乗車や降車によって総重量が変動する。このため走行中の総重量の変動を求める必要が生じる。例えばトラックでは駆動モーターの消費電力をモニターし、平地の一定区間で消費する電力と高低差がある一定区間の消費電力の差から、位置エネルギーの変化が得られるので位置エネルギーの式(m x g x h)から重量mが求まる。または貨物の搭載や乗客のいない車両の自重が分かっている場合は、貨物や乗客を乗せた時の燃費の劣化度合いから総重量が割り出せる。さらにバスであれば、乗客の乗車及び降車から人数が分かるので、平均体重を仮定すれば許容出来る誤差内での重量変化が求められる。 While driving, the current location, SOC, vehicle speed, operating status of the air conditioner, etc. are automatically input. Vehicle weight also affects fuel efficiency. Although the weight of the vehicle body itself is considered to be constant, the total weight of trucks changes as cargo is loaded and unloaded, and the total weight of buses changes as passengers board and disembark. For this reason, it is necessary to determine the fluctuation in the total weight while the vehicle is running. For example, in a truck, the power consumption of the drive motor is monitored, and the change in potential energy can be obtained from the difference between the power consumed in a certain section of flat ground and the power consumed in a certain section with a difference in height, so from the formula for potential energy (m x g x h) Find the weight m. Alternatively, if the weight of the vehicle without cargo or passengers is known, the total weight can be determined from the degree of deterioration of fuel efficiency when carrying cargo or passengers. Furthermore, in the case of a bus, the number of passengers can be determined from the number of passengers getting on and off the bus, so if the average weight is assumed, the weight change can be determined within an allowable error.

次に処理アルゴリズム部ではルートの把握や目的地までに必要な電力量の計算等から発電及び充電の計画策定を行う。さらに、出力情報としては発電機の開始及び停止指示情報、さらに運転者及び車両本部(コントロールセンター等)に対しては各車両の走行情報として、走行位置、速度、SOC、エンジンの動作状況、目的地までの走行状況予測情報、車内温度、総量車重の変化などの情報が提供される。 Next, the processing algorithm section formulates a power generation and charging plan by understanding the route and calculating the amount of electricity required to reach the destination. Furthermore, the output information includes generator start and stop instruction information, as well as driving information for each vehicle for the driver and vehicle headquarters (control center, etc.) such as driving position, speed, SOC, engine operating status, and purpose. It provides information such as predicted driving conditions to the destination, changes in vehicle interior temperature, and changes in total vehicle weight.

図7は予測発電充電制御システムを搭載した車両と、各車両の見守りや問題時の対処を指示するなどを行う地上側システムである車両本部(バスであればバスセンター、トラックであればコントロール施設等)の主要概略図である。さらに走行ルートの適切な場所に設置された充電システム(CHAdeMO急速充電器等)を示している。 Figure 7 shows a vehicle equipped with a predictive power generation/charging control system and the vehicle headquarters (bus center for buses, control facility for trucks, etc.), which is a ground-side system that monitors each vehicle and gives instructions on how to deal with problems. ) is the main schematic diagram. It also shows charging systems (CHAdeMO quick chargers, etc.) installed at appropriate locations along the driving route.

図中、100はレンジエクステンダー(RE-EV)車両の全体構成を示し、101は電気駆動部のみのブロックであり、主に車両を駆動させるEVモータインバータブロック102とEV駆動用電池103、及びEV制御装置104等から構成される。さらに105は地上システムとの交信を行う通信装置であり、106はGNSS(Global Navigation Satellite System)位置情報装置である。そして、107は予測発電充電制御装置そのものでありGISとGNSSからの位置情報等を得て108の発電ユニットに発電開始及び停止の指示を出力する役目を負う。なお、109は走行ルートに設置された充電システム(CHAdeMO急速充電器等)であり、休憩時間等の有る程度長い時間が取れる場合は外部からの充電も行えるために、より発電機の動作時間を削減出来る事になり、それだけ燃料消費削減とCO2排出を抑制する事が可能となる。 In the figure, 100 indicates the overall configuration of a range extender (RE-EV) vehicle, and 101 is a block containing only the electric drive unit, which mainly includes an EV motor inverter block 102 that drives the vehicle, an EV drive battery 103, and an EV It is composed of a control device 104 and the like. Furthermore, 105 is a communication device for communicating with a ground system, and 106 is a GNSS (Global Navigation Satellite System) position information device. Reference numeral 107 is the predictive power generation and charging control device itself, which has the role of obtaining position information etc. from GIS and GNSS and outputting instructions to the power generation unit 108 to start and stop power generation. In addition, 109 is a charging system (CHAdeMO quick charger, etc.) installed on the driving route, and if you have a certain amount of time such as a break time, you can also charge from outside, so the operating time of the generator will be longer. This makes it possible to reduce fuel consumption and CO2 emissions accordingly.

図8は予測発電充電制御技術のアルゴリズム(200)を示している。本システムは201のGNSS位置情報と202のGISからの地図情報を用いて、車両の走行ルート上の現在位置を取得する。さらに203の車両本体から204の車両走行状態であるSOC、車速、空調に必要な電力、外気温、車重の変化等の情報を取得する。202及び203での情報から205において目的地までの水平移動に必要な電力量を計算する。また、206において坂道等で車両を垂直方向に持ち上げるための位置エネルギーから換算した電力量と坂の下り道で回収される回収電力を計算し、207において二次電池の残量を計算する。これらの205、206、207での3つの情報から208において目的地までに必要な電力量をリアルタイムに抽出する(具体的には計画発電量及び発電開始及び停止のタイミング計算を行う)。その情報を受けて209のRE発電ユニット制御信号発生装置は210のRE発電ユニットに発電及び停止指示を行う。211はこれらのアルゴリズムを実装した車載コンピュータを示している。 FIG. 8 shows an algorithm (200) of predictive power generation and charging control technology. This system uses GNSS position information 201 and map information from GIS 202 to obtain the current position of the vehicle on the driving route. Furthermore, information such as the SOC, vehicle speed, electric power required for air conditioning, outside temperature, and changes in vehicle weight, which is the vehicle running state, is acquired from the vehicle body 203 . From the information in 202 and 203, in 205 the amount of power required for horizontal movement to the destination is calculated. Further, in 206, the amount of electric power converted from the potential energy for vertically lifting the vehicle on a slope, etc. and the recovered power recovered on the way down the slope are calculated, and in 207, the remaining amount of the secondary battery is calculated. From these three pieces of information in 205, 206, and 207, in 208, the amount of power required to reach the destination is extracted in real time (specifically, the planned power generation amount and the timing of starting and stopping the power generation are calculated). Upon receiving this information, the RE power generation unit control signal generator 209 instructs the RE power generation unit 210 to generate and stop power generation. Reference numeral 211 indicates an on-vehicle computer that implements these algorithms.

次に図9a、図9b、図9cを用いて予測発電充電制御技術の動作の概要を示す。各図の左側の番号はそれぞれ右の図の番号である。10は走行路(routeA)の断面図を示し、縦軸は標高を横軸は距離を示している。11は平坦路、12は登り坂、13は短い平坦路、14は下り坂、15は終点までの平坦路である。ここで車両はどの走行路でも一定の速度を保つと仮定する。20は縦軸に消費電力(kW)、走行路のどこでも車両の速度は一定と仮定すると横軸は時間に変換出来る。なお12と14は坂道のため平坦路に比べて距離が長い事を配慮した図となっている。ここで平坦路11、13、15の消費電力はa、登りの坂道12での消費電力はb、下りの坂道14での回生電力をcとすると、波線以下の四角の面積はそれぞれの走行路での消費電力量(kWh)となる。それと同じ面積の各々の三角形で表される21, 22, 23, 25の面積も消費電力量となる。なお、下り坂は電力を回生するので発電電力量は24となる。 Next, an overview of the operation of the predictive power generation and charging control technology will be shown using FIGS. 9a, 9b, and 9c. The numbers on the left side of each figure correspond to the numbers on the right side. 10 shows a cross-sectional view of the driving route (route A), where the vertical axis shows altitude and the horizontal axis shows distance. 11 is a flat road, 12 is an uphill road, 13 is a short flat road, 14 is a downhill road, and 15 is a flat road to the end point. Here, it is assumed that the vehicle maintains a constant speed no matter where it travels. 20 can be converted into power consumption (kW) on the vertical axis and time on the horizontal axis, assuming that the speed of the vehicle is constant everywhere on the road. Note that 12 and 14 are sloped roads, so the drawings take into account the fact that the distances are longer than those on flat roads. Here, if the power consumption on the flat roads 11, 13, and 15 is a, the power consumption on the uphill slope 12 is b, and the regenerated power on the downhill slope 14 is c, then the area of the square below the dashed line is the area of each running path. The amount of electricity consumed (kWh) in The areas of 21, 22, 23, and 25 represented by triangles with the same area also represent the amount of power consumed. Furthermore, since power is regenerated when going downhill, the amount of power generated is 24.

30は電池の電力残量(SOC)の変化の推移を示している。最初にSOCはAであったが、走行によって電力を消費し徐々にSOCは減少する。AからBまでの走行で描ける三角形(21)は上図20の同じ走行路の消費電力量21と相似となるので簡単化のため同じ面積で表す。同様に上図20の他の走行路の三角形で示す各消費電力量をSOCのグラフに転写すると22は(22)に、23は(23)に、25は(25)となり、回生電力量24は(24)となるので結果的にSOCの変化のグラフが描ける。30の例ではSOCが終点ではFとなりSOCの下限の値となり初期充電量だけで走行出来るので最も効率のよい走行をした例となる。 30 shows the change in the remaining power level (SOC) of the battery. Initially, the SOC was A, but as the vehicle consumes electricity while driving, the SOC gradually decreases. The triangle (21) drawn by traveling from A to B is similar to the power consumption 21 of the same traveling route in Figure 20 above, so it is expressed by the same area for simplicity. Similarly, if we transfer the power consumption shown by the triangles of the other travel routes in Figure 20 above to the SOC graph, 22 will become (22), 23 will become (23), 25 will become (25), and the regenerated power amount 24 becomes (24), so as a result, a graph of changes in SOC can be drawn. In the example of No. 30, the SOC becomes F at the final point, which is the lower limit of the SOC, and the vehicle can travel with only the initial charge amount, making it the most efficient example.

図9bの40は走行前の充電量が上図30の場合より少ないA’の例である。SOCの変化は30の場合と同様であるが、走行中のB’からC’の間でSOCがSOC下限を下回る事になるのでこのままでは電欠を起こし走行出来ない事が予想される。そこでF‘をF’’となるようにするにはB’をB’’となるようにすれば良く(B’’-B’= F’’-F’)、不足する電力量はSOC下限以下の各三角形の面積の総和なので、不足電力量P4はP1、P2とP3を加えた値からPgを引いた式のP1+P2+P3-Pgとなる。なお、Pgは回生電力量である。その不足電力量と等しい電力量P4を前もって発電する事で電欠を起こさずに走行が可能となる。 40 in FIG. 9b is an example of A' where the amount of charge before driving is smaller than that in FIG. 30 above. The change in SOC is the same as in the case of 30, but since the SOC will fall below the SOC lower limit between B' and C' while driving, it is expected that if this continues, the car will run out of electricity and will not be able to run. Therefore, in order to make F' become F'', B' should be made to become B'' (B''-B'= F''-F'), and the insufficient amount of electricity is at the SOC lower limit. Since it is the sum of the areas of each triangle below, the power shortage P4 is the formula P1+P2+P3-Pg, which is the sum of P1, P2, and P3 minus Pg. Note that Pg is the regenerated electric energy. By generating electric power P4 equal to the electric power shortage in advance, the vehicle can run without running out of power.

50は発電機の発電出力がdの場合を示していてP5=P4となるようにT1から発電を開始している。60は発電機の出力eが50の例よりも強力なため発電開始はT1よりも遅いT2となっている。 50 shows a case where the power generation output of the generator is d, and power generation is started from T1 so that P5=P4. 60 has a stronger generator output e than the example of 50, so power generation starts at T2 later than T1.

70は走行路11の途中に病院等がありその区間は静音区間として発電機を停止する必要があるために、P7とP8に分けて発電を行っている場合を示している(P7+P8=P6)。80は発電機の出力が強く、P1のSOCの減少比率R1よりもP9の増加比率R2が大きい場合は、発電開始はSOCがSOC下限を下回らないT5よりも前に開始すれば良いので発電開始の自由度が広がる。本例ではP9の場合に発電開始がSOC下限を下回る直前のT5となっているが、P10又はP11の様にT5以前であっても発電を開始する事が出来る事を表している。 70 shows a case where there is a hospital etc. in the middle of driving route 11 and the generator is required to be stopped in that section as it is a quiet section, so power generation is divided into P7 and P8 (P7+P8= P6). 80, the output of the generator is strong, and if the increase ratio R2 of P9 is larger than the SOC decrease ratio R1 of P1, it is sufficient to start power generation before T5 when the SOC does not fall below the SOC lower limit, so power generation will start. The degree of freedom expands. In this example, in the case of P9, power generation starts at T5, just before the SOC lower limit falls, but this indicates that power generation can be started even before T5, as in P10 or P11.

また図9cの90は10の走行途中で走行ルートの変更(routeB)が生じた場合の例を示している。もしXの地点で走行ルートが変更となり走行路が11’,12’,13’に変わってしまった場合は直ちに新走行ルートでのSOCの変化を再予測する必要がある。平坦路は10から11‘と変更になったが、100に示すように消費電力aは変わらないので21の消費電力量は31の三角形の面積に変更となる。12’は急な登り坂のため消費電力は大きく増加してcとなる。そのため消費電力量は32の三角の面積となる。登り坂を過ぎると終点までは平坦な走行路なので消費電力量は33となる。 Further, 90 in FIG. 9c shows an example in which a change in the travel route (route B) occurs during the travel of 10. If the driving route changes at point X and the driving route changes to 11', 12', or 13', it is necessary to immediately re-predict the change in SOC on the new driving route. The flat road has been changed from 10 to 11', but as shown in 100, the power consumption a remains the same, so the power consumption in 21 has been changed to the area of the triangle 31. 12' is a steep uphill slope, so the power consumption increases significantly and becomes c. Therefore, the amount of power consumed is the area of 32 triangles. After going uphill, the road is flat until the end, so the power consumption is 33.

一方、110に示すようにSOCの変化は走行ルートの変更前までは(21)であったが、ルート変更のため(31)に切り替わる。その後は急な登り坂のためSOCは急激に下降し、IからJの途中でSOC下限を下回ってしまう。この事態を回避するために、車両が走行ルートの変更を認識した時点のXですぐに発電計画を修正する必要が生じる。不足する消費電力量はSOC下限以下の消費電力量の総和のP12+P13となり、その合計のP14が計算出来る。 On the other hand, as shown at 110, the change in SOC was (21) before the change in the driving route, but it changes to (31) due to the route change. After that, the SOC drops rapidly due to the steep uphill slope, and falls below the SOC lower limit halfway from I to J. In order to avoid this situation, it is necessary to correct the power generation plan immediately at point X when the vehicle recognizes the change in the driving route. The insufficient power consumption is P12+P13, which is the sum of the power consumption below the SOC lower limit, and the sum P14 can be calculated.

120は発電機出力がfの場合であり、Xよりも時間的に後のT6で発電開始をしても発電電力量P15は不足電力量P14と等しく出来るので走行可能である。しかし、130の場合は発電機出力gが低いため、不足電力量P14と等しい発電電力量P16を得るためには、すでに時間的に過ぎてしまったT7で発電開始をする必要があった。そのためこの後の電欠を回避するためには発電機の出力を上げるか、充電ステーションに立ち寄って充電するか、別の走行ルートを選択する必要がある事が分かる。 120 is a case where the generator output is f, and even if power generation is started at T6, which is later than X, the generated power amount P15 can be made equal to the insufficient power amount P14, so the vehicle can run. However, in the case of 130, since the generator output g is low, in order to obtain the generated power amount P16 equal to the power shortage amount P14, it was necessary to start power generation at T7, which has already passed. Therefore, in order to avoid power shortages after this, it is necessary to increase the output of the generator, stop at a charging station to recharge, or choose a different driving route.

このように予測発電充電制御とは、出発前に走行ルートの情報をICT技術の1つであるとGNSSとGISを活用する事で事前に走行計画(発電計画)を立てる事が出来る技術である。さらに走行中においても常にGNSSとGISから最新の情報を元に発電計画を更新し続ける事で効率的な走行を可能とする技術である。次により詳細な予測発電制御技術の動作について記述する。 In this way, predictive power generation and charging control is a technology that allows you to create a travel plan (power generation plan) in advance by using GNSS and GIS, which is a type of ICT technology, to obtain information on the driving route before departure. . Furthermore, this technology enables efficient driving by constantly updating the power generation plan based on the latest information from GNSS and GIS while driving. Next, we will describe the operation of the predictive power generation control technology in more detail.

図10は走行中での予測発電充電制御の様子をより具体的に示したものである。本例では平坦路と坂道での車両の速度を変えている。また、坂道が平坦路に対して水平距離よりも斜度分だけ距離が延びる分は、実路での斜度は本図面によりも非常に小さいと考えられるので考慮していない。ここで上図は地形図を表し、下図は電力図である。また上図の横軸は距離を示しているが、走行中の速度を考慮する事で下図での横軸は時間軸に変換出来る。下図での各ラインは以下を表している。Aは走行前のSOC値が走行中での発電によって増加する様子を表し、Bは走行中のSOCの推移を表し、Cは走行による消費電力量の増加を表しており終点においては走行時に消費した総消費電力量を示している。 FIG. 10 shows more specifically how the predictive power generation and charging control is performed while the vehicle is running. In this example, the speed of the vehicle on a flat road and on a slope is changed. Further, the distance of a slope that is longer than the horizontal distance by the slope is not taken into consideration because the slope on the actual road is considered to be much smaller than in this drawing. Here, the upper figure represents a topographic map, and the lower figure represents an electric power map. Also, the horizontal axis in the above diagram shows distance, but by considering the speed while driving, the horizontal axis in the bottom diagram can be converted to a time axis. Each line in the figure below represents the following. A represents how the SOC value before driving increases due to power generation while driving, B represents the change in SOC while driving, and C represents the increase in power consumption due to driving. It shows the total amount of power consumed.

ここでAからCを引いた値がBのSOCの変化と表されている。またCの走行中の消費電力量は、平坦路11では単位時間当たり1消費と考え、登り坂12では単位時間当たり2としている。さらに本例では下り坂14でも単位時間当たり1消費をするとして回生電力は組み入れていない。SOCが走行による電力消費で下がってきて、予め決められた値(この例では4kW)になった時に発電機を駆動させて二次電池に充電を開始している。この時の発電量は単位時間当たり3発電とすると、登り坂12での単位時間当たり2消費よりも多いのでSOCは増加していて、発電を停止するタイミングはSOCが上限値となった時である。しかし、発電量が少なく上り坂でのSOCが回復できないと判断した場合は、発電機の発電開始時期をさらに前倒して二次電池の電力量を増加させる。 Here, the value obtained by subtracting C from A is expressed as the change in SOC of B. Furthermore, the amount of power consumed while C is running is considered to be 1 consumption per unit time on a flat road 11, and 2 consumption per unit time on an uphill slope 12. Furthermore, in this example, regenerative power is not included because it is assumed that one power is consumed per unit time even when going downhill 14. When the SOC decreases due to power consumption during driving and reaches a predetermined value (4kW in this example), the generator is activated to start charging the secondary battery. Assuming that the power generation amount at this time is 3 power generation per unit time, it is more than 2 power consumption per unit time on uphill slope 12, so SOC is increasing, and the timing to stop power generation is when SOC reaches the upper limit. be. However, if it is determined that the amount of power generation is too low to recover the SOC on an uphill slope, the power generation start time of the generator is further brought forward and the amount of power of the secondary battery is increased.

このように走行路を各小区間単位に分割し、その分割地点での走行路情報をGISとGNSSから得る事で、事前に走行計画(発電計画)が立てられ、走行中においてリアルタイムに標高情報をGISからと車両の位置情報をGNSSから得る事で発電充電制御を最適に行う事が可能となる。 In this way, by dividing the driving route into each small section and obtaining driving route information at the divided points from GIS and GNSS, driving plans (power generation plans) can be made in advance, and altitude information can be obtained in real time while driving. By obtaining vehicle position information from GIS and GNSS, it is possible to optimally control power generation and charging.

図11aは東京から箱根峠を越えて沼図に至るルートについて、予測発電充電制御を用いて走行した場合と、用いないで走行した場合についてのSOCシミュレーションを行うために使用した走行ルートの断面図であり、横軸に走行距離を縦軸に標高を示している。また、図11bは横軸に図11a上の各走行地点の場所(a,b等)を示し、縦軸はSOCを示している。東京からスタートして暫くはほぼ平坦な区域をEV走行するが箱根に入り、箱根峠に差し掛かると標高が一気に増すので電池の充電量が大きく減少する。その様子は図11bのeからfの部分であり、急激にSOCが減少している。しかし、予測発電充電制御を用いた場合は、走行前の発電計画策定時に峠を越えるために必要な電力量が計算出来るので、SOCが下限(本例では10%)に到達する手前のaの地点で発電を開始する事で電池に十分な電力を充電出来て箱根峠を問題なく走行が出来る。しかし、もし予測発電充電制御を用いない場合は、発電を開始するのはSOCが下限に達したところから開始するので電池に十分な電力を貯める事が出来ず、箱根峠の登坂走行途中(eとfの間)で電欠となってしまう事が分かる。 Figure 11a is a cross-sectional view of the driving route used to perform the SOC simulation for the route from Tokyo to Numazu over Hakone Pass, with and without predictive power generation/charging control. The horizontal axis shows the distance traveled and the vertical axis shows the altitude. Further, in FIG. 11b, the horizontal axis indicates the location (a, b, etc.) of each traveling point on FIG. 11a, and the vertical axis indicates the SOC. Starting from Tokyo, the EV travels on a mostly flat area for a while, but as it enters Hakone and approaches the Hakone Pass, the altitude increases rapidly, causing the battery's charge to decrease significantly. The situation is shown in parts e to f of Fig. 11b, where the SOC rapidly decreases. However, when predictive power generation/charging control is used, the amount of power required to cross a mountain pass can be calculated when formulating a power generation plan before driving, so the amount of power required to cross a mountain pass can be calculated at the time when the SOC reaches the lower limit (10% in this example). By starting power generation at the point, the battery can be charged with enough power to travel through Hakone Pass without any problems. However, if predictive power generation/charging control is not used, power generation will start when the SOC reaches the lower limit, and the battery will not be able to store enough power, and during a climb up Hakone Pass (e You can see that the power will run out between (and f).

もちろん、十分な電池量を充電できる電池と強力な発電機を搭載していれば予測発電充電制御技術を使用しなくても走行可能であるが、その場合はこれまで述べたように多くの問題が起こり得る。第一に大量の電池と大型の発電機はスペースと重量がかさむ為にバスでは室内空間に影響を与え、トラックでは搭載容量を減じてしまう。さらに、重量増加のために燃費の悪化が懸念され、レンジエクステンダーEV車両としての長所であった低燃費とそれに伴う低CO2排出の特徴をスポイルする事になり、魅力のない車両となる懸念がある。 Of course, if it is equipped with a battery that can charge a sufficient amount of battery power and a powerful generator, it is possible to drive without using predictive power generation and charging control technology, but in that case, there are many problems as mentioned above. can occur. First, a large number of batteries and large generators take up space and weight, which affects the interior space of buses and reduces the carrying capacity of trucks. Furthermore, there are concerns that fuel efficiency will worsen due to the increased weight, and the advantages of range extender EV vehicles, such as low fuel consumption and associated low CO2 emissions, will be spoiled, and there are concerns that the vehicle will become unattractive. .

本発明は、電池でモーターを駆動させて走行するEV車両に、必要に応じて電池の充電を行うために発電機を搭載した所謂レンジエクステンダーEV車両に、予測発電充電制御技術を組み込んだ装置を搭載する事で、小型の電池と小型の発電機の搭載を可能となり、バスの乗車スペースやトラックの積載貨物スペースを犠牲にすることなく、燃料消費の削減が図れて結果的にCO2削減が可能となる環境改善に役立つ技術である。さらに、公共交通手段と社会インフラを支える流通システムに応用すれば燃料消費の削減が図れ、同時にCO2の排出削減が図れる事から低炭素社会への実現に大きな効果をもたらす事が出来る。 The present invention incorporates a device that incorporates predictive power generation and charging control technology into a so-called range extender EV vehicle that is equipped with a generator to charge the battery as needed in an EV vehicle that runs with a motor driven by a battery. By installing a small battery and a small generator, it is possible to reduce fuel consumption and CO2 emissions without sacrificing the passenger space of a bus or the cargo space of a truck. This is a technology that helps improve the environment. Furthermore, if applied to distribution systems that support public transportation and social infrastructure, it will be possible to reduce fuel consumption and at the same time reduce CO2 emissions, which will have a significant effect on the realization of a low-carbon society.

二次電池の充電状態(SOC)の走行距離により変化の一例An example of how the state of charge (SOC) of a secondary battery changes depending on the mileage 単位区間毎に位置データと標高データを取得し移動に必要なエネルギーを算出するイメージ図An image diagram that calculates the energy required for movement by acquiring position data and elevation data for each unit section 予測発電充電制御の遷移図Transition diagram of predictive power generation and charging control 予測発電充電制御のフローチャートFlowchart of predictive power generation and charging control 発電機が起動中に終点に近づく状態Condition in which the generator approaches the end point while starting 終点時にSOCがScTになる時点で発電機をオフする地点(X)Point where the generator is turned off when SOC becomes ScT at the end point (X) 予測発電充電制御システムの入出力情報と処理アルゴリズムInput/output information and processing algorithm of predictive power generation and charging control system 予測発電充電制御と主要ブロックの関係Relationship between predictive power generation and charging control and main blocks 予測発電充電制御のアルゴリズムの処理概要Processing overview of predictive power generation and charging control algorithm 予測発電充電制御の概要説明図(1)Outline diagram of predictive power generation and charging control (1) 予測発電充電制御の概要説明図(2)Overview diagram of predictive power generation and charging control (2) 予測発電充電制御の概要説明図(3)Overview diagram of predictive power generation and charging control (3) 予測発電充電制御の詳細説明図Detailed explanation diagram of predictive power generation and charging control 東京から沼図までの走行ルートDriving route from Tokyo to Numazu 予測発電充電制御技術を用いた時と用いない時のSOC状況SOC status when using and not using predictive power generation and charging control technology

Claims (9)

走行前に目的地または走行ルートあるいは両方を設定する事により、走行中における発電機の充電開始及び充電停止の地点または時間あるいは両者を予め設定し、
走行ルートを微小な区間の集合とみなして、これらの微小な区間を単位区間とし、当該単位区間の移動に必要な電力を、水平方向の移動に必要な電力と垂直方向の移動に必要な電力に分けて、走行に必要な総電力を決定し、
走行中においても、リアルタイムに、標高情報を地理情報システム(GIS)から、全地球測位置情報を位衛星システム(GNSS)から得て、これらを基に単位距離毎又は単位時間毎に、あるいは単位距離と単位時間を組合せた単位毎に走行地点での走行速度、電池の電力残量、補器の動作状態、走行中の車両総重量の変動を組み入れて、発電機の充電開始又は停止をリアルタイムに見直し、
前記車両総重量の変動は、貨物の積載や荷卸し、または乗客の乗車や降車による事を特徴とした、発電機で二次電池を充電し、当該二次電池でモーターを駆動するレンジエクステンダー車両の予測発電充電制御技術。
By setting the destination and/or driving route before driving, you can preset the point and/or time at which the generator will start charging and stop charging while driving.
The driving route is regarded as a collection of minute sections, and these minute sections are considered as unit sections, and the power required to travel the unit section is calculated by dividing the power required for horizontal movement and the power required for vertical movement. Determine the total power required for running,
Even while driving, altitude information is obtained from the Geographic Information System (GIS) and global positioning information from the Global Positioning Satellite System (GNSS) in real time.Based on these, each unit distance, unit time, or unit Starts or stops charging the generator in real time by incorporating the traveling speed at the traveling point, remaining battery power, operating status of auxiliary equipment, and fluctuations in the total vehicle weight while traveling for each unit that combines distance and unit time. reviewed,
The above-mentioned fluctuation in the total vehicle weight is due to the loading and unloading of cargo, or the boarding and disembarkation of passengers . Predictive power generation and charging control technology for extender vehicles.
請求項1に係わり、目的地と走行ルートの情報は、地理情報システム(GIS)と全地球測位衛星システム(GNSS)を活用し、
全地球測位衛星システム(GNSS)からの位置情報と、地理情報システム(GIS)からの地図情報を用いて車両の走行ルート上の現在位置を取得すると共に、車両本体から車両走行状態であるSOC、車速、空調に必要な電力、外気温、車重の変化情報を取得し、これらの情報から、目的地までの水平移動に必要な電力量、坂道車両を垂直方向に持ち上げるための位置エネルギーから換算した電力量と坂の下り道で回収される回収電力、及び二次電池の残量を計算し、目的地までに必要な電力量をリアルタイムに抽出する事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。
Regarding claim 1, the information on the destination and driving route is obtained by utilizing Geographic Information System (GIS) and Global Navigation Satellite System (GNSS),
Using position information from the Global Navigation Satellite System (GNSS) and map information from the Geographic Information System (GIS), the current position of the vehicle on the driving route is acquired, and the SOC, which is the vehicle's driving status, is acquired from the vehicle itself. Obtains information on vehicle speed, power required for air conditioning, outside temperature, and changes in vehicle weight, and uses this information to calculate the amount of power required to move horizontally to the destination and the potential energy required to lift the vehicle vertically on a slope. A prediction for a range extender vehicle that calculates the amount of electricity converted from , the electricity collected on the way down the hill, and the remaining amount of secondary battery, and extracts the amount of electricity required to reach the destination in real time. Power generation charging control technology.
請求項1に係わり、走行中における発電機の充電開始及び充電停止の地点または時間あるいは両者から特定される単位区間nの発電電力Pg(n)は、発電区間の平均速度をSPD(n)、発電機出力をG(kW/h)、区間距離をL(n)としたときに、下式、
Pg(n)=G*L(n)/SPD(n)
で算出することを特徴としたレンジエクステンダー車両の予測発電充電制御技術。
Regarding claim 1, the generated power Pg(n) in a unit section n, which is specified from the point or time of charging start and charging stop of the generator during driving, or both, is calculated by calculating the average speed of the power generation section by SPD(n), When the generator output is G (kW/h) and the section distance is L (n), the following formula,
Pg(n)=G*L(n)/SPD(n)
Predictive power generation and charging control technology for range extender vehicles, which is characterized by calculation.
請求項1に係わり、走行先に電池消費が多く見積もられる走行状況を余め予測して発電機の充電開始は二次電池の下限値に達する前に充電の開始を行い、また走行先に回生電力が多量に発生する事を余め予測して発電機の充電停止は二次電池の上限値に達する前に行う事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。
In relation to claim 1, the driving situation where the battery consumption is estimated to be high at the driving destination is predicted in advance, and the charging of the generator is started before the lower limit of the secondary battery is reached, and the charging is started before the lower limit value of the secondary battery is reached, and the regeneration is carried out at the driving destination. A predictive power generation/charging control technology for a range extender vehicle that predicts that a large amount of electric power will be generated and stops charging the generator before the upper limit of the secondary battery is reached.
請求項1に係わり、発電機を駆動させても終点で設定値に達しないと判明した場合は、発電機の出力を増加させる事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。
2. A predictive power generation/charging control technology for a range extender vehicle according to claim 1, which increases the output of the generator if it is determined that the set value will not be reached at the end point even if the generator is driven.
請求項1に係わり、水平方向移動の単位区間の平均電費をC(n)、距離をL(n)とすれば、
水平方向の移動に必要な単位区間毎の電力Ph(n)は下式により算定され、
Ph(n)=C(n)*L(n)
垂直方向の移動に必要な電力Pv(n)は下式により算定される、
Pv(n)=K(n)*m(n)*g*h(n)
(ここで、Kは区間が上り坂ならK(n)=+1、下り坂ではKは回生係数を表しk(n)は負となる。また、m(n)は車重、gは重力加速度 9.8m/s 2 、h(n)は標高差である)
レンジエクステンダー車両の予測発電充電制御技術
Regarding claim 1, if the average electricity cost of a unit section of horizontal movement is C(n) and the distance is L(n),
The power Ph(n) per unit area required for horizontal movement is calculated by the following formula,
Ph(n)=C(n)*L(n)
The power Pv(n) required for vertical movement is calculated by the following formula,
Pv(n)=K(n)*m(n)*g*h(n)
(Here, K is K(n) = +1 if the section is uphill, and K is the regeneration coefficient and k(n) is negative if the section is downhill. Also, m(n) is the vehicle weight, and g is the gravitational acceleration. 9.8m/s 2 , h(n) is the altitude difference)
Predictive power generation charging control technology for range extender vehicles .
請求項1に係わり、目的地において電池の残量が決められた値になるように、発電機の発電出力を考慮して発電機の開始及び停止を制御する事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。
According to claim 1, there is provided a range extender vehicle characterized in that the start and stop of the generator is controlled in consideration of the power generation output of the generator so that the remaining capacity of the battery reaches a predetermined value at the destination. Predictive power generation and charging control technology.
請求項に係わり、目的地において電池の残量が余め決められた値を下回る予想された場合には、不足と予想される電力量を発電するための期間と走行場所を目的地までの走行途中に余め設ける事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。
Regarding claim 7 , if the remaining capacity of the battery is expected to be lower than a predetermined value at the destination, the period and driving location for generating the amount of electricity expected to be insufficient will be changed to the destination. Predictive power generation/charging control technology for range extender vehicles, which features a surplus during driving.
請求項2に係わり、走行途中において目的地あるいは走行ルートが変更になった場合は、改めてGISとGNSSから変更後の目的地と走行ルートの各情報を入手することで、発電機の充電開始及び停止の地点又は時期、あるいは両者を再設定する事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 Regarding claim 2, if the destination or driving route is changed during the trip, the information on the changed destination and driving route can be obtained from GIS and GNSS to start charging the generator and A predictive power generation/charging control technology for range extender vehicles that is characterized by resetting the stopping point or timing, or both.
JP2018194138A 2018-10-15 2018-10-15 Predictive power generation charging control method for range extender vehicles Active JP7408063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018194138A JP7408063B2 (en) 2018-10-15 2018-10-15 Predictive power generation charging control method for range extender vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018194138A JP7408063B2 (en) 2018-10-15 2018-10-15 Predictive power generation charging control method for range extender vehicles

Publications (3)

Publication Number Publication Date
JP2020062906A JP2020062906A (en) 2020-04-23
JP2020062906A5 JP2020062906A5 (en) 2021-12-09
JP7408063B2 true JP7408063B2 (en) 2024-01-05

Family

ID=70386644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018194138A Active JP7408063B2 (en) 2018-10-15 2018-10-15 Predictive power generation charging control method for range extender vehicles

Country Status (1)

Country Link
JP (1) JP7408063B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071335B (en) * 2021-04-06 2022-10-14 浙江吉利控股集团有限公司 Energy control method for extended range vehicle, control system and storage medium thereof
CN113771647B (en) * 2021-08-06 2023-11-14 广西玉柴机器股份有限公司 Novel control method of clustered range extender group
CN114932811B (en) * 2022-05-30 2024-04-09 重庆金康赛力斯新能源汽车设计院有限公司 Energy recovery method, device, equipment and storage medium
CN116663869B (en) * 2023-08-01 2024-01-12 国网安徽省电力有限公司巢湖市供电公司 Electric automobile centralized charging management system based on virtual power plant

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333305A (en) 1999-05-20 2000-11-30 Nissan Motor Co Ltd Drive controller for hybrid car
JP2010132240A (en) 2008-12-08 2010-06-17 Aisin Aw Co Ltd Running support apparatus, running support method, and computer program
JP2012095519A (en) 2010-09-30 2012-05-17 Equos Research Co Ltd Electric drive vehicle
JP2014202641A (en) 2013-04-05 2014-10-27 三菱自動車工業株式会社 Destination arrival estimation device of vehicle
JP2016049922A (en) 2014-09-02 2016-04-11 三菱電機株式会社 Vehicle energy management device
JP2016159848A (en) 2015-03-04 2016-09-05 トヨタ自動車株式会社 Vehicular information processing device
JP2016181965A (en) 2015-03-23 2016-10-13 株式会社東芝 Electric bus and charging system
WO2016202360A1 (en) 2015-06-15 2016-12-22 Volvo Bus Corporation Adapting a vehicle control strategy based on historical data related to a geographical zone
JP2017144801A (en) 2016-02-15 2017-08-24 東京電力ホールディングス株式会社 Electric car

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3264123B2 (en) * 1995-03-06 2002-03-11 三菱自動車工業株式会社 Navigation system for hybrid electric vehicles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333305A (en) 1999-05-20 2000-11-30 Nissan Motor Co Ltd Drive controller for hybrid car
JP2010132240A (en) 2008-12-08 2010-06-17 Aisin Aw Co Ltd Running support apparatus, running support method, and computer program
JP2012095519A (en) 2010-09-30 2012-05-17 Equos Research Co Ltd Electric drive vehicle
JP2014202641A (en) 2013-04-05 2014-10-27 三菱自動車工業株式会社 Destination arrival estimation device of vehicle
JP2016049922A (en) 2014-09-02 2016-04-11 三菱電機株式会社 Vehicle energy management device
JP2016159848A (en) 2015-03-04 2016-09-05 トヨタ自動車株式会社 Vehicular information processing device
JP2016181965A (en) 2015-03-23 2016-10-13 株式会社東芝 Electric bus and charging system
WO2016202360A1 (en) 2015-06-15 2016-12-22 Volvo Bus Corporation Adapting a vehicle control strategy based on historical data related to a geographical zone
JP2017144801A (en) 2016-02-15 2017-08-24 東京電力ホールディングス株式会社 Electric car

Also Published As

Publication number Publication date
JP2020062906A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP7408063B2 (en) Predictive power generation charging control method for range extender vehicles
US11142088B2 (en) Vehicle control system and method
Erdelić et al. A survey on the electric vehicle routing problem: variants and solution approaches
CN101687506B (en) Hybrid energy power management system and method
US8063609B2 (en) Method and system for extending life of a vehicle energy storage device
JP4051911B2 (en) Control device for hybrid vehicle
US20150134174A1 (en) Optimization of extended range electric vehicle
CN102069804B (en) Predictive control method for running state of hybrid power automobile
US10829104B2 (en) Hybrid vehicle control system
US20170320481A1 (en) A hybrid vehicle and a method for energy management of a hybrid vehicle
JP4761785B2 (en) Vehicle operation plan creation device
JP2000232703A (en) Control method for hybrid vehicle
WO2012174009A2 (en) System and method for controlling and powering a vehicle
WO2005097573A2 (en) Emission management for a hybrid locomotive
US20200149996A1 (en) Vehicle control system
JP4417949B2 (en) Railway vehicle drive system
JP2003070102A (en) Controller for hybrid vehicle
US20220242391A1 (en) System and method for managing vehicle operations
JP7281099B2 (en) Range Extender Using Route-Adaptive Power Generation Control - EV Bus Operation Method
JP2021088361A (en) Plug-in hybrid vehicle
CN105984402A (en) Energy storage advisement controller for a vehicle
WO2024084712A1 (en) Planned electric power generation and storage control technology using soc chart
JP2021112081A (en) Planned power generation accumulation control technique
JP2023150633A (en) Method of utilizing regenerative electric power using scheduled power generation storage control technique
US20230304809A1 (en) Power management of industrial electric vehicles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7408063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150