JP7407376B2 - Track circuit transceiver and track circuit receiver - Google Patents

Track circuit transceiver and track circuit receiver Download PDF

Info

Publication number
JP7407376B2
JP7407376B2 JP2019204455A JP2019204455A JP7407376B2 JP 7407376 B2 JP7407376 B2 JP 7407376B2 JP 2019204455 A JP2019204455 A JP 2019204455A JP 2019204455 A JP2019204455 A JP 2019204455A JP 7407376 B2 JP7407376 B2 JP 7407376B2
Authority
JP
Japan
Prior art keywords
track circuit
signal
section
track
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019204455A
Other languages
Japanese (ja)
Other versions
JP2021075193A5 (en
JP2021075193A (en
Inventor
貴行 寺田
亮吉 南
康之 松脇
卓也 布施
英夫 中村
洋子 中村
Original Assignee
大同信号株式会社
株式会社社会システム開発研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同信号株式会社, 株式会社社会システム開発研究所 filed Critical 大同信号株式会社
Priority to JP2019204455A priority Critical patent/JP7407376B2/en
Publication of JP2021075193A publication Critical patent/JP2021075193A/en
Publication of JP2021075193A5 publication Critical patent/JP2021075193A5/ja
Application granted granted Critical
Publication of JP7407376B2 publication Critical patent/JP7407376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

この発明は、レールに接続されて軌道回路を構成する送受信機(軌道回路送受信機)に関し、そのうちの受信部分を特定した受信機(軌道回路受信機)にも関する。
詳しくは、列車検知機能などの標準的な機能を発揮することに加えて、有絶縁軌道回路の境界部分(軌条絶縁)に係る絶縁破壊状態をも検出することができる軌道回路送受信機および軌道回路受信機に関する。
さらには、運転方向が各線毎に固定している複線区間と異なり運転方向が列車運行状況に応じて切り替わる単線区間に対して適用することができる軌道回路送受信機および軌道回路受信機にも関する。
The present invention relates to a transmitter/receiver that is connected to a rail and forms a track circuit (track circuit transmitter/receiver), and also relates to a receiver (track circuit receiver) in which a receiving portion of the transmitter/receiver is specified.
Specifically, in addition to providing standard functions such as train detection functions, track circuit transceivers and track circuits that can also detect dielectric breakdown conditions related to the boundary portions (rail insulation) of insulated track circuits. Regarding the receiver.
Furthermore, the present invention also relates to a track circuit transmitter/receiver and a track circuit receiver that can be applied to single-track sections where the operating direction changes depending on the train operating conditions, unlike double-track sections where the operating direction is fixed for each line.

列車の在線を検知する軌道回路は(例えば非特許文献1参照)、信号灯器の制御に用いられるが、列車密度や運転速度向上のために多現示化が進んでいる。この中でR、Y、Gの3現示を制御する場合、3値の状態が取れる二元三位式軌道回路を用いることで、前方(列車進行方向と同じ方向・軌道回路信号伝送とは逆方向)にある軌道回路の情報を通信用の別回線で取得することなく信号灯器の制御を行うことが可能となっていた(例えば非特許文献2参照)。これに対し、4現示、5現示、6現示といった多現示化が進むと、そのような多現示の色灯信号機の制御には、二元三位式軌道回路でも、情報伝送能力が不足するため、前方軌道回路(列車進行方向の軌道回路)の情報を別回線にて取得するために、それなりのコストを掛けて通信用ケーブルを敷設することなどが行われている。 Track circuits that detect the presence of trains on the track (see, for example, Non-Patent Document 1) are used to control signal lamps, but the number of display signals is increasing in order to improve train density and operation speed. In this case, when controlling the three indications of R, Y, and G, by using a binary and three-position track circuit that can take three-value states, it is possible to It has become possible to control signal lamps without acquiring information on track circuits located in the opposite direction (in the opposite direction) through a separate communication line (for example, see Non-Patent Document 2). On the other hand, as the number of indications increases, such as 4 indications, 5 indications, and 6 indications, the control of such multi-indication colored light signals requires information transmission even with binary and 3-position track circuits. Due to the lack of capacity, communication cables have been installed at considerable cost in order to obtain information on the forward track circuit (the track circuit in the direction of train travel) via a separate line.

また、列車の在線を検知する軌道回路には、軌道回路境界のレールに絶縁パッドが介挿されて多数の軌道回路区間に区分けされている有絶縁軌道回路が多いが、そのような有絶縁軌道回路の場合、絶縁パッドが破損したり、鉄粉によって絶縁が劣化したりして、完全な又は或る程度以上の絶縁破壊が生じると、隣接する軌道回路の信号電流が回り込んで、正確な列車検知ができなくなってしまう。このようにレール絶縁の破壊は運転阻害に結び付くため、その検出が望まれている。 In addition, many track circuits that detect the presence of trains are insulated track circuits in which insulating pads are inserted into the rails at the boundaries of the track circuits to divide them into numerous track circuit sections; In the case of a circuit, if the insulation pad is damaged or the insulation is deteriorated by iron powder, resulting in complete or more than a certain degree of insulation breakdown, the signal current of the adjacent track circuit will wrap around, making it difficult to accurately Train detection becomes impossible. As described above, breakdown of rail insulation is linked to operational disturbances, and detection thereof is desired.

そして、その対策として、送信する軌道回路信号に情報を付加するなどといった幾つかの発明がなされている。例えば、周波数の異なる複数の搬送波や列車検知信号を用いることで絶縁破壊を検出するものや(例えば特許文献1,2参照)、送信先の軌道回路を特定する軌道回路識別番号を含む軌道回路信号を用いることで絶縁破壊を検出するもの(例えば特許文献3参照)、分岐器を含む軌道回路に対して番線情報を含む軌道回路信号を用いることで絶縁破壊を検出するものが知られている(例えば特許文献4参照)。 As a countermeasure against this, several inventions have been made, such as adding information to the transmitted track circuit signal. For example, there are those that detect dielectric breakdown by using multiple carrier waves with different frequencies and train detection signals (for example, see Patent Documents 1 and 2), and track circuit signals that include a track circuit identification number that identifies the destination track circuit. There are known methods that detect dielectric breakdown by using (for example, see Patent Document 3), and methods that detect dielectric breakdown by using a track circuit signal that includes line number information for a track circuit including a turnout (see, for example, Patent Document 3). For example, see Patent Document 4).

特開昭58-66370号公報Japanese Patent Application Publication No. 58-66370 特開平9-2270号公報Japanese Patent Application Publication No. 9-2270 特開2001-213314号公報Japanese Patent Application Publication No. 2001-213314 特開2005-145089号公報Japanese Patent Application Publication No. 2005-145089 特開平10-157622号公報Japanese Patent Application Publication No. 10-157622

社団法人日本鉄道電気技術協会「鉄道電気技術者のための信号概論 軌道回路」改訂版2刷発行、平成17年5月20日、p.3-5Japan Railway Electrical Engineers Association, “Introduction to Signals for Railway Electrical Engineers: Track Circuits,” revised 2nd edition published, May 20, 2005, p. 3-5 社団法人日本鉄道電気技術協会「鉄道電気技術者のための信号概論 軌道回路」改訂版2刷発行、平成17年5月20日、p.64Japan Railway Electrical Engineers Association, “Introduction to Signals for Railway Electrical Engineers: Track Circuits,” revised 2nd edition published, May 20, 2005, p. 64

既述した多現示の色灯信号機の制御については、軌道回路信号に情報を付加する手法を踏襲しつつも具体的な改造を施すことにより、別回線を追設しなくても4現示以上の信号灯器の制御を行うことができる。例えば、列車の在線する軌道回路から数えた順番に対応した情報を含んだ軌道回路信号を一連の軌道回路が送信するようにしたうえで、それぞれの軌道回路の処理部が、受信した軌道回路信号の順番情報から+1といった演算等にて自軌道回路の順番情報を得て、その順番情報に対応した信号現示の灯器制御出力を行うとともに、その順番情報を後続の軌道回路に伝達する、といった比較的簡便な改造を施すことにより、別回線が無くても4現示以上の信号灯器を適切に制御することができる。 Regarding the control of the multi-display color light signal mentioned above, by following the method of adding information to the track circuit signal and making specific modifications, it is possible to control the multi-display color light signal without installing a separate line. The above signal lamp device can be controlled. For example, a series of track circuits is configured to transmit track circuit signals containing information corresponding to the order counted from the track circuit on which the train is located, and then the processing section of each track circuit transmits the received track circuit signals. Obtain the order information of the own track circuit by calculating +1 from the order information, perform a lamp control output of the signal display corresponding to the order information, and transmit the order information to the subsequent track circuit. By making such a relatively simple modification, signal lamps with four or more indications can be appropriately controlled without the need for separate lines.

しかしながら、有絶縁軌道回路の絶縁破壊の検知については、軌道回路を識別する目的の周波数やコードといった情報を軌道回路信号に付加することは、送信部が複雑となるばかりではなく、絶縁破壊を検知するための受信部も複雑化する。具体的には、周波数の複数化では(例えば特許文献1,2参照)、バンドパスフィルタの増設などが伴う。また、特定情報の付加では(例えば特許文献3,4参照)、特定情報を抽出する手段や抽出可否等に応じた判別手段などが装備されるが、自軌道回路とその混信元の隣の軌道回路とに係る軌道回路信号の送受信タイミングについて規定が無いことから、混信の態様が複雑なので、特定情報の抽出手段や判別手段も検出精度を高めるほど複雑になりがちである。 However, when it comes to detecting dielectric breakdown in insulated track circuits, adding information such as the frequency and code for identifying the track circuit to the track circuit signal not only complicates the transmitter but also makes it difficult to detect dielectric breakdown. The receiving section for this purpose also becomes complicated. Specifically, increasing the number of frequencies (for example, see Patent Documents 1 and 2) involves adding bandpass filters. In addition, when adding specific information (for example, see Patent Documents 3 and 4), means for extracting specific information and determining means depending on whether extraction is possible or not are installed, but Since there is no regulation regarding the transmission/reception timing of track circuit signals related to the circuit, the mode of interference is complicated, and the specific information extraction means and discrimination means also tend to become more complicated as the detection accuracy increases.

特に、軌道回路識別番号や番線情報といった固定情報のデータ伝送でなく又はそれだけでなく、列車位置情報や色灯信号機制御向け多現示情報といった可変情報のデータ伝送をも軌道回路信号にて行う場合(例えば特許文献5参照)、軌道回路用の送受信機について更なる複雑化を招くことになる。
そこで、軌道回路信号の送受信にて内容可変情報のデータ伝送に加えて軌道回路の絶縁破壊の検知も的確に行える軌道回路用機器をなるべく簡素な構成で実現することが第1技術課題となる。
In particular, when track circuit signals are used to transmit not only fixed information such as track circuit identification numbers and line number information, but also variable information such as train position information and multi-display information for color light signal control. (See, for example, Patent Document 5), which leads to further complication of the transmitter/receiver for the track circuit.
Therefore, the first technical challenge is to realize track circuit equipment that can accurately detect dielectric breakdown of the track circuit in addition to data transmission of variable content information by transmitting and receiving track circuit signals, with as simple a configuration as possible.

また、単線線区において駅間に軌道回路を設け複数の列車侵入を許容する単線自動閉そくA方式においては、運転方向に応じて軌道回路信号の送受信を切り替えねばならず、そのために駅間に単線方向回線という制御用の回線を必要としていたところ、多現示情報のデータ伝送も軌道回路信号にて行うことで単線方向回線を不要にしたものもあるが(例えば特許文献5参照)、これも周波数および受信機の複数化を伴ううえ、その適用対象が無絶縁軌道回路であり、有絶縁軌道回路は適用外である。
そこで、運転方向切替を要する単線運転の線区に敷設された有絶縁軌道回路に適用できるようにすることが第2技術課題となる。
In addition, in single-track automatic block method A, which allows track circuits between stations on single-track sections to allow multiple trains to enter, it is necessary to switch the transmission and reception of track circuit signals depending on the driving direction. Although a control line called a directional line was required, there is also a system that eliminates the need for a single directional line by transmitting data of multi-display information using track circuit signals (for example, see Patent Document 5). In addition to requiring multiple frequencies and multiple receivers, it is applicable to uninsulated track circuits and is not applicable to insulated track circuits.
Therefore, the second technical problem is to make it applicable to insulated track circuits installed in single-track line sections that require switching of the driving direction.

本発明の軌道回路送受信機は(解決手段1)、上述した第1技術課題を解決するために創案されたものであり、
第1軌道回路区間と軌道回路境界と第2軌道回路区間とが連なる有絶縁軌道回路への装着に際して前記第1軌道回路区間のうち前記軌道回路境界寄り部位に接続される受信部と、前記有絶縁軌道回路への装着に際して前記第2軌道回路区間のうち前記軌道回路境界寄り部位に接続される送信部とを備えた軌道回路送受信機において、
前記受信部から前記送信部へ情報を伝達しうる越境伝達手段が設けられており、前記受信部が前記第1軌道回路区間から第1軌道回路信号を受信すると前記越境伝達手段を介して前記送信部へ前記第1軌道回路信号に基づく情報を伝達するようになっており、その伝達情報に応じて前記送信部が前記第2軌道回路区間へ第2軌道回路信号を送出するようになっており、前記第1軌道回路信号の伝送時期と前記第2軌道回路信号の伝送時期とに所定の時間差が確保されるようになっており、前記第1軌道回路信号について途中と後との何れか一方または双方に信号送出の無い無信号時期が確保されているものとして前記無信号時期における前記第1軌道回路信号の受信状態に基づいて前記軌道回路境界の絶縁破壊状態を判別する判定手段が設けられていることを特徴とする。
The track circuit transmitter/receiver of the present invention (solution means 1) is invented in order to solve the above-mentioned first technical problem,
a receiving section connected to a portion of the first track circuit section closer to the track circuit boundary when the first track circuit section, the track circuit boundary, and the second track circuit section are connected to an insulated track circuit; A track circuit transceiver comprising: a transmitter connected to a portion of the second track circuit section near the track circuit boundary when installed on the insulated track circuit ;
Cross-border transmission means capable of transmitting information from the reception section to the transmission section is provided, and when the reception section receives the first track circuit signal from the first track circuit section, the transmission section transmits the information via the cross-border transmission means. The transmission section is configured to transmit information based on the first track circuit signal to the section, and the transmission section transmits a second track circuit signal to the second track circuit section in accordance with the transmitted information. , a predetermined time difference is ensured between the transmission time of the first track circuit signal and the transmission time of the second track circuit signal, and the first track circuit signal is transmitted either during or after the transmission time. Alternatively, assuming that a no-signal period in which no signal is transmitted is ensured on both sides, determining means is provided for determining the dielectric breakdown state of the track circuit boundary based on the receiving state of the first track circuit signal during the no-signal period. It is characterized by

また、本発明の軌道回路受信機は(解決手段2)、上記の軌道回路送受信機から第1技術課題の解決に大きく寄与する受信部や判定手段を抽出して特定したものであり、
第1軌道回路区間と軌道回路境界と第2軌道回路区間とが連なる有絶縁軌道回路への装着に際して前記第1軌道回路区間のうち前記軌道回路境界寄り部位に接続される軌道回路受信機において、
前記第1軌道回路区間から第1軌道回路信号を受信すると、前記有絶縁軌道回路への装着に際して前記第2軌道回路区間のうち前記軌道回路境界寄り部位に接続される送信部へ情報を伝達しうる越境伝達手段を介して前記送信部へ前記第1軌道回路信号に基づく情報を伝達するとともに、前記第1軌道回路信号について途中と後との何れか一方または双方に信号送出の無い無信号時期が確保されているものとして前記無信号時期における前記第1軌道回路信号の受信状態に基づいて前記軌道回路境界の絶縁破壊状態を判別するようになっていることを特徴とする。
Moreover, the track circuit receiver of the present invention (solution means 2) is one in which a receiving section and a determining means that greatly contribute to solving the first technical problem are extracted and specified from the above track circuit transceiver,
In a track circuit receiver that is connected to a portion of the first track circuit section closer to the track circuit boundary when installed on an insulated track circuit in which a first track circuit section, a track circuit boundary, and a second track circuit section are connected,
When the first track circuit signal is received from the first track circuit section, the information is transmitted to a transmitting section connected to a portion of the second track circuit section near the track circuit boundary when installed on the insulated track circuit. Information based on the first track circuit signal is transmitted to the transmitting unit via the cross-border transmission means, and there is a no-signal period in which no signal is sent either during or after the first track circuit signal. The dielectric breakdown state of the track circuit boundary is determined based on the receiving state of the first track circuit signal during the no-signal period, assuming that the above-mentioned signal-free period is ensured.

さらに、本発明の軌道回路送受信機は(解決手段3)、上記解決手段1の軌道回路送受信機であって、
前記送信部が、前記第2軌道回路信号について途中と後との何れか一方または双方に信号送出の無い無信号時期を確保するようになっている、ことを特徴とする。
Furthermore, the track circuit transmitter/receiver of the present invention (solution means 3) is the track circuit transmitter/receiver of the above solution means 1,
The transmitter is characterized in that the transmitter secures a no-signal period in which no signal is transmitted during or after the second track circuit signal.

また、本発明の軌道回路送受信機は(解決手段4)、上記解決手段1,3の軌道回路送受信機であって、
前記判定手段が、前記第1軌道回路信号の送信開始を特定しうる周期開始波形が前記第1軌道回路信号に含まれているものとして前記無信号時期に前記周期開始波形が検出されたときに絶縁破壊が生じていると判定するようになっている、ことを特徴とする。
Further, the track circuit transmitter/receiver of the present invention (solution means 4) is the track circuit transmitter/receiver of the above solution means 1 and 3,
When the determining means detects the cycle start waveform during the no-signal period, assuming that the first track circuit signal includes a cycle start waveform that can identify the start of transmission of the first track circuit signal. It is characterized in that it is determined that dielectric breakdown has occurred.

また、本発明の軌道回路送受信機は(解決手段5)、上記解決手段4の軌道回路送受信機から、無信号時期の確保という要件を削除して代わりの要件を付加したものであり、
第1軌道回路区間と軌道回路境界と第2軌道回路区間とが連なる有絶縁軌道回路への装着に際して前記第1軌道回路区間のうち前記軌道回路境界寄り部位に接続される受信部と、前記有絶縁軌道回路への装着に際して前記第2軌道回路区間のうち前記軌道回路境界寄り部位に接続される送信部とを備えた軌道回路送受信機において、
前記受信部から前記送信部へ情報を伝達しうる越境伝達手段が設けられており、前記受信部が前記第1軌道回路区間から第1軌道回路信号を受信すると前記越境伝達手段を介して前記送信部へ前記第1軌道回路信号に基づく情報を伝達するようになっており、その伝達情報に応じて前記送信部が前記第2軌道回路区間へ第2軌道回路信号を送出するようになっており、前記第1軌道回路信号にも前記第2軌道回路信号にもその送信開始を特定しうる周期開始波形が含まれるようになっており、前記第1軌道回路信号の伝送時期と前記第2軌道回路信号の伝送時期とに所定の時間差が確保されるようになっており、前記第1軌道回路信号に前記第2軌道回路信号を前記時間差だけずらして重畳させると両信号の周期開始波形が壊れることなく残存し続けるようになっているものとして前記第1軌道回路信号に前記周期開始波形が複数個検出されたときに絶縁破壊が生じていると判定する判定手段が設けられている、ことを特徴とする。
Furthermore, the track circuit transmitter/receiver of the present invention (solution means 5) is obtained by deleting the requirement of securing a no-signal period from the track circuit transmitter/receiver of the above-mentioned solution means 4 and adding an alternative requirement,
a receiving section connected to a portion of the first track circuit section closer to the track circuit boundary when the first track circuit section, the track circuit boundary, and the second track circuit section are connected to an insulated track circuit; A track circuit transceiver comprising: a transmitter connected to a portion of the second track circuit section near the track circuit boundary when installed on the insulated track circuit;
Cross-border transmission means capable of transmitting information from the reception section to the transmission section is provided, and when the reception section receives the first track circuit signal from the first track circuit section, the transmission section transmits the information via the cross-border transmission means. The transmission section is configured to transmit information based on the first track circuit signal to the section, and the transmission section transmits a second track circuit signal to the second track circuit section in accordance with the transmitted information. , both the first track circuit signal and the second track circuit signal include a cycle start waveform that can specify the start of transmission, and the transmission timing of the first track circuit signal and the second track circuit signal are A predetermined time difference is ensured between the transmission timing of the circuit signal, and if the second track circuit signal is superimposed on the first track circuit signal with a shift of the time difference, the cycle start waveforms of both signals are destroyed. A determining means is provided for determining that dielectric breakdown has occurred when a plurality of the period start waveforms are detected in the first track circuit signal as a signal that continues to remain without any damage. Features.

また、本発明の軌道回路送受信機は(解決手段6)、上記解決手段1,3の軌道回路送受信機であって、
前記判定手段が、前記第1軌道回路信号の受信状態について前記無信号時期に無信号を超える信号が検出されたときに絶縁破壊が生じていると判定するようになっている、ことを特徴とする。
Further, the track circuit transmitter/receiver of the present invention (solution means 6) is the track circuit transmitter/receiver of the above solution means 1 and 3,
The determining means is configured to determine that dielectric breakdown has occurred when a signal exceeding a no signal is detected during the no signal period regarding the receiving state of the first track circuit signal. do.

また、本発明の軌道回路送受信機は(解決手段7)、上記解決手段4~6の軌道回路送受信機であって、
前記判定手段によって絶縁破壊が生じていると判定された後に前記受信部が前記第1軌道回路信号の次の第1軌道回路信号を受信したとき、前記送信部が前記第2軌道回路信号の次の第2軌道回路信号の送出を控えるとともに、前記の次の第1軌道回路信号について絶縁破壊が検出されなければ前記判定手段が絶縁破壊が生じていたと確定するようになっている、ことを特徴とする。
Further, the track circuit transmitter/receiver of the present invention (solution means 7) is the track circuit transmitter/receiver of the above-mentioned solution means 4 to 6,
When the receiving section receives the first track circuit signal following the first track circuit signal after the determining means determines that dielectric breakdown has occurred, the transmitting section receives the first track circuit signal next to the second track circuit signal. The determination means is configured to refrain from transmitting the second track circuit signal, and if no dielectric breakdown is detected for the next first track circuit signal, the determining means determines that dielectric breakdown has occurred. shall be.

また、本発明の軌道回路送受信機は(解決手段8)、上記解決手段1,3,4,6,7の軌道回路送受信機であって、
前記無信号時期が前記第1軌道回路信号の途中に確保されており、前記時間差が前記無信号時期の時間長より短く且つ前記第1軌道回路信号の始期から前記無信号時期の始期までの時間より長くなっていることを特徴とする。
Further, the track circuit transceiver of the present invention (solution means 8) is the track circuit transceiver of the above-mentioned solution means 1, 3, 4, 6, and 7,
The no-signal period is secured in the middle of the first track circuit signal, the time difference is shorter than the time length of the no-signal period, and the time is from the start of the first track circuit signal to the start of the no-signal period. It is characterized by being longer.

また、本発明の軌道回路送受信機は(解決手段9)、上記解決手段8の軌道回路送受信機であって、
前記第1軌道回路信号と、前記時間差だけ遅らせた前記第2軌道回路信号とについて、前記無信号時期の部位には偽の論理値を割り当てそれ以外の時期の部位には真の論理値を割り当てて対応時期毎に論理積をとると、その論理値が総ての時期で偽になるという関係が成立するようになっている、ことを特徴とする。
Further, the track circuit transmitter/receiver of the present invention (solution means 9) is the track circuit transmitter/receiver of the above solution means 8,
Regarding the first track circuit signal and the second track circuit signal delayed by the time difference, a false logical value is assigned to a portion of the no-signal period, and a true logical value is assigned to a portion of the other period. It is characterized in that, when a logical product is taken for each corresponding time period, a relationship is established in which the logical value is false at all times.

また、本発明の軌道回路送受信機は(解決手段10)、上記解決手段1,3~9の軌道回路送受信機であって、
前記受信部の接続先と前記送信部の接続先とを交換する接続先交換手段が設けられていることを特徴とする。
Further, the track circuit transmitter/receiver of the present invention (solution means 10) is the track circuit transmitter/receiver of the above solution means 1, 3 to 9,
The apparatus is characterized in that a connection destination exchanging means for exchanging a connection destination of the receiving section and a connection destination of the transmitting section is provided.

また、本発明の軌道回路送受信機は(解決手段11)、上記解決手段10の軌道回路送受信機であって、
前記接続先交換手段の作動指示を含んだ前記第1軌道回路信号を前記受信部が受信するとそれに応じて前記接続先交換手段が作動するようになっていることを特徴とする。
Further, the track circuit transmitter/receiver of the present invention (solution means 11) is the track circuit transmitter/receiver of the above solution means 10,
It is characterized in that when the receiving section receives the first track circuit signal including an instruction to operate the connection destination exchange means, the connection destination exchange means is activated in response.

また、本発明の軌道回路送受信機は(解決手段12)、上記解決手段11の軌道回路送受信機であって、
前記接続先交換手段が、前記作動指示に係る前記受信部の受信時から前記送信部の送信完了まで、前記作動指示に応じた接続先交換を遅らせるようになっていることを特徴とする。
Further, the track circuit transmitter/receiver of the present invention (solution means 12) is the track circuit transmitter/receiver of the above solution means 11,
It is characterized in that the connection destination exchange means delays the connection destination exchange according to the operation instruction from the time when the reception section receives the operation instruction until the transmission by the transmission section is completed.

このような本発明の軌道回路送受信機(解決手段1)及び軌道回路受信機(解決手段2)にあっては、越境伝達手段等を設けたことにより、第1軌道回路区間から受信した第1軌道回路信号に基づいて第2軌道回路信号を作成しそれを隣の第2軌道回路区間へ送信することが可能になるので、個々の軌道回路区間の中に限定されていた軌道回路の情報伝達機能が、一連の軌道回路区間に亘るものにまで拡張される。
しかも、同一内容の単純な伝達に限られず、越境時に伝達内容を改変することも可能なので、情報伝達機能を質的に高めることもできる。さらに、受信部(第1受信部)と送信部(第2送信部)とで同期をとることも可能になる。
In the track circuit transmitter/receiver (solution means 1) and track circuit receiver (solution means 2) of the present invention, by providing cross-border transmission means etc., the first track circuit received from the first track circuit section Since it becomes possible to create a second track circuit signal based on the track circuit signal and transmit it to the adjacent second track circuit section, information transmission of track circuits that was limited to each track circuit section is now possible. The functionality is extended to span a series of track circuit sections.
Moreover, it is not limited to simple transmission of the same content, but it is also possible to modify the transmission content when crossing borders, so the information transmission function can be qualitatively enhanced. Furthermore, it becomes possible to synchronize the receiving section (first receiving section) and the transmitting section (second transmitting section).

そして、その同期機能を利用して第1軌道回路信号の伝送時期と第2軌道回路信号の伝送時期とに所定の時間差が確保されるとともに、他の軌道回路送信機(第1送信部)によって第1軌道回路区間へ送信される第1軌道回路信号について無信号時期が確保されているものとして、その無信号時期における第1軌道回路信号の受信状態に基づいて軌道回路境界の絶縁破壊状態が判別されるようにしたことにより、軌道回路境界の絶縁破壊による第2軌道回路信号の漏れ電流が第1軌道回路信号に混入する量が例え僅かなものであっても、更には検出手法が簡便なものであっても、その漏れ電流による不所望な信号混入を的確に検出することができる。 Then, by using the synchronization function, a predetermined time difference is secured between the transmission timing of the first track circuit signal and the transmission timing of the second track circuit signal, and the other track circuit transmitter (first transmitter) Assuming that a no-signal period is ensured for the first track circuit signal transmitted to the first track circuit section, the dielectric breakdown state of the track circuit boundary is determined based on the receiving state of the first track circuit signal during the no-signal period. By making this distinction possible, even if the amount of leakage current from the second track circuit signal mixed into the first track circuit signal due to dielectric breakdown at the track circuit boundary is small, the detection method is simple. Even if the current is low, it is possible to accurately detect undesired signal contamination due to leakage current.

なお、所定の時間差は、第1軌道回路信号の無信号時期の一部または全部に対して第2軌道回路信号の有信号時期(信号送出の有る時期)が重なるような値になっていれば良く、その値がデータ設定などで受信部の動作に反映されるようになっていれば受信部の具体化にも足りるので、受信部も送信部も簡素な構成や手段で具現化することができる。
したがって、この発明によれば、軌道回路信号の送受信にて内容可変情報のデータ伝送に加えて軌道回路の絶縁破壊の検知も的確に行える軌道回路用機器をかなり簡素な構成で実現することができ、第1技術課題が解決される。
Note that the predetermined time difference is such that the signal period (signal transmission period) of the second track circuit signal overlaps with part or all of the no-signal period of the first track circuit signal. If the value is reflected in the operation of the receiving section through data settings, etc., it is sufficient to realize the receiving section, so both the receiving section and the transmitting section can be realized with simple configurations and means. can.
Therefore, according to the present invention, it is possible to realize track circuit equipment with a fairly simple configuration that can accurately detect dielectric breakdown of the track circuit in addition to data transmission of variable content information by sending and receiving track circuit signals. , the first technical problem is solved.

また、本発明の軌道回路送受信機にあっては(解決手段3)、受信対象の第1軌道回路信号だけでなく送信対象の第2軌道回路信号についても無信号時期が確保されるようにしたことにより、第2軌道回路とその先の軌道回路(第3軌道回路)との軌道回路境界に係る絶縁破壊の検知についても、簡素な構成を踏襲しつつ絶縁破壊検知の的確化に資することができる。 Moreover, in the track circuit transmitter/receiver of the present invention (solution means 3), a signal-free period is ensured not only for the first track circuit signal to be received but also for the second track circuit signal to be transmitted. By doing so, it is possible to contribute to accurate detection of dielectric breakdown while following a simple configuration even in the detection of dielectric breakdown related to the track circuit boundary between the second track circuit and the track circuit beyond it (third track circuit). can.

さらに、本発明の軌道回路送受信機にあっては(解決手段4)、周期開始波形が無信号時期に検出されたときに絶縁破壊が生じていると判定するようにしたことにより、一回の情報伝達には一つしか含まれないはずの周期開始波形が複数個ふくまれていたときには、絶縁破壊による第2軌道回路信号の第1軌道回路信号への回り込みが起きていると想定されるので、高い確度で絶縁破壊が検出される。 Furthermore, in the track circuit transmitter/receiver of the present invention (solution means 4), it is determined that dielectric breakdown has occurred when the period start waveform is detected during a no-signal period. When information transmission includes multiple cycle start waveforms that should only be included, it is assumed that the second track circuit signal wraps around the first track circuit signal due to dielectric breakdown. , dielectric breakdown can be detected with high accuracy.

また、本発明の軌道回路送受信機にあっては(解決手段5)、前記第1軌道回路信号に前記第2軌道回路信号を前記時間差だけずらして重畳させると両信号の周期開始波形が壊れることなく存続し続けるようになっているという条件を導入したことにより、無信号時期を確保するという要件が不要になる。 Furthermore, in the track circuit transmitter/receiver of the present invention (solution 5), when the second track circuit signal is superimposed on the first track circuit signal with a shift of the time difference, the cycle start waveforms of both signals are destroyed. By introducing the condition that the signal continues to exist without a signal, there is no longer a requirement to ensure a signal-free period.

また、本発明の軌道回路送受信機にあっては(解決手段6)、無信号を超える信号が無信号時期に検出されたときに絶縁破壊が生じていると判定するようにしたことにより、絶縁破壊の程度が小さい状況でも絶縁破壊を検出することができるので、絶縁破壊の早期検出や予兆検出にも役立つ。 Furthermore, in the track circuit transmitter/receiver of the present invention (solution 6), it is determined that insulation breakdown has occurred when a signal exceeding no signal is detected during a no signal period. Since dielectric breakdown can be detected even in situations where the degree of breakdown is small, it is useful for early detection and predictive detection of dielectric breakdown.

また、本発明の軌道回路送受信機にあっては(解決手段7)、第2軌道回路信号が絶縁破壊によって第1軌道回路区間へ漏れ伝わって第1軌道回路信号に混入したと判定された状況では、その漏れの主な原因と見なされる第2軌道回路信号の送出を次の段階では控えたうえで混入の有無ひいては絶縁破壊の有無を調べるようにもしたことにより、混入と漏れ伝達とが関連しているのか否かが現象面から把握されることから、絶縁破壊の検出確度が向上するので、絶縁破壊の可能性が高い状態を的確に捉えて正確な判定を下すことができる。 In addition, in the track circuit transmitter/receiver of the present invention (solution means 7), a situation where it is determined that the second track circuit signal leaks to the first track circuit section due to dielectric breakdown and is mixed with the first track circuit signal. In the next step, we refrained from transmitting the second track circuit signal, which is considered to be the main cause of the leakage, and then checked for the presence of contamination, and furthermore, the presence of dielectric breakdown, thereby eliminating contamination and leakage transmission. Since whether or not there is a relationship can be ascertained from the perspective of phenomena, the accuracy of detecting dielectric breakdown is improved, so it is possible to accurately identify a state in which there is a high possibility of dielectric breakdown and make an accurate judgment.

また、本発明の軌道回路送受信機にあっては(解決手段8)、無信号時期が第1軌道回路信号の途中に確保されるようにしたことにより、所定の時間差を第1軌道回路信号の全長より短くすることができるので、第1軌道回路区間から第2軌道回路区間への情報伝達に係る遅延時間が短縮され、情報伝達機能に係る伝送速度の低下が抑制される。さらに、所定の時間差が第1軌道回路信号の始期から無信号時期の始期までの時間より長く且つ第1軌道回路信号の始期から無信号時期の終期までの時間より短くなるようにもしたことにより、第1軌道回路信号の無信号時期の少なくとも一部には第2軌道回路信号の有信号時期が重なるので、無信号時期を第1軌道回路信号の途中に入れても構成の複雑化を招くことなく的確に第2軌道回路信号の第1軌道回路信号への混入を検出することができる。 Further, in the track circuit transmitter/receiver of the present invention (solution means 8), by ensuring a no-signal period in the middle of the first track circuit signal, a predetermined time difference is maintained between the first track circuit signal and the first track circuit signal. Since it can be made shorter than the total length, the delay time related to information transmission from the first track circuit section to the second track circuit section is shortened, and a decrease in the transmission speed related to the information transfer function is suppressed. Furthermore, by making the predetermined time difference longer than the time from the start of the first track circuit signal to the start of the no-signal period and shorter than the time from the start of the first track circuit signal to the end of the no-signal period, Since at least part of the no-signal period of the first track circuit signal overlaps with the signal period of the second track circuit signal, even if the no-signal period is inserted in the middle of the first track circuit signal, the configuration will become complicated. It is possible to accurately detect the mixing of the second track circuit signal into the first track circuit signal without any interference.

また、本発明の軌道回路送受信機にあっては(解決手段9)、時間差を反映した第1軌道回路信号と第2軌道回路信号との論理積が全時間に亘って偽になるようにしたことにより、両信号は何れもどの信号部分についても一方の有信号時期の信号部分が他方の無信号時期に対応することになることから、軌道回路境界に絶縁破壊が生じて第2軌道回路信号が第1軌道回路区間に回り込んで第1軌道回路信号に混入したときでも、第1軌道回路信号に込められた伝達情報は、第2軌道回路信号の無信号時期に配置されていて、第2軌道回路信号混入の影響を受けないので、例えば無信号時期の情報を無視するといった簡便な処理でも上記伝達情報を的確に抽出することができるので、絶縁破壊の程度が小さいときに限らず大きくなったときでも情報伝達機能を維持することができる。 Furthermore, in the track circuit transmitter/receiver of the present invention (solution 9), the logical product of the first track circuit signal and the second track circuit signal reflecting the time difference is made to be false throughout the entire time. As a result, for any signal part of both signals, the signal part of one signal period corresponds to the other signal non-signal period, so dielectric breakdown occurs at the track circuit boundary and the second track circuit signal Even when the signal enters the first track circuit section and mixes with the first track circuit signal, the transmission information contained in the first track circuit signal is placed in the non-signal period of the second track circuit signal, and the Since it is not affected by two-track circuit signal contamination, the above transmission information can be extracted accurately even with simple processing such as ignoring information during no-signal periods, so it is possible to extract the above transmission information accurately, not only when the degree of dielectric breakdown is small but also when it is large. The information transmission function can be maintained even when

また、本発明の軌道回路送受信機にあっては(解決手段10)、受信部が信号機の点灯制御に関わるような場合は情報伝達機能を発揮する送信部と受信部とを軌道回路区間に接続するに際して列車進入側に送信部を接続するとともに列車進出側に受信部を接続することになるが、受信部と送信部との接続先を交換可能にしたことにより、軌道回路信号の伝送方向を反転することが可能になるので、列車進行方向の変更が発生する単線運転の軌道回路区間に対しても一組の軌道回路送受信機で済ませることができる。
したがって、この発明によれば、運転方向切替を要する単線運転の線区に敷設された有絶縁軌道回路にも適用でき、第1技術課題に加えて第2技術課題も解決される。
In addition, in the track circuit transmitter/receiver of the present invention (solution 10), when the receiving section is involved in lighting control of a traffic signal, the transmitting section and the receiving section that perform the information transmission function are connected to the track circuit section. In order to do this, the transmitting section is connected to the train approach side, and the receiving section is connected to the train advancing side, but by making the connection points between the receiving section and the transmitting section interchangeable, it is possible to change the transmission direction of the track circuit signal. Since reversal is possible, a single set of track circuit transceivers can be used even for track circuit sections in single-track operation where changes in the direction of train travel occur.
Therefore, according to the present invention, it can be applied to an insulated track circuit installed in a single-track line section that requires switching of the driving direction, and the second technical problem is solved in addition to the first technical problem.

また、本発明の軌道回路送受信機にあっては(解決手段11)、軌道回路の情報伝達機能を利用して接続先交換手段を作動させうるようにしたことにより、ハードウェアの増設負担が無いか有っても軽微なので、単線運転の線区へも容易に適用することができる。
特に解決手段9を引用する軌道回路送受信機にあっては、情報伝達機能の維持能力が優れているので、情報伝達機能を利用しても稼働率の低下を的確に防ぐことができる。
In addition, in the track circuit transmitter/receiver of the present invention (solution 11), the information transmission function of the track circuit can be used to operate the connected exchange means, so there is no need to add hardware. Even if there is a problem, it is minor, so it can be easily applied to lines with single-track operation.
In particular, the track circuit transmitter/receiver that cites solution 9 has an excellent ability to maintain the information transmission function, so even if the information transmission function is used, it is possible to accurately prevent a decrease in the operating rate.

また、本発明の軌道回路送受信機にあっては(解決手段12)、先行する受信についてだけでなく、後続する送信についても、伝送が完了して初めて接続先交換が実行されるようにしたことにより、第1軌道回路区間ばかりか第2軌道回路区間についても情報伝達を損なうことなく的確な接続先交換がなされる。 Furthermore, in the track circuit transceiver of the present invention (solution 12), connection destination exchange is performed not only for the preceding reception but also for the subsequent transmission only after the transmission is completed. Accordingly, accurate connection destination exchange can be performed not only for the first track circuit section but also for the second track circuit section without impairing information transmission.

本発明の実施例1について、軌道回路送受信機および軌道回路受信機の構造を示し、(a)が、レールの軌道回路区間それぞれに軌道回路送受信機を付設して構成した一連の軌道回路に係るブロック図、(b)が、そのうち一つの軌道回路送受信機に係るブロック図である。Regarding Example 1 of the present invention, the structure of a track circuit transmitter/receiver and a track circuit receiver is shown, and (a) relates to a series of track circuits configured by attaching a track circuit transmitter/receiver to each track circuit section of the rail. Block diagram (b) is a block diagram of one of the track circuit transceivers. 各軌道回路信号の波形例である。It is a waveform example of each track circuit signal. 一連の軌道回路における信号伝送状態を示すタイムチャートである。It is a time chart showing the signal transmission state in a series of track circuits. (a),(b)いずれも絶縁破壊の有無を反映した波形図である。Both (a) and (b) are waveform diagrams reflecting the presence or absence of dielectric breakdown. 本発明の実施例2について、各軌道回路信号の波形例である。It is a waveform example of each track circuit signal about Example 2 of this invention. 一連の軌道回路における信号伝送状態を示すタイムチャートである。It is a time chart showing the signal transmission state in a series of track circuits. (a)が隣り合った軌道回路区間のうち前段の軌道回路区間に送信された信号波形例、(b)が隣り合った軌道回路区間のうち後段の軌道回路区間に送信された信号波形例、(c)が上記の前段の軌道回路区間で受信された信号波形例である。(a) is an example of a signal waveform transmitted to the preceding track circuit section among the adjacent track circuit sections, and (b) is an example of the signal waveform transmitted to the subsequent track circuit section among the adjacent track circuit sections. (c) is an example of a signal waveform received in the above-mentioned former track circuit section. 本発明の実施例3について、絶縁破壊の影響の少ない信号波形例を論理値で表したものである。Regarding Example 3 of the present invention, an example of a signal waveform that is less affected by dielectric breakdown is expressed as a logical value. 本発明の実施例4について、単線の軌道に適した軌道回路送受信機および軌道回路受信機の構造を示し、(a)が、レールの軌道回路区間それぞれに軌道回路送受信機を付設して構成した一連の軌道回路に係るブロック図、(b)が、そのうち一つの軌道回路送受信機に係るブロック図である。Regarding Example 4 of the present invention, the structure of a track circuit transmitter/receiver and a track circuit receiver suitable for a single track is shown, and (a) is constructed by attaching a track circuit transmitter/receiver to each track circuit section of the rail. A block diagram related to a series of track circuits, (b) is a block diagram related to one track circuit transmitter/receiver. (a)が運転方向切替の無いときの軌道回路信号の波形例、(b)が運転方向切替に応じた接続先交換手段の作動指示を含んだ軌道回路信号の波形例である。(a) is an example of the waveform of a track circuit signal when there is no switching of the driving direction, and (b) is an example of the waveform of the track circuit signal that includes an instruction to operate the connection destination exchange means in response to the switching of the driving direction. (a)が運転方向切替の無いときの軌道回路信号の波形例、(b)が運転方向切替に応じた接続先交換手段の作動指示を含んだ軌道回路信号の波形例である。(a) is an example of the waveform of a track circuit signal when there is no switching of the driving direction, and (b) is an example of the waveform of the track circuit signal that includes an instruction to operate the connection destination exchange means in response to the switching of the driving direction.

このような本発明の軌道回路送受信機および軌道回路受信機について、これを実施するための具体的な形態を、以下の実施例1~4により説明する。
図1~4に示した実施例1は、上述した解決手段1~3,6,7(出願当初の請求項1~3,6,7)を具現化したものであり、図5~7に示した実施例2は、上述した解決手段4~6,8(出願当初の請求項4~6,8)を具現化したものであり、図8に示した実施例3は、上述した解決手段9(出願当初の請求項9)を具現化したものであり、図9~11に示した実施例4は、上述した解決手段10~12(出願当初の請求項10~12)を具現化したものである。
Specific embodiments for implementing the track circuit transmitter/receiver and track circuit receiver of the present invention will be explained with reference to Examples 1 to 4 below.
Embodiment 1 shown in FIGS. 1 to 4 embodies the above-mentioned solution means 1 to 3, 6, and 7 (claims 1 to 3, 6, and 7 as originally filed), and FIGS. The illustrated embodiment 2 embodies the above-mentioned solution means 4 to 6 and 8 (claims 4 to 6 and 8 originally filed), and the embodiment 3 shown in FIG. 8 embodies the above-mentioned solution means. Example 4 shown in FIGS. 9 to 11 embodies Solution Means 10 to 12 (Claims 10 to 12 as originally filed) described above. It is something.

なお、それらの図示に際しては、簡明化等のため、ブロック図や信号波形図を多用している。
また、各実施例の説明において、前方や前段は、列車進行方向と同じ方向や、軌道回路信号の伝達方向と逆の方向を指すものであり、後方や後段は、列車進行方向と逆の方向や、軌道回路信号の伝達方向と同じ方向を指すものである。
Note that when illustrating these, block diagrams and signal waveform diagrams are often used for the sake of clarity.
In addition, in the description of each embodiment, the front or front stage refers to the same direction as the train traveling direction or the direction opposite to the transmission direction of the track circuit signal, and the rear or rear stage refers to the direction opposite to the train traveling direction. It also points in the same direction as the track circuit signal transmission direction.

本発明の軌道回路送受信機および軌道回路受信機の実施例1について、その具体的な構成を、図面を引用して説明する。 EMBODIMENT OF THE INVENTION Regarding Example 1 of a track circuit transmitter/receiver and a track circuit receiver of the present invention, the specific configuration thereof will be described with reference to the drawings.

図1(a)は、複線のうち上りのレール2を複数の軌道回路区間に区分して夫々に送信部11と受信部12とを付設して構成した一連の軌道回路10,…,10に係るブロック図であり、同図(b)は、それらの軌道回路のうち前段の軌道回路10kに組み込まれた受信部12と後段の10k+1に組み込まれた送信部11とからなる軌道回路送受信機11&12にかかるブロック図である。
また、図2は、一連の軌道回路のうち軌道回路10~10のレール2に流れる軌道回路信号30~30の波形例である。さらに、図3は、それらの軌道回路信号30~30の信号伝送状態を示すタイムチャートである。
FIG. 1(a) shows a series of track circuits 10, . This is a block diagram, and FIG. 3(b) shows a track circuit transmission/reception system consisting of a receiving section 12 built into the preceding track circuit 10k and a transmitting section 11 built into the succeeding track circuit 10k+1. 2 is a block diagram of machines 11 & 12. FIG.
Further, FIG. 2 shows waveform examples of track circuit signals 30 1 to 30 5 flowing to the rails 2 of track circuits 10 1 to 10 5 among a series of track circuits. Further, FIG. 3 is a time chart showing the signal transmission states of these track circuit signals 30 1 to 30 5 .

軌道回路送受信機11&12の付設対象であるレール2は(図1(a)参照)、通常は並走する一対のレールからなるが、それを例えば1km程度で区分けすることで一連の軌道回路区間が構成される。そして、それぞれの軌道回路区間で軌道回路信号30を伝送させたときに軌道回路信号(図1では30k+1)の漏れ電流20が隣(特に前段)の軌道回路区間に回り込んで軌道回路信号(図1では30k)に重畳することがないように、漏れ電流20を阻止するためのレール絶縁2aがそれぞれの軌道回路境界に挿入されている。軌道回路送受信機11&12は、そのような有絶縁軌道回路に付設されて、軌道回路信号30を分析することにより、一般的な列車検知機能や中間信号機7(多現示式色灯信号機)の制御などに加えて、レール絶縁2aの破壊の有無まで検出するものとなっている。 The rail 2 to which the track circuit transmitter/receiver 11 & 12 is attached (see Fig. 1(a)) usually consists of a pair of rails running in parallel, but by dividing it into sections of about 1 km, for example, a series of track circuit sections can be created. configured. When the track circuit signal 30 is transmitted in each track circuit section, the leakage current 20 of the track circuit signal (30k+1 in Fig. 1) flows into the adjacent (especially the previous stage) track circuit section, causing the track circuit signal to be transmitted. (30k in FIG. 1), rail insulation 2a is inserted at each track circuit boundary to prevent leakage current 20 from being superimposed. The track circuit transmitter/receiver 11 & 12 is attached to such an insulated track circuit, and by analyzing the track circuit signal 30, it can perform general train detection functions and control the intermediate signal 7 (multi-display colored light signal). In addition to the above, the system also detects the presence or absence of breakdown of the rail insulation 2a.

軌道回路10は、レール2と送信部11と受信部12とを組み合わせたものであり(図1(a)参照)、送信部11も、受信部12も、レール2に対して装着されるが、その際、軌道回路区間のうち軌道回路境界寄り部位である絶縁2aの近傍でレール2に接続されて軌道回路信号を伝送し合うようになっている。しかも、その際、従来技術を踏襲して、それぞれ軌道回路区間で送信部11が前方の軌道回路境界寄り部位に接続されるとともに受信部12が後方の軌道回路境界寄り部位に接続されることで、一連の軌道回路10n(n=1,2,…,k,…)が構成され、それぞれの区間のレール2を介して軌道回路信号30n(n=1,2,…,k,…)が伝達されるものになる。 The track circuit 10 is a combination of a rail 2, a transmitter 11, and a receiver 12 (see FIG. 1(a)), and both the transmitter 11 and the receiver 12 are attached to the rail 2. At that time, it is connected to the rail 2 near the insulation 2a, which is a portion of the track circuit section near the track circuit boundary, so that track circuit signals can be transmitted to each other. Moreover, in this case, in accordance with the prior art, in each track circuit section, the transmitter 11 is connected to the front part closer to the track circuit boundary, and the receiver 12 is connected to the rear part closer to the track circuit boundary. , a series of track circuits 10n (n=1, 2,..., k,...) are constructed, and track circuit signals 30n (n=1, 2,..., k,...) are transmitted via the rails 2 of each section. Become what is communicated.

そして、それに加えて本発明をも具現化した軌道回路送受信機11&12は(図1(b)参照)、軌道回路境界の絶縁2aより前の軌道回路区間(解決手段1等の第1軌道回路区間に該当)のレール2に接続されて軌道回路信号30(第1軌道回路信号,図1(b)では軌道回路信号30k)を受信可能になっている受信部12と、上記の軌道回路境界の絶縁2aより後の軌道回路区間(解決手段1等の第2軌道回路区間に該当)のレール2に接続されて軌道回路信号30(第2軌道回路信号,図1(b)では軌道回路信号30k+1)を送信可能になっている送信部11とに係るものとなっている。 In addition, the track circuit transmitter/receiver 11 & 12 which also embodies the present invention (see FIG. 1(b)) is a track circuit section before the insulation 2a at the track circuit boundary (the first track circuit section of Solution 1 etc.). The receiver 12 is connected to the rail 2 of the track circuit (corresponding to Connected to the rail 2 of the track circuit section after the insulation 2a (corresponding to the second track circuit section of Solution 1 etc.), the track circuit signal 30 (second track circuit signal, track circuit signal 30k in FIG. 1(b) +1).

そして、後段の軌道回路区間の軌道回路信号30k+1(第2軌道回路信号)から前段の軌道回路区間の軌道回路信号30k(第1軌道回路信号)へ不所望な漏れ電流20が回り込んだときに、軌道回路信号30k(第1軌道回路信号)が変形することに基づいて、その前後の軌道回路区間の境界の絶縁2aに係る絶縁破壊状態を検出するようになっている。また、それには前段の受信部12と後段の送信部11との連携が必要なので、前段の受信部12が第1軌道回路区間から第1軌道回路信号を受信すると越境伝達手段17を介して後段の送信部11へ第1軌道回路信号に基づく情報を伝達するようになっている。 Then, an undesired leakage current 20 leaked from the track circuit signal 30k+1 (second track circuit signal) in the subsequent track circuit section to the track circuit signal 30k (first track circuit signal) in the previous track circuit section. Sometimes, based on the deformation of the track circuit signal 30k (first track circuit signal), a dielectric breakdown state of the insulation 2a at the boundary between the preceding and succeeding track circuit sections is detected. Moreover, since this requires cooperation between the reception section 12 at the front stage and the transmission section 11 at the rear stage, when the reception section 12 at the front stage receives the first track circuit signal from the first track circuit section, it is transmitted to the rear stage via the cross-border transmission means 17. Information based on the first track circuit signal is transmitted to the transmitting section 11 of.

以下、各部の構成を詳述する。
先ず、軌道回路送受信機11&12の送信部11と受信部12との間には、データ伝送ケーブルやその駆動回路などからなる越境伝達手段17が設けられており(図1参照)、列車が在線している軌道回路区間から後方へ数えて何番目の軌道回路区間に当たるのかという順番情報などを含んだ伝達情報18kが越境伝達手段17を介して前段の受信部12(第1軌道回路区間に接続された受信部)から後段の送信部11(第2軌道回路区間に接続された受信部)へ情報伝達されるようになっている。
The configuration of each part will be explained in detail below.
First, a cross-border transmission means 17 consisting of a data transmission cable, its driving circuit, etc. is provided between the transmitting section 11 and the receiving section 12 of the track circuit transmitter/receiver 11 & 12 (see Fig. 1). Transmission information 18k, which includes order information such as the number of track circuit sections counted backward from the track circuit section in question, is sent via the cross-border transmission means 17 to the reception unit 12 in the previous stage (connected to the first track circuit section). The information is transmitted from the receiving section (the receiving section connected to the second track circuit section) to the transmitting section 11 (the receiving section connected to the second track circuit section) at the subsequent stage.

送信部11は、順番情報のそれぞれに対応した第n軌道回路信号30n(図1(b)ではn=k+1)の生成に資する軌道回路信号生成情報をデータ保持した軌道回路プロファイルテーブルと、該当する生成情報に基づいて適切な波形の軌道回路信号(図1(b)では軌道回路信号30k+1)を生成する波形生成部とを具備している。そして、越境伝達手段17を介して得た伝達情報18kを用いて上記の軌道回路プロファイルテーブルを検索し、それで得た生成情報に基づいて軌道回路信号30k+1を生成し、それを接続先の軌道回路区間(相対的に後方の軌道回路区間)のレール2へ送信するようになっている。 The transmitter 11 includes a track circuit profile table that holds track circuit signal generation information that contributes to the generation of the n-th track circuit signal 30n (n=k+1 in FIG. 1(b)) corresponding to each piece of order information; A waveform generation section that generates a track circuit signal (track circuit signal 30k+1 in FIG. 1(b)) with an appropriate waveform based on the corresponding generation information is provided. Then, the above-mentioned track circuit profile table is searched using the transmission information 18k obtained via the cross-border transmission means 17, and the track circuit signal 30k+1 is generated based on the generated information obtained thereby, and it is sent to the connection destination. It is configured to transmit to the rail 2 of the track circuit section (relatively backward track circuit section).

受信部12は、上述したのと同様の軌道回路信号生成情報などを保持した軌道回路プロファイルテーブルと、その検索等を行うことで接続先の軌道回路区間(相対的に前方の軌道回路区間)のレール2から受信した軌道回路信号(図1(b)では軌道回路信号30k)を分析する波形分析部と、中間信号機7の制御に際してアクセスされる情報を保持した灯器制御テーブルと、それを参照して中間信号機7に対する適切な点灯制御を行う処理部16とを具備している。そして、波形分析部が取得した順番情報などを含めて伝達情報18kを作成し、それを越境伝達手段17経由で送信部11へ伝達するとともに、やはり順番情報などを利用して信号機制御指示14を作成し、それを該当箇所の中間信号機7へ送ることで中間信号機7の点灯制御等を行うようになっている。 The receiving unit 12 uses a track circuit profile table that holds track circuit signal generation information similar to that described above, and searches the track circuit profile table to find the track circuit section to which it is connected (relatively forward track circuit section). A waveform analysis unit that analyzes the track circuit signal received from the rail 2 (track circuit signal 30k in FIG. 1(b)), a lamp control table that holds information accessed when controlling the intermediate signal 7, and a reference device control table that holds information that is accessed when controlling the intermediate signal 7. and a processing section 16 that performs appropriate lighting control for the intermediate traffic light 7. Then, the waveform analysis section creates transmission information 18k including the order information etc., and transmits it to the transmission section 11 via the cross-border transmission means 17, and also uses the order information etc. to issue the traffic light control instruction 14. By creating a signal and sending it to the intermediate traffic light 7 of the corresponding location, the lighting control of the intermediate traffic light 7, etc. is performed.

判定手段は、軌道回路信号30k(第1軌道回路信号)の受信状態に基づいて前段の軌道回路10kと後段の軌道回路10k+1との間の軌道回路境界の絶縁2aの破壊状態を判別するものであり、送信部11や受信部12とは別ユニットで設けられても良いが、図示の例ではプログラム追加等にて受信部12の処理部16にインストールされている。
その判定に際しては、信号送出の無い無信号時期が軌道回路信号30k(第1軌道回路信号)の途中や後に無信号時期が確保されているものとして、その無信号時期に絶縁破壊相当の信号が発現したか否かに応じて絶縁破壊の有無を判定するようになっている。
The determining means determines the breakdown state of the insulation 2a at the track circuit boundary between the preceding track circuit 10k and the subsequent track circuit 10k+1 based on the receiving state of the track circuit signal 30k (first track circuit signal). Although it may be provided as a separate unit from the transmitting section 11 and the receiving section 12, in the illustrated example, it is installed in the processing section 16 of the receiving section 12 by adding a program or the like.
When making this determination, it is assumed that the no-signal period during which no signal is sent is ensured during or after the track circuit signal 30k (first track circuit signal), and that a signal equivalent to dielectric breakdown occurs during that no-signal period. The presence or absence of dielectric breakdown is determined depending on whether or not it has occurred.

また、無信号時期が何時なのかは、軌道回路プロファイルテーブルを参照することで分かるようにもなっている。
受信部12や送信部11の軌道回路プロファイルテーブルの軌道回路信号生成情報には、軌道回路信号30kに係る情報として、信号送信の周期Tとその周期T内の情報伝搬時期Ta及び無信号時期Tb(kが1~5の波形例について図2を参照)、受信部12が軌道回路信号30kを受信してから送信部11が軌道回路信号30k+1を送信するまでの時間差Tc(kが1~5の波形例について図3を参照)などのデータが保持されている。
Furthermore, it is also possible to find out when there is no signal by referring to the track circuit profile table.
The track circuit signal generation information in the track circuit profile table of the receiving unit 12 and the transmitting unit 11 includes the signal transmission period T, the information propagation period Ta and the no-signal period Tb within the period T, as information related to the track circuit signal 30k. (See FIG. 2 for waveform examples where k is 1 to 5), time difference Tc (k is 1 (See FIG. 3 for example waveforms of 5 to 5) are held.

本例では(図2参照)、周期Tが前半の情報伝搬時期Taと後半の無信号時期Tbとに分けられ、基本波形70に一周期の正弦波が採用されている。
そして、周期Tの一伝文のフレーム50においては、情報伝搬時期Taに連続して含まれる基本波形70の個数が列車在線の軌道回路10から後方へ何番目の軌道回路なのかを示す順序情報になっており、情報伝搬時期Taの後ろの無信号時期Tbには基本波形70はもとより雑音のレベルや振幅を超える信号は送出しないようになっている。また(図3参照)、軌道回路信号30kの周期Tや情報伝搬時期Ta(第1軌道回路信号の伝送時期)に対して、軌道回路信号30k+1の周期Tや情報伝搬時期Ta(第2軌道回路信号の伝送時期)は、時間差Tc(所定の時間差)だけ遅れるようにもなっている。
In this example (see FIG. 2), the period T is divided into the first half of the information propagation period Ta and the second half of the no-signal period Tb, and a one-period sine wave is adopted as the basic waveform 70.
In the frame 50 of one message with period T, the number of basic waveforms 70 consecutively included in the information propagation time Ta indicates the number of track circuits backward from track circuit 100 in which the train is located. During the no-signal period Tb after the information propagation period Ta, not only the basic waveform 70 but also any signal exceeding the noise level or amplitude is not transmitted. Also (see FIG. 3), the period T and information propagation time Ta (second transmission time) of the track circuit signal 30k+1 are different from the period T and information propagation time Ta (transmission time of the first track circuit signal) of the track circuit signal 30k. The transmission timing of the track circuit signal is also delayed by a time difference Tc (predetermined time difference).

このように無信号時期Tbが軌道回路信号30k(第1軌道回路信号)の後半部に確保されていることが軌道回路プロファイルテーブルから分かるので、軌道回路10kの受信部12(第1受信部)に組み込まれている判定手段は、軌道回路10kの送信部11(第1送信部,他の送信部)と交信しなくても、無信号時期Tbを把握することができるものとなっている。
また、無信号時期Tbに発現しうる絶縁破壊相当の信号は、要するに無信号を超える信号であり、具体的には上述したように雑音のレベルや振幅を超える信号である。その検出手法としては、情報伝搬時期Taの信号に係る検出手法たとえば振幅値と閾値との大小比較にて判別するといった手法をそのまま流用しても良いが、その閾値より値の小さな別の閾値を用いるといったことで、簡便に、絶縁破壊を予兆段階で検出することもできる。
Since it can be seen from the track circuit profile table that the no-signal period Tb is secured in the latter half of the track circuit signal 30k (first track circuit signal), the receiving section 12 (first receiving section) of the track circuit 10k The determination means incorporated in the track circuit 10k is capable of determining the no-signal period Tb without communicating with the transmitter 11 (first transmitter, other transmitters) of the track circuit 10k.
In addition, the signal equivalent to dielectric breakdown that may occur during the no-signal period Tb is, in short, a signal that exceeds the no-signal, and specifically, a signal that exceeds the noise level and amplitude as described above. As a detection method, the detection method related to the signal at the information propagation time Ta, for example, the method of determining by comparing the magnitude of the amplitude value and the threshold value, may be used as is, but another threshold value smaller than the threshold value may be used as is. By using this method, dielectric breakdown can be easily detected at a premonitory stage.

さらに、判定手段は、受信部12が受信した軌道回路信号30kに基づいて軌道回路10kと軌道回路10k+1との軌道回路境界の絶縁2aに絶縁破壊が生じていると判定したときには、例えば軌道回路10kの組み込み先の受信部12の越境伝達手段17を利用して、軌道回路10k+1の送信部11に対し、次の軌道回路信号30k+1(第2軌道回路信号)の送出を控えることを要請するようにもなっている。 Further, when the determining means determines that dielectric breakdown has occurred in the insulation 2a at the track circuit boundary between the track circuit 10k and the track circuit 10k+1 based on the track circuit signal 30k received by the receiving unit 12, for example, Refrain from sending the next track circuit signal 30k+1 (second track circuit signal) to the transmitting unit 11 of the track circuit 10k+1 by using the cross-border transmission means 17 of the receiving unit 12 to which the circuit 10k is installed. It is also now required to do so.

しかも、送信部11は、その要請を受けると、次の軌道回路信号30k+1(第2軌道回路信号)の送出を行わないようになっている。
また、判定手段は、次の軌道回路信号30k(第1軌道回路信号)を受信部12が受信したときには、そのときの軌道回路信号30kについて無信号時期Tbに絶縁破壊相当の信号が検出されなければ、軌道回路10kと軌道回路10k+1との軌道回路境界の絶縁2aに絶縁破壊が生じていたと確定するようにもなっている。
Furthermore, upon receiving the request, the transmitter 11 is configured not to transmit the next track circuit signal 30k+1 (second track circuit signal).
Furthermore, when the receiving unit 12 receives the next track circuit signal 30k (first track circuit signal), the determining means must detect a signal equivalent to dielectric breakdown in the no-signal period Tb for the current track circuit signal 30k. For example, it is determined that dielectric breakdown has occurred in the insulation 2a at the track circuit boundary between the track circuit 10k and the track circuit 10k+1.

この実施例1の軌道回路送受信機11&12について、その使用態様及び動作を、図面を引用して説明する。 The manner of use and operation of the track circuit transmitter/receiver 11 & 12 of the first embodiment will be explained with reference to the drawings.

図1(a)は、レール2に対して絶縁2a毎に軌道回路送受信機11&12を付設して構成した一連の軌道回路10,…,10に係るブロック図である。
また、図3は、一連の軌道回路のうち軌道回路10~10のレール2に流れる軌道回路信号30~30に係る信号伝送状態を示すタイムチャートである。
さらに、図4(a),(b)は、いずれも絶縁破壊の有無を反映した波形図であり、軌道回路信号30の波形例を示している。
FIG. 1(a) is a block diagram of a series of track circuits 10, .
Further, FIG. 3 is a time chart showing the signal transmission state of the track circuit signals 30 1 to 30 5 flowing to the rails 2 of the track circuits 10 1 to 10 5 among the series of track circuits.
Further, FIGS. 4A and 4B are waveform diagrams that reflect the presence or absence of dielectric breakdown, and show waveform examples of the track circuit signal 305 .

レール2にレール絶縁2aを挿入して軌道回路境界を区切る有絶縁軌道回路において夫々の絶縁箇所に対して上述の軌道回路送受信機11&12を接続すると、軌道回路信号を利用して軌道回路境界の絶縁破壊まで検出しうる次のような回路が出来上がる。
すなわち(図1(a)参照)、その有絶縁軌道回路では、同一の軌道回路区間(10k)に接続された送信部11と受信部12とが軌道回路信号30kを送受信し合うとともに、列車在線位置に係る伝達情報18kが前後の軌道回路区間(10k,10k+1)のうち前の軌道回路区間(10k)の受信部12から前後の軌道回路区間のうち後の軌道回路区間(10k+1)へ伝達され、後の軌道回路区間(10k+1)の送信部11から時間差Tcだけ遅れて軌道回路信号30k+1が送信され、その軌道回路信号30k+1の情報伝搬時期Taの信号成分が前の軌道回路区間の軌道回路信号30kの無信号時期Tbに混入するとそのことが受信部12の判定手段によって検出されるようになる。
When the above-mentioned track circuit transmitter/receiver 11 & 12 is connected to each insulation point in an insulated track circuit in which the rail insulation 2a is inserted into the rail 2 to separate the track circuit boundaries, the track circuit signals are used to insulate the track circuit boundaries. The following circuit will be created that can detect even destruction.
In other words (see FIG. 1(a)), in the insulated track circuit, the transmitter 11 and receiver 12 connected to the same track circuit section (10k) transmit and receive the track circuit signal 30k, and also The transmission information 18k related to the position is transmitted from the reception unit 12 of the previous track circuit section (10k) of the preceding and following track circuit sections (10k, 10k+1) to the later track circuit section (10k+1) of the preceding and following track circuit sections. ), and the track circuit signal 30k+1 is transmitted from the transmitter 11 of the later track circuit section (10k+1) with a delay of time difference Tc, and the signal component of the information propagation time Ta of the track circuit signal 30k+1 If the signal is mixed into the no-signal period Tb of the track circuit signal 30k of the previous track circuit section, this will be detected by the determining means of the receiving section 12.

図4(a)の軌道回路信号30に係る波形例を参照して具体的に説明すると、これは情報伝搬時期Taと時間差Tcとが同じで無信号時期Tbが情報伝搬時期Taより短い場合の例であり、絶縁2aの破壊が無い状態では(左の周期Tのフレームを参照)、五つ前の軌道回路区間に列車が在線していることを示す五個の正弦波からなる順番情報が情報伝搬時期Taに現れるとともに、無信号時期Tbは無信号状態になる。
そして、無信号状態の検出に基づいて絶縁2aの正常状態が確認されるとともに、順番情報に基づいて中間信号機7の点灯制御が的確に行われる。
To explain specifically with reference to the waveform example related to the track circuit signal 305 in FIG. 4(a), this is a case where the information propagation time Ta and the time difference Tc are the same and the no-signal time Tb is shorter than the information propagation time Ta. In this example, when there is no breakdown in the insulation 2a (see the frame with period T on the left), order information consisting of five sine waves indicating that a train is on the track circuit section five previous tracks is provided. appears at the information propagation time Ta, and the no-signal time Tb becomes a no-signal state.
Then, the normal state of the insulation 2a is confirmed based on the detection of the no-signal state, and the lighting control of the intermediate signal 7 is performed accurately based on the order information.

これに対し、絶縁2aが破壊されると(中央の周期Tのフレームを参照)、隣の軌道回路信号30の漏れ電流20による絶縁破壊相当の信号が時間差Tc(=Ta)だけ遅れて軌道回路信号30に混入するため、軌道回路信号30については、無信号時期Tbとその少し後まで、絶縁破壊相当の信号が現れるようになる。
そうすると、そのことが判定手段によって検出されるので、軌道回路10と軌道回路10との区間境界における絶縁2aの破壊が顕在化する。
On the other hand, when the insulation 2a is destroyed (see the frame with the period T in the center), the signal corresponding to the insulation breakdown due to the leakage current 20 of the adjacent track circuit signal 306 is delayed by the time difference Tc (=Ta) and Since it is mixed into the circuit signal 305 , a signal equivalent to dielectric breakdown appears in the track circuit signal 305 from the no-signal period Tb until a little later.
Then, since this is detected by the determination means, the breakdown of the insulation 2a at the section boundary between the track circuit 105 and the track circuit 106 becomes obvious.

しかも、その絶縁破壊検出後には(右の周期Tのフレームを参照)、隣の軌道回路信号30の送信が一時的に止められて、漏れ電流20の回り込みが無い状態で、送信部11から送り出された軌道回路信号30が受信部12によって検出される。絶縁破壊相当の信号発現の原因が漏れ電流20の回り込みであれば、隣の軌道回路信号30の送信の有無に応じて絶縁破壊相当の信号が現れたり消えたりするのに対し、他の原因ではそうならないので、隣の軌道回路信号30の送信を止めたときに絶縁破壊相当の信号が現れなくなった場合、軌道回路10と軌道回路10との区間境界における絶縁2aに破壊が生じていたと確定される。 Furthermore, after the dielectric breakdown is detected (see the frame with period T on the right), the transmission of the adjacent track circuit signal 306 is temporarily stopped, and the leakage current 20 does not circulate around the transmitter 11. The sent track circuit signal 305 is detected by the receiver 12. If the cause of the appearance of a signal equivalent to dielectric breakdown is the wrap-around of the leakage current 20, the signal corresponding to dielectric breakdown will appear or disappear depending on whether or not the adjacent track circuit signal 306 is transmitted, whereas other causes. Therefore, if a signal equivalent to dielectric breakdown does not appear when transmission of the adjacent track circuit signal 30-6 is stopped, breakdown occurs in the insulation 2a at the section boundary between the track circuit 10-5 and the track circuit 10-6 . It is confirmed that it was.

図4(b)の軌道回路信号30に係る波形例についても説明すると、これは上述した図4(b)の軌道回路信号30のフレーム構成を少し変形したものであり、具体的には関係式[Ta<Tc<Tb]が成り立つように情報伝搬時期Taと無信号時期Tbと時間差Tcとが設定されている。そのため、隣の軌道回路信号30の漏れ電流20による絶縁破壊相当の信号が軌道回路信号30に発現しても(中央の周期Tのフレームを参照)、その発現部分は総て無信号時期Tbに収まるので、情報伝搬時期Taの波形が乱れたり壊れたりすることが無い。そのため、絶縁2aに破壊が生じても、それが隣の軌道回路区間における軌道回路信号30の伝送を損なうほど酷くなるまでは、軌道回路境界の絶縁破壊を知らせる警報等を発しながら軌道回路10の使用を継続することも可能である。 An example of the waveform related to the track circuit signal 305 in FIG. 4(b) will also be explained. This is a slightly modified frame configuration of the track circuit signal 305 in FIG. 4(b) described above. The information propagation time Ta, the no-signal time Tb, and the time difference Tc are set so that the relational expression [Ta<Tc<Tb] holds true. Therefore, even if a signal equivalent to dielectric breakdown due to the leakage current 20 of the adjacent track circuit signal 30-6 appears in the track circuit signal 30-5 (see the frame with period T in the center), the entire portion where it occurs occurs during the no-signal period. Since it is within Tb, the waveform of the information propagation time Ta is not disturbed or broken. Therefore, even if breakdown occurs in the insulation 2a, until the breakdown becomes severe enough to impair the transmission of the track circuit signal 306 in the adjacent track circuit section, the track circuit 1 It is also possible to continue using .

本発明の軌道回路送受信機および軌道回路受信機の実施例2について、その具体的な構成を、図面を引用して説明する。
図5は、一連の軌道回路のうち軌道回路10~10,…,10のレール2に流れる軌道回路信号30~30,…,30の波形例である。
また、図6は、それらの軌道回路信号30~30の信号伝送状態を示すタイムチャートである。
Regarding Example 2 of the track circuit transceiver and track circuit receiver of the present invention, the specific configuration thereof will be described with reference to the drawings.
FIG. 5 is a waveform example of the track circuit signals 30 1 to 30 5 , . . . , 30 9 flowing to the rails 2 of the track circuits 10 1 to 10 5 , .
Further, FIG. 6 is a time chart showing the signal transmission state of these track circuit signals 30 1 to 30 5 .

さらに、図7は、(a)が、隣り合った二つの軌道回路区間(10,10)のうち前段の軌道回路10の軌道回路区間へ軌道回路10の送信部11によって送信された信号(30)の波形例であり、(b)が、上記の二つの軌道回路区間(10,10)のうち後段の軌道回路10の軌道回路区間へ軌道回路10によって送信された信号30の波形例であり、(c)が、上記の前段の軌道回路区間(10)において軌道回路10の受信部12によって受信された軌道回路信号30の波形例である。 Furthermore, FIG. 7 shows that (a) is transmitted by the transmitter 11 of the track circuit 10 4 to the track circuit section of the preceding track circuit 10 4 among the two adjacent track circuit sections (10 4 , 10 5 ). (b) is a waveform example of the signal (30 4 ) transmitted by the track circuit 10 5 to the track circuit section of the latter track circuit 10 5 of the above two track circuit sections (10 4 , 10 5 ). (c) is an example of the waveform of the track circuit signal 30 4 received by the receiver 12 of the track circuit 10 4 in the preceding track circuit section (10 4 ) . .

図5~図7に信号波形を例示した軌道回路送受信機11&12が上述した実施例1のものと相違するのは、軌道回路信号30の波形と判定手段の判定手法である。
軌道回路信号30は(図5参照)、何れ30~30,…,30も、情報伝搬時期Taが周期開始波形時期Taaと無信号時期Tabと情報含有時期Tacとに細分化されて、軌道回路信号30の最後尾(Tb)だけでなく、軌道回路信号30の途中にも無信号時期Tabが確保されるようになっている。
The track circuit transmitter/receiver 11 & 12 whose signal waveforms are illustrated in FIGS. 5 to 7 are different from those of the first embodiment described above in the waveform of the track circuit signal 30 and the determination method of the determination means.
In each of the track circuit signals 30 (see FIG. 5 ), the information propagation period Ta is subdivided into a cycle start waveform period Taa, a no-signal period Tab , and an information containing period Tac. , a no-signal period Tab is ensured not only at the tail end (Tb) of the track circuit signal 30 but also in the middle of the track circuit signal 30.

また、軌道回路信号30は、その周期Tの先頭を占める周期開始波形時期Taaに、基本波形70を複数連ねた周期開始波形71が配置されるようになっている。しかも、軌道回路信号30の情報含有時期Tacには、基本波形70が一つだけ含められ、情報含有時期Tacにおける基本波形70の位置にて上述の伝達情報18k(順番情報)が定まるようにもなっている。情報伝搬時期Taの後ろに無信号時期Tbも確保されているが、この無信号時期Tbは、情報含有時期Tacの基本波形70と後続の軌道回路信号30の周期開始波形71とが繋がるのを回避するためのものなので(図6参照)、短くて済む。 Further, in the orbital circuit signal 30, a cycle start waveform 71, which is a series of a plurality of basic waveforms 70, is arranged at a cycle start waveform time Taa that occupies the beginning of the cycle T. Moreover, only one basic waveform 70 is included in the information containing time Tac of the track circuit signal 30, and the above-mentioned transmission information 18k (order information) is determined by the position of the basic waveform 70 in the information containing time Tac. It has become. A no-signal period Tb is also secured after the information propagation period Ta, and this no-signal period Tb is used to prevent the connection between the basic waveform 70 of the information containing period Tac and the period start waveform 71 of the subsequent track circuit signal 30. Since it is for avoidance (see Figure 6), it can be short.

さらに(図6参照)、この無信号時期Tabと、上述した時間差Tcと、軌道回路信号30の始期から無信号時期Tabの始期までの時間である周期開始波形時期Taaとの間には、関係式[Taa<Tc<Tab]が成り立つようにもなっている。周期開始波形時期Taaが周期Tより非常に短いため、時間差Tcも短くできるので、軌道回路信号30の伝達が多段であっても、情報伝達の遅延時間は小さめに抑えることができる。しかも、この軌道回路信号30は、前段の軌道回路信号30k(第1軌道回路信号)に後段の軌道回路信号30k+1(第2軌道回路信号)を時間差Tcだけずらして重畳させたときに、両信号30k,30k+1の周期開始波形71も基本波形70も共に壊れることなく存続し続けるようになっている。 Further (see FIG. 6), there is a relationship between this no-signal period Tab, the above-mentioned time difference Tc, and the cycle start waveform period Taa, which is the time from the beginning of the track circuit signal 30 to the beginning of the no-signal period Tab. The formula [Taa<Tc<Tab] also holds true. Since the cycle start waveform timing Taa is much shorter than the cycle T, the time difference Tc can also be shortened, so even if the track circuit signal 30 is transmitted in multiple stages, the delay time of information transmission can be kept small. Moreover, this track circuit signal 30 is obtained by superimposing the track circuit signal 30k+1 (second track circuit signal) in the former stage on the track circuit signal 30k+1 (second track circuit signal) in the former stage with a time difference Tc. Both the cycle start waveform 71 and the basic waveform 70 of both signals 30k and 30k+1 continue to exist without being destroyed.

そのため、判定手段が、軌道回路信号30k(第1軌道回路信号)について周期開始波形71の有無を調べて二個以上が検出されたときに絶縁2aの破壊が生じていると判定するようになっていても、軌道回路信号30k(第1軌道回路信号)の無信号時期Tabについて周期開始波形71の有無を調べて一つでも検出されたときには絶縁2aの破壊が生じていると判定するようになっていても、軌道回路信号30k(第1軌道回路信号)の無信号時期Tabについて無信号を超える信号が有るか否かを調べて一つでも検出されたときには絶縁2aの破壊が生じていると判定するようになっていても、それらのうち何れか複数の判定手法を兼ね備えていても、軌道回路境界の絶縁破壊が的確に検出される。 Therefore, the determination means checks the presence or absence of the cycle start waveform 71 in the track circuit signal 30k (first track circuit signal), and determines that breakdown of the insulation 2a has occurred when two or more are detected. However, the presence or absence of the cycle start waveform 71 is checked for the no-signal period Tab of the track circuit signal 30k (first track circuit signal), and if even one is detected, it is determined that breakdown of the insulation 2a has occurred. Even if it is, check whether there is a signal exceeding the no signal for the no-signal period Tab of the track circuit signal 30k (first track circuit signal), and if even one is detected, breakdown of the insulation 2a has occurred. Even if it is determined that this is the case, dielectric breakdown at the track circuit boundary can be accurately detected even if any one of these determination methods is used in combination.

図8は、絶縁破壊の影響の少ない信号波形例を示し、(a)が、直感的に把握しうる信号波形の典型例を示し、(b)~(d)が、絶縁破壊の影響の少ない信号波形例を希望の初期波形から作成する手順を示している。 FIG. 8 shows an example of a signal waveform that is less affected by dielectric breakdown. (a) shows a typical example of a signal waveform that can be understood intuitively, and (b) to (d) are examples of signal waveforms that are less affected by dielectric breakdown. The procedure for creating an example signal waveform from a desired initial waveform is shown.

上述した図5に記載された軌道回路信号30とそれを時間差Tcだけ遅らせた軌道回路信号30とについて、関係式[Taa<Tc<Tab]が成り立っていることは上述の通りであるが、更に関係式[Taa=Tac]という条件を課したうえで、情報含有時期Tacと無信号時期Tabとの組が周期Tの中で繰り返されるという条件も課すと、その軌道回路信号30は(図8(a)参照)、絶縁破壊の影響の少ない信号波形を持った軌道回路信号になる。具体的には、軌道回路境界の絶縁破壊によって第1軌道回路信号に第2軌道回路信号が混入したとしても、第1軌道回路信号から無信号時期Tbの値を除く等のことで簡便に第2軌道回路信号の混入の無い第1軌道回路信号を再現することができる。 As mentioned above, the relational expression [Taa<Tc<Tab] holds true for the track circuit signal 30 shown in FIG. 5 and the track circuit signal 30 obtained by delaying it by the time difference Tc. If we impose the condition of the relational expression [Taa=Tac] and also impose the condition that the set of information-containing period Tac and no-signal period Tab is repeated within the period T, the track circuit signal 30 becomes (Fig. 8 (see (a)), the track circuit signal will have a signal waveform that is less affected by dielectric breakdown. Specifically, even if the second track circuit signal is mixed into the first track circuit signal due to dielectric breakdown at the track circuit boundary, the second track circuit signal can be easily detected by removing the value of the no-signal period Tb from the first track circuit signal. It is possible to reproduce the first track circuit signal without mixing the second track circuit signal.

図8(a)のタイムチャートを参照して更に詳述すると、軌道回路信号30k(第1軌道回路信号)と、それから時間差Tcだけ遅れた軌道回路信号30k+1(第2軌道回路信号)とについて、無信号時期Tabには偽の論理値を割り当て、それ以外の時期である周期開始波形時期Taaや情報含有時期Tacには真の論理値を割り当てたうえで(図8(a)の上から二つのタイムチャートを参照)、対応時期毎に論理積をとると(図8(a)の最下のタイムチャートを参照)、その論理値が総ての時期で偽になるという関係が成立する。そして、かかる関係が成立するときには、無信号時期Tabの値を無視するだけでも軌道回路信号30kから適切な情報を得られることが直感的に認識される。 To explain in more detail with reference to the time chart of FIG. 8(a), the track circuit signal 30k (first track circuit signal) and the track circuit signal 30k+1 (second track circuit signal) delayed by the time difference Tc. , a false logical value is assigned to the no-signal period Tab, and a true logical value is assigned to the other periods, such as the cycle start waveform period Taa and the information-containing period Tac (see Fig. 8(a)). (see the two time charts), and if we take the logical product for each corresponding period (see the bottom time chart in Figure 8(a)), we establish a relationship in which the logical value is false for all periods. do. When such a relationship is established, it is intuitively recognized that appropriate information can be obtained from the track circuit signal 30k by simply ignoring the value of the no-signal period Tab.

また、信号形式(電文フォーマット)を自由に作成した謂わば希望の軌道回路信号30の場合、軌道回路信号30kと、時間差Tcだけ遅らせた軌道回路信号30k+1とについて、無信号時期Tabには偽の論理値を割り当てそれ以外の時期Taa,Tacには真の論理値を割り当てて対応時期毎に論理積をとると、その論理値が総ての時期で偽になるという関係が成立することは滅多にないが、そのような軌道回路信号30からでも、上記の条件を満たす謂わば希望に近い軌道回路信号30を作成することが可能である。 In addition, in the case of a so-called desired track circuit signal 30 whose signal format (telegram format) is freely created, the no-signal period Tab contains the track circuit signal 30k and the track circuit signal 30k+1 delayed by the time difference Tc. If a false logical value is assigned, a true logical value is assigned to the other periods Taa and Tac, and a logical product is taken for each corresponding period, a relationship is established in which the logical value is false in all periods. However, even from such a track circuit signal 30, it is possible to create a track circuit signal 30 that satisfies the above conditions and is close to the desired one.

具体的には(図8(b)~(d)参照)、希望の軌道回路信号に真偽の論理値を当てはめてから、それとそれを時間差Tcだけ遅らせたものとを並べる(図8(b)参照)。そして、両信号が共に真になる重複部分を時間軸に沿って探し、それを見つけたら(図では二本の細い縦線を付した部分)、重複部分を適宜な割合で二分割して両信号に割り振るか(図では縦の二点鎖線の所で分割)、あるいは一方の信号だけを対象にして(図示せず)、重複部分を削除する(図8の(b)から(c)へ向かう細い一点鎖線を参照)。こうして重複部分の減った信号形式ができるので、後はそれを繰り返すと(図8の(c)から(d)へ向かう細い一点鎖線を参照)、希望に近い軌道回路信号30ができあがる。 Specifically (see Fig. 8(b) to (d)), a true/false logic value is applied to the desired track circuit signal, and then the signal delayed by the time difference Tc is arranged (Fig. 8(b) )reference). Then, search along the time axis for an overlapping part where both signals are true, and once you find it (the part marked with two thin vertical lines in the figure), divide the overlapping part into two at an appropriate ratio and make both signals true. Either allocate it to the signal (in the diagram, it is divided at the vertical two-dot chain line), or target only one signal (not shown), and delete the overlapping part (from (b) to (c) in Figure 8). ). In this way, a signal format with reduced overlap is created, so by repeating the process (see the thin dot-dash line from (c) to (d) in FIG. 8), a track circuit signal 30 close to the desired one is created.

本発明の軌道回路送受信機および軌道回路受信機の実施例4について、その具体的な構成を、図面を引用して説明する。
図9は、単線の軌道に適した軌道回路送受信機および軌道回路受信機の構造を示し、(a)が単線のレール2を絶縁2aで区分した軌道回路区間それぞれに送信部11と受信部12とを付設して構成した一連の軌道回路90,…,90に係るブロック図であり、(b)が、それらのうち絶縁2aを挟んで隣り合っている軌道回路区間に分かれて組み込まれた軌道回路送受信機11&12に係るブロック図である。
Regarding Example 4 of the track circuit transceiver and track circuit receiver of the present invention, the specific configuration thereof will be described with reference to the drawings.
FIG. 9 shows the structure of a track circuit transmitter/receiver and a track circuit receiver suitable for a single-track track, in which (a) shows a transmitter 11 and a receiver 12 for each track circuit section in which a single-track rail 2 is divided by insulation 2a. It is a block diagram related to a series of track circuits 90, ..., 90 configured by attaching the above, and (b) is a block diagram of the track circuits that are divided into adjacent track circuit sections with the insulation 2a in between. It is a block diagram concerning circuit transceiver 11&12.

また、図10は、(a)が運転方向切替の無いときの軌道回路信号30の波形例であり、(b)が運転方向切替に応じた接続先交換手段の作動指示を含んだ軌道回路信号30と後段軌道回路信号30とに係る波形例である。
さらに、図11は、(a)が運転方向切替の無いときの軌道回路信号30の波形例であり、(b)が運転方向切替に応じた接続先交換手段の作動指示を含んだ軌道回路信号30と後段軌道回路信号30とに係る波形例である。
In addition, in FIG. 10, (a) is an example of the waveform of the track circuit signal 305 when there is no switching of the driving direction, and (b) is a track circuit including an instruction to operate the connection exchange means in response to the switching of the driving direction. This is an example of waveforms related to a signal 305 and a rear track circuit signal 306 .
Further, in FIG. 11, (a) shows an example of the waveform of the track circuit signal 305 when there is no switching of the driving direction, and (b) shows a track circuit including an instruction to operate the connected exchange means in response to the switching of the driving direction. This is an example of waveforms related to a signal 305 and a rear track circuit signal 306 .

この軌道回路送受信機および軌道回路受信機が上述した実施例1~3のものと相違するのは、軌道回路送受信機11&12の付設対象であるレール2が上り専用でも下り専用でもなく列車が時分割で双方向に走行する単線になっている点と、その列車走行方向の切替に対応させるために軌道回路送受信機11&12が改造されて軌道回路送受信機90になっている点である(図9参照)。 This track circuit transmitter/receiver and track circuit receiver are different from those of Embodiments 1 to 3 described above in that the rail 2 to which the track circuit transmitter/receiver 11 & 12 is attached is neither upbound nor downhill, and the train is time-divided. The two points are that the train is a single track that runs in both directions, and that the track circuit transmitter/receiver 11 & 12 has been modified to become a track circuit transmitter/receiver 90 to accommodate switching of the direction of train travel (see Figure 9). ).

単線区間では(図9(a)参照)、中間信号機7に上り下り双方に対応できるものが採用されるとともに、上り下りの排他制御のために単線自動閉そく装置4aが設置される。単線自動閉そく装置4aは、両区間端に閉そく装置駅処理部4bが設置され、両閉そく装置駅処理部4b,4bが運転方向回線4cで繋がれていて、閉そく装置駅処理部4bの運転方向てこ4dの操作によって列車1の運転方向が切り替えられるようになっている。 In the single track section (see FIG. 9(a)), an intermediate signal 7 capable of handling both up and down traffic is adopted, and a single track automatic blocker 4a is installed for exclusive control of up and down traffic. In the single-track automatic blocker 4a, blocker station processing sections 4b are installed at both section ends, and both blocker station processing sections 4b, 4b are connected by a driving direction line 4c, and the operating direction of the blocker station processing section 4b is connected to the blocker station processing section 4b. The driving direction of the train 1 can be switched by operating the lever 4d.

そして、このような単線自動閉そくにおいて運転方向が切り替わったときには、軌道回路の送信と受信の関係を逆転させるとともに、反対方向の信号機には停止信号現示を出力するように切り替え更に順方向の信号機には前方列車位置から定まる信号現示を出力するように切り替えることが必要になる。
そのため(図9(b)参照)、軌道回路送受信機90は、送信部11の接続先を絶縁2aの両側のレール2のうち何れか一方か他方へ切り替える切替接点15(接続先交換手段)と、受信部12の接続先を絶縁2aの両側のレール2のうち何れか他方か一方へ切り替える切替接点15(接続先交換手段)とを具備したものとなっている。
When the driving direction is switched in such a single-track automatic block, the relationship between transmission and reception of the track circuit is reversed, and a stop signal is output to the traffic signal in the opposite direction, and the traffic signal in the forward direction is In this case, it is necessary to switch to output a signal indication determined from the position of the train ahead.
Therefore (see FIG. 9(b)), the track circuit transmitter/receiver 90 has a switching contact 15 (connection destination exchange means) for switching the connection destination of the transmitter 11 to one or the other of the rails 2 on both sides of the insulation 2a. , a switching contact 15 (connection destination switching means) for switching the connection destination of the receiving section 12 to one of the rails 2 on both sides of the insulation 2a.

しかも、それらの切替接点15,15は、処理部16の出す送受信切替指示13に従って切り替わるようになっている。
また(図9(b)参照)、この実施例の構成では、処理部16が送信部11から分離されて個別ユニットになっている。
さらに、この構成例では、越境伝達手段17が、処理部16を介在させたものとなっている。具体的には(図9(b)参照)、送信部11から処理部16へ必要情報を伝達する越境伝達手段17aと、処理部16から受信部12へ必要情報を伝達する越境伝達手段17bとに、越境伝達手段17が分かれている。
Moreover, these switching contacts 15, 15 are configured to switch according to the transmission/reception switching instruction 13 issued by the processing section 16.
Further (see FIG. 9(b)), in the configuration of this embodiment, the processing section 16 is separated from the transmitting section 11 and becomes an individual unit.
Furthermore, in this configuration example, the cross-border transmission means 17 has a processing section 16 interposed therebetween. Specifically (see FIG. 9(b)), a cross-border transmission means 17a transmits necessary information from the transmitting section 11 to the processing section 16, and a cross-border transmission means 17b transmits necessary information from the processing section 16 to the receiving section 12. The cross-border transmission means 17 is divided into two parts.

また、列車の運転方向の切替え時には、それまでの到着駅(図では右側)の場内信号機6の外方に位置する軌道回路送受信機90において、運転方向てこ4dの条件を取込み、運転方向の切替えが発生した場合には、その情報を軌道回路信号30に付加して送信するようになっている。
そして、その処理が順に出発駅(図では左側)の出発信号機の内方の軌道回路まで伝達されることで、運転方向切替えに応じた軌道回路の送受信および信号機7の制御が総て切り替えられるようになっている。
Furthermore, when switching the running direction of a train, the track circuit transmitter/receiver 90 located outside the in-house signal 6 of the previous arrival station (on the right side in the figure) takes in the conditions of the running direction lever 4d and switches the running direction. If this occurs, the information is added to the track circuit signal 30 and transmitted.
Then, the processing is sequentially transmitted to the track circuit inside the departure signal at the departure station (left side in the figure), so that the transmission and reception of the track circuit and the control of the signal 7 are all switched in response to the switching of the driving direction. It has become.

そのため、場内信号機6のそばにある軌道回路送受信機90については、単線自動閉そく装置4aの一方の閉そく装置駅処理部4bから、運転方向てこ4dの切替条件を常に取り込み、運転方向の切替があったときには、次段の軌道回路に運転方向切替指示波(接続先交換手段の作動指示)を付加した軌道回路信号30を送信するとともに、自機90の送信部12と受信部11との接続先を切り替え、更に、対応する信号機6,8に対しても運転方向に合わせて信号機切替指令を伝達するようになっている。 Therefore, the track circuit transmitter/receiver 90 located near the in-house signal 6 always receives the switching conditions of the driving direction lever 4d from the block device station processing section 4b of one of the single-track automatic blockers 4a, and the switching conditions of the driving direction lever 4d are always inputted. In this case, the track circuit signal 30 to which the operating direction switching instruction wave (operation instruction for the connection exchange means) is added is transmitted to the next stage track circuit, and the connection destination between the transmitter 12 and the receiver 11 of the own machine 90 is transmitted. Furthermore, a signal switching command is transmitted to the corresponding traffic lights 6 and 8 in accordance with the driving direction.

また、駅中間の軌道回路の送受信機90については、前段の軌道回路の送受信機90から受信した軌道回路信号30に運転方向切替指示波(接続先交換手段の作動指示)が付加されているか否かを調べて、付加されていたときには、同様に運転方向切替指示波(接続先交換手段の作動指示)を付加した軌道回路信号30を次段の軌道回路へ送信するとともに、自機90の送信部11と受信部12とを切り替え、更に、対応する中間信号機7に対して運転方向に合わせた信号機切替指令を伝達するようになっている。 Regarding the track circuit transmitter/receiver 90 located between the stations, whether or not a driving direction switching instruction wave (operation instruction for the connected exchange means) is added to the track circuit signal 30 received from the previous track circuit transmitter/receiver 90. If it has been added, the track circuit signal 30 to which the driving direction switching instruction wave (operation instruction for the connecting exchange means) is added is similarly transmitted to the next stage track circuit, and the own machine 90 transmits the signal. The section 11 and the receiving section 12 are switched, and furthermore, a signal switching command corresponding to the driving direction is transmitted to the corresponding intermediate signal 7.

そして、そのような送受信機90の処理(切替接点15,15の切替動作等)が隣接駅の出発信号機8の内方の軌道回路90に対してまで次々に行われると、運転方向切替指示波(接続先交換手段の作動指示)を受けた軌道回路の送受信機90から、単線自動閉そく装置4aの他方の閉そく装置駅処理部4bへ、運転方向切替指示が伝達される。その結果、駅間の軌道回路送受信機90の送信部11の接続先と受信部12の接続先とが総て入れ替わり、ひいては軌道回路の送受信方向がすべて反転し、駅中間の信号機も運転方向にあわせて上り下りが切り替えられる。 When such processing of the transceiver 90 (switching operation of the switching contacts 15, 15, etc.) is performed one after another to the track circuit 90 inside the departure signal 8 of the adjacent station, a driving direction switching instruction wave is generated. From the track circuit transmitter/receiver 90 that received the instruction to operate the connection destination exchange means, the driving direction switching instruction is transmitted to the other block device station processing section 4b of the single track automatic block device 4a. As a result, the connection destinations of the transmitter 11 and the receiver 12 of the track circuit transmitter/receiver 90 between the stations are all switched, and as a result, the transmission and reception directions of the track circuits are all reversed, and the signals between stations are also changed to the operating direction. You can also switch between up and down.

ここで、上述した周期開始波形71を持つ軌道回路信号30(図5参照)に運転方向切替指示波75を含ませた具体例を二つほど挙げる。何れについても、周期開始波形71から容易に区別・弁別できる波形が、運転方向切替指示波75に採用されている。
一つめの波形例では(図10参照)、運転方向切替指示波75が周期開始波形時期Taaの末尾部分に含められている。これに対し、二つめの波形例では(図11参照)、運転方向切替指示波75が情報含有時期Tacの先頭部分に含められている。
Here, two specific examples will be given in which the driving direction switching instruction wave 75 is included in the track circuit signal 30 (see FIG. 5) having the period start waveform 71 described above. In either case, a waveform that can be easily distinguished from the cycle start waveform 71 is adopted as the driving direction switching instruction wave 75.
In the first waveform example (see FIG. 10), the driving direction switching instruction wave 75 is included at the end of the cycle start waveform timing Taa. On the other hand, in the second waveform example (see FIG. 11), the driving direction switching instruction wave 75 is included at the beginning of the information containing time Tac.

何れの波形例も、周期開始波形71から固定波数だけ後方の所に運転方向切替指示波75が位置しているので、運転方向切替指示波75の有無が容易かつ的確に分かるものとなっている。
また、一つめの波形例には(図10参照)、周期開始波形時期Taaの伸長に伴って時間差Tcは長くなるが、後段の軌道回路信号30の重畳によって運転方向切替指示波75が壊されることが無いので、その検討が不要という特質がある。
これに対し、二つめの波形例には(図11参照)、後段の軌道回路信号30の重畳による運転方向切替指示波75の破壊を避けることができれば、時間差Tcを短いままで済ませることができるという特質がある。
In both waveform examples, since the driving direction switching instruction wave 75 is located a fixed number of waves behind the cycle start waveform 71, the presence or absence of the driving direction switching instruction wave 75 can be easily and accurately determined. .
Furthermore, in the first waveform example (see FIG. 10), the time difference Tc becomes longer as the cycle start waveform timing Taa increases, but the driving direction switching instruction wave 75 is destroyed by the superposition of the track circuit signal 306 in the latter stage. It has the characteristic that there is no need to consider it because there is no need to consider it.
On the other hand, the second waveform example (see FIG. 11) shows that if the destruction of the driving direction switching instruction wave 75 due to the superposition of the track circuit signal 306 in the latter stage can be avoided, the time difference Tc can be kept short. It has the ability to be done.

さらに(図10,図11参照)、処理部16が切替接点15,15へ送受信切替指示13を出すタイミングについては、受信部12が前段の軌道回路区間の軌道回路信号30に含められた運転方向切替指示波75を受信しただけで直ちに送受信切替指示13を出すのでなく、遅らせるようになっている。具体的には、送信部11が後段の軌道回路区間へ軌道回路信号30を時間差Tc遅れで送信し、その周期Tが過ぎて送信部11の送信が完了してから、前段の軌道回路区間の軌道回路信号30の運転方向切替指示波75に応じた切替接点15,15が遂行されるようになっている。そのため、前段の軌道回路信号30ばかりか後段の軌道回路信号30についても的確に伝達が完遂される。 Furthermore (see FIGS. 10 and 11), regarding the timing at which the processing unit 16 issues the transmission/reception switching instruction 13 to the switching contacts 15, 15, the receiving unit 12 determines the timing of the operation included in the track circuit signal 305 of the preceding track circuit section. When the direction switching instruction wave 75 is received, the transmission/reception switching instruction 13 is not immediately issued, but is delayed. Specifically, the transmitting unit 11 transmits the track circuit signal 306 to the subsequent track circuit section with a time difference Tc delay, and after the period T has passed and the transmission by the transmitting unit 11 is completed, the transmitting unit 11 transmits the track circuit signal 306 to the subsequent track circuit section. The switching contacts 15, 15 are performed in response to the driving direction switching instruction wave 75 of the track circuit signal 305. Therefore, not only the track circuit signal 305 at the front stage but also the track circuit signal 306 at the rear stage is accurately transmitted.

[その他]
上記実施例2~4に係る図5,6,7,10,11では情報含有時期Tacに含まれる情報担体としての基本波形70が一つだけであったが、周期開始波形71や運転方向切替指示波75と切り分けられれば複数個の基本波形70が情報含有時期Tacに含まれていても良い。また、軌道回路信号30の長さが固定長になっていたが、これも必須でなく、一連の軌道回路に及ぶ情報伝達が損なわれなければ可変長でも良い。
[others]
In FIGS. 5, 6, 7, 10, and 11 according to the above embodiments 2 to 4, there is only one basic waveform 70 as an information carrier included in the information containing time Tac, but the cycle start waveform 71 and the driving direction switching A plurality of basic waveforms 70 may be included in the information containing time Tac as long as they can be separated from the instruction wave 75. Further, although the length of the track circuit signal 30 is a fixed length, this is not essential either, and may be a variable length as long as information transmission over a series of track circuits is not impaired.

上記実施例では、軌道回路信号の基本波形70や他の波形71,75に正弦波が用いられていたが、軌道回路信号の波形は、正弦波に限られる訳でなく、矩形波であってもよく、周波数の高い搬送波をAM変調やFM変調したものでもよく、要するに信号の有無と内容を伝達できるものであれば良い。周期開始波形71や運転方向切替指示波75の波数についても合目的であれば幾つでも良い。 In the above embodiment, a sine wave was used as the basic waveform 70 and other waveforms 71 and 75 of the track circuit signal, but the waveform of the track circuit signal is not limited to a sine wave, but may be a rectangular wave. It may also be a high-frequency carrier wave modulated by AM or FM modulation; in short, it may be anything that can transmit the presence or absence of a signal and its content. The wave numbers of the cycle start waveform 71 and the driving direction switching instruction wave 75 may be any number as long as it is appropriate for the purpose.

本発明の軌道回路送受信機および軌道回路受信機は、上述した単線や複線の片側に適用が限定されるものでなく、複数並設する等のことで、複線の両側や、複々線の任意のレールなどにも、適用することができる。 The track circuit transmitter/receiver and track circuit receiver of the present invention are not limited to application to one side of the above-mentioned single track or double track, but can be applied to both sides of a double track or any rail of a double track by installing multiple tracks in parallel. It can also be applied to

1…列車、2…レール(レール対)、2a…絶縁(軌道回路区間境界)、
4a…単線自動閉そく装置、4b…閉そく装置駅処理部、
4c…運転方向回線、4d…運転方向てこ、
6…場内信号機、7…中間信号機(多現示式色灯信号機)、8…出発信号機、
10…軌道回路、
11&12…軌道回路送受信機、
11…送信部、12…受信部、13…送受信切替指示、
14…信号機制御指示、15…切替接点、16…処理部、
17…越境伝達手段、18k…伝達情報(順番情報)、20…漏れ電流、
30…軌道回路信号、
30n…第n軌道回路信号(n=1,2,…,k,…)、
50…フレーム、51…オフセット時間(所定の時間差)、
70…基本波形、71…周期開始波形、75…運転方向切替指示波、
90…軌道回路送受信機、
T…周期、Ta…情報伝搬時期、Tb…無信号時期(後)、Tc…時間差、
Taa…周期開始波形時期、Tab…無信号時期(途中)、Tac…情報含有時期
1...Train, 2...Rail (rail pair), 2a...Insulation (track circuit section boundary),
4a...Single track automatic blocker, 4b...Blocker station processing section,
4c...Driving direction line, 4d...Driving direction lever,
6... In-house signal, 7... Intermediate signal (multi-display colored light signal), 8... Departure signal,
10...orbit circuit,
11&12...orbit circuit transmitter/receiver,
11... Transmitting section, 12... Receiving section, 13... Transmission/reception switching instruction,
14...Traffic light control instruction, 15...Switching contact, 16...Processing unit,
17... Cross-border transmission means, 18k... Transmission information (order information), 20... Leakage current,
30...orbit circuit signal,
30n...n-th orbital circuit signal (n=1, 2,..., k,...),
50...Frame, 51...Offset time (predetermined time difference),
70...Basic waveform, 71...Cycle start waveform, 75...Driving direction switching instruction wave,
90...orbit circuit transmitter/receiver,
T...Period, Ta...Information propagation time, Tb...No signal time (after), Tc...Time difference,
Taa...cycle start waveform time, Tab...no signal time (in the middle), Tac...information containing time

Claims (12)

第1軌道回路区間と軌道回路境界と第2軌道回路区間とが連なる有絶縁軌道回路への装着に際して前記第1軌道回路区間のうち前記軌道回路境界寄り部位に接続される受信部と、前記有絶縁軌道回路への装着に際して前記第2軌道回路区間のうち前記軌道回路境界寄り部位に接続される送信部とを備えた軌道回路送受信機において、
前記受信部から前記送信部へ情報を伝達しうる越境伝達手段が設けられており、前記受信部が前記第1軌道回路区間から第1軌道回路信号を受信すると前記越境伝達手段を介して前記送信部へ前記第1軌道回路信号に基づく情報を伝達するようになっており、その伝達情報に応じて前記送信部が前記第2軌道回路区間へ第2軌道回路信号を送出するようになっており、前記第1軌道回路信号の伝送時期と前記第2軌道回路信号の伝送時期とに所定の時間差が確保されるようになっており、前記第1軌道回路信号について途中と後との何れか一方または双方に信号送出の無い無信号時期が確保されているものとして前記無信号時期における前記第1軌道回路信号の受信状態に基づいて前記軌道回路境界の絶縁破壊状態を判別する判定手段が設けられていることを特徴とする軌道回路送受信機。
a receiving section connected to a portion of the first track circuit section closer to the track circuit boundary when the first track circuit section, the track circuit boundary, and the second track circuit section are connected to an insulated track circuit; A track circuit transceiver comprising: a transmitter connected to a portion of the second track circuit section near the track circuit boundary when installed on the insulated track circuit ;
Cross-border transmission means capable of transmitting information from the reception section to the transmission section is provided, and when the reception section receives the first track circuit signal from the first track circuit section, the transmission section transmits the information via the cross-border transmission means. The transmission section is configured to transmit information based on the first track circuit signal to the section, and the transmission section transmits a second track circuit signal to the second track circuit section in accordance with the transmitted information. , a predetermined time difference is ensured between the transmission time of the first track circuit signal and the transmission time of the second track circuit signal, and the first track circuit signal is transmitted either during or after the transmission time. Alternatively, assuming that a no-signal period in which no signal is transmitted is ensured on both sides, determining means is provided for determining the dielectric breakdown state of the track circuit boundary based on the receiving state of the first track circuit signal during the no-signal period. A track circuit transceiver characterized by:
第1軌道回路区間と軌道回路境界と第2軌道回路区間とが連なる有絶縁軌道回路への装着に際して前記第1軌道回路区間のうち前記軌道回路境界寄り部位に接続される軌道回路受信機において、
前記第1軌道回路区間から第1軌道回路信号を受信すると、前記有絶縁軌道回路への装着に際して前記第2軌道回路区間のうち前記軌道回路境界寄り部位に接続される送信部へ情報を伝達しうる越境伝達手段を介して前記送信部へ前記第1軌道回路信号に基づく情報を伝達するとともに、前記第1軌道回路信号について途中と後との何れか一方または双方に信号送出の無い無信号時期が確保されているものとして前記無信号時期における前記第1軌道回路信号の受信状態に基づいて前記軌道回路境界の絶縁破壊状態を判別するようになっていることを特徴とする軌道回路受信機。
In a track circuit receiver that is connected to a portion of the first track circuit section closer to the track circuit boundary when installed on an insulated track circuit in which a first track circuit section, a track circuit boundary, and a second track circuit section are connected,
When the first track circuit signal is received from the first track circuit section, the information is transmitted to a transmitting section connected to a portion of the second track circuit section near the track circuit boundary when installed on the insulated track circuit. Information based on the first track circuit signal is transmitted to the transmitting unit via the cross-border transmission means, and there is a no-signal period in which no signal is sent either during or after the first track circuit signal. A track circuit receiver, characterized in that the dielectric breakdown state of the track circuit boundary is determined based on the reception state of the first track circuit signal during the no-signal period, assuming that the first track circuit signal is secured.
前記送信部が、前記第2軌道回路信号について途中と後との何れか一方または双方に信号送出の無い無信号時期を確保するようになっている、ことを特徴とする請求項1記載の軌道回路送受信機。 2. The track according to claim 1, wherein the transmitter is configured to ensure a no-signal period in which no signal is transmitted during or after the second track circuit signal. circuit transceiver. 前記判定手段が、前記第1軌道回路信号の送信開始を特定しうる周期開始波形が前記第1軌道回路信号に含まれているものとして前記無信号時期に前記周期開始波形が検出されたときに絶縁破壊が生じていると判定するようになっている、ことを特徴とする請求項1又は請求項3に記載された軌道回路送受信機。 When the determining means detects the cycle start waveform during the no-signal period, assuming that the first track circuit signal includes a cycle start waveform that can identify the start of transmission of the first track circuit signal. The track circuit transceiver according to claim 1 or 3, wherein the track circuit transceiver is configured to determine that dielectric breakdown has occurred. 第1軌道回路区間と軌道回路境界と第2軌道回路区間とが連なる有絶縁軌道回路への装着に際して前記第1軌道回路区間のうち前記軌道回路境界寄り部位に接続される受信部と、前記有絶縁軌道回路への装着に際して前記第2軌道回路区間のうち前記軌道回路境界寄り部位に接続される送信部とを備えた軌道回路送受信機において、
前記受信部から前記送信部へ情報を伝達しうる越境伝達手段が設けられており、前記受信部が前記第1軌道回路区間から第1軌道回路信号を受信すると前記越境伝達手段を介して前記送信部へ前記第1軌道回路信号に基づく情報を伝達するようになっており、その伝達情報に応じて前記送信部が前記第2軌道回路区間へ第2軌道回路信号を送出するようになっており、前記第1軌道回路信号にも前記第2軌道回路信号にもその送信開始を特定しうる周期開始波形が含まれるようになっており、前記第1軌道回路信号の伝送時期と前記第2軌道回路信号の伝送時期とに所定の時間差が確保されるようになっており、前記第1軌道回路信号に前記第2軌道回路信号を前記時間差だけずらして重畳させると両信号の周期開始波形が壊れることなく残存し続けるようになっているものとして前記第1軌道回路信号に前記周期開始波形が複数個検出されたときに絶縁破壊が生じていると判定する判定手段が設けられている、ことを特徴とする軌道回路送受信機。
a receiving section connected to a portion of the first track circuit section closer to the track circuit boundary when the first track circuit section, the track circuit boundary, and the second track circuit section are connected to an insulated track circuit; A track circuit transceiver comprising: a transmitter connected to a portion of the second track circuit section near the track circuit boundary when installed on the insulated track circuit;
Cross-border transmission means capable of transmitting information from the reception section to the transmission section is provided, and when the reception section receives the first track circuit signal from the first track circuit section, the transmission section transmits the information via the cross-border transmission means. The transmission section is configured to transmit information based on the first track circuit signal to the section, and the transmission section transmits a second track circuit signal to the second track circuit section in accordance with the transmitted information. , both the first track circuit signal and the second track circuit signal include a cycle start waveform that can specify the start of transmission, and the transmission timing of the first track circuit signal and the second track circuit signal are A predetermined time difference is ensured between the transmission timing of the circuit signal, and if the second track circuit signal is superimposed on the first track circuit signal with a shift of the time difference, the cycle start waveforms of both signals are destroyed. A determining means is provided for determining that dielectric breakdown has occurred when a plurality of the period start waveforms are detected in the first track circuit signal as a signal that continues to remain without any damage. Features a track circuit transceiver.
前記判定手段が、前記第1軌道回路信号の受信状態について前記無信号時期に無信号を超える信号が検出されたときに絶縁破壊が生じていると判定するようになっている、ことを特徴とする請求項1又は請求項3に記載された軌道回路送受信機。 The determining means is configured to determine that dielectric breakdown has occurred when a signal exceeding a no signal is detected during the no signal period regarding the receiving state of the first track circuit signal. The track circuit transceiver according to claim 1 or claim 3. 前記判定手段によって絶縁破壊が生じていると判定された後に前記受信部が前記第1軌道回路信号の次の第1軌道回路信号を受信したとき、前記送信部が前記第2軌道回路信号の次の第2軌道回路信号の送出を控えるとともに、前記の次の第1軌道回路信号について絶縁破壊が検出されなければ前記判定手段が絶縁破壊が生じていたと確定するようになっている、ことを特徴とする請求項4乃至請求項6の何れか一項に記載された軌道回路送受信機。 When the receiving section receives the first track circuit signal following the first track circuit signal after the determining means determines that dielectric breakdown has occurred, the transmitting section receives the first track circuit signal next to the second track circuit signal. The determination means is configured to refrain from transmitting the second track circuit signal, and if no dielectric breakdown is detected for the next first track circuit signal, the determining means determines that dielectric breakdown has occurred. A track circuit transceiver according to any one of claims 4 to 6. 前記無信号時期が前記第1軌道回路信号の途中に確保されており、前記時間差が前記無信号時期の時間長より短く且つ前記第1軌道回路信号の始期から前記無信号時期の始期までの時間より長くなっていることを特徴とする請求項1,3,4,6の何れか一項に記載された軌道回路送受信機。 The no-signal period is secured in the middle of the first track circuit signal, the time difference is shorter than the time length of the no-signal period, and the time is from the start of the first track circuit signal to the start of the no-signal period. A track circuit transceiver according to any one of claims 1, 3, 4 and 6, characterized in that the track circuit transceiver is longer. 前記第1軌道回路信号と、前記時間差だけ遅らせた前記第2軌道回路信号とについて、前記無信号時期の部位には偽の論理値を割り当てそれ以外の時期の部位には真の論理値を割り当てて対応時期毎に論理積をとると、その論理値が総ての時期で偽になるという関係が成立するようになっている、ことを特徴とする請求項8記載の軌道回路送受信機。 Regarding the first track circuit signal and the second track circuit signal delayed by the time difference, a false logical value is assigned to a portion of the no-signal period, and a true logical value is assigned to a portion of the other period. 9. The track circuit transmitter/receiver according to claim 8, wherein when a logical product is calculated for each corresponding time period, a relationship is established such that the logical value is false at all times. 前記受信部の接続先と前記送信部の接続先とを交換する接続先交換手段が設けられていることを特徴とする請求項1又は請求項3乃至9の何れか一項に記載された軌道回路送受信機。 The trajectory according to claim 1 or any one of claims 3 to 9, further comprising connection destination exchanging means for exchanging a connection destination of the receiving section and a connection destination of the transmitting section. circuit transceiver. 前記接続先交換手段の作動指示を含んだ前記第1軌道回路信号を前記受信部が受信するとそれに応じて前記接続先交換手段が作動するようになっていることを特徴とする請求項10記載の軌道回路送受信機。 11. The connecting point exchanging means according to claim 10, wherein when the receiving section receives the first track circuit signal including an instruction to operate the connecting point exchanging means, the connecting point exchanging means is activated in response. Orbital circuit transceiver. 前記接続先交換手段が、前記作動指示に係る前記受信部の受信時から前記送信部の送信完了まで、前記作動指示に応じた接続先交換を遅らせるようになっていることを特徴とする請求項11記載の軌道回路送受信機。 2. The connection destination exchange means is configured to delay the connection destination exchange according to the operation instruction from the time when the reception section receives the operation instruction until the transmission by the transmission section is completed. 12. The track circuit transceiver according to 11 .
JP2019204455A 2019-11-12 2019-11-12 Track circuit transceiver and track circuit receiver Active JP7407376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019204455A JP7407376B2 (en) 2019-11-12 2019-11-12 Track circuit transceiver and track circuit receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019204455A JP7407376B2 (en) 2019-11-12 2019-11-12 Track circuit transceiver and track circuit receiver

Publications (3)

Publication Number Publication Date
JP2021075193A JP2021075193A (en) 2021-05-20
JP2021075193A5 JP2021075193A5 (en) 2022-11-10
JP7407376B2 true JP7407376B2 (en) 2024-01-04

Family

ID=75898922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019204455A Active JP7407376B2 (en) 2019-11-12 2019-11-12 Track circuit transceiver and track circuit receiver

Country Status (1)

Country Link
JP (1) JP7407376B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213314A (en) 2000-01-31 2001-08-07 Nippon Signal Co Ltd:The Train detecting device
JP2001328533A (en) 2000-05-24 2001-11-27 East Japan Railway Co Train detecting method
JP2003246267A (en) 2002-02-25 2003-09-02 Hitachi Ltd Track circuit system
JP2011225192A (en) 2010-04-23 2011-11-10 Nippon Signal Co Ltd:The Rail fracture detection device
JP2015189457A (en) 2014-03-31 2015-11-02 東日本旅客鉄道株式会社 Method and device for detecting insulation deterioration of track circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593538Y2 (en) * 1993-03-09 1999-04-12 東日本旅客鉄道株式会社 Information transmission equipment
JPH092270A (en) * 1995-06-26 1997-01-07 East Japan Railway Co Insulated track circuit
JP2829603B2 (en) * 1996-11-27 1998-11-25 株式会社京三製作所 Single wire bidirectional non-insulated track circuit device
JP3065268B2 (en) * 1997-03-25 2000-07-17 大同信号株式会社 Track control method of track circuit and railroad crossing control method including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213314A (en) 2000-01-31 2001-08-07 Nippon Signal Co Ltd:The Train detecting device
JP2001328533A (en) 2000-05-24 2001-11-27 East Japan Railway Co Train detecting method
JP2003246267A (en) 2002-02-25 2003-09-02 Hitachi Ltd Track circuit system
JP2011225192A (en) 2010-04-23 2011-11-10 Nippon Signal Co Ltd:The Rail fracture detection device
JP2015189457A (en) 2014-03-31 2015-11-02 東日本旅客鉄道株式会社 Method and device for detecting insulation deterioration of track circuit

Also Published As

Publication number Publication date
JP2021075193A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US8985524B2 (en) On-board device for train control system
US4630057A (en) Vehicle location system
US9391820B2 (en) Railway code generation and signaling system and method
JP7407376B2 (en) Track circuit transceiver and track circuit receiver
JPH0267834A (en) Evaluation method for traffic information
US2510066A (en) Vehicle communication system
RU2241620C2 (en) Method to transmit data through traction current conductor transmitting electric drive current for vehicles
WO2013125479A1 (en) Wireless communications system, control method, and program
CN104853376A (en) Method and device for switching link
JP2016199057A (en) Train control system, on-board device, ground control device
JP3065268B2 (en) Track control method of track circuit and railroad crossing control method including the same
JP5461462B2 (en) Train control information transmission system
US4132379A (en) Method for improving the stopping accuracy at railway stations of track-bound vehicles
JP5940767B2 (en) Train detection apparatus and train detection method
JP4850611B2 (en) Digital ATC system
JP7026875B2 (en) Multi-information track circuit
CN113923090B (en) Frame synchronization detection method, system and computer storage medium for mobile device network
KR101378356B1 (en) Compatible digital block system apparatus
JP2013119332A (en) Train control device
JP6041771B2 (en) Train radio system
JP6964460B2 (en) Transmitter, train control information transmission system, and train control information transmission method
JP5856544B2 (en) ATC on-board device and railway vehicle
JP2001171521A (en) Automatic train operating device
NL8502209A (en) METHOD FOR SECURE TRANSMISSION OF RADIO SIGNALS
JP2009096316A (en) Loop type atc/td ground device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231207

R150 Certificate of patent or registration of utility model

Ref document number: 7407376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150