JP7403061B2 - Method for manufacturing resin sheet with metal foil, printed wiring board, and resin sheet with metal foil - Google Patents

Method for manufacturing resin sheet with metal foil, printed wiring board, and resin sheet with metal foil Download PDF

Info

Publication number
JP7403061B2
JP7403061B2 JP2019164822A JP2019164822A JP7403061B2 JP 7403061 B2 JP7403061 B2 JP 7403061B2 JP 2019164822 A JP2019164822 A JP 2019164822A JP 2019164822 A JP2019164822 A JP 2019164822A JP 7403061 B2 JP7403061 B2 JP 7403061B2
Authority
JP
Japan
Prior art keywords
layer
insulating resin
resin composition
adhesive layer
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019164822A
Other languages
Japanese (ja)
Other versions
JP2021041605A (en
Inventor
義則 松▲崎▼
広明 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019164822A priority Critical patent/JP7403061B2/en
Publication of JP2021041605A publication Critical patent/JP2021041605A/en
Application granted granted Critical
Publication of JP7403061B2 publication Critical patent/JP7403061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、金属箔付き樹脂シート、プリント配線板及び金属箔付き樹脂シートの製造方法に関し、詳しくは金属層と、絶縁樹脂層と、接着層とを積層した金属箔付き樹脂シート、前記金属箔付き樹脂シートを用いて作製されるプリント配線板、及び前記金属箔付き樹脂シートの製造方法に関する。 The present invention relates to a method for manufacturing a resin sheet with metal foil, a printed wiring board, and a resin sheet with metal foil, and more specifically, a resin sheet with metal foil in which a metal layer, an insulating resin layer, and an adhesive layer are laminated, and the metal foil. The present invention relates to a printed wiring board manufactured using the metal foil-covered resin sheet, and a method for manufacturing the metal foil-covered resin sheet.

プリント配線板の多層化のために、金属層と、絶縁樹脂層と、接着層とを積層した金属箔付き樹脂シートが使用されることがある。例えば特許文献1には、基材の表面に形成された導体回路に、金属箔、ポリイミドフィルム、及びエポキシ樹脂層がこの順に積層した金属箔付き樹脂シートにおけるエポキシ樹脂層を、導体回路がエポキシ樹脂層に埋め込まれるように重ねてから、エポキシ樹脂層を硬化させることで、プリント配線板を多層化する技術が開示されている。 In order to make printed wiring boards multilayered, a metal foil-covered resin sheet in which a metal layer, an insulating resin layer, and an adhesive layer are laminated is sometimes used. For example, Patent Document 1 discloses that the epoxy resin layer in a resin sheet with metal foil is formed by laminating a metal foil, a polyimide film, and an epoxy resin layer in this order on a conductor circuit formed on the surface of a base material, and the conductor circuit is made of epoxy resin. A technique has been disclosed in which a printed wiring board is multilayered by stacking the epoxy resin layers so as to be embedded in the layers and then curing the epoxy resin layer.

特開2010-129610号公報JP2010-129610A

しかし、特許文献1に開示されているエポキシ樹脂層のような接着層に導体配線を埋め込む場合、導体配線のライン幅に対して導体配線の厚みが大きい場合などでは、導体配線が金属層に到達してしまって短絡してしまう危険性がある。特に導体配線をコイル状に形成してインダクタ素子を作製する場合には、短絡の危険性が高くなる。また導体配線にチップ部品を搭載し、チップ部品を接着層に埋め込む場合にも、チップ部品が金属層と接触してしまう危険性がある。プリント配線板の薄型化に伴い、短絡の危険性は益々高くなる。 However, when the conductor wiring is embedded in an adhesive layer such as the epoxy resin layer disclosed in Patent Document 1, and the thickness of the conductor wiring is large relative to the line width of the conductor wiring, the conductor wiring may reach the metal layer. There is a risk of a short circuit. In particular, when an inductor element is manufactured by forming conductor wiring into a coil shape, the risk of short circuiting increases. Furthermore, when chip components are mounted on conductor wiring and embedded in an adhesive layer, there is a risk that the chip components will come into contact with the metal layer. As printed wiring boards become thinner, the risk of short circuits increases.

本発明の課題は、接着層に導体配線又はチップ部品を埋め込む場合に短絡が生じにくい金属箔付き樹脂シート、前記金属箔付き樹脂シートを用いて作製されるプリント配線板、及び前記金属箔付き樹脂シートの製造方法を提供することである。 An object of the present invention is to provide a resin sheet with a metal foil that is unlikely to cause a short circuit when embedding conductive wiring or chip components in an adhesive layer, a printed wiring board manufactured using the resin sheet with the metal foil, and a resin sheet with the metal foil. An object of the present invention is to provide a method for manufacturing a sheet.

本発明の一態様に係る金属箔付き樹脂シートは、金属層と、前記金属層の上に重なる絶縁樹脂層と、前記絶縁樹脂層の上に重なり、熱可塑性又は熱硬化性を有する接着層とを備える。前記接着層の厚みが3μm以上30μm以下である。前記金属層と前記絶縁樹脂層と前記接着層とを合わせた厚みの、平均値を基準にした厚みばらつきが±5μm以内である。 A resin sheet with metal foil according to one aspect of the present invention includes a metal layer, an insulating resin layer overlapping the metal layer, and an adhesive layer overlapping the insulating resin layer and having thermoplastic or thermosetting properties. Equipped with The thickness of the adhesive layer is 3 μm or more and 30 μm or less. The thickness variation of the combined thickness of the metal layer, the insulating resin layer, and the adhesive layer is within ±5 μm based on an average value.

本発明の一態様に係るプリント配線板は、前記金属箔付き樹脂シートにおける前記絶縁樹脂層と前記接着層とから作製された絶縁層と、前記絶縁層に埋め込まれている導体配線とを備える。 A printed wiring board according to one aspect of the present invention includes an insulating layer made from the insulating resin layer and the adhesive layer in the metal foil-covered resin sheet, and conductor wiring embedded in the insulating layer.

本発明の一態様に係る金属箔付き樹脂シートの製造方法では、金属層上に絶縁樹脂組成物から絶縁樹脂層を作製し、前記絶縁樹脂層上に接着樹脂組成物から接着層を作製する。前記絶縁樹脂組成物と前記接着樹脂組成物とのうち少なくとも一方における揮発性成分含有率は30質量%以上である。 In the method for manufacturing a resin sheet with metal foil according to one embodiment of the present invention, an insulating resin layer is formed from an insulating resin composition on a metal layer, and an adhesive layer is formed from an adhesive resin composition on the insulating resin layer. The volatile component content in at least one of the insulating resin composition and the adhesive resin composition is 30% by mass or more.

本発明の一態様によると、接着層に導体配線又は電子部品を埋め込む場合に短絡が生じにくい金属箔付き樹脂シート、この金属箔付き樹脂シートを用いて作製されるプリント配線板、及びこの金属箔付き樹脂シートの製造方法を、提供できる。 According to one aspect of the present invention, there is provided a resin sheet with a metal foil that is unlikely to cause a short circuit when conductor wiring or electronic components are embedded in an adhesive layer, a printed wiring board manufactured using the resin sheet with the metal foil, and a printed wiring board manufactured using the resin sheet with the metal foil. It is possible to provide a method for manufacturing a resin sheet with a laminate.

図1は、本発明の一実施形態に係る金属箔付き樹脂シートの模式的な断面図である。FIG. 1 is a schematic cross-sectional view of a resin sheet with metal foil according to an embodiment of the present invention. 図2A及び図2Bは、本発明の一実施形態に係るプリント配線板の製造工程を表す模式的な断面図である。2A and 2B are schematic cross-sectional views showing the manufacturing process of a printed wiring board according to an embodiment of the present invention.

以下、本発明の実施形態について説明する。 Embodiments of the present invention will be described below.

本実施形態に係る金属箔付き樹脂シート1は、図1に示すように、金属層2と、金属層2の上に重なる絶縁樹脂層3と、絶縁樹脂層3の上に重なり、熱可塑性又は熱硬化性を有する接着層4とを備える。接着層4の厚みは3μm以上30μm以下である。金属層2と絶縁樹脂層3と接着層4とを合わせた厚みの、平均値に対するばらつきは、±5μm以内である。 As shown in FIG. 1, the metal foil-covered resin sheet 1 according to the present embodiment includes a metal layer 2, an insulating resin layer 3 overlapping the metal layer 2, and a thermoplastic or insulating resin layer 3 overlapping the insulating resin layer 3. The adhesive layer 4 has thermosetting properties. The thickness of the adhesive layer 4 is 3 μm or more and 30 μm or less. The variation in the combined thickness of the metal layer 2, insulating resin layer 3, and adhesive layer 4 with respect to the average value is within ±5 μm.

このため、本実施形態によると、金属箔付き樹脂シート1を利用してプリント配線板11を多層化する場合に、接着層4に導体配線7を埋め込みやすい。また、接着層4に電子部品8も埋め込みやすい。電子部品8とは、例えば導体配線7に実装されたチップ部品、又は導体配線7の一部で構成されるインダクタ素子のような部品などである。本実施形態では、インダクタ素子の一部も電子部品8に含まれうる。また、絶縁樹脂層3は、接着層4に埋め込まれた導体配線7又は電子部品8を金属層2に到達しにくくできる。さらに、金属箔付き樹脂シート1の厚み精度が高いことから、金属箔付き樹脂シート1の厚みが部分的に薄くなるようなことが起こりにくく、このため接着層4に埋め込まれた導体配線7又は電子部品8を金属層2に更に到達しにくくできる。 Therefore, according to the present embodiment, when the printed wiring board 11 is multilayered using the resin sheet 1 with metal foil, it is easy to embed the conductor wiring 7 in the adhesive layer 4. Moreover, the electronic component 8 is also easily embedded in the adhesive layer 4. The electronic component 8 is, for example, a chip component mounted on the conductor wiring 7 or a component such as an inductor element configured as a part of the conductor wiring 7. In this embodiment, part of the inductor element may also be included in the electronic component 8. Furthermore, the insulating resin layer 3 makes it difficult for the conductor wiring 7 or the electronic component 8 embedded in the adhesive layer 4 to reach the metal layer 2 . Furthermore, since the thickness accuracy of the resin sheet 1 with metal foil is high, it is difficult for the thickness of the resin sheet 1 with metal foil to become partially thin, and therefore, the conductor wiring 7 embedded in the adhesive layer 4 or This makes it even more difficult for the electronic component 8 to reach the metal layer 2.

本実施形態について更に詳しく説明する。 This embodiment will be described in more detail.

金属層2は、例えば銅箔などの金属箔から作製される。金属層2の厚みは2μm以上20μm以下であることが好ましい。この場合、金属層2から導体配線を作製するに当たって、サブトラクティブ法やセミアディティブ法(SAP)など様々な回路形成方法を適用しやすい。 The metal layer 2 is made of metal foil such as copper foil, for example. The thickness of the metal layer 2 is preferably 2 μm or more and 20 μm or less. In this case, various circuit forming methods such as a subtractive method and a semi-additive method (SAP) can be easily applied to produce conductor wiring from the metal layer 2.

絶縁樹脂層3は、例えば熱可塑性を有し、又は熱硬化性樹脂組成物の硬化物を含む。絶縁樹脂層3が熱可塑性を有する場合は、絶縁樹脂層3と金属層2との接着力が向上する。また絶縁樹脂層3が熱硬化性樹脂組成物の硬化物を含む場合は、絶縁樹脂層3と接着層4との接着力が向上する。 The insulating resin layer 3 has, for example, thermoplasticity or contains a cured product of a thermosetting resin composition. When the insulating resin layer 3 has thermoplasticity, the adhesive strength between the insulating resin layer 3 and the metal layer 2 is improved. Further, when the insulating resin layer 3 contains a cured product of a thermosetting resin composition, the adhesive force between the insulating resin layer 3 and the adhesive layer 4 is improved.

絶縁樹脂層3は、例えば樹脂組成物(以下、絶縁樹脂組成物ともいう)から作製される。 The insulating resin layer 3 is made of, for example, a resin composition (hereinafter also referred to as an insulating resin composition).

絶縁樹脂層3が熱可塑性を有する場合、絶縁樹脂組成物は、例えば熱可塑性樹脂組成物である。熱可塑性樹脂組成物は、例えば液晶ポリマー樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂及びポリフェニレンエーテル樹脂からなる群から選択される少なくとも一種の熱硬化性樹脂を含む。熱可塑性樹脂組成物は、特にポリイミド樹脂とポリアミドイミド樹脂とのうち少なくとも一方を含有することが好ましい。この場合、絶縁樹脂層3の絶縁性と耐屈曲性とを高い水準で両立させやすい。 When the insulating resin layer 3 has thermoplasticity, the insulating resin composition is, for example, a thermoplastic resin composition. The thermoplastic resin composition includes at least one thermosetting resin selected from the group consisting of, for example, a liquid crystal polymer resin, a polyimide resin, a polyamideimide resin, a fluororesin, and a polyphenylene ether resin. It is particularly preferable that the thermoplastic resin composition contains at least one of a polyimide resin and a polyamideimide resin. In this case, it is easy to achieve both high levels of insulation and bending resistance of the insulating resin layer 3.

ポリイミド樹脂は、例えば次のようにしてポリイミド樹脂を含有する樹脂液を調製することにより得られる。まず、テトラカルボン酸二無水物とジアミン成分との重縮合によりポリアミド酸を生成させる。テトラカルボン酸二無水物は、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物を含有することが好ましい。ジアミン成分は、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、及び4,4’-ジアミノジフェニルエーテル、ビス[4-(4-アミノフェノキシ)フェニル]スルホンからなる群から選択される少なくとも一種の成分を含有することが好ましい。続いて、ポリアミド酸を溶剤中で加熱する。溶剤は、例えばN-メチル-2-ピロリドン、メチルエチルケトン、トルエン、ジメチルアセトアミド、ジメチルフォルムアミド、及びメトキシプロパノールからなる成分から選択される少なくとも一種の成分を含有する。加熱温度は、例えば60~250℃の範囲内、好ましくは100~200℃の範囲内であり、加熱時間は、例えば0.5~50時間の範囲内である。これにより、ポリアミド酸が環化反応によりイミド化し、ポリイミド樹脂が生成する。これにより、ポリイミド樹脂を含有する樹脂液が得られる。 A polyimide resin can be obtained, for example, by preparing a resin liquid containing a polyimide resin as follows. First, a polyamic acid is produced by polycondensation of a tetracarboxylic dianhydride and a diamine component. The tetracarboxylic dianhydride preferably contains 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride. The diamine component is selected from the group consisting of 2,2-bis[4-(4-aminophenoxy)phenyl]propane, and 4,4'-diaminodiphenyl ether, bis[4-(4-aminophenoxy)phenyl]sulfone. It is preferable to contain at least one component. Subsequently, the polyamic acid is heated in a solvent. The solvent contains at least one component selected from, for example, N-methyl-2-pyrrolidone, methyl ethyl ketone, toluene, dimethylacetamide, dimethylformamide, and methoxypropanol. The heating temperature is, for example, in the range of 60 to 250°C, preferably in the range of 100 to 200°C, and the heating time is, for example, in the range of 0.5 to 50 hours. Thereby, the polyamic acid is imidized by a cyclization reaction, and a polyimide resin is produced. Thereby, a resin liquid containing a polyimide resin is obtained.

ポリイミド樹脂から絶縁樹脂層3を作製する場合、例えば金属箔等の上にポリイミド樹脂を含有する樹脂液を塗布してから、加熱して乾燥させることで、絶縁樹脂層3を作製できる。 When producing the insulating resin layer 3 from a polyimide resin, the insulating resin layer 3 can be produced, for example, by applying a resin liquid containing a polyimide resin onto a metal foil, etc., and then heating and drying it.

ポリアミドイミド樹脂は、例えば次のようにしてポリアミドイミド樹脂を含有する樹脂液を調整することにより得られる。まず、無水トリメリット酸、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、2,4-ジイソシアン酸トリレン、ジアザビシクロウンデセン、及びN,N-ジメチルアセトアミドを混合して混合物を調製する。この混合物を加熱して反応させることで、ポリアミドイミドを含有する混合液を得る。続いて、混合液を冷却する。さらに、この混合液にビスマレイミドを配合する。これにより、ポリアミドイミドを含有する樹脂液が得られる。 The polyamide-imide resin can be obtained, for example, by preparing a resin liquid containing the polyamide-imide resin in the following manner. First, a mixture is prepared by mixing trimellitic anhydride, 4,4'-diisocyanato-3,3'-dimethylbiphenyl, tolylene 2,4-diisocyanate, diazabicycloundecene, and N,N-dimethylacetamide. do. By heating and reacting this mixture, a mixed solution containing polyamideimide is obtained. Subsequently, the mixed liquid is cooled. Furthermore, bismaleimide is added to this mixed solution. Thereby, a resin liquid containing polyamideimide is obtained.

ポリアミドイミド樹脂から絶縁樹脂層3を作製する場合、例えばポリアミドイミド樹脂を含有する樹脂液を金属箔等の上に塗布してから、加熱して乾燥させることで、絶縁樹脂層3を作製できる。 When producing the insulating resin layer 3 from a polyamide-imide resin, the insulating resin layer 3 can be produced, for example, by applying a resin liquid containing the polyamide-imide resin onto a metal foil or the like and then heating and drying it.

絶縁樹脂層3が熱硬化性樹脂組成物の硬化物を含む場合、絶縁樹脂組成物は、勿論、熱硬化性樹脂組成物である。熱硬化性樹脂組成物は、例えばエポキシ樹脂組成物である。この場合、絶縁樹脂層3が高い絶縁性を有しやすく、かつ絶縁樹脂層3と接着層4との高い接着力を得ることかできる。エポキシ樹脂組成物は、更にカルボジイミド変性可溶性ポリアミドを含有してもよい。この場合、絶縁樹脂層3は耐屈曲性を有しやすい。 When the insulating resin layer 3 contains a cured product of a thermosetting resin composition, the insulating resin composition is, of course, a thermosetting resin composition. The thermosetting resin composition is, for example, an epoxy resin composition. In this case, the insulating resin layer 3 tends to have high insulation properties, and high adhesive strength between the insulating resin layer 3 and the adhesive layer 4 can be obtained. The epoxy resin composition may further contain carbodiimide-modified soluble polyamide. In this case, the insulating resin layer 3 tends to have bending resistance.

エポキシ樹脂は、例えば、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、酸化型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ビフェニルノボラックエポキシ樹脂、及びリン変性エポキシ樹脂等からなる群から選択される少なくとも一種の成分を含有する。 Epoxy resins include, for example, a group consisting of glycidyl ether type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, oxidized epoxy resins, epoxy resins having a naphthalene skeleton, biphenyl novolac epoxy resins, phosphorus-modified epoxy resins, etc. Contains at least one component selected from.

エポキシ樹脂組成物は、更に硬化剤を含有してもよい。硬化剤は、例えば、ポリアミン、変性ポリアミン、酸無水物、ヒドラジン誘導体、及びポリフェノール等からなる群から選択される少なくとも一種の成分を含有する。硬化剤の含有量は、例えばエポキシ樹脂、硬化剤及びカルボジイミド変性可溶性ポリアミドの合計量に対して10質量%以上45質量%以下である。 The epoxy resin composition may further contain a curing agent. The curing agent contains, for example, at least one component selected from the group consisting of polyamines, modified polyamines, acid anhydrides, hydrazine derivatives, polyphenols, and the like. The content of the curing agent is, for example, 10% by mass or more and 45% by mass or less based on the total amount of the epoxy resin, the curing agent, and the carbodiimide-modified soluble polyamide.

カルボジイミド変性可溶性ポリアミドは、可溶性ポリアミドとカルボジイミド化合物とを、溶媒の存在下又は不存在下で、50~250℃の反応温度で反応させて得られる。 Carbodiimide-modified soluble polyamide is obtained by reacting a soluble polyamide and a carbodiimide compound at a reaction temperature of 50 to 250° C. in the presence or absence of a solvent.

可溶性とは、有機溶媒への溶解性を有することを意味する。可溶性ポリアミドは、アルコール及び芳香族系及び/又はケトン系等の有機溶媒の混合物100質量部に対して、1質量部以上、好ましくは5質量部以上、より好ましくは10質量部以上が完全に溶解可能である。この場合のアルコールとしては、例えば、メタノール、エタノール、イソプロピルアルコール等を挙げることができ、芳香族系溶媒としては、例えば、ベンゼン、トルエン等を挙げることができ、ケトン系溶媒としては、例えば、シクロヘキサノン、2-ブタノン、シクロペンタノン等を挙げることができる。これらのアルコール、芳香族系溶媒及びケトン系溶媒の各々の沸点は130℃以下であることが好ましい。 Soluble means having solubility in an organic solvent. 1 part by mass or more, preferably 5 parts by mass or more, more preferably 10 parts by mass or more of the soluble polyamide is completely dissolved in 100 parts by mass of the mixture of alcohol and organic solvent such as aromatic and/or ketone solvent. It is possible. Examples of the alcohol in this case include methanol, ethanol, isopropyl alcohol, etc., examples of the aromatic solvent include benzene, toluene, etc., and examples of the ketone solvent include cyclohexanone. , 2-butanone, cyclopentanone and the like. The boiling point of each of these alcohols, aromatic solvents, and ketone solvents is preferably 130°C or lower.

可溶性ポリアミドは、例えばポリアミドを可溶化することによって得られる。可溶化の方法として、例えば、各種ポリアミドのアミド結合の水素原子をメトキシメチル基で一部置換する方法を挙げることができる。ポリアミドにメトキシ基を導入するとアミド基が有する水素結合能力が失われ、ポリアミドの結晶性が阻害されるため、溶媒への溶解性が増大する。また、上記可溶化の方法としては、例えば、可溶化前のポリアミドの分子中にポリエーテルやポリエステルを導入して共重合体とする方法も挙げることができる。可溶化前のポリアミドとしては、ナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12、ナイロン46等を挙げることができる。 Soluble polyamides are obtained, for example, by solubilizing polyamides. Examples of solubilization methods include a method in which hydrogen atoms in amide bonds of various polyamides are partially substituted with methoxymethyl groups. When a methoxy group is introduced into a polyamide, the hydrogen bonding ability of the amide group is lost, and the crystallinity of the polyamide is inhibited, thereby increasing its solubility in a solvent. Further, examples of the above-mentioned solubilization method include a method of introducing polyether or polyester into the polyamide molecules before solubilization to form a copolymer. Examples of the polyamide before solubilization include nylon 6, nylon 66, nylon 610, nylon 11, nylon 12, and nylon 46.

可溶性ポリアミドの具体例としては、「Zytel 61」(デュポン株式会社製)、「Versalon」(ゼネラルミルズ社製)、「アミランCM4000」(東レ株式会社製)、「アミランCM8000」(東レ株式会社製)、「PA-100」(富士化成工業株式会社製)、「トレジン」(ナガセケムテックス株式会社製)等を挙げることができる。 Specific examples of soluble polyamides include "Zytel 61" (manufactured by DuPont), "Versalon" (manufactured by General Mills), "Amilan CM4000" (manufactured by Toray Industries, Inc.), and "Amilan CM8000" (manufactured by Toray Industries, Inc.). , "PA-100" (manufactured by Fuji Kasei Kogyo Co., Ltd.), "Torezin" (manufactured by Nagase ChemteX Co., Ltd.), and the like.

カルボジイミド化合物は、分子中に1個以上のカルボジイミド基を有する。カルボジイミド化合物は、例えば分子中に1つのみのカルボジイミド基を有するモノカルボジイミド化合物、分子中に2以上のカルボジイミド基を有するポリカルボジイミド化合物とのうち、少なくとも一方を含有する。カルボジイミド化合物は、例えば、触媒として有機リン系化合物又は有機金属化合物を用い、各種ポリイソシアネートを約70℃以上の温度で、無溶媒又は不活性溶媒中で、脱炭酸縮合反応させることで合成することができる。 A carbodiimide compound has one or more carbodiimide groups in its molecule. The carbodiimide compound contains at least one of, for example, a monocarbodiimide compound having only one carbodiimide group in the molecule, and a polycarbodiimide compound having two or more carbodiimide groups in the molecule. Carbodiimide compounds can be synthesized, for example, by decarboxylation condensation reaction of various polyisocyanates at a temperature of about 70° C. or higher without a solvent or in an inert solvent using an organophosphorus compound or an organometallic compound as a catalyst. Can be done.

モノカルボジイミド化合物は、例えばジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、及びジ-β-ナフチルカルボジイミド等からなる群から選択される少なくとも一種の成分を含有する。 The monocal -bodyimide compound is, for example, a monocal -bodyimide compound,, for example, a dischicrohexylcyl bogimide, a dizopylcalvyimide, a diocylcalvyimide, a dioxobutyl kalbu -jimide, a jokuchilkalbieimide, T -butyluisopylcalvyimide, diphenilcalvyimide, diphenilcalvyimide Select from a group consisting of Lukal Bajimide and Jaedo -β -Nufflucal Bajimide, etc. contains at least one component that is

ポリカルボジイミド化合物は、種々の方法で製造されうる。ポリカルボジイミド化合物は、例えば従来のポリカルボジイミドの製造方法(例えば、米国特許第2941956号明細書、J.Org.Chem.28,2069-2075(1963)、Chemical Review 1981,Vol.81No.4、p619-621 参照)により、製造されうる。 Polycarbodiimide compounds can be produced in a variety of ways. The polycarbodiimide compound can be prepared by, for example, a conventional polycarbodiimide manufacturing method (for example, US Pat. No. 2,941,956, J. Org. Chem. 28, 2069-2075 (1963), Chemical Review 1981, Vol. 81 No. 4, p. 619). -621).

カルボジイミド変性可溶性ポリアミドは、上記可溶性ポリアミドとカルボジイミド化合物とを溶媒の存在下又は不存在下で反応させ、可溶性ポリアミドが有するカルボキシル基やアミノ基等の反応性官能基と、これらと反応可能なカルボジイミド化合物のカルボジイミド基やイソシアネート基とが反応することにより得られる。 Carbodiimide-modified soluble polyamide is produced by reacting the above-mentioned soluble polyamide with a carbodiimide compound in the presence or absence of a solvent, and reacting with reactive functional groups such as carboxyl groups and amino groups possessed by the soluble polyamide, and the carbodiimide compound capable of reacting with these. It is obtained by reacting the carbodiimide group or isocyanate group of .

可溶性ポリアミドとカルボジイミド化合物とを反応させる方法は、特に限定されるものではないが、溶媒の存在下又は不存在下で行うことができる。 The method of reacting the soluble polyamide and the carbodiimide compound is not particularly limited, but it can be carried out in the presence or absence of a solvent.

可溶性ポリアミドとカルボジイミド化合物を反応させることで、可溶性ポリアミドが変性され、カルボジイミド変性可溶性ポリアミドとなる。この反応が進行するのに伴い、カルボジイミド化合物が有するカルボジイミド基が減少するため、赤外線測定によって反応物と生成物を比較すると、反応物で観測されるカルボジイミド基のピークが生成物では減少している。また、反応物と生成物に対して示差熱熱重量測定を行うと、反応物の吸熱ピークはアミド樹脂起因・カルボジイミド樹脂起因など複数観測されるが、生成物の吸熱ピークは1つに集約される。以上により、可溶性ポリアミドが変性されたことを確認することができる。 By reacting the soluble polyamide with the carbodiimide compound, the soluble polyamide is modified and becomes a carbodiimide-modified soluble polyamide. As this reaction progresses, the carbodiimide group possessed by the carbodiimide compound decreases, so when comparing the reactant and product by infrared measurement, the peak of the carbodiimide group observed in the reactant decreases in the product. . Furthermore, when performing differential thermal thermogravimetry on the reactants and products, multiple endothermic peaks for the reactants are observed, such as those due to amide resins and carbodiimide resins, but the endothermic peaks for the products are aggregated into one. Ru. From the above, it can be confirmed that the soluble polyamide has been modified.

カルボジイミド変性可溶性ポリアミドの含有量は、エポキシ樹脂、硬化剤及びカルボジイミド変性可溶性ポリアミドの合計量に対して20~70質量%であることが好ましい。この場合、絶縁樹脂層3の屈曲性及び耐薬品性を高めることができる。 The content of the carbodiimide-modified soluble polyamide is preferably 20 to 70% by mass based on the total amount of the epoxy resin, curing agent, and carbodiimide-modified soluble polyamide. In this case, the flexibility and chemical resistance of the insulating resin layer 3 can be improved.

エポキシ樹脂組成物は、フェノキシ樹脂、リン系難燃剤などを更に含有してもよい。 The epoxy resin composition may further contain a phenoxy resin, a phosphorus flame retardant, and the like.

絶縁樹脂組成物は、揮発性成分を含有してもよい。なお、絶縁樹脂組成物から絶縁樹脂層3を作製する際に絶縁樹脂層3を構成せずに揮発する成分が、揮発性成分である。揮発性成分は例えば溶剤を含む。溶剤の例はメチルエチルケトンを含む。この場合、絶縁樹脂組成物を膜状に成形しやすく、そのため、絶縁樹脂組成物から絶縁樹脂層3を厚み精度良く作製しやすい。特に揮発性成分の含有率は絶縁樹脂組成物全体に対して30質量%以上であることが好ましい。この場合、絶縁樹脂層3を特に厚み精度良く作製しやすい。揮発性成分の含有率の上限に特に制限はないが、絶縁樹脂層3の作製に当たって揮発成分を効率良く揮発させるためには絶縁樹脂組成物全体に対して50質量%以下であることが好ましい。 The insulating resin composition may contain volatile components. Note that a component that evaporates without forming the insulating resin layer 3 when the insulating resin layer 3 is produced from the insulating resin composition is a volatile component. Volatile components include, for example, solvents. Examples of solvents include methyl ethyl ketone. In this case, it is easy to mold the insulating resin composition into a film shape, and therefore it is easy to form the insulating resin layer 3 from the insulating resin composition with good thickness accuracy. In particular, the content of volatile components is preferably 30% by mass or more based on the entire insulating resin composition. In this case, it is easy to manufacture the insulating resin layer 3 with particularly good thickness accuracy. There is no particular restriction on the upper limit of the content of the volatile component, but in order to efficiently volatilize the volatile component when producing the insulating resin layer 3, it is preferably 50% by mass or less based on the entire insulating resin composition.

絶縁樹脂層3の厚みは2μm以上10μm以下であることが好ましい。この厚みが2μm以上であることで、絶縁樹脂層3が導体配線7又は電子部品8を金属層2に特に到達しにくくできる。またこの厚みが10μm以下であることで、絶縁樹脂層3を備える金属箔付き樹脂シート1、金属箔付き樹脂シート1から作製されるプリント配線板等の厚みを薄くしやすい。 The thickness of the insulating resin layer 3 is preferably 2 μm or more and 10 μm or less. By having this thickness of 2 μm or more, the insulating resin layer 3 can make it particularly difficult for the conductor wiring 7 or the electronic component 8 to reach the metal layer 2 . Moreover, since this thickness is 10 μm or less, it is easy to reduce the thickness of the metal foil-covered resin sheet 1 provided with the insulating resin layer 3 and the printed wiring board produced from the metal foil-covered resin sheet 1.

絶縁樹脂層3が熱可塑性を有する場合、絶縁樹脂層3の軟化点は、金属箔付き樹脂シート1を用いてプリント配線板11を製造する際の接着層4の加熱温度よりも高いことが好ましい。この場合、接着層4が加熱されている際に絶縁樹脂層3が軟化してないため、絶縁樹脂層3は導体配線7又は電子部品8を金属層2に特に到達しにくくできる。絶縁樹脂層3の軟化点の具体的な値は、前記の加熱温度に応じて設定されるが、加熱温度よりも100℃以上高いことが好ましい。絶縁樹脂層3の軟化点は、例えば300℃以上330℃以下である。なお、絶縁樹脂層3の軟化点を測定するに当たっては、例えばレオメーターを用いて、昇温速度3℃/分、温度範囲20~325℃、周波数5Hzの条件で、絶縁樹脂層3の粘度-温度関係曲線を得る。この関係曲線における最低粘度の温度を軟化点とする。 When the insulating resin layer 3 has thermoplasticity, the softening point of the insulating resin layer 3 is preferably higher than the heating temperature of the adhesive layer 4 when manufacturing the printed wiring board 11 using the resin sheet 1 with metal foil. . In this case, since the insulating resin layer 3 is not softened when the adhesive layer 4 is heated, the insulating resin layer 3 makes it particularly difficult for the conductor wiring 7 or the electronic component 8 to reach the metal layer 2. The specific value of the softening point of the insulating resin layer 3 is set depending on the heating temperature, but it is preferably 100° C. or more higher than the heating temperature. The softening point of the insulating resin layer 3 is, for example, 300° C. or more and 330° C. or less. In addition, when measuring the softening point of the insulating resin layer 3, for example, using a rheometer, the viscosity of the insulating resin layer 3 - Obtain the temperature relationship curve. The temperature of the lowest viscosity in this relationship curve is defined as the softening point.

接着層4は、熱可塑性又は熱硬化性を有する。接着層4は、例えば樹脂組成物(以下、接着樹脂組成物ともいう)から作製される。 The adhesive layer 4 has thermoplastic or thermosetting properties. The adhesive layer 4 is made of, for example, a resin composition (hereinafter also referred to as an adhesive resin composition).

接着層4が熱可塑性を有する場合、接着樹脂組成物は、例えば熱可塑性樹脂組成物である。熱可塑性樹脂組成物は、例えば液晶ポリマー樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂及びポリフェニレンエーテル樹脂からなる群から選択される少なくとも一種の樹脂を含む。熱可塑性樹脂組成物は、特にポリイミド樹脂とポリアミドイミド樹脂とのうち少なくとも一方を含有することが好ましい。この場合、接着層4に接着される対象物の表面粗さが接着層4と対象物との接着性に影響を与えにくく、すなわち対象物の表面粗さの程度を問わず接着層4と対象物との接着性が良好になりやすい。なお、ポリイミド樹脂とポリアミドイミド樹脂としては、上述の絶縁樹脂組成物の説明におけるポリイミド樹脂とポリアミドイミド樹脂とを使用することができる。 When the adhesive layer 4 has thermoplasticity, the adhesive resin composition is, for example, a thermoplastic resin composition. The thermoplastic resin composition includes, for example, at least one resin selected from the group consisting of liquid crystal polymer resin, polyimide resin, polyamideimide resin, fluororesin, and polyphenylene ether resin. It is particularly preferable that the thermoplastic resin composition contains at least one of a polyimide resin and a polyamideimide resin. In this case, the surface roughness of the object to be adhered to the adhesive layer 4 does not easily affect the adhesion between the adhesive layer 4 and the object. Adhesion to objects tends to be good. Note that as the polyimide resin and polyamide-imide resin, the polyimide resin and polyamide-imide resin described in the above description of the insulating resin composition can be used.

接着層4が熱硬化性を有する場合、接着樹脂組成物は、例えば熱硬化性樹脂組成物である。この場合、接着層4は、例えば熱硬化性樹脂組成物の乾燥物又は硬化物を含有する。熱硬化性樹脂組成物は、例えばエポキシ樹脂を含有する。熱硬化性樹脂組成物は、更にカルボジイミド変性可溶性ポリアミドを含有してもよい。この場合、接着層4は熱硬化性を有するものでありながら、接着層4の硬化物は耐屈曲性を有しやすい。 When the adhesive layer 4 has thermosetting properties, the adhesive resin composition is, for example, a thermosetting resin composition. In this case, the adhesive layer 4 contains, for example, a dried or cured thermosetting resin composition. The thermosetting resin composition contains, for example, an epoxy resin. The thermosetting resin composition may further contain carbodiimide-modified soluble polyamide. In this case, although the adhesive layer 4 has thermosetting properties, the cured product of the adhesive layer 4 tends to have bending resistance.

熱硬化性樹脂組成物がエポキシ樹脂を含有する場合、熱硬化性樹脂組成物の組成として、上述の絶縁樹脂組成物がエポキシ樹脂組成物である場合の、エポキシ樹脂組成物の組成を採用できる。 When the thermosetting resin composition contains an epoxy resin, the composition of the epoxy resin composition when the above-mentioned insulating resin composition is an epoxy resin composition can be adopted as the composition of the thermosetting resin composition.

接着樹脂組成物は、揮発性成分を含有してもよい。なお、接着樹脂組成物から接着層4を作製する際に接着層4を構成せずに揮発する成分が、揮発性成分である。揮発性成分は、例えば溶剤を含む。溶剤の例はメチルエチルケトンを含む。この場合、接着樹脂組成物を膜状に成形しやすく、そのため、接着樹脂組成物から接着層4を厚み精度良く作製しやすい。特に揮発性成分の含有率は接着樹脂組成物全体に対して30質量%以上であることが好ましい。この場合、接着層4を特に厚み精度良く作製しやすい。揮発性成分の含有率の上限に特に制限はないが、揮発成分を効率良く揮発させるためには50質量%以下であることが好ましい。 The adhesive resin composition may contain volatile components. Note that a component that evaporates without forming the adhesive layer 4 when the adhesive layer 4 is produced from the adhesive resin composition is a volatile component. Volatile components include, for example, solvents. Examples of solvents include methyl ethyl ketone. In this case, it is easy to mold the adhesive resin composition into a film shape, and therefore it is easy to form the adhesive layer 4 from the adhesive resin composition with good thickness accuracy. In particular, the content of volatile components is preferably 30% by mass or more based on the entire adhesive resin composition. In this case, it is easy to manufacture the adhesive layer 4 with particularly good thickness accuracy. Although there is no particular restriction on the upper limit of the content of volatile components, it is preferably 50% by mass or less in order to volatilize volatile components efficiently.

接着層4の厚みは、上述のとおり3μm以上30μm以下である。この厚みが3μm以上であることで、接着層4に導体配線7又は電子部品8を埋め込みやすい。また、この厚みが30μm以下であることで、接着層4に導体配線7又は電子部品8を埋め込みやすくしながら、接着層4を備える金属箔付き樹脂シート1、金属箔付き樹脂シート1から作製されるプリント配線板等の厚みを過度に大きくなりにくくできる。接着層4の厚みは3μm以上15μm以下であれば、より好ましい。 The thickness of the adhesive layer 4 is 3 μm or more and 30 μm or less, as described above. When this thickness is 3 μm or more, it is easy to embed the conductive wiring 7 or the electronic component 8 in the adhesive layer 4. Moreover, since the thickness is 30 μm or less, the conductor wiring 7 or the electronic component 8 can be easily embedded in the adhesive layer 4, and the resin sheet 1 with metal foil provided with the adhesive layer 4 can be manufactured from the resin sheet 1 with metal foil. It is possible to prevent the thickness of printed wiring boards, etc., from becoming excessively large. The thickness of the adhesive layer 4 is more preferably 3 μm or more and 15 μm or less.

絶縁樹脂層3が熱可塑性を有する場合と絶縁樹脂層3が熱硬化性樹脂組成物の硬化物を含む場合とのいずれにおいても、接着層4は、熱可塑性と熱硬化性とのうちいずれを有してもよい。 In both the case where the insulating resin layer 3 has thermoplasticity and the case where the insulating resin layer 3 contains a cured product of a thermosetting resin composition, the adhesive layer 4 is either thermoplastic or thermosetting. May have.

絶縁樹脂層3が熱可塑性を有し、かつ接着層4が熱可塑性を有する場合は、接着層4の軟化点は絶縁樹脂層3の軟化点よりも低いことが好ましい。この場合、金属箔付き樹脂シート1を用いてプリント配線板11を製造する際の接着層4の加熱温度を、絶縁樹脂層3の軟化点よりも低くしても、接着層4を軟化させて接着層4に導体配線7又は電子部品8を埋め込みやすい。この場合、絶縁樹脂層3は軟化していないので、上述のとおり、絶縁樹脂層3が導体配線7又は電子部品8を金属層2に特に到達しにくくできる。接着層4の軟化点と絶縁樹脂層3の軟化点との差は、100℃以上であることが好ましい。この差が200℃以下であることも好ましい。この差が100℃以上150℃以下であればより好ましい。 When the insulating resin layer 3 has thermoplasticity and the adhesive layer 4 has thermoplasticity, the softening point of the adhesive layer 4 is preferably lower than that of the insulating resin layer 3. In this case, even if the heating temperature of the adhesive layer 4 when manufacturing the printed wiring board 11 using the resin sheet 1 with metal foil is lower than the softening point of the insulating resin layer 3, the adhesive layer 4 cannot be softened. It is easy to embed the conductor wiring 7 or the electronic component 8 in the adhesive layer 4. In this case, since the insulating resin layer 3 is not softened, the insulating resin layer 3 makes it particularly difficult for the conductor wiring 7 or the electronic component 8 to reach the metal layer 2, as described above. It is preferable that the difference between the softening point of the adhesive layer 4 and the softening point of the insulating resin layer 3 is 100° C. or more. It is also preferable that this difference is 200°C or less. It is more preferable that this difference is 100°C or more and 150°C or less.

絶縁樹脂層3が熱可塑性を有し、かつ接着層4が熱硬化性を有する場合は、接着層4の硬化開始温度は、絶縁樹脂層3の軟化点よりも低いことが好ましい。この場合、金属箔付き樹脂シート1を用いてプリント配線板11を製造する際の接着層4の加熱温度を、絶縁樹脂層3の軟化点よりも低くしても、接着層4を軟化させて接着層4に導体配線7又は電子部品8を埋め込んでから接着層4を硬化させやすい。この場合、絶縁樹脂層3は軟化していないので、上述のとおり、絶縁樹脂層3が導体配線7又は電子部品8を金属層2に特に到達しにくくできる。接着層4の硬化開始温度は、熱機械分析法(TMA法)によって測定される。具体的には、接着層4をTMA法で、温度範囲20~180℃、昇温速度1.5℃/minの条件で測定し、得られたTMA曲線に認められるピークトップに対応する温度を硬化開始温度とする。接着層4の硬化開始温度と絶縁樹脂層3の軟化点との差は、100℃以上であることが好ましい。この差が200℃以下であることも好ましい。この差が100℃以上150℃以下であればより好ましい。 When the insulating resin layer 3 has thermoplasticity and the adhesive layer 4 has thermosetting property, the curing start temperature of the adhesive layer 4 is preferably lower than the softening point of the insulating resin layer 3. In this case, even if the heating temperature of the adhesive layer 4 when manufacturing the printed wiring board 11 using the resin sheet 1 with metal foil is lower than the softening point of the insulating resin layer 3, the adhesive layer 4 cannot be softened. It is easy to harden the adhesive layer 4 after embedding the conductor wiring 7 or the electronic component 8 in the adhesive layer 4. In this case, since the insulating resin layer 3 is not softened, the insulating resin layer 3 makes it particularly difficult for the conductor wiring 7 or the electronic component 8 to reach the metal layer 2, as described above. The curing start temperature of the adhesive layer 4 is measured by thermomechanical analysis (TMA method). Specifically, the adhesive layer 4 was measured by the TMA method under conditions of a temperature range of 20 to 180°C and a temperature increase rate of 1.5°C/min, and the temperature corresponding to the peak top observed in the obtained TMA curve was determined. This is the curing start temperature. It is preferable that the difference between the hardening start temperature of the adhesive layer 4 and the softening point of the insulating resin layer 3 is 100° C. or more. It is also preferable that this difference is 200°C or less. It is more preferable that this difference is 100°C or more and 150°C or less.

絶縁樹脂層3が熱硬化性樹脂組成物の硬化物を含有し、かつ接着層4が熱可塑性を有する場合は、接着層4の軟化点は絶縁樹脂層3のガラス転移温度及び分解開始温度のいずれよりも低いことが好ましい。この場合、金属箔付き樹脂シート1を用いてプリント配線板11を製造する際の接着層4の加熱温度を、絶縁樹脂層3のガラス転移温度及び分解開始温度よりも低くしても、接着層4を軟化させて接着層4に導体配線7又は電子部品8を埋め込みやすい。この場合、絶縁樹脂層3は絶縁樹脂層3はガラス転移温度には達せず、かつ分解しないので、絶縁樹脂層3が導体配線7又は電子部品8を金属層2に特に到達しにくくできる。接着層4の軟化点と絶縁樹脂層3のガラス転移点との差は、100℃以上であることが好ましい。この差が200℃以下であることも好ましい。この差が100℃以上150℃以下であればより好ましい。接着層4の軟化点と絶縁樹脂層3の分解開始温度との差は、200℃以上であることが好ましい。この差が300℃以下であることも好ましい。この差が200℃以上250℃以下であればより好ましい。なお、絶縁樹脂層3をTMA法で、温度範囲20~180℃、昇温速度1.5℃/minの条件で測定し、得られたTMA曲線に急激な変化が生じ始める温度をガラス転移点とする。また、絶縁樹脂層3をレーザーラマン分光法により測定して、温度変化に応じたラマンスペクトルの変化を調査し、ラマンスペクトルの波形ピークが変化する温度を分解開始温度とする。 When the insulating resin layer 3 contains a cured product of a thermosetting resin composition and the adhesive layer 4 has thermoplasticity, the softening point of the adhesive layer 4 is equal to the glass transition temperature and decomposition start temperature of the insulating resin layer 3. It is preferable that it is lower than either. In this case, even if the heating temperature of the adhesive layer 4 when manufacturing the printed wiring board 11 using the resin sheet 1 with metal foil is lower than the glass transition temperature and decomposition start temperature of the insulating resin layer 3, the adhesive layer The conductive wiring 7 or the electronic component 8 can be easily embedded in the adhesive layer 4 by softening the adhesive layer 4. In this case, since the insulating resin layer 3 does not reach the glass transition temperature and does not decompose, the insulating resin layer 3 can make it particularly difficult for the conductor wiring 7 or the electronic component 8 to reach the metal layer 2. The difference between the softening point of the adhesive layer 4 and the glass transition point of the insulating resin layer 3 is preferably 100° C. or more. It is also preferable that this difference is 200°C or less. It is more preferable that this difference is 100°C or more and 150°C or less. The difference between the softening point of the adhesive layer 4 and the decomposition start temperature of the insulating resin layer 3 is preferably 200° C. or more. It is also preferable that this difference is 300°C or less. It is more preferable that this difference is 200°C or more and 250°C or less. The insulating resin layer 3 is measured by the TMA method under conditions of a temperature range of 20 to 180°C and a heating rate of 1.5°C/min, and the temperature at which a sudden change begins to occur in the obtained TMA curve is defined as the glass transition point. shall be. Further, the insulating resin layer 3 is measured by laser Raman spectroscopy to examine changes in the Raman spectrum in response to temperature changes, and the temperature at which the waveform peak of the Raman spectrum changes is determined as the decomposition start temperature.

絶縁樹脂層3が熱硬化性樹脂組成物の硬化物を含有し、かつ接着層4が熱硬化性を有する場合は、接着層4の硬化開始温度は、絶縁樹脂層3のガラス転移温度及び分解開始温度のいずれよりも低いことが好ましい。この場合、金属箔付き樹脂シート1を用いてプリント配線板11を製造する際の接着層4の加熱温度を、絶縁樹脂層3のガラス転移温度及び分解開始温度のいずれよりも低くしても、接着層4を軟化させて接着層4に導体配線7又は電子部品8を埋め込んでから接着層4を硬化させやすい。この場合、絶縁樹脂層3はガラス転移温度には達せず、かつ分解しないので、絶縁樹脂層3が導体配線7又は電子部品8を金属層2に特に到達しにくくできる。接着層4の硬化開始温度と絶縁樹脂層3のガラス転移点との差は、100℃以上であることが好ましい。この差が200℃以下であることも好ましい。この差が100℃以上150℃以下であればより好ましい。接着層4の硬化開始温度と絶縁樹脂層3の分解開始温度との差は、200℃以上であることが好ましい。この差が300℃以下であることも好ましい。この差が200℃以上250℃以下であればより好ましい。 When the insulating resin layer 3 contains a cured product of a thermosetting resin composition and the adhesive layer 4 has thermosetting properties, the curing start temperature of the adhesive layer 4 is determined by the glass transition temperature and decomposition temperature of the insulating resin layer 3. Preferably, the temperature is lower than either of the starting temperatures. In this case, even if the heating temperature of the adhesive layer 4 when manufacturing the printed wiring board 11 using the resin sheet 1 with metal foil is lower than both the glass transition temperature and the decomposition start temperature of the insulating resin layer 3, After softening the adhesive layer 4 and embedding the conductive wiring 7 or the electronic component 8 in the adhesive layer 4, it is easy to harden the adhesive layer 4. In this case, since the insulating resin layer 3 does not reach the glass transition temperature and does not decompose, the insulating resin layer 3 can make it particularly difficult for the conductor wiring 7 or the electronic component 8 to reach the metal layer 2. The difference between the curing start temperature of the adhesive layer 4 and the glass transition point of the insulating resin layer 3 is preferably 100° C. or more. It is also preferable that this difference is 200°C or less. It is more preferable that this difference is 100°C or more and 150°C or less. The difference between the curing start temperature of the adhesive layer 4 and the decomposition start temperature of the insulating resin layer 3 is preferably 200° C. or more. It is also preferable that this difference is 300°C or less. It is more preferable that this difference is 200°C or more and 250°C or less.

接着層4が熱可塑性と熱硬化性とのいずれを有する場合でも、接着層4の最低溶融粘度は105Pa・s未満であることが好ましい。この場合、金属箔付き樹脂シート1を用いてプリント配線板11を製造する際に接着層4を加熱することで、接着層4に良好な流動性を付与でき、接着層4に導体配線7又は電子部品8を特に埋め込みやすくできる。この最低溶融粘度は1.0×104Pa・s以上1.0×105Pa・s未満であればより好ましい。なお、最低溶融粘度を測定するに当たっては、例えばレオメーターを用いて、昇温速度1.5℃/分、温度範囲20~180℃、周波数5Hzの条件で、接着層4の粘度-温度関係曲線を得る。この関係曲線における最小の粘度を最低溶融粘度とする。 Regardless of whether the adhesive layer 4 is thermoplastic or thermosetting, the minimum melt viscosity of the adhesive layer 4 is preferably less than 10 5 Pa·s. In this case, by heating the adhesive layer 4 when manufacturing the printed wiring board 11 using the resin sheet 1 with metal foil, good fluidity can be imparted to the adhesive layer 4. The electronic component 8 can be particularly easily embedded. This minimum melt viscosity is more preferably 1.0×10 4 Pa·s or more and less than 1.0×10 5 Pa·s. In addition, when measuring the minimum melt viscosity, for example, using a rheometer, the viscosity-temperature relationship curve of the adhesive layer 4 is measured under the conditions of a temperature increase rate of 1.5 °C/min, a temperature range of 20 to 180 °C, and a frequency of 5 Hz. get. The minimum viscosity in this relationship curve is defined as the minimum melt viscosity.

上述のとおり、金属層2と絶縁樹脂層3と接着層4とを合わせた厚みの平均値を基準にした厚みばらつきは、±5μm以内である。すなわち、金属層2と絶縁樹脂層3と接着層4とを合わせた厚みの最大値は、この厚みの平均値より5μm大きい値以下であり、かつ金属層2と絶縁樹脂層3と接着層4とを合わせた厚みの最小値は、この厚みの平均値より5μm小さい値以上である。このばらつきは、次の方法で確認される。金属箔付き樹脂シート1に、一方向に並ぶ5つの測定位置を設定し、各測定位置において金属層2と絶縁樹脂層3と接着層4とを合わせた厚みを、デジタルマイクロメーターを用いて測定する。これにより得られた5つの測定値の平均値を算出する。厚みの測定値の最大値が平均値+5μm以下であり、かつ厚みの測定値の最小値が平均値-5μm以上である場合、厚みの平均値に対するばらつきが±5μm以内である。このように厚みの平均値に対するばらつきが±5μm以内であると、金属箔付き樹脂シート1に、厚みが部分的に小さくなった箇所及び厚みが部分的に大きくなった箇所が生じにくい。このため、導体配線7又は電子部品8の厚みと、金属層2と絶縁樹脂層3と接着層4とを合わせた厚みとをあらかじめ調整しておけば、接着層4に導体配線7又は電子部品8を埋め込みやすくでき、かつ導体配線7又は電子部品8を金属層2に到達しにくくできる。この厚みの平均値を基準にしたばらつきは、±4以内であればより好ましく、±3以内であれば更に好ましい。このばらつきは理想的には0であることが好ましい。 As described above, the thickness variation based on the average value of the combined thicknesses of the metal layer 2, insulating resin layer 3, and adhesive layer 4 is within ±5 μm. That is, the maximum value of the combined thickness of the metal layer 2, the insulating resin layer 3, and the adhesive layer 4 is less than or equal to a value that is 5 μm larger than the average value of this thickness, and the total thickness of the metal layer 2, the insulating resin layer 3, and the adhesive layer 4 The minimum value of the combined thickness is at least 5 μm smaller than the average value of the thickness. This variation is confirmed by the following method. Five measurement positions arranged in one direction are set on the resin sheet 1 with metal foil, and the combined thickness of the metal layer 2, insulating resin layer 3, and adhesive layer 4 is measured at each measurement position using a digital micrometer. do. The average value of the five measured values thus obtained is calculated. When the maximum value of the measured thickness is equal to or less than the average value +5 μm, and the minimum value of the measured thickness value is equal to or greater than the average value −5 μm, the variation with respect to the average value of the thickness is within ±5 μm. When the variation in thickness with respect to the average value is within ±5 μm, the resin sheet 1 with metal foil is less likely to have areas where the thickness is partially reduced and areas where the thickness is partially increased. Therefore, if the thickness of the conductor wiring 7 or the electronic component 8 and the combined thickness of the metal layer 2, insulating resin layer 3, and adhesive layer 4 are adjusted in advance, the conductor wiring 7 or the electronic component 8 can be easily embedded, and the conductor wiring 7 or the electronic component 8 can be made difficult to reach the metal layer 2. The variation based on the average value of the thickness is preferably within ±4, and even more preferably within ±3. Ideally, this variation is preferably zero.

金属箔付き樹脂シート1の製造方法の一具体例について説明する。 A specific example of the method for manufacturing the metal foil-covered resin sheet 1 will be described.

本方法では、まず金属層2上に絶縁樹脂組成物から絶縁樹脂層3を作製する。この絶縁樹脂層3上に接着樹脂組成物から接着層4を作製する。 In this method, first, the insulating resin layer 3 is formed on the metal layer 2 from an insulating resin composition. An adhesive layer 4 is produced on this insulating resin layer 3 from an adhesive resin composition.

本方法において、絶縁樹脂組成物と接着樹脂組成物とのうち少なくとも一方における揮発性成分含有率は30質量%以上であることが好ましい。この場合、金属箔付き樹脂シート1の厚み精度が特に高くなりやすく、金属層2と絶縁樹脂層3と接着層4とを合わせた厚みの、平均値を基準にした厚みばらつきが±5μm以内であることを、実現しやすい。 In this method, the content of volatile components in at least one of the insulating resin composition and the adhesive resin composition is preferably 30% by mass or more. In this case, the thickness accuracy of the resin sheet 1 with metal foil tends to be particularly high, and the thickness variation of the combined thickness of the metal layer 2, insulating resin layer 3, and adhesive layer 4 based on the average value is within ±5 μm. It is easy to accomplish something.

本方法について、より具体的に説明する。 This method will be explained in more detail.

まず、金属層2の材料である銅箔などの金属箔、絶縁層5の材料である絶縁樹脂組成物、及び接着層4の材料である接着樹脂組成物を、用意する。 First, a metal foil such as copper foil, which is the material of the metal layer 2, an insulating resin composition, which is the material of the insulating layer 5, and an adhesive resin composition, which is the material of the adhesive layer 4, are prepared.

金属箔の表面上に、絶縁樹脂組成物を塗布する。絶縁樹脂組成物をコンマコータで塗布することが好ましい。この場合、コンマコータにおけるアプリケータロールとバックアップロールとの間のギャップの寸法を調整することで、金属箔上の絶縁樹脂組成物の厚みを精密に制御しやすい。 An insulating resin composition is applied onto the surface of the metal foil. It is preferable to apply the insulating resin composition using a comma coater. In this case, by adjusting the dimension of the gap between the applicator roll and the backup roll in the comma coater, it is easy to precisely control the thickness of the insulating resin composition on the metal foil.

続いて、金属箔上の絶縁樹脂組成物を加熱する。これにより、絶縁樹脂組成物が熱可塑性樹脂組成物である場合には、熱可塑性樹脂組成物から溶剤などの揮発性成分を揮発させることで熱可塑性の絶縁樹脂層3を作製する。また、絶縁樹脂組成物が熱硬化性樹脂組成物である場合には、熱硬化性樹脂組成物から溶剤などの揮発性成分を揮発させ、更に熱硬化性樹脂組成物を熱硬化させることで、熱硬化性樹脂組成物の硬化物を含む絶縁樹脂層3を作製する。絶縁樹脂組成物を加熱する条件は、絶縁樹脂組成物の組成などに応じて適宜設定される。 Subsequently, the insulating resin composition on the metal foil is heated. Thereby, when the insulating resin composition is a thermoplastic resin composition, the thermoplastic insulating resin layer 3 is produced by volatilizing volatile components such as a solvent from the thermoplastic resin composition. In addition, when the insulating resin composition is a thermosetting resin composition, by volatilizing volatile components such as a solvent from the thermosetting resin composition and further thermosetting the thermosetting resin composition, An insulating resin layer 3 containing a cured product of a thermosetting resin composition is produced. The conditions for heating the insulating resin composition are appropriately set depending on the composition of the insulating resin composition.

このように絶縁樹脂層3を作製するに当たり、絶縁樹脂組成物の揮発性成分の含有率が30質量%以上であれば、金属箔上に絶縁樹脂組成物を塗布する際に金属箔上の絶縁樹脂組成物の厚みを更に制御しやすい。また、コンマコータにおけるアプリケータロールとバックアップロールとの間のギャップの寸法にばらつきが生じていても、揮発性成分の含有率が30質量%以上であれば、絶縁樹脂組成物から作製される絶縁層5の厚みにばらつきが生じにくい。そのため、金属箔付き樹脂シート1の厚み精度を特に高めやすい。 When producing the insulating resin layer 3 in this way, if the content of volatile components in the insulating resin composition is 30% by mass or more, the insulating resin composition on the metal foil is It is easier to control the thickness of the resin composition. Furthermore, even if there are variations in the dimensions of the gap between the applicator roll and the backup roll in the comma coater, as long as the volatile component content is 30% by mass or more, the insulating layer made from the insulating resin composition Variations in the thickness of 5 are less likely to occur. Therefore, it is particularly easy to improve the thickness accuracy of the resin sheet 1 with metal foil.

続いて、絶縁樹脂層3の上に接着樹脂組成物を塗布する。接着樹脂組成物をコンマコータで塗布することが好ましい。この場合、コンマコータにおけるアプリケータロールとバックアップロールとの間のギャップの寸法を調整することで、絶縁樹脂層3上の接着樹脂組成物の厚みを精密に制御しやすい。 Subsequently, an adhesive resin composition is applied onto the insulating resin layer 3. It is preferable to apply the adhesive resin composition with a comma coater. In this case, the thickness of the adhesive resin composition on the insulating resin layer 3 can be easily controlled precisely by adjusting the dimension of the gap between the applicator roll and the backup roll in the comma coater.

続いて、金属箔上の接着樹脂組成物を加熱する。これにより、接着樹脂組成物が熱可塑性樹脂組成物である場合には、熱可塑性樹脂組成物から溶剤などの揮発性成分を揮発させることで熱可塑性の接着層4を作製する。また、接着樹脂組成物が熱硬化性樹脂組成物である場合には、熱硬化性樹脂組成物から溶剤などの揮発性成分を揮発させ、或いは更に熱硬化性樹脂組成物を半硬化させることで、熱硬化性樹脂組成物の乾燥物又は半硬化物を含む接着層4を作製する。接着樹脂組成物を加熱する条件は、接着樹脂組成物の組成などに応じて適宜設定される。 Subsequently, the adhesive resin composition on the metal foil is heated. Thereby, when the adhesive resin composition is a thermoplastic resin composition, the thermoplastic adhesive layer 4 is produced by volatilizing volatile components such as a solvent from the thermoplastic resin composition. In addition, when the adhesive resin composition is a thermosetting resin composition, volatile components such as solvents are volatilized from the thermosetting resin composition, or the thermosetting resin composition is further semi-cured. , an adhesive layer 4 containing a dried or semi-cured thermosetting resin composition is prepared. The conditions for heating the adhesive resin composition are appropriately set depending on the composition of the adhesive resin composition.

このように接着層4を作製するに当たり、接着樹脂組成物の揮発性成分の含有率が30質量%以上であれば、絶縁樹脂層3上に接着樹脂組成物を塗布する際に絶縁樹脂層3上の接着樹脂組成物の厚みを更に制御しやすい。また、コンマコータにおけるアプリケータロールとバックアップロールとの間のギャップの寸法にばらつきが生じていても、揮発性成分の含有率が30質量%以上であれば、接着樹脂組成物から作製される接着層4の厚みにばらつきが生じにくい。そのため、金属箔付き樹脂シート1の厚み精度を特に高めやすい。 In producing the adhesive layer 4 in this way, if the volatile component content of the adhesive resin composition is 30% by mass or more, the adhesive resin composition may be applied to the insulating resin layer 3 when the adhesive resin composition is applied on the insulating resin layer 3. It is easier to control the thickness of the upper adhesive resin composition. Furthermore, even if there are variations in the dimensions of the gap between the applicator roll and the backup roll in the comma coater, as long as the volatile component content is 30% by mass or more, the adhesive layer produced from the adhesive resin composition can be used. Variations in the thickness of 4 are less likely to occur. Therefore, it is particularly easy to improve the thickness accuracy of the resin sheet 1 with metal foil.

なお、上記において、金属箔上の絶縁樹脂組成物を加熱して絶縁樹脂層3を作製した時点では、絶縁樹脂層3は完全には硬化させずに例えば半硬化の状態としてもよい。この場合、絶縁樹脂層3上の接着樹脂組成物を加熱する際に絶縁樹脂層3も加熱して絶縁樹脂層3の硬化反応を更に進行させてもよい。 In the above, at the time when the insulating resin composition on the metal foil is heated to produce the insulating resin layer 3, the insulating resin layer 3 may not be completely cured but may be in a semi-cured state, for example. In this case, when heating the adhesive resin composition on the insulating resin layer 3, the insulating resin layer 3 may also be heated to further advance the curing reaction of the insulating resin layer 3.

金属箔付き樹脂シート1の製造方法は上記のみには限られない。例えば絶縁樹脂組成物が熱硬化性樹脂組成物であり、かつ接着樹脂組成物が熱硬化性樹脂組成物である場合に、金属箔付き樹脂シート1を次のように製造することもできる。 The method for manufacturing the resin sheet 1 with metal foil is not limited to the above method. For example, when the insulating resin composition is a thermosetting resin composition and the adhesive resin composition is a thermosetting resin composition, the resin sheet 1 with metal foil can also be manufactured as follows.

まず、金属箔の表面上に、絶縁樹脂組成物を塗布する。その方法は、上述の説明と同じでよい。 First, an insulating resin composition is applied onto the surface of metal foil. The method may be the same as described above.

続いて、金属箔上の絶縁樹脂組成物を加熱することなく、絶縁樹脂組成物上に接着樹脂組成物を塗布する。その方法は、上述の説明と同じでよい。 Subsequently, an adhesive resin composition is applied onto the insulating resin composition without heating the insulating resin composition on the metal foil. The method may be the same as described above.

続いて、金属箔上の絶縁樹脂組成物と接着樹脂組成物とを同時に加熱する。これにより、絶縁樹脂組成物を熱硬化させ、かつ接着樹脂組成物を乾燥させ又は更に半硬化させる。これにより、絶縁樹脂組成物の硬化物を含む絶縁樹脂層3と、接着樹脂組成物の乾燥物又は半硬化物を含む接着層4とを作製し、金属箔付き樹脂シート1を得る。 Subsequently, the insulating resin composition and adhesive resin composition on the metal foil are heated simultaneously. Thereby, the insulating resin composition is thermally cured, and the adhesive resin composition is dried or further semi-cured. Thereby, the insulating resin layer 3 containing the cured product of the insulating resin composition and the adhesive layer 4 containing the dried or semi-cured product of the adhesive resin composition are produced, and the resin sheet 1 with metal foil is obtained.

このようにして金属箔付き樹脂シート1を製造する場合は、絶縁樹脂組成物と接着樹脂組成物とを同じ条件で加熱した場合、絶縁樹脂組成物の硬化反応の方が、接着樹脂組成物の硬化反応よりも進行しやすいことが好ましい。例えば絶縁樹脂組成物の180℃におけるゲルタイムと、接着樹脂組成物の180℃におけるゲルタイムとを比較すると、絶縁樹脂組成物のゲルタイムのほうが30秒以上短いことが好ましい。例えば絶縁樹脂組成物のゲルタイムが60秒であり、接着樹脂組成物のゲルタイムが180秒であることが好ましい。この場合、絶縁樹脂組成物と接着樹脂組成物とを同時に加熱することで、絶縁樹脂組成物の硬化物を含む絶縁樹脂層3と、接着樹脂組成物の乾燥物又は半硬化物を含む接着層4とを、特に作製しやすい。なおゲルタイムは、各組成物を180℃に維持しながら、ゲルタイム試験機で粘度を測定する試験を行った場合に、試験開始から粘度が500000mPa・sに達するまでに要する時間である。この場合、金属箔上の絶縁樹脂組成物と接着樹脂組成物とを同時に加熱しても、絶縁樹脂組成物の硬化物を含む絶縁樹脂層3と、接着樹脂組成物の乾燥物又は半硬化物を含有する接着層4とが、作製されうる。 When manufacturing the resin sheet 1 with metal foil in this way, when the insulating resin composition and the adhesive resin composition are heated under the same conditions, the curing reaction of the insulating resin composition is higher than that of the adhesive resin composition. It is preferable that the reaction proceeds more easily than the curing reaction. For example, when the gel time at 180° C. of the insulating resin composition is compared with the gel time at 180° C. of the adhesive resin composition, it is preferable that the gel time of the insulating resin composition is shorter by 30 seconds or more. For example, it is preferable that the gel time of the insulating resin composition is 60 seconds, and the gel time of the adhesive resin composition is 180 seconds. In this case, by heating the insulating resin composition and the adhesive resin composition simultaneously, the insulating resin layer 3 containing the cured product of the insulating resin composition and the adhesive layer containing the dried or semi-cured product of the adhesive resin composition can be formed. 4 is particularly easy to produce. Note that gel time is the time required from the start of the test until the viscosity reaches 500,000 mPa·s when a test is conducted to measure the viscosity using a gel time tester while maintaining each composition at 180°C. In this case, even if the insulating resin composition and the adhesive resin composition on the metal foil are heated simultaneously, the insulating resin layer 3 containing the cured product of the insulating resin composition and the dried or semi-cured product of the adhesive resin composition An adhesive layer 4 containing the following can be produced.

絶縁樹脂組成物と接着樹脂組成物との各々の硬化反応の進行のしやすさは、例えば絶縁樹脂組成物と接着樹脂組成物との各々において、硬化剤と硬化促進剤とのうち少なくとも一方の種類を変更すること、熱硬化性樹脂に対する硬化剤と硬化促進剤とのうち少なくとも一方の量を調整すること等によって、制御されうる。例えば絶縁樹脂組成物が含む成分の種類と接着樹脂組成物が含む成分の種類とが同じであり、かつ絶縁樹脂組成物における熱硬化性樹脂に対する硬化剤及び硬化促進剤のうち少なくとも一方の量が、接着樹脂組成物における熱硬化性樹脂に対する硬化剤及び硬化促進剤のうち少なくとも一方の量よりも多ければ、絶縁樹脂組成物の硬化反応の方が、接着樹脂組成物の硬化反応よりも進行しやすくなりうる。 The ease with which the curing reaction of the insulating resin composition and the adhesive resin composition progresses depends, for example, on the effectiveness of at least one of the curing agent and the curing accelerator in each of the insulating resin composition and the adhesive resin composition. It can be controlled by changing the type, adjusting the amount of at least one of the curing agent and curing accelerator relative to the thermosetting resin. For example, the types of components contained in the insulating resin composition and the types of components contained in the adhesive resin composition are the same, and the amount of at least one of the curing agent and curing accelerator for the thermosetting resin in the insulating resin composition is If the amount of at least one of the curing agent and curing accelerator for the thermosetting resin in the adhesive resin composition is larger, the curing reaction of the insulating resin composition progresses faster than the curing reaction of the adhesive resin composition. It can become easier.

金属箔付き樹脂シート1を用いて製造されたプリント配線板11について説明する。 A printed wiring board 11 manufactured using the resin sheet 1 with metal foil will be explained.

プリント配線板11は、図2Bに示すように、例えば金属箔付き樹脂シート1における絶縁樹脂層3と接着層4とから作製された絶縁層5と、絶縁層5に埋め込まれている導体配線7とを備える。プリント配線板11は、絶縁層5に埋め込まれている電子部品8を更に備えてもよい。 As shown in FIG. 2B, the printed wiring board 11 includes an insulating layer 5 made of, for example, an insulating resin layer 3 and an adhesive layer 4 in a resin sheet 1 with metal foil, and conductor wiring 7 embedded in the insulating layer 5. Equipped with. Printed wiring board 11 may further include electronic components 8 embedded in insulating layer 5 .

このようなプリント配線板11を製造する方法について、具体的に説明する。 A method for manufacturing such a printed wiring board 11 will be specifically explained.

まず、金属箔付き樹脂シート1と、コア材9とを用意する。 First, a resin sheet 1 with metal foil and a core material 9 are prepared.

コア材9は、電気絶縁性を有する基材6と、基材6上にある導体配線7とを備える。図2Aに示す例では、導体配線7は、電子部品8として、インダクタ素子の一部を構成する螺旋状の配線(以下、螺旋部71という)を含む。図2Aに示す例では、螺旋部71におけるライン幅が、螺旋部71の厚みよりも大きい。 The core material 9 includes a base material 6 having electrical insulation properties and conductive wiring 7 on the base material 6. In the example shown in FIG. 2A, the conductor wiring 7 includes, as the electronic component 8, a spiral wiring (hereinafter referred to as a spiral portion 71) that constitutes a part of an inductor element. In the example shown in FIG. 2A, the line width in the spiral portion 71 is larger than the thickness of the spiral portion 71.

このコア材9と金属箔付き樹脂シート1とを、コア材9における導体配線7と金属箔付き樹脂シート1における接着層4とが対向するように重ねて積層物を構成し、この積層物を熱プレスする。 This core material 9 and the resin sheet 1 with metal foil are stacked so that the conductor wiring 7 in the core material 9 and the adhesive layer 4 in the resin sheet 1 with metal foil are opposed to form a laminate. Heat press.

接着層4が熱可塑性を有する場合には、上記のように積層物を熱プレスすると、接着層4が軟化して流動することで、図2Aに示すように接着層4に導体配線7が埋め込まれ、それにより電子部品8である螺旋部71も接着層4に埋め込まれる。続いて、接着層4が固化する。これにより、絶縁樹脂層3と接着層4の固化物とからなる絶縁層5が作製され、この絶縁層5に導体配線7及び螺旋部71が埋め込まれる。 When the adhesive layer 4 has thermoplasticity, when the laminate is hot-pressed as described above, the adhesive layer 4 softens and flows, and the conductor wiring 7 is embedded in the adhesive layer 4 as shown in FIG. 2A. As a result, the spiral portion 71, which is the electronic component 8, is also embedded in the adhesive layer 4. Subsequently, the adhesive layer 4 is solidified. As a result, an insulating layer 5 made of a solidified product of the insulating resin layer 3 and the adhesive layer 4 is produced, and the conductor wiring 7 and the spiral portion 71 are embedded in this insulating layer 5.

また、接着層4が熱硬化性を有する場合は、上記のように積層物を熱プレスすると、まず接着層4が軟化して流動することで、接着層4に導体配線7が埋め込まれ、それにより電子部品8である螺旋部71も接着層4に埋め込まれる。続いて、接着層4が熱硬化する。これにより、絶縁樹脂層3と接着層4の硬化物とからなる絶縁層5が作製され、この絶縁層5に導体配線7及び螺旋部71が埋め込まれる。 In addition, when the adhesive layer 4 has thermosetting properties, when the laminate is hot-pressed as described above, the adhesive layer 4 first softens and flows, so that the conductor wiring 7 is embedded in the adhesive layer 4. Accordingly, the spiral portion 71 which is the electronic component 8 is also embedded in the adhesive layer 4. Subsequently, the adhesive layer 4 is thermally cured. As a result, an insulating layer 5 made of the cured product of the insulating resin layer 3 and the adhesive layer 4 is produced, and the conductor wiring 7 and the spiral portion 71 are embedded in this insulating layer 5.

このように接着層4に導体配線7及び螺旋部71が埋め込まれる際、既に説明した理由により、導体配線7及び螺旋部71は接着層4に埋め込まれやすく、かつ導体配線7及び螺旋部71は金属層2に到達しにくい。このため、導体配線7及び螺旋部71の各々と金属層2との間の短絡が生じにくい。 When the conductor wiring 7 and the spiral part 71 are embedded in the adhesive layer 4 in this way, the conductor wiring 7 and the spiral part 71 are easily embedded in the adhesive layer 4, and the conductor wiring 7 and the spiral part 71 are easily embedded in the adhesive layer 4 for the reasons already explained. It is difficult to reach the metal layer 2. Therefore, a short circuit between each of the conductor wiring 7 and the spiral portion 71 and the metal layer 2 is less likely to occur.

続いて、必要により、図2Bに示すように、フォトリソグラフィ法などにより、金属箔付き樹脂シート1に由来する金属層2から導体配線10(以下、第二導体配線10といい、コア材9に由来する導体配線7を第一導体配線7という)を作製する。第二導体配線10は、電子部品8として、インダクタ素子の一部を構成する螺旋状の配線(以下、螺旋部101という)を含んでもよい。すなわち、第一導体配線7における螺旋部71と、第二導体配線10における螺旋部101との各々が、同じインダクタ素子の一部を構成してもよい。この場合、第一導体配線7における螺旋部71と第二導体配線10における螺旋部101とは、ビアなどで電気的接続される。 Subsequently, if necessary, as shown in FIG. 2B, a conductor wiring 10 (hereinafter referred to as second conductor wiring 10) is formed from the metal layer 2 originating from the metal foil-covered resin sheet 1 to the core material 9 by photolithography or the like. The resulting conductor wiring 7 is referred to as a first conductor wiring 7). The second conductor wiring 10 may include, as the electronic component 8, a spiral wiring (hereinafter referred to as a spiral portion 101) that constitutes a part of an inductor element. That is, the spiral portion 71 in the first conductor wiring 7 and the spiral portion 101 in the second conductor wiring 10 may each constitute a part of the same inductor element. In this case, the spiral portion 71 of the first conductor wiring 7 and the spiral portion 101 of the second conductor wiring 10 are electrically connected by a via or the like.

このようにして、電子部品8として螺旋部71、101、並びに螺旋部71、101で構成されるインダクタ素子を備えるプリント配線板11が得られる。 In this way, a printed wiring board 11 is obtained as the electronic component 8 including the spiral portions 71 and 101 and the inductor element constituted by the spiral portions 71 and 101.

また、金属箔付き樹脂シート1を用いて作製されたプリント配線板11をコア材9とし、このコア材9に、上記の方法で金属箔付き樹脂シート1を用いて絶縁層5及び導体配線7を積み重ねることで、更に多層のプリント配線板11を得ることができる。また、コア材9上に金属箔付き樹脂シート1を用いて絶縁層5と導体配線7とを繰り返し積み重ねることで、更に多層のプリント配線板11を得ることもできる。 Further, a printed wiring board 11 manufactured using the resin sheet 1 with metal foil is used as a core material 9, and the insulating layer 5 and conductor wiring 7 are formed using the resin sheet 1 with metal foil on this core material 9 by the above method. By stacking them, a printed wiring board 11 with even more layers can be obtained. Further, by repeatedly stacking the insulating layer 5 and the conductive wiring 7 on the core material 9 using the resin sheet 1 with metal foil, a printed wiring board 11 with even more layers can be obtained.

なお、上記の説明ではコア材9は導体配線7の一部で構成される電子部品8を備えるが、コア材9は、導体配線7に実装された半導体装置、チップ抵抗などの電子部品8を備えてもよい。この場合も、本実施形態では、プリント配線板11の製造時に電子部品8が接着層4に埋め込まれやすく、かつ電子部品8は金属層2に到達しにくい。 Note that in the above description, the core material 9 includes the electronic component 8 configured as a part of the conductor wiring 7, but the core material 9 includes the electronic component 8 such as a semiconductor device or a chip resistor mounted on the conductor wiring 7 You may prepare. Also in this case, in this embodiment, the electronic component 8 is easily embedded in the adhesive layer 4 during manufacturing of the printed wiring board 11, and the electronic component 8 is difficult to reach the metal layer 2.

1.金属箔付き樹脂シートの作製
金属層2として、表1に示す厚みの銅箔を用意した。なお、実施例1~5及び比較例1~2における銅箔は古川電工社製の品番F2WSであり、実施例6における銅箔は福田金属社製の品番SVであり、実施例7における銅箔は三井金属社製の品番MT18Exである。
1. Preparation of Resin Sheet with Metal Foil Copper foil having the thickness shown in Table 1 was prepared as the metal layer 2. The copper foil in Examples 1 to 5 and Comparative Examples 1 to 2 is product number F2WS manufactured by Furukawa Electric Co., Ltd., the copper foil in Example 6 is product number SV manufactured by Fukuda Kinzoku Co., Ltd., and the copper foil in Example 7 is is product number MT18Ex manufactured by Mitsui Kinzoku Co., Ltd.

また、表1に示す絶縁樹脂層3の原料組成の欄に示す成分を混合して、絶縁樹脂組成物を調製し、表1における接着層4の原料組成の欄に示す成分を混合して、接着樹脂組成物を調製した。 In addition, an insulating resin composition was prepared by mixing the components shown in the raw material composition column of the insulating resin layer 3 shown in Table 1, and the components shown in the raw material composition column of the adhesive layer 4 in Table 1 were mixed, An adhesive resin composition was prepared.

なお、表1に示される成分の詳細は次のとおりである。
・ポリアミド樹脂:カルボジイミド変性可溶性ポリアミド、日清紡ケミカル社製、品番AC-07-M14。
・エポキシ樹脂:日本化薬社製、品番NC-3000H。
・ポリアミドイミド:東洋紡社製、品番HR-46NN。
・MEK:都興産社製、メチルエチルケトン。
・2E4MZ:四国化成社製、2-エチル-4-メチルイミダゾール。
The details of the components shown in Table 1 are as follows.
- Polyamide resin: carbodiimide-modified soluble polyamide, manufactured by Nisshinbo Chemical Co., Ltd., product number AC-07-M14.
- Epoxy resin: manufactured by Nippon Kayaku Co., Ltd., product number NC-3000H.
・Polyamideimide: Manufactured by Toyobo Co., Ltd., product number HR-46NN.
・MEK: Methyl ethyl ketone manufactured by Tokosansha.
・2E4MZ: Manufactured by Shikoku Kasei Co., Ltd., 2-ethyl-4-methylimidazole.

金属層2の表面に絶縁樹脂組成物をコンマコータで塗布してから、絶縁樹脂組成物を加熱することで絶縁樹脂層3を作製した。表1の絶縁樹脂層3の作製条件の欄に、絶縁樹脂層3の作製条件を示す。この欄における塗工ギャップは、コンマコータにおけるアプリケータロールとバックアップロールとの間のギャップであり、加熱温度と加熱時間は絶縁樹脂組成物を加熱する条件である。なお、実施例2の場合は絶縁樹脂組成物を加熱しなかった。これにより、金属層2と絶縁樹脂層3とを備える半製品を得た。 The insulating resin layer 3 was prepared by applying the insulating resin composition to the surface of the metal layer 2 using a comma coater and then heating the insulating resin composition. The manufacturing conditions for the insulating resin layer 3 are shown in the column of manufacturing conditions for the insulating resin layer 3 in Table 1. The coating gap in this column is the gap between the applicator roll and the backup roll in the comma coater, and the heating temperature and heating time are the conditions for heating the insulating resin composition. In addition, in the case of Example 2, the insulating resin composition was not heated. As a result, a semi-finished product including the metal layer 2 and the insulating resin layer 3 was obtained.

続いて、絶縁樹脂層3の上(実施例2の場合は絶縁樹脂組成物の上)に、接着樹脂組成物をコンマコータで塗布してから、接着樹脂組成物を加熱することで接着層4を作製した。表1の接着樹脂層の作製条件の欄に、接着樹脂層の作製条件を示す。この欄における塗工ギャップは、コンマコータにおけるアプリケータロールとバックアップロールとの間のギャップであり、加熱温度と加熱時間は接着樹脂組成物を加熱する条件である。また、実施例2の場合は絶縁樹脂組成物と接着樹脂組成物とを同時に加熱することで、絶縁樹脂層3と接着樹脂層とを作製した。これにより、金属層2、絶縁樹脂層3及び接着層4を備える製品である金属箔付き樹脂シート1を作製した。 Subsequently, an adhesive resin composition is applied onto the insulating resin layer 3 (on the insulating resin composition in the case of Example 2) using a comma coater, and then the adhesive resin composition is heated to form the adhesive layer 4. Created. The column of adhesive resin layer manufacturing conditions in Table 1 shows the manufacturing conditions of the adhesive resin layer. The coating gap in this column is the gap between the applicator roll and the backup roll in the comma coater, and the heating temperature and heating time are the conditions for heating the adhesive resin composition. Moreover, in the case of Example 2, the insulating resin layer 3 and the adhesive resin layer were produced by heating the insulating resin composition and the adhesive resin composition simultaneously. As a result, a metal foil-covered resin sheet 1, which is a product including a metal layer 2, an insulating resin layer 3, and an adhesive layer 4, was produced.

2.厚み測定結果
絶縁樹脂層3の厚み、接着層4の厚み、半製品の厚み及び製品(金属箔付き樹脂シート1)の厚みを、測定した。
2. Thickness measurement results The thickness of the insulating resin layer 3, the thickness of the adhesive layer 4, the thickness of the semi-finished product, and the thickness of the product (resin sheet with metal foil 1) were measured.

絶縁樹脂層3の厚みは、後述の方法で測定した半製品の平均厚さから、金属層の厚みを差し引いた値である。 The thickness of the insulating resin layer 3 is the value obtained by subtracting the thickness of the metal layer from the average thickness of the semi-finished product measured by the method described below.

接着層4の厚みは、後述の方法で測定した製品の平均厚さから、後述の方法で測定した半製品の厚みを差し引いた値である。 The thickness of the adhesive layer 4 is the value obtained by subtracting the thickness of the semi-finished product measured by the method described below from the average thickness of the product measured by the method described below.

半製品の厚み測定にあたっては、半製品に一方向に並ぶ5つの厚み測定位置を設定し、各測定位置において半製品の厚みをデジタルマイクロメーターで測定した。これにより得られた5つの測定値の平均値を、平均厚さとして表1に示す。また、平均厚さに対する測定値のばらつきを厚さばらつきとして表1に示す。 In measuring the thickness of the semi-finished product, five thickness measurement positions were set in one direction on the semi-finished product, and the thickness of the semi-finished product was measured at each measurement position using a digital micrometer. The average value of the five measured values thus obtained is shown in Table 1 as the average thickness. Further, Table 1 shows the variations in the measured values with respect to the average thickness as thickness variations.

製品の厚み測定にあたっては、製品に一方向に並ぶ5つの厚み測定位置を設定し、各測定位置において製品の厚みをデジタルマイクロメーターで測定した。これにより得られた5つの測定値の平均値を、平均厚さとして表1に示す。また、平均厚さに対する測定値のばらつきを厚さばらつきとして表1に示す。 To measure the thickness of the product, five thickness measurement positions were set up in one direction on the product, and the thickness of the product was measured at each measurement position using a digital micrometer. The average value of the five measured values thus obtained is shown in Table 1 as the average thickness. Further, Table 1 shows the variations in the measured values with respect to the average thickness as thickness variations.

下記表1に示す結果によると、絶縁樹脂組成物と接着樹脂組成物とのうち少なくとも一方の揮発性成分の含有率が30質量%以上である実施例1~7では製品の厚さばらつき±5μm以内を達成できた。特に、絶縁樹脂組成物と接着樹脂組成物とのいずれの揮発性成分の含有率も30質量%以上である実施例1及び2では厚さばらつきが特に小さくなることが確認できた。 According to the results shown in Table 1 below, in Examples 1 to 7 in which the volatile component content of at least one of the insulating resin composition and the adhesive resin composition was 30% by mass or more, the product thickness variation was ±5 μm. I was able to achieve within. In particular, it was confirmed that the thickness variations were particularly small in Examples 1 and 2 in which the content of volatile components in both the insulating resin composition and the adhesive resin composition was 30% by mass or more.

3.物性測定結果
絶縁樹脂層については、軟化点、ガラス転移温度、分解開始温度、及び絶縁樹脂組成物のゲルタイムを、既に説明した方法で測定した。
3. Physical property measurement results Regarding the insulating resin layer, the softening point, glass transition temperature, decomposition start temperature, and gel time of the insulating resin composition were measured by the methods described above.

接着層については、軟化点、最低溶融粘度、接着樹脂組成物のゲルタイム、及び硬化開始温度を、既に説明した方法で測定した。 Regarding the adhesive layer, the softening point, minimum melt viscosity, gel time of the adhesive resin composition, and curing start temperature were measured by the methods described above.

Figure 0007403061000001
Figure 0007403061000001

4.揮発性成分含有率についての詳細評価
特に揮発性成分含有率と厚み精度との関係について調査するために、下記の試験を行った。
4. Detailed Evaluation of Volatile Component Content In order to specifically investigate the relationship between volatile component content and thickness accuracy, the following test was conducted.

実施例2において、絶縁樹脂組成物中の溶剤の含有量を変更して、揮発性成分含有率が25質量%である組成物A1、揮発性成分含有率が30質量%である組成物A2及び揮発性成分含有率が35質量%である組成物A3を、調製した。 In Example 2, the content of the solvent in the insulating resin composition was changed to create composition A1 with a volatile component content of 25% by mass, composition A2 with a volatile component content of 30% by mass, and A composition A3 was prepared with a volatile component content of 35% by weight.

また、実施例2において、接着樹脂組成物中の溶剤の含有量を変更して、揮発性成分含有率が25質量%である組成物B1、揮発性成分含有率が30質量%である組成物B2及び揮発性成分含有率が35質量%である組成物B3を、調製した。 Further, in Example 2, the content of the solvent in the adhesive resin composition was changed to create a composition B1 with a volatile component content of 25% by mass and a composition with a volatile component content of 30% by mass. B2 and a composition B3 with a volatile component content of 35% by weight were prepared.

金属層2の表面に組成物A1、組成物A2及び組成物A3の各々をコンマコータで塗布した。このときのコンマコータにおけるアプリケータロールとバックアップロールとの間のギャップの中央部の寸法及び中央部の寸法に対するばらつきは、表2のギャップ寸法の欄に示すとおりである。続いて、各組成物を300℃、1分間の条件で加熱することで、絶縁樹脂層3を作製した。この絶縁樹脂層3に一方向に並ぶ5つの厚み測定位置を設定し、各測定位置において金属層2と絶縁樹脂層3とを合わせた厚みをデジタルマイクロメーターで測定した。これにより得られた5つの各測定値から金属層2の厚みを差し引くことで、絶縁樹脂層3の厚みの5つの測定値を得た。この絶縁樹脂層3の厚みの測定値の平均値、及び平均値に対する測定値のばらつきを、表2に示す。 Composition A1, composition A2, and composition A3 were each applied to the surface of metal layer 2 using a comma coater. At this time, the dimension of the center part of the gap between the applicator roll and the backup roll in the comma coater and the variation in the dimension of the center part are as shown in the gap dimension column of Table 2. Subsequently, the insulating resin layer 3 was produced by heating each composition at 300° C. for 1 minute. Five thickness measurement positions arranged in one direction were set on this insulating resin layer 3, and the combined thickness of the metal layer 2 and the insulating resin layer 3 was measured at each measurement position using a digital micrometer. Five measured values of the thickness of the insulating resin layer 3 were obtained by subtracting the thickness of the metal layer 2 from each of the five measured values thus obtained. Table 2 shows the average value of the measured thickness of the insulating resin layer 3 and the variation of the measured value with respect to the average value.

また、金属層2の表面に組成物B1、組成物B2及び組成物B3の各々をコンマコータで塗布した。このときのコンマコータにおけるアプリケータロールとバックアップロールとの間のギャップの中央部の寸法及び中央部の寸法に対するばらつきは、表2のギャップ寸法の欄に示すとおりである。続いて、各組成物を180℃、1分間の条件で加熱することで、接着層4を作製した。この接着層4に一方向に並ぶ5つの厚み測定位置を設定し、各測定位置において金属層2と接着層4とを合わせた厚みをデジタルマイクロメーターで測定した。これにより得られた5つの各測定値から金属層2の厚みを差し引くことで、接着層4の厚みの5つの測定値を得た。この接着層4の厚みの測定値の平均値、及び平均値に対する測定値のばらつきを、表2に示す。 Furthermore, each of composition B1, composition B2, and composition B3 was applied to the surface of metal layer 2 using a comma coater. At this time, the dimension of the center part of the gap between the applicator roll and the backup roll in the comma coater and the variation in the dimension of the center part are as shown in the gap dimension column of Table 2. Subsequently, adhesive layer 4 was produced by heating each composition at 180° C. for 1 minute. Five thickness measurement positions arranged in one direction were set on this adhesive layer 4, and the combined thickness of the metal layer 2 and adhesive layer 4 was measured at each measurement position using a digital micrometer. By subtracting the thickness of the metal layer 2 from each of the five measured values thus obtained, five measured values of the thickness of the adhesive layer 4 were obtained. Table 2 shows the average value of the measured thickness of the adhesive layer 4 and the variation of the measured value with respect to the average value.

この結果に示すように、揮発性成分含有率が30質量%よりも多い組成物A1及び組成物B1の場合は、作製された層の厚みのばらつきはギャップ寸法のばらつきと同程度であった。これに対して、揮発性成分含有率が30質量%である組成物A2及び組成物B2の場合は作製された層の厚みのばらつきがギャップ寸法のばらつきよりも小さくなり、揮発性成分含有率が35質量%である組成物A3及び組成物B3の場合は作製された層の厚みのばらつきが更に小さくなった。 As shown in the results, in the case of composition A1 and composition B1 in which the volatile component content was more than 30% by mass, the variation in the thickness of the produced layer was comparable to the variation in the gap size. On the other hand, in the case of compositions A2 and B2 in which the volatile component content is 30% by mass, the variation in the thickness of the produced layer is smaller than the variation in the gap dimension, and the volatile component content is In the case of compositions A3 and B3 containing 35% by mass, the variations in the thickness of the produced layers were further reduced.

Figure 0007403061000002
Figure 0007403061000002

5.導体配線の埋め込みについて
実施例1-7では、上記のとおり、製品厚み(金属層、絶縁樹脂層及び接着層をあわせた厚み)のばらつきが±5μm以下であることを達成できた。金属層と絶縁樹脂層とをあわせた厚みのばらつきを考慮すると、実施例1-7では、接着層の厚みのばらつきは±1.5μm以内から±2.5μm以内程度であると判断できる。このように接着層の厚みのばらつきが小さいと、接着層に導体配線又は電子部品を埋め込む場合に、接着層の厚みが部分的に小さくなることを見越して接着層の全体的な厚み(平均厚み)を大きくする必要が無い。このため、金属箔付き樹脂シートから作製されるプリント配線板などの厚みを小さくできる。すなわち、金属箔付き樹脂シートの絶縁樹脂層及び接着層から作製される絶縁層への導体配線又は電子部品の埋め込みを実現しながら、絶縁層の全体的な厚みを小さくしうる。
5. Regarding embedding of conductor wiring As described above, in Example 1-7, it was possible to achieve a variation in product thickness (the combined thickness of the metal layer, insulating resin layer, and adhesive layer) of ±5 μm or less. Considering the variation in the combined thickness of the metal layer and the insulating resin layer, it can be determined that in Example 1-7, the variation in the thickness of the adhesive layer is within ±1.5 μm to within ±2.5 μm. If the variation in the thickness of the adhesive layer is small in this way, when embedding conductive wiring or electronic components in the adhesive layer, the overall thickness of the adhesive layer (average thickness ) does not need to be increased. Therefore, the thickness of a printed wiring board or the like made from a resin sheet with metal foil can be reduced. That is, the overall thickness of the insulating layer can be reduced while embedding conductor wiring or electronic components in the insulating layer made from the insulating resin layer and the adhesive layer of the resin sheet with metal foil.

Claims (7)

金属層と、
前記金属層の上に重なる絶縁樹脂層と、
前記絶縁樹脂層の上に重なり、熱可塑性又は熱硬化性を有する接着層とを備え、
前記接着層の厚みが3μm以上30μm以下であり、
前記金属層と前記絶縁樹脂層と前記接着層とを合わせた厚みの、平均値を基準にした厚みばらつきが±5μm以内であり、
前記絶縁樹脂層は、熱硬化性樹脂組成物の硬化物を含む、
金属箔付き樹脂シート。
a metal layer;
an insulating resin layer overlapping the metal layer;
and a thermoplastic or thermosetting adhesive layer overlapping the insulating resin layer,
The thickness of the adhesive layer is 3 μm or more and 30 μm or less,
The thickness variation of the combined thickness of the metal layer, the insulating resin layer, and the adhesive layer is within ±5 μm based on an average value,
The insulating resin layer includes a cured product of a thermosetting resin composition.
Resin sheet with metal foil.
金属層と、
前記金属層の上に重なる絶縁樹脂層と、
前記絶縁樹脂層の上に重な接着層とを備え、
前記接着層の厚みが3μm以上30μm以下であり、
前記金属層と前記絶縁樹脂層と前記接着層とを合わせた厚みの、平均値を基準にした厚みばらつきが±5μm以内であり、
前記絶縁樹脂層は、熱可塑性を有し、
前記接着層は、熱可塑性を有し、かつ前記接着層の軟化点は前記絶縁樹脂層の軟化点よりも低い、
金属箔付き樹脂シート。
a metal layer;
an insulating resin layer overlapping the metal layer;
an adhesive layer overlapping the insulating resin layer,
The thickness of the adhesive layer is 3 μm or more and 30 μm or less,
The thickness variation of the combined thickness of the metal layer, the insulating resin layer, and the adhesive layer is within ±5 μm based on an average value,
The insulating resin layer has thermoplasticity,
The adhesive layer has thermoplasticity, and the softening point of the adhesive layer is lower than the softening point of the insulating resin layer.
Resin sheet with metal foil.
前記金属層の厚みは2μm以上20μm以下である、
請求項1又は2に記載の金属箔付き樹脂シート。
The thickness of the metal layer is 2 μm or more and 20 μm or less,
The resin sheet with metal foil according to claim 1 or 2.
前記絶縁樹脂層の厚みは2μm以上10μm以下である、
請求項1から3のいずれか一項に記載の金属箔付き樹脂シート。
The thickness of the insulating resin layer is 2 μm or more and 10 μm or less,
The resin sheet with metal foil according to any one of claims 1 to 3.
前記接着層の最低溶融粘度は10The minimum melt viscosity of the adhesive layer is 10 5Five Pa・s未満である、less than Pa・s,
請求項1から4のいずれか一項に記載の金属箔付き樹脂シート。The resin sheet with metal foil according to any one of claims 1 to 4.
請求項1から5のいずれか一項に記載の金属箔付き樹脂シートにおける前記絶縁樹脂層と前記接着層とから作製された絶縁層と、An insulating layer made from the insulating resin layer and the adhesive layer in the resin sheet with metal foil according to any one of claims 1 to 5,
前記絶縁層に埋め込まれている導体配線とを備える、and a conductor wiring embedded in the insulating layer.
プリント配線板。printed wiring board.
請求項1から5のいずれか一項に記載の金属箔付き樹脂シートを製造する方法であり、A method for manufacturing a resin sheet with metal foil according to any one of claims 1 to 5,
前記金属層上に絶縁樹脂組成物から前記絶縁樹脂層を作製し、producing the insulating resin layer from an insulating resin composition on the metal layer,
前記絶縁樹脂層上に接着樹脂組成物から前記接着層を作製し、producing the adhesive layer from an adhesive resin composition on the insulating resin layer;
前記絶縁樹脂組成物と前記接着樹脂組成物とのうち少なくとも一方における揮発性成分含有率は30質量%以上である、The volatile component content in at least one of the insulating resin composition and the adhesive resin composition is 30% by mass or more,
金属箔付き樹脂シートの製造方法。A method for manufacturing a resin sheet with metal foil.
JP2019164822A 2019-09-10 2019-09-10 Method for manufacturing resin sheet with metal foil, printed wiring board, and resin sheet with metal foil Active JP7403061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019164822A JP7403061B2 (en) 2019-09-10 2019-09-10 Method for manufacturing resin sheet with metal foil, printed wiring board, and resin sheet with metal foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019164822A JP7403061B2 (en) 2019-09-10 2019-09-10 Method for manufacturing resin sheet with metal foil, printed wiring board, and resin sheet with metal foil

Publications (2)

Publication Number Publication Date
JP2021041605A JP2021041605A (en) 2021-03-18
JP7403061B2 true JP7403061B2 (en) 2023-12-22

Family

ID=74861514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019164822A Active JP7403061B2 (en) 2019-09-10 2019-09-10 Method for manufacturing resin sheet with metal foil, printed wiring board, and resin sheet with metal foil

Country Status (1)

Country Link
JP (1) JP7403061B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010208322A (en) 2009-02-13 2010-09-24 Asahi Kasei E-Materials Corp Polyimide metal laminate, and printed wiring board using the same
JP2010232514A (en) 2009-03-27 2010-10-14 Kyocera Corp Method for manufacturing resin substrate
JP2014150133A (en) 2013-01-31 2014-08-21 Panasonic Corp Metal foil with resin, printed wiring board, and method for manufacturing printed wiring board
JP2015217645A (en) 2014-05-20 2015-12-07 パナソニックIpマネジメント株式会社 Metal foil with flexible resin and flexible printed wiring board
JP2017128061A (en) 2016-01-21 2017-07-27 宇部エクシモ株式会社 Flexible metal laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319934B2 (en) * 1996-03-26 2002-09-03 松下電工株式会社 Metal foil with resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010208322A (en) 2009-02-13 2010-09-24 Asahi Kasei E-Materials Corp Polyimide metal laminate, and printed wiring board using the same
JP2010232514A (en) 2009-03-27 2010-10-14 Kyocera Corp Method for manufacturing resin substrate
JP2014150133A (en) 2013-01-31 2014-08-21 Panasonic Corp Metal foil with resin, printed wiring board, and method for manufacturing printed wiring board
JP2015217645A (en) 2014-05-20 2015-12-07 パナソニックIpマネジメント株式会社 Metal foil with flexible resin and flexible printed wiring board
JP2017128061A (en) 2016-01-21 2017-07-27 宇部エクシモ株式会社 Flexible metal laminate

Also Published As

Publication number Publication date
JP2021041605A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
TWI780040B (en) Polyimide resin precursor
CN106010421B (en) Adhesive composition, film-like adhesive material, adhesive layer, adhesive sheet, copper-clad laminate, wiring board, and printed wiring board
TWI777950B (en) Polyimide, polyimide-based adhesive, film-like adhesive material, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate and printed wiring board, and multilayer wiring board and method for producing the same
JP5117746B2 (en) Aramid-filled polyimides having advantageous thermal expansion properties and related methods
JP5232386B2 (en) Thermosetting resin composition and use thereof
TWI780992B (en) Polyimide, adhesive, film-like adhesive material, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate, printed wiring board, and multilayer wiring board, and method for producing the same
CN108690552B (en) Adhesive, adhesive material, adhesive layer, adhesive sheet, copper foil, copper-clad laminate, wiring board, and method for producing same
TW200538497A (en) Prepreg, metal-clad laminate and printed circuit board using same
JP5407679B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
JP2010248495A (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate plate and multilayer printed wiring board using the same
JPH04262593A (en) Multilayer interconnection structure and multilayers laminating method therefor
JP6443657B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
JP4008249B2 (en) Insulating resin composition, insulating resin sheet and printed wiring board
JP5470725B2 (en) Metal foil-clad laminate and printed wiring board
JP2008244091A (en) Interlayer connection bonding sheet for multilayer wiring circuit board
JP6519307B2 (en) Thermosetting insulating resin composition, and insulating film with support using the same, prepreg, laminate and multilayer printed wiring board
JP7403061B2 (en) Method for manufacturing resin sheet with metal foil, printed wiring board, and resin sheet with metal foil
JP2021161387A (en) Polyimide, crosslinked polyimide, adhesive film, laminate, coverlay film, copper foil with resin, metal-clad laminate, circuit board and multilayer circuit board
JP4947976B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP5577837B2 (en) Metal foil-clad laminate, method for producing the same, and printed wiring board using the same
JP2021141108A (en) Adhesive, adhesive sheet and flexible copper clad laminate
JP2007273616A (en) Manufacturing method for multilayer printed circuit board
JP2005314562A (en) Thermosetting resin composition and its application
JP2006269558A (en) Method of producing flexible laminate substrate
JP7378908B2 (en) multilayer circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231124

R151 Written notification of patent or utility model registration

Ref document number: 7403061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151