JP7402619B2 - Solid electrolyte manufacturing method - Google Patents

Solid electrolyte manufacturing method Download PDF

Info

Publication number
JP7402619B2
JP7402619B2 JP2019102553A JP2019102553A JP7402619B2 JP 7402619 B2 JP7402619 B2 JP 7402619B2 JP 2019102553 A JP2019102553 A JP 2019102553A JP 2019102553 A JP2019102553 A JP 2019102553A JP 7402619 B2 JP7402619 B2 JP 7402619B2
Authority
JP
Japan
Prior art keywords
solvent
solid electrolyte
precursor
raw material
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019102553A
Other languages
Japanese (ja)
Other versions
JP2020196640A (en
Inventor
知之 辻村
雄一 相原
信也 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2019102553A priority Critical patent/JP7402619B2/en
Priority to KR1020200039420A priority patent/KR20200137966A/en
Priority to US16/886,897 priority patent/US11799126B2/en
Publication of JP2020196640A publication Critical patent/JP2020196640A/en
Application granted granted Critical
Publication of JP7402619B2 publication Critical patent/JP7402619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

本発明は、全固体電池に使用する固体電解質の製造方法に係るものである。 The present invention relates to a method for manufacturing a solid electrolyte used in an all-solid-state battery.

全固体電池に使用する固体電解質を製造する方法として、固体電解質の原料を溶媒中で反応させてから析出させて固体電解質を製造する液相法がある(非特許文献1)。
この従来の液相法は、固体電解質の原料全てをまとめて一つの溶媒に溶解して反応させ、そこから固体電解質の結晶を析出させるものである。
この従来の液相法は、原料の中に前記溶媒に溶けにくい成分が含まれている場合には目的の固体電解質を製造することが難しいという問題がある。
As a method for producing a solid electrolyte used in an all-solid-state battery, there is a liquid phase method in which a solid electrolyte raw material is reacted in a solvent and then precipitated to produce a solid electrolyte (Non-Patent Document 1).
In this conventional liquid phase method, all the raw materials for the solid electrolyte are dissolved in one solvent and reacted, and crystals of the solid electrolyte are precipitated therefrom.
This conventional liquid phase method has a problem in that it is difficult to produce the desired solid electrolyte when the raw materials contain components that are difficult to dissolve in the solvent.

固体電解質を製造する上記以外の方法として、特許文献1に示すようにボールミルなどで固体電解質の原料を混合して固体電解質を製造する固相法がある。
しかしながら、固相法では成分をボールミルなどで均等に混ぜるために、製造容器の容量に制限があるので、一度に製造できる固体電解質の量が少ないという問題がある。
As a method other than the above for producing a solid electrolyte, there is a solid-phase method, as shown in Patent Document 1, in which solid electrolyte raw materials are mixed in a ball mill or the like to produce a solid electrolyte.
However, in the solid phase method, the components are evenly mixed using a ball mill or the like, so there is a limit to the capacity of the production container, so there is a problem that the amount of solid electrolyte that can be produced at one time is small.

特開2002-109955号公報Japanese Patent Application Publication No. 2002-109955

Journal of the American Chemical Society 2013, 135, 975-978 Journal of the American Chemical Society 2013, 135, 975-978Journal of the American Chemical Society 2013, 135, 975-978 Journal of the American Chemical Society 2013, 135, 975-978

本発明は、上記問題に鑑みてなされたものであり、原料の一部が溶媒に溶けにくい場合であっても、固体電解質を効率よく製造する方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for efficiently producing a solid electrolyte even when some of the raw materials are difficult to dissolve in a solvent.

すなわち、本発明に係る固体電解質の製造方法は、原料の一部を第1の溶媒に溶解させてから第1の前駆体を析出させる工程と、該前駆体と前記原料の残部とを第2の溶媒に溶解させてから第2の前駆体を析出させる工程とを含む。 That is, the method for producing a solid electrolyte according to the present invention includes a step of dissolving a part of the raw material in a first solvent and then depositing a first precursor, and dissolving the precursor and the remainder of the raw material in a second solvent. and dissolving the second precursor in a solvent and precipitating the second precursor.

このように構成した固体電解質製造方法によれば、第1の溶媒及び第2の溶媒の少なくとも2種類の溶媒を使用して、二回に分けて原料を溶解させることができる。その結果、従来の液相法では製造することができなかった組成の固体電解質を液相法で効率よく製造することができる。 According to the solid electrolyte manufacturing method configured in this way, the raw material can be dissolved in two steps using at least two types of solvents, the first solvent and the second solvent. As a result, solid electrolytes with compositions that could not be produced using conventional liquid phase methods can be efficiently produced using liquid phase methods.

前記第1の溶媒と第2の溶媒とが互いに異なるものであれば、第1の溶媒又は第2の溶媒の少なくとも一方に溶解するものであれば原料として使用することができる。その結果、固体電解質の組成の幅をより広げることができる。 As long as the first solvent and the second solvent are different from each other, any material that dissolves in at least one of the first solvent and the second solvent can be used as a raw material. As a result, the composition range of the solid electrolyte can be further expanded.

本発明の効果は、前記原料がリチウム、リン、硫黄及びゲルマニウムを含有する場合に特に顕著に発揮される。理由は以下の通りである。
ゲルマニウムは、リチウム、リン及び硫黄等の他の元素が溶解しやすい溶媒には溶解しにくい。そのため、従来の液相法では原料にゲルマニウムを含有する固体電解質を製造することができなかった。一方、本願発明によれば、第1の溶媒または第2の溶媒としてゲルマニウムを溶解しやすい溶媒を使用することができる。その結果、従来の液相法では製造できなかったリチウム、リン、硫黄及びゲルマニウムを含有する固体電解質を液相法で効率よく製造することができる。
The effects of the present invention are particularly pronounced when the raw materials contain lithium, phosphorus, sulfur, and germanium. The reason is as follows.
Germanium is difficult to dissolve in solvents in which other elements such as lithium, phosphorus, and sulfur are easily soluble. Therefore, it has not been possible to produce a solid electrolyte containing germanium as a raw material using the conventional liquid phase method. On the other hand, according to the present invention, a solvent that easily dissolves germanium can be used as the first solvent or the second solvent. As a result, a solid electrolyte containing lithium, phosphorus, sulfur, and germanium, which could not be produced by conventional liquid phase methods, can be efficiently produced by liquid phase methods.

本発明の具体的な実施態様としては、前記原料がゲルマニウムを含有し、前記第1の溶媒又は前記第2の溶媒がエタノールであるものを挙げることができる。 As a specific embodiment of the present invention, the raw material contains germanium, and the first solvent or the second solvent is ethanol.

本願発明に係る固体電解質の製造方法によれば、原料の一部が溶媒に溶けにくい場合であっても、固体電解質を簡単に効率よく製造する方法を提供することができる。
そのため、これまで液相法では製造することが難しいと思われていた組成の固体電解質を低コストで大量に製造することができる。
According to the method for manufacturing a solid electrolyte according to the present invention, it is possible to provide a method for easily and efficiently manufacturing a solid electrolyte even if some of the raw materials are difficult to dissolve in a solvent.
Therefore, solid electrolytes with compositions that were previously considered difficult to produce using liquid phase methods can be produced in large quantities at low cost.

本発明の一実施形態に係る固体電解質の製造方法表すフロー図。FIG. 2 is a flow diagram representing a method for manufacturing a solid electrolyte according to an embodiment of the present invention. 本発明の実施例に係る固体電解質のX線粉末回折パターン。An X-ray powder diffraction pattern of a solid electrolyte according to an example of the present invention. 本発明の実施例に係る固体電解質のX線粉末回折パターン。3 is an X-ray powder diffraction pattern of a solid electrolyte according to an example of the present invention. 本発明の実施例に係る固体電解質のX線粉末回折パターン。3 is an X-ray powder diffraction pattern of a solid electrolyte according to an example of the present invention. 本発明の実施例に係る固体電解質のX線粉末回折パターン。3 is an X-ray powder diffraction pattern of a solid electrolyte according to an example of the present invention.

以下に図面を参照しながら、本発明の一実施形態について詳細に説明する。 An embodiment of the present invention will be described in detail below with reference to the drawings.

<1.本実施形態に係る固体電解質の製造方法>
本実施形態に係る固体電解質の製造工程について図1を用いて説明する。
<1. Method for manufacturing solid electrolyte according to this embodiment>
The manufacturing process of the solid electrolyte according to this embodiment will be explained using FIG. 1.

まず、原料の一部を第1の溶媒に添加する(図1のS1)。前記原料の一部とは、例えば、任意の元素Mを含有する粉末とLiS粉末との混合物であり、各粉末の量は最終的に作りたい固体電解質に含まれる元素Mの量に合わせて調合されている。 First, a portion of the raw material is added to the first solvent (S1 in FIG. 1). A part of the raw material is, for example, a mixture of a powder containing an arbitrary element M and a Li 2 S powder, and the amount of each powder is adjusted to the amount of element M contained in the solid electrolyte that is ultimately desired to be produced. It is formulated as follows.

前記元素Mは、硫化物系固体電解質に含有される他の元素である、例えば、リチウム、リン、硫黄等とは溶解しやすい溶媒の種類が異なる元素である。この元素Mの具体例としては、例えば、ゲルマニウム、スズ、ケイ素などの14族元素を挙げることができる。 The element M is an element that is easily dissolved in a different type of solvent from other elements contained in the sulfide-based solid electrolyte, such as lithium, phosphorus, and sulfur. Specific examples of this element M include Group 14 elements such as germanium, tin, and silicon.

前記原料の一部を前記第1の溶媒に添加し溶解させた後、反応が終了するまで攪拌する(図1のS2)。 After adding and dissolving a portion of the raw materials in the first solvent, the mixture is stirred until the reaction is completed (S2 in FIG. 1).

前記第1の溶媒は、前記粉末を溶解させることができるものであれば良く、特に限定されない。前記第1の溶媒の具体例としては、溶媒の極性をしめすアクセプター数(AN)が10以上のエタノールやN-メチルホルムアミド等の有機溶媒を挙げることができる。 The first solvent is not particularly limited as long as it can dissolve the powder. Specific examples of the first solvent include organic solvents such as ethanol and N-methylformamide having an acceptor number (AN), which indicates the polarity of the solvent, of 10 or more.

前記粉末を前記第1の溶媒に完全に溶解した後、エバポレータ等を使用して前記第1の溶媒を除去し固体電解質の第1の前駆体を析出させる(図1のS3)。 After the powder is completely dissolved in the first solvent, the first solvent is removed using an evaporator or the like to precipitate the first precursor of the solid electrolyte (S3 in FIG. 1).

次に、最終的な固体電解質の組成になるように該第1の前駆体に原料の残部を添加して、ここに第2の溶媒を加える(図1のS4)。前記第1の前駆体と前記原料の残部とを第2の溶媒に溶解させて、前記第1の前駆体と原料の残部との反応が終了するまで攪拌する(図1のS5)。 Next, the remainder of the raw material is added to the first precursor so as to have the final composition of the solid electrolyte, and the second solvent is added thereto (S4 in FIG. 1). The first precursor and the remainder of the raw material are dissolved in a second solvent, and stirred until the reaction between the first precursor and the remainder of the raw material is completed (S5 in FIG. 1).

前記原料の残部としては、例えば、リチウム、リン、硫黄等を含有する粉末を挙げることができる。本実施形態では、LiS粉末、P粉末を使用している。 The remainder of the raw material may include, for example, powder containing lithium, phosphorus, sulfur, and the like. In this embodiment, Li 2 S powder and P 2 S 5 powder are used.

前記第2の溶媒は、前記第1の前駆体及び原料の残部を溶解させることができるものであればよく、特に限定されない。前記第2の溶媒の具体例としては、溶媒の極性をしめすドナー数(DN)が15以下のテトラヒドロフランなどの有機溶媒を挙げることができる。 The second solvent is not particularly limited as long as it can dissolve the first precursor and the remainder of the raw material. Specific examples of the second solvent include organic solvents such as tetrahydrofuran having a donor number (DN), which indicates the polarity of the solvent, of 15 or less.

反応が完全に終了した後、エバポレータで前記第2の溶媒を除去して第2の前駆体を析出させる(図1のS6)。 After the reaction is completely completed, the second solvent is removed using an evaporator to precipitate the second precursor (S6 in FIG. 1).

このようにして析出させた第2の前駆体をプレスしてペレットを作製する。該ペレットを、石英ガラス管などで真空封入して、熱処理し(図1のS7)、室温まで冷却することで固体電解質を得る(図1のS8)。 The second precursor precipitated in this manner is pressed to produce pellets. The pellet is vacuum sealed in a quartz glass tube or the like, heat treated (S7 in FIG. 1), and cooled to room temperature to obtain a solid electrolyte (S8 in FIG. 1).

<製造された固体電解質の性質及び使用方法>
このようにして得られた固体電解質は、ペレット形状のまま全固体二次電池の固体電解質層として使用しても良いし、砕いて粉末状にしてから全固体二次電池の正極層、負極層、固体電解質層の成分として使用しても良い。
<Properties and usage of the produced solid electrolyte>
The solid electrolyte obtained in this way may be used as a solid electrolyte layer of an all-solid-state secondary battery in pellet form, or it may be crushed into a powder and then used as a positive electrode layer or a negative electrode layer of an all-solid-state secondary battery. , may be used as a component of a solid electrolyte layer.

前述したような製造方法で製造した固体電解質は、25℃におけるイオン伝導性が、例えば、10-4S/cm以上、より好ましくは10-3S/cm以上の高いイオン伝導度を有するものである。 The solid electrolyte manufactured by the manufacturing method described above has high ionic conductivity at 25° C., for example, 10 −4 S/cm or more, more preferably 10 −3 S/cm or more. be.

以上に説明したような固体電解質の製造方法によれば、原料を第1の溶媒と第2の溶媒との2回に分けて溶解させるので、溶媒を一種類しか使用しない従来の液相法に比べて、使用できる原料の種類を大幅に増やすことができる。 According to the method for producing a solid electrolyte as explained above, the raw materials are dissolved twice in the first solvent and in the second solvent, which is different from the conventional liquid phase method that uses only one type of solvent. In comparison, the variety of raw materials that can be used can be significantly increased.

すなわち、硫化物系固体電解質を構成するリチウム、リン及び硫黄などの元素を溶解する有機溶媒には溶けにくい、例えば、ゲルマニウム、スズ、ケイ素などの元素Mを使用する場合であっても、第1の溶媒と第2の溶媒を互いに異なる成分のものとし、第1の溶媒又は第2の溶媒のどちらかに、ゲルマニウム、スズ、ケイ素などの元素Mが溶解しやすい溶媒を使用することで液相法を使用することができる。 That is, even when using elements M such as germanium, tin, and silicon, which are difficult to dissolve in organic solvents that dissolve elements such as lithium, phosphorus, and sulfur constituting the sulfide-based solid electrolyte, the first By making the solvent and the second solvent have different components, and using a solvent in which the element M such as germanium, tin, silicon, etc. is easily dissolved in either the first solvent or the second solvent, a liquid phase can be formed. can be used.

液相法を使用すれば、ボールミルなどで粉末を混合して固体電解質を作製する固相法に比べて、はるかに大きなスケールで固体電解質を製造することができる。そのため、従来の液相法では製造できず、固相法でしか製造できなかった組成の固体電解質の生産性を従来よりも大きく向上させることができる。 If the liquid phase method is used, solid electrolytes can be manufactured on a much larger scale than the solid phase method, which creates solid electrolytes by mixing powders in a ball mill or the like. Therefore, it is possible to greatly improve the productivity of solid electrolytes having compositions that could not be manufactured by conventional liquid phase methods and could only be manufactured by solid phase methods.

前記固体電解質が、リチウム、リン及び硫黄などの元素を含有する硫化物系の固体電解質であるので、固体電解質のイオン伝導性を向上させることができる。また、このリュカ物系固体電解質がさらに14族元素であるゲルマニウム、スズ、ケイ素などを含有するものであるので、よりイオン伝導性を向上させることができる。 Since the solid electrolyte is a sulfide-based solid electrolyte containing elements such as lithium, phosphorus, and sulfur, the ionic conductivity of the solid electrolyte can be improved. Moreover, since this Lucas solid electrolyte further contains Group 14 elements such as germanium, tin, and silicon, it is possible to further improve the ionic conductivity.

本発明は前記実施形態に限られるものではない。
例えば、前記実施形態では、リチウム、リン、硫黄等とは溶解しやすい溶媒の種類が異なる元素Mを原料の一部として第1の溶媒に溶解させていたが、元素Mを原料の残部として第2の溶媒に溶解させても良い。
前記第1の溶媒と、前記第2の溶媒は、前述したものに限られず、溶解させる元素に合わせて様々な種類のものを使用することができる。
また、原料の残部は、原料の残り全部でなくても良い。より具体的には、目的の組成に応じて第1、第2の溶媒を使用するだけでなく、例えば、第3、第4の溶媒を使用して第3、第4の前駆体を得るようにしても良いし、さらに多段階の液相法としても良い。
The present invention is not limited to the above embodiments.
For example, in the embodiment described above, element M, which has a different type of solvent in which it is easily soluble than lithium, phosphorus, sulfur, etc., is dissolved in the first solvent as part of the raw material, but element M is dissolved in the first solvent as a part of the raw material. It may be dissolved in the second solvent.
The first solvent and the second solvent are not limited to those described above, and various types can be used depending on the element to be dissolved.
Further, the remainder of the raw material does not have to be the entire remainder of the raw material. More specifically, in addition to using the first and second solvents depending on the desired composition, for example, third and fourth solvents may be used to obtain the third and fourth precursors. Alternatively, a multi-stage liquid phase method may be used.

室温でのイオン伝導性が他の固体電解質に比べて高いので、前記固体電解質は14族元素を含有する硫化物系固体電解質であることが好ましいが、硫化物系固体電解質に限らず、様々な種類の固体電解質に使用することができる。組成は前述したものに限らず、いろいろなものに変えることが可能である。 Since the ionic conductivity at room temperature is higher than other solid electrolytes, the solid electrolyte is preferably a sulfide-based solid electrolyte containing Group 14 elements, but is not limited to sulfide-based solid electrolytes. Can be used for various types of solid electrolytes. The composition is not limited to the one described above, and can be changed to various other compositions.

第1の溶媒及び第2の溶媒は前述したものに限らず、固体電解質の原料となる元素を溶解することができるものでれば良く、様々な種類のものを組み合わせて使用することができる。第1の溶媒と第2の溶媒とは必ずしも異なる成分のものでなくても良く、同じ成分のものを使用しても良い。同じ溶媒であっても、原料を数回に分けて溶解させることで、溶解させやすくなると考えられるからである。
その他、本発明の趣旨に反しない範囲で種々の変形が可能である。
The first solvent and the second solvent are not limited to those described above, and any solvent may be used as long as it can dissolve the element that becomes the raw material of the solid electrolyte, and various kinds of solvents can be used in combination. The first solvent and the second solvent do not necessarily have to have different components, and may use the same components. This is because it is thought that even if the solvent is the same, dissolving the raw materials in several batches makes it easier to dissolve them.
In addition, various modifications can be made without departing from the spirit of the present invention.

次に、本実施形態の実施例について説明する。もちろん、本発明は、以下の実施例のみに限定されるわけではない。 Next, an example of this embodiment will be described. Of course, the present invention is not limited only to the following examples.

(実施例1)
<固体電解質の製造>
内部をアルゴン(Ar)で置換したグローブボックス内で、Li2S(純度99.9%、三津和)、GeS2(純度99.9%、和光純薬)を用いて2Li2S・GeS2組成になるように粉末1.5gを調合した。容積50mlのビーカーに入れた第1の溶媒であるエタノール40mlに、調合した前記粉末を添加して溶解させ、一晩撹拌した。反応終了後、ロータリーエバポレーターを用いて減圧下80℃でエタノールを留去し、第1の前駆体を得た。次に、得られた第1の前駆体に対して、最終的な組成がLi10GeP2S12となるように、Li2S(純度99.9%、三津和)およびP2S5(純度99%、Aldrich)を添加した後、第2の溶媒であるテトラヒドロフラン(THF)40mlをさらに添加して、Ar雰囲気下で攪拌を行った。反応終了後、ロータリーエバポレーターを用いて減圧下80℃でテトラヒドロフランを完全に除去し第2の前駆体を得た。得られた第2の前駆体150mgを380MPaでプレスすることでペレット作製を行い、このペレットを石英ガラス管で真空封入し、熱処理を行った。この熱処理の条件は550℃4時間とした。熱処理した前記ペレットを室温まで冷却することによって固体電解質を得た。
(Example 1)
<Production of solid electrolyte>
In a glove box whose interior was replaced with argon (Ar), Li 2 S (purity 99.9%, Mitsuwa) and GeS 2 (purity 99.9%, Wako Pure Chemical Industries) were used to obtain a 2Li 2 S/GeS 2 composition. 1.5g of powder was mixed in. The prepared powder was added and dissolved in 40 ml of ethanol as the first solvent placed in a 50 ml beaker, and stirred overnight. After the reaction was completed, ethanol was distilled off at 80° C. under reduced pressure using a rotary evaporator to obtain a first precursor. The first precursor obtained was then treated with Li 2 S (99.9% purity, Mitsuwa) and P2S5 (99% purity, Aldrich) so that the final composition was Li 10 GeP 2 S 12 ), 40 ml of tetrahydrofuran (THF) as a second solvent was further added and stirred under an Ar atmosphere. After the reaction was completed, tetrahydrofuran was completely removed using a rotary evaporator at 80° C. under reduced pressure to obtain a second precursor. Pellets were prepared by pressing 150 mg of the obtained second precursor at 380 MPa, and the pellets were vacuum-sealed in a quartz glass tube and heat-treated. The conditions for this heat treatment were 550°C for 4 hours. A solid electrolyte was obtained by cooling the heat-treated pellets to room temperature.

<固体電解質の評価>
得られた固体電解質について、イオン伝導度を測定した。
イオン伝導度の測定は、上記手法により得られたペレット状の固体電解質の両面にインジウム箔を圧着させて行った。また、測定温度を17℃から140℃の温度範囲に変えながらイオン伝導度測定を行い、アレーニウス式を用いて活性化エネルギーを求めた。さらに、得られた粉末は粉末X線回折装置を用い、結晶材料評価を行った。
実施例1で作成した固体電解質のX線回折パターンを図2に示す。このX線回折パターンを標準物質である標準物質であるLi10GeP2S12ICSD#248307のX線回折パターンと比較したところ、目的のLi10GeP2S12結晶が形成されていることが確認された。より具体的には、Cu Kα線を用いたX線回折測定において2θ=12.3±0.5°、14.3±0.5°、17.3±0.5°、20.1±0.5°、20.4±0.5°、23.9±0.5°、26.8±0.5°、29.4±0.5°、36.6±0.5°、37.6±0.5°、40.9±0.5°、41.4±0.5°、42.2±0.5°、47.3±0.5°、51.6±0.5°、52.6±0.5°の位置にピークを有する結晶型のLi10GeP2S12固体電解質を得ることができた。また、実施例1で得られた固体電解質のイオン伝導度は25℃において4.5×10-4S/cm、活性化エネルギーは27kJ/molであった。
<Evaluation of solid electrolyte>
The ionic conductivity of the obtained solid electrolyte was measured.
The ionic conductivity was measured by pressing indium foil onto both sides of the pellet-shaped solid electrolyte obtained by the above method. In addition, the ionic conductivity was measured while changing the measurement temperature from 17°C to 140°C, and the activation energy was determined using the Arrhenius equation. Furthermore, the crystal material of the obtained powder was evaluated using a powder X-ray diffractometer.
The X-ray diffraction pattern of the solid electrolyte prepared in Example 1 is shown in FIG. When this X-ray diffraction pattern was compared with the X-ray diffraction pattern of the standard material Li 10 GeP 2 S 12 ICSD#248307, it was confirmed that the desired Li 10 GeP 2 S 12 crystal was formed. It was done. More specifically, in X-ray diffraction measurement using Cu Kα rays, 2θ=12.3±0.5°, 14.3±0.5°, 17.3±0.5°, 20.1±0.5°, 20.4±0.5°, 23.9±0.5°, 26.8 Positions of ±0.5°, 29.4±0.5°, 36.6±0.5°, 37.6±0.5°, 40.9±0.5°, 41.4±0.5°, 42.2±0.5°, 47.3±0.5°, 51.6±0.5°, 52.6±0.5° We were able to obtain a crystalline Li 10 GeP 2 S 12 solid electrolyte with a peak of . Furthermore, the ionic conductivity of the solid electrolyte obtained in Example 1 was 4.5×10 −4 S/cm at 25° C., and the activation energy was 27 kJ/mol.

(実施例2)
ペレットの熱処理条件を550℃14時間とした以外は、実施例1と同様の手法を用いて固体電解質を作製した。最終的に得られた固体電解質のX線粉末回折パターンを図2に示す。図1の結果から、目的のLi10GeP2S12結晶が形成されていることを確認した。また、測定されたイオン伝導度は25℃において3.1×10-3S/cm、活性化エネルギーは26kJ/molであった。
(Example 2)
A solid electrolyte was produced using the same method as in Example 1, except that the pellet heat treatment conditions were 550° C. for 14 hours. Figure 2 shows the X-ray powder diffraction pattern of the solid electrolyte finally obtained. From the results shown in FIG. 1, it was confirmed that the desired Li 10 GeP 2 S 12 crystal was formed. Furthermore, the measured ionic conductivity was 3.1×10 -3 S/cm at 25°C, and the activation energy was 26 kJ/mol.

(実施例3)
ペレットの熱処理条件を550℃24時間とした以外は、実施例1と同様の手法を用いて固体電解質を作製した。最終的に得られた固体電解質のX線粉末回折パターンを図2に示す。図2の結果から、目的のLi10GeP2S12結晶が形成されていることを確認した。また、測定された伝導度は25℃において4.5×10-3S/cm、活性化エネルギーは26kJ/molであった。
(Example 3)
A solid electrolyte was produced using the same method as in Example 1, except that the pellet heat treatment conditions were 550° C. for 24 hours. Figure 2 shows the X-ray powder diffraction pattern of the solid electrolyte finally obtained. From the results shown in FIG. 2, it was confirmed that the desired Li 10 GeP 2 S 12 crystal was formed. Furthermore, the measured conductivity was 4.5×10 -3 S/cm at 25°C, and the activation energy was 26 kJ/mol.

(実施例4)
内部をアルゴン(Ar)で置換したグローブボックス内で、Li2S(純度99.9%、三津和)、GeS2(純度99.9%、和光純薬)を用いて2Li2S・GeS2組成になるように粉末1.5gを調合した。容積50mlのビーカーに入れた第1の溶媒であるN-メチルホルムアミド(NMF)40mlに、調合した前記粉末を添加して溶解させ、一晩攪拌した。反応終了後、ロータリーエバポレーターを用いて減圧下250℃でN-メチルホルムアミドを留去し、第1の前駆体を得た。次に、得られた第1の前駆体に対して、最終的な組成がLi10GeP2S12になるように、Li2S(純度99.9%、三津和)およびP2S5(純度99%、Aldrich)を添加したのち、第2の溶媒であるテトラヒドロフラン(THF)40mlをさらに添加して、Ar雰囲気下で攪拌を行った。反応終了後、ロータリーエバポレーターを用いて減圧か80℃でテトラヒドロフランを完全に除去し第2の前駆体を得た。さらに、得られた第2の前駆体150mgを380MPaでプレスすることでペレット作製を行い、このペレットを石英ガラス管で真空封入し、熱処理を行った。この熱処理の条件は550℃4時間とした。熱処理した前記ペレットを室温まで冷却することによって固体電解質を得た。
(Example 4)
In a glove box whose interior was replaced with argon (Ar), Li 2 S (purity 99.9%, Mitsuwa) and GeS 2 (purity 99.9%, Wako Pure Chemical Industries) were used to obtain a 2Li 2 S/GeS 2 composition. 1.5g of powder was mixed in. The prepared powder was added and dissolved in 40 ml of N-methylformamide (NMF) as the first solvent placed in a 50 ml beaker and stirred overnight. After the reaction was completed, N-methylformamide was distilled off at 250° C. under reduced pressure using a rotary evaporator to obtain a first precursor. Next, to the obtained first precursor, Li 2 S (purity 99.9%, Mitsuwa) and P 2 S 5 (purity 99%) were added so that the final composition was Li 10 GeP 2 S 12 %, Aldrich), 40 ml of tetrahydrofuran (THF) as a second solvent was further added, and stirring was performed under an Ar atmosphere. After the reaction was completed, tetrahydrofuran was completely removed using a rotary evaporator under reduced pressure or at 80°C to obtain a second precursor. Further, 150 mg of the obtained second precursor was pressed at 380 MPa to produce pellets, and the pellets were vacuum-sealed in a quartz glass tube and heat-treated. The conditions for this heat treatment were 550°C for 4 hours. A solid electrolyte was obtained by cooling the heat-treated pellets to room temperature.

最終的に得られた固体電解質のX線粉末回折パターンを図3に示す。図3の結果から、目的のLi10GeP2S12結晶が形成されていることを確認した。また、測定された伝導度は25℃において1.1×10-3S/cm、活性化エネルギーは27kJ/molであった。 Figure 3 shows the X-ray powder diffraction pattern of the solid electrolyte finally obtained. From the results shown in FIG. 3, it was confirmed that the desired Li 10 GeP 2 S 12 crystal was formed. Furthermore, the measured conductivity was 1.1×10 -3 S/cm at 25°C, and the activation energy was 27 kJ/mol.

(実施例5)
内部をアルゴン(Ar)で置換したグローブボックス内で、Li2S(純度99.9%、三津和)、SiS2(純度99.9%、和光純薬)、SnS2(純度99.9%、和光純薬)を用いて2.7Li2S・1.08SiS2・0.27SnS2組成になるように粉末0.5gを調合した。容積40mlのビーカーに入れた第1の溶媒であるエタノール40mlに、調合した前記粉末を添加して溶解させ、一晩攪拌した。反応終了後、ロータリーエバポレーターを用いて減圧下80℃でエタノールを留去し、第1の前駆体を得た。次に、得られた第1の前駆体に対して、最終的な組成がLi10.35Sn0.27Si1.08P1.65S12になるように、Li2S(純度99.9%、三津和)およびP2S5(純度99%、Aldrich)を添加した後、第2の溶媒であるテトラヒドロフラン(THF)40mlをさらに添加して、Ar雰囲気下で攪拌を行った。反応終了後、ロータリーエバポレーターを用いて減圧下80℃でテトラヒドロフランを完全に除去し第2の前駆体を得た。得られた第2の前駆体150mgを380MPaでプレスすることでペレット作製を行い、このペレットを石英ガラス管で真空封入し、熱処理を行った。この熱処理条件は550℃24時間とした。熱処理した前記ペレットを室温まで冷却することによって固体電解質を得た。
(Example 5)
Li 2 S (purity 99.9%, Mitsuwa), SiS 2 (purity 99.9%, Wako Pure Chemical), and SnS 2 (purity 99.9%, Wako Pure Chemical) were used in a glove box whose interior was replaced with argon (Ar). Then, 0.5 g of powder was mixed to have a composition of 2.7Li 2 S・1.08SiS 2・0.27SnS 2 . The prepared powder was added and dissolved in 40 ml of ethanol as the first solvent placed in a 40 ml beaker and stirred overnight. After the reaction was completed, ethanol was distilled off at 80° C. under reduced pressure using a rotary evaporator to obtain a first precursor. Next, to the obtained first precursor, Li 2 S (purity 99.9%, Mitsuwa ) and P2S5 (purity After adding 99% (Aldrich), 40 ml of tetrahydrofuran (THF) as a second solvent was further added and stirring was performed under an Ar atmosphere. After the reaction was completed, tetrahydrofuran was completely removed using a rotary evaporator at 80° C. under reduced pressure to obtain a second precursor. Pellets were prepared by pressing 150 mg of the obtained second precursor at 380 MPa, and the pellets were vacuum-sealed in a quartz glass tube and heat-treated. The heat treatment conditions were 550°C for 24 hours. A solid electrolyte was obtained by cooling the heat-treated pellets to room temperature.

最終的に得られた固体電解質のX線粉末回折パターンを図4に示す。図4の結果から、目的のLi10GeP2S12結晶型のLi10.35Sn0.27Si1.08P1.65S12固体電解質が形成されていることを確認した。また、測定されたイオン伝導度は25℃において1.1×10-3S/cm、活性化エネルギーは26kJ/molであった。 FIG. 4 shows the X-ray powder diffraction pattern of the solid electrolyte finally obtained. From the results shown in FIG. 4, it was confirmed that a Li 10.35 Sn 0.27 Si 1.08 P 1.65 S 12 solid electrolyte of the desired Li 10 GeP 2 S 12 crystal type was formed. Furthermore, the measured ionic conductivity was 1.1×10 -3 S/cm at 25°C, and the activation energy was 26 kJ/mol.

(比較例1)
内部をアルゴン(Ar)で置換したグローブボックス内で、Li2S(純度99.9%、三津和)、GeS2(純度99.9%、和光純薬)、P2S5(純度99%、Aldrich)を用いてLi10GeP2S12組成になるように粉末1.5gを調合した。容積40mlのビーカーに入れた第1の溶媒であるエタノール40mlに、調合した前記粉末を添加して溶解させ、一晩撹拌を行った。反応終了後、ロータリーエバポレーターを用いて減圧下80℃でエタノールを除去し第1の前駆体を得た。得られた第1の前駆体150mgを380MPaでプレスすることでペレット作製を行い、このペレットを石英ガラス管で真空封入し、熱処理を行った。この熱処理の条件は550℃3時間とした。熱処理した前記ペレットを室温まで冷却することによって固体電解質を得た。
(Comparative example 1)
In a glove box whose interior was replaced with argon (Ar), Li was purified using Li 2 S (purity 99.9%, Mitsuwa), GeS 2 (purity 99.9%, Wako Pure Chemical Industries), and P2S5 (purity 99%, Aldrich). 1.5 g of powder was blended to have a composition of 10 GeP 2 S 12 . The prepared powder was added and dissolved in 40 ml of ethanol as the first solvent placed in a 40 ml beaker, and stirred overnight. After the reaction was completed, ethanol was removed at 80° C. under reduced pressure using a rotary evaporator to obtain a first precursor. Pellets were prepared by pressing 150 mg of the obtained first precursor at 380 MPa, and the pellets were vacuum-sealed in a quartz glass tube and heat-treated. The conditions for this heat treatment were 550°C for 3 hours. A solid electrolyte was obtained by cooling the heat-treated pellets to room temperature.

最終的に得られた固体電解質のX線粉末回折パターンを図5に示す。図5の結果からは、目的のLi10GeP2S12結晶の形成は確認できなかった。また、測定されたイオン伝導度は25℃において10-6S/cm以下であった。 FIG. 5 shows the X-ray powder diffraction pattern of the solid electrolyte finally obtained. From the results shown in FIG. 5, formation of the desired Li 10 GeP 2 S 12 crystal could not be confirmed. Furthermore, the measured ionic conductivity was 10 -6 S/cm or less at 25°C.

以上の実施例及び比較例の結果をまとめると、従来通り1種類の溶媒にすべての原料を溶解して反応させた比較例では、目的のLi10GeP2S12固体電解質を作製することはできなかった。
一方で、第1の溶媒及び第2の溶媒を使用して、原料を2回に分けて溶解、反応させた実施例1~5においては、目的のLi10GeP2S12固体電解質を作製することができることがわかった。しかも実施例1~5で作成された固体電解質は、いずれも十分に高いイオン伝導度を備えていることが分かった。
To summarize the results of the above examples and comparative examples, in the comparative example in which all raw materials were dissolved and reacted in one type of solvent as in the past, it was not possible to produce the desired Li 10 GeP 2 S 12 solid electrolyte. There wasn't.
On the other hand, in Examples 1 to 5, in which the raw materials were dissolved and reacted in two steps using the first solvent and the second solvent, the target Li 10 GeP 2 S 12 solid electrolyte was produced. I found out that it is possible. Furthermore, it was found that all of the solid electrolytes prepared in Examples 1 to 5 had sufficiently high ionic conductivity.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
Although preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea stated in the claims. It is understood that these also naturally fall within the technical scope of the present invention.

Claims (6)

原料の一部を第1の溶媒に溶解させてから第1の前駆体を析出させる工程と、
該前駆体と前記原料の残部とを第2の溶媒に溶解させてから第2の前駆体を析出させる工程とを含み、
前記第1の溶媒及び前記第2の溶媒のうちの一方としてアクセプター数が10以上の有機溶媒を用い、前記第1の溶媒及び前記第2の溶媒のうちの他方としてドナー数が15以下の有機溶媒を用いる、固体電解質製造方法。
A step of dissolving a portion of the raw material in a first solvent and then precipitating a first precursor;
dissolving the precursor and the remainder of the raw material in a second solvent, and then precipitating the second precursor ,
An organic solvent having an acceptor number of 10 or more is used as one of the first solvent and the second solvent, and an organic solvent having a donor number of 15 or less is used as the other of the first solvent and the second solvent. A solid electrolyte manufacturing method using a solvent .
前記第1の溶媒と前記第2の溶媒とが互いに異なるものである請求項1記載の固体電解質製造方法。 The solid electrolyte manufacturing method according to claim 1, wherein the first solvent and the second solvent are different from each other. 前記原料が、リチウム、リン、硫黄及び14族元素を含有する請求項1又は2記載の固体電解質製造方法。 The solid electrolyte manufacturing method according to claim 1 or 2, wherein the raw material contains lithium, phosphorus, sulfur, and Group 14 elements. 前記14族元素が、ゲルマニウムである請求項3に記載の固体電解質製造方法。 4. The solid electrolyte manufacturing method according to claim 3, wherein the Group 14 element is germanium. 前記原料がゲルマニウムを含有し、前記第1の溶媒又は前記第2の溶媒がエタノールである請求項1乃至4のいずれか一項に記載の固体電解質製造方法。 The solid electrolyte manufacturing method according to any one of claims 1 to 4, wherein the raw material contains germanium, and the first solvent or the second solvent is ethanol. 前記原料の一部がゲルマニウムを含有し、前記第1の溶媒がエタノールである請求項1乃至5記載のいずれかに記載の固体電解質製造方法。 6. The solid electrolyte manufacturing method according to claim 1, wherein a part of the raw material contains germanium, and the first solvent is ethanol.
JP2019102553A 2019-05-31 2019-05-31 Solid electrolyte manufacturing method Active JP7402619B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019102553A JP7402619B2 (en) 2019-05-31 2019-05-31 Solid electrolyte manufacturing method
KR1020200039420A KR20200137966A (en) 2019-05-31 2020-03-31 A method of preparing solid electrolyte and all solid battery comprising the solid electrolyte prepared by the method
US16/886,897 US11799126B2 (en) 2019-05-31 2020-05-29 Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102553A JP7402619B2 (en) 2019-05-31 2019-05-31 Solid electrolyte manufacturing method

Publications (2)

Publication Number Publication Date
JP2020196640A JP2020196640A (en) 2020-12-10
JP7402619B2 true JP7402619B2 (en) 2023-12-21

Family

ID=73648774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102553A Active JP7402619B2 (en) 2019-05-31 2019-05-31 Solid electrolyte manufacturing method

Country Status (2)

Country Link
JP (1) JP7402619B2 (en)
KR (1) KR20200137966A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542111B1 (en) 2021-01-15 2023-06-12 한국전기연구원 Method for producing solid electrolyte, solid electrolyte prepared therefrom, and all-solid-state battery comprising the same
WO2022154428A1 (en) 2021-01-15 2022-07-21 한국전기연구원 Method for preparing solid electrolyte, solid electrolyte prepared thereby, and all-solid-state battery comprising same
WO2023132280A1 (en) * 2022-01-05 2023-07-13 出光興産株式会社 Method for producing sulfide solid electrolyte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173939A1 (en) 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 Production method for lgps-based solid electrolyte
WO2019044517A1 (en) 2017-09-01 2019-03-07 三菱瓦斯化学株式会社 Method for producing lgps-based solid electrolyte

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433173B2 (en) 2000-10-02 2003-08-04 大阪府 Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173939A1 (en) 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 Production method for lgps-based solid electrolyte
WO2019044517A1 (en) 2017-09-01 2019-03-07 三菱瓦斯化学株式会社 Method for producing lgps-based solid electrolyte

Also Published As

Publication number Publication date
KR20200137966A (en) 2020-12-09
JP2020196640A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
JP7402619B2 (en) Solid electrolyte manufacturing method
JP4813767B2 (en) Lithium ion conductive sulfide crystallized glass and method for producing the same
CN101821199B (en) Lithium argyrodite
JP3433173B2 (en) Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery
JP7308147B2 (en) Method for producing LGPS-based solid electrolyte
JP5673760B1 (en) Method for producing sulfide solid electrolyte
US10280109B2 (en) Sulfide glass and crystalline solid electrolyte production method, crystalline solid electrolyte, sulfide glass and solid-state battery
JP5617794B2 (en) Method for producing sulfide solid electrolyte material, and sulfide solid electrolyte material
JP2022502341A (en) Inorganic sulfide solid electrolyte with high atmospheric stability, its manufacturing method and its application
JP2016024874A (en) Sulfide-based solid electrolyte for lithium ion batteries
CN110431703B (en) Method for producing LGPS solid electrolyte
JP2015232965A (en) Sulfide solid electrolyte, and method of producing sulfide solid electrolyte
JP2015072773A (en) Sulfide solid electrolyte and method for producing sulfide solid electrolyte
JP2014508707A (en) Lithium ion conductive glass ceramic and use of said glass ceramic
JP6118521B2 (en) Electrode layer including sulfide-based solid electrolyte, electrolyte layer including sulfide-based solid electrolyte, and all-solid-state battery using the same
KR20180033838A (en) Electrode active material-solid electrolyte composite, method for manufacturing the same, and all solid state rechargeable lithium battery including the same
JP7400492B2 (en) Method for manufacturing sulfide solid electrolyte
JP2024500358A (en) Solid electrolyte synthesis method, solid electrolyte composition, and electrochemical cell
KR20210044722A (en) Intermediate of electrode, electrode using the same, electrode pellet using the same, and method of fabricating of the sames
CN112864461B (en) Method for producing sulfide solid electrolyte material
CN115803829A (en) Method for manufacturing solid electrolyte member
US11799126B2 (en) Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method
CN115140770B (en) Inorganic glass state lithium ion solid electrolyte and preparation method thereof
JP7301013B2 (en) Sulfide-based solid electrolyte and all-solid lithium-ion battery
KR20230120192A (en) Sulfide solid electolytes and method of preparing same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7402619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150