JP7402205B2 - Deterioration determination method, deterioration determination program, and deterioration determination device for secondary batteries - Google Patents

Deterioration determination method, deterioration determination program, and deterioration determination device for secondary batteries Download PDF

Info

Publication number
JP7402205B2
JP7402205B2 JP2021125273A JP2021125273A JP7402205B2 JP 7402205 B2 JP7402205 B2 JP 7402205B2 JP 2021125273 A JP2021125273 A JP 2021125273A JP 2021125273 A JP2021125273 A JP 2021125273A JP 7402205 B2 JP7402205 B2 JP 7402205B2
Authority
JP
Japan
Prior art keywords
voltage
battery
deterioration
secondary battery
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021125273A
Other languages
Japanese (ja)
Other versions
JP2023020089A (en
Inventor
裕也 稲垣
尚志 赤嶺
洋輔 室田
保 福間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2021125273A priority Critical patent/JP7402205B2/en
Publication of JP2023020089A publication Critical patent/JP2023020089A/en
Application granted granted Critical
Publication of JP7402205B2 publication Critical patent/JP7402205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は、例えば、二次電池の劣化判定方法、劣化判定プログラム及び劣化判定装置に関する。 The present invention relates to, for example, a method for determining deterioration of a secondary battery, a deterioration determination program, and a deterioration determination device.

二次電池は、充放電回数が増加すると電池の内部抵抗の増加や、電池容量が低下する等の性能劣化が生じる。このような性能劣化が生じると電力の供給先に十分な電力を供給できなくなるため、二次電池の劣化を判定して、電池交換を行う等の処置がとられることがある。そこで、二次電池の劣化判定に関する技術が特許文献1、2に開示されている。 When the number of times of charging and discharging of a secondary battery increases, performance deterioration occurs such as an increase in internal resistance of the battery and a decrease in battery capacity. If such performance deterioration occurs, sufficient power cannot be supplied to the power supply destination, so deterioration of the secondary battery may be determined and measures such as replacing the battery may be taken. Therefore, techniques related to determining the deterioration of secondary batteries are disclosed in Patent Documents 1 and 2.

特許文献1に記載の二次電池の管理装置は、二次電池の入出力制御を行う二次電池の管
理装置であって、二次電池の充電状態を検出する充電状態検出部と、二次電池の劣化状態を容量劣化と抵抗劣化とに切り分ける電池劣化切り分け部と、前記充電状態検出部が検出した充電状態と前記電池劣化切り分け部が切り分けた容量劣化と抵抗劣化とに基づいて、使用可能容量を演算する使用可能容量演算部と、を具備する。また、特許文献1の電池劣化切り分け部は、充電した際の充電電流カーブを、前記二次電池の温度を変化させた複数の所定温度劣化条件毎に且つ容量劣化及び抵抗劣化の依存状態を考慮した劣化状態毎にマップ化したマップと、前記複数の所定温度劣化条件のうちの何れかの所定温度劣化条件下で充電を実施して取得した充電電流カーブとを比較することにより、容量劣化及び抵抗劣化の依存状態を考慮した劣化状態を把握する。
The secondary battery management device described in Patent Document 1 is a secondary battery management device that performs input/output control of the secondary battery, and includes a charging state detection section that detects the charging state of the secondary battery, and a secondary battery management device that performs input/output control of the secondary battery. A battery deterioration separation unit that separates the battery deterioration state into capacity deterioration and resistance deterioration; and a battery deterioration separation unit that separates the battery deterioration state into capacity deterioration and resistance deterioration. A usable capacity calculation unit that calculates capacity. In addition, the battery deterioration isolation unit of Patent Document 1 determines the charging current curve during charging for each of a plurality of predetermined temperature deterioration conditions in which the temperature of the secondary battery is changed, and also takes into account the dependent state of capacity deterioration and resistance deterioration. Capacity deterioration and Understand the deterioration state considering the dependence state of resistance deterioration.

特許文献2に記載のバッテリ劣化検出装置は、車両に搭載されたバッテリの劣化状態を検出するバッテリ劣化検出装置であって、前記車両の始動の度に、前記車両の始動時における前記バッテリの電圧値に基づいて、前記バッテリの劣化予兆を示すフラグを設定するフラグ設定部と、該フラグを記憶するフラグ記憶部と、過去に前記フラグが記憶された回数に基づいて、前記バッテリに劣化予兆があるか否かを判定する劣化予兆判定部と、前記劣化予兆判定部により前記バッテリに劣化予兆があると判定された場合に、前記バッテリの前記電圧値に基づいて、前記バッテリは劣化状態であるか否かを判定する劣化判定部と、を備える。 The battery deterioration detection device described in Patent Document 2 is a battery deterioration detection device that detects the deterioration state of a battery mounted on a vehicle, and each time the vehicle is started, the battery deterioration detection device detects the voltage of the battery at the time of starting the vehicle. a flag setting unit that sets a flag indicating a sign of deterioration of the battery based on the value; a flag storage unit that stores the flag; a deterioration sign determination unit that determines whether or not there is a deterioration sign determination unit; and when the deterioration sign determination unit determines that the battery has a deterioration sign, the battery is in a deteriorated state based on the voltage value of the battery. and a deterioration determination unit that determines whether or not the deterioration determination unit is provided.

特許第6217916号公報Patent No. 6217916 特許第5821899号公報Patent No. 5821899

しかしながら、特許文献1に記載の管理装置では、予め準備したマップに基づき容量劣化や内部抵抗の上昇を判断するため、性能ばらつきの大きいリユース電池を利用する場合に適用できない問題がある。また、特許文献2に記載のバッテリ劣化検出装置は、始動時に劣化予兆を判定するため、連続使用が想定される定置型の二次電池に対して適用が困難である問題がある。つまり、特許文献1、2に記載の技術では、劣化判定できる二次電池に制限がある問題がある。 However, the management device described in Patent Document 1 judges capacity deterioration and increase in internal resistance based on a map prepared in advance, so there is a problem that it cannot be applied when using reused batteries with large variations in performance. Furthermore, since the battery deterioration detection device described in Patent Document 2 determines signs of deterioration at the time of startup, there is a problem in that it is difficult to apply to a stationary secondary battery that is expected to be used continuously. In other words, the techniques described in Patent Documents 1 and 2 have a problem in that the number of secondary batteries that can be determined to be degraded is limited.

本発明は、上記事情に鑑みてなされたものであり、二次電池の使用開始や使用態様によらず適用可能な二次電池の劣化判定の手段を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a means for determining deterioration of a secondary battery that can be applied regardless of the start of use of the secondary battery or the manner of use.

本発明にかかる二次電池の劣化判定方法の一態様は、二次電池の電池電圧の変動をコンピュータ上でログに記録し、当該コンピュータを用いて前記ログを解析することで前記二次電池の劣化を判定する二次電池の劣化判定方法であって、二次電池の判定の基準となる電池電圧の分布を前記ログから取得して基準電圧分布を作成する基準電圧分布生成処理と、前記基準電圧分布作成後の判定時点での前記二次電池の電池電圧の分布示す判定用電圧分布を前記ログから作成する判定用電圧分布生成処理と、前記判定用電圧分布と前記基準電圧分布とについて低圧側電圧値の出現頻度を比較する第1の比較結果と高圧側電圧値の出現頻度を比較する第2の比較結果とに基づき前記二次電池の劣化を判定する劣化判定処理と、を行う。 One aspect of the method for determining deterioration of a secondary battery according to the present invention is to record fluctuations in battery voltage of the secondary battery in a log on a computer, and analyze the log using the computer. A method for determining deterioration of a secondary battery that determines deterioration, the method includes a reference voltage distribution generation process that creates a reference voltage distribution by acquiring a battery voltage distribution, which is a reference for determining a secondary battery, from the log, and the standard. A determination voltage distribution generation process that creates a determination voltage distribution from the log indicating the distribution of battery voltage of the secondary battery at the time of determination after voltage distribution creation; A deterioration determination process is performed to determine deterioration of the secondary battery based on a first comparison result that compares the appearance frequency of the side voltage value and a second comparison result that compares the appearance frequency of the high voltage side voltage value.

本発明にかかる二次電池の劣化判定プログラムの一態様は、コンピュータ上で実行され、二次電池の電池電圧の変動を前記コンピュータ上でログに記録し、当該コンピュータを用いて前記ログを解析することで前記二次電池の劣化を判定する二次電池の劣化判定プログラムであって、二次電池の判定の基準となる電池電圧の分布を前記ログから取得して基準電圧分布を作成する基準電圧分布生成処理と、前記基準電圧分布作成後の判定時点での前記二次電池の電池電圧の分布示す判定用電圧分布を前記ログから作成する判定用電圧分布生成処理と、前記判定用電圧分布と前記基準電圧分布とについて低圧側電圧値の出現頻度を比較する第1の比較結果と高圧側電圧値の出現頻度を比較する第2の比較結果とに基づき前記二次電池の劣化を判定する劣化判定処理と、を行う。 One aspect of the secondary battery deterioration determination program according to the present invention is executed on a computer, records fluctuations in battery voltage of the secondary battery in a log on the computer, and analyzes the log using the computer. This is a secondary battery deterioration determination program that determines the deterioration of the secondary battery by determining the deterioration of the secondary battery, and the reference voltage that creates a reference voltage distribution by acquiring the battery voltage distribution that is the standard for determining the secondary battery from the log. a distribution generation process; a determination voltage distribution generation process for creating a determination voltage distribution from the log indicating the distribution of battery voltage of the secondary battery at a determination time point after the reference voltage distribution is created; Deterioration in which the deterioration of the secondary battery is determined based on a first comparison result that compares the appearance frequency of the low voltage side voltage value with respect to the reference voltage distribution and a second comparison result that compares the appearance frequency of the high voltage side voltage value. A determination process is performed.

本発明にかかる二次電池の劣化判定装置の一態様は、二次電池の電池電圧を検出する電圧検出部と、記憶部と、前記電池電圧を前記記憶部にログとして蓄積し、前記二次電池の判定の基準となる電池電圧の分布を前記ログから取得して基準電圧分布を作成する基準電圧分布生成処理と、前記基準電圧分布作成後の判定時点での前記二次電池の電池電圧の分布示す判定用電圧分布を前記ログから作成する判定用電圧分布生成処理と、を行う電圧分布生成部と、前記判定用電圧分布と前記基準電圧分布とについて低圧側電圧値の出現頻度を比較する第1の比較結果と高圧側電圧値の出現頻度を比較する第2の比較結果とに基づき前記二次電池の劣化を判定する劣化判定部と、を有する。 One aspect of the secondary battery deterioration determination device according to the present invention includes: a voltage detection unit that detects battery voltage of the secondary battery; a storage unit; and a storage unit that stores the battery voltage as a log in the storage unit, and A reference voltage distribution generation process that creates a reference voltage distribution by acquiring a battery voltage distribution that is a reference for battery determination from the log, and a battery voltage distribution of the secondary battery at the time of determination after creating the reference voltage distribution. a voltage distribution generation unit that performs a determination voltage distribution generation process of creating a determination voltage distribution representing the distribution from the log; and a voltage distribution generation unit that performs a determination voltage distribution generation process that creates a determination voltage distribution representing the distribution from the log, and compares the appearance frequency of low voltage side voltage values with respect to the determination voltage distribution and the reference voltage distribution. and a deterioration determination section that determines deterioration of the secondary battery based on the first comparison result and the second comparison result that compares the appearance frequency of the high voltage side voltage value.

本発明の二次電池の劣化判定方法、劣化判定プログラム及び劣化判定装置によれば、二次電池の使用開始時期や使用態様によらず適用可能な二次電池の劣化判定の手段を提供することができる。 According to the method for determining deterioration of a secondary battery, the program for determining deterioration, and the device for determining deterioration of a secondary battery of the present invention, it is possible to provide a means for determining deterioration of a secondary battery that is applicable regardless of the start time of use or the manner of use of the secondary battery. I can do it.

二次電池の性能低下に伴う電池電圧の変動の差を説明する電圧変化グラフである。2 is a voltage change graph illustrating a difference in battery voltage fluctuation due to a decrease in performance of a secondary battery. 二次電池の性能低下に伴う電池電圧の出現頻度の差を説明するグラフである。2 is a graph illustrating a difference in the frequency of appearance of battery voltage due to a decrease in performance of a secondary battery. 二次電池の性能低下要因の違いによる電池電圧の出現頻度の差を説明するグラフである。7 is a graph illustrating differences in the frequency of appearance of battery voltage due to differences in performance deterioration factors of secondary batteries. 実施の形態1にかかる二次電池システムのブロック図である。1 is a block diagram of a secondary battery system according to Embodiment 1. FIG. 実施の形態1にかかる劣化判定装置の動作を説明するフローチャートである。3 is a flowchart illustrating the operation of the deterioration determination device according to the first embodiment.

説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、様々な処理を行う機能ブロックとして図面に記載される各要素は、ハードウェア的には、CPU(Central Processing Unit)、メモリ、その他の回路で構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。 For clarity of explanation, the following description and drawings are omitted and simplified as appropriate. In addition, each element described in the drawing as a functional block that performs various processes can be configured with a CPU (Central Processing Unit), memory, and other circuits in terms of hardware, and can be configured with a memory and other circuits in terms of software. This is accomplished by a program loaded into the computer. Therefore, those skilled in the art will understand that these functional blocks can be implemented in various ways using only hardware, only software, or a combination thereof, and are not limited to either. Note that in each drawing, the same elements are designated by the same reference numerals, and redundant explanations will be omitted as necessary.

また、上述したプログラムは、コンピュータに読み込まれた場合に、実施形態で説明された1又はそれ以上の機能をコンピュータに行わせるための命令群(又はソフトウェアコード)を含む。プログラムは、非一時的なコンピュータ可読媒体又は実体のある記憶媒体に格納されてもよい。限定ではなく例として、コンピュータ可読媒体又は実体のある記憶媒体は、random-access memory(RAM)、read-only memory(ROM)、フラッシュメモリ、solid-state drive(SSD)又はその他のメモリ技術、CD-ROM、digital versatile disc(DVD)、Blu-ray(登録商標)ディスク又はその他の光ディスクストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ又はその他の磁気ストレージデバイスを含む。プログラムは、一時的なコンピュータ可読媒体又は通信媒体上で送信されてもよい。限定ではなく例として、一時的なコンピュータ可読媒体又は通信媒体は、電気的、光学的、音響的、またはその他の形式の伝搬信号を含む。 Further, the above-described program includes a set of instructions (or software code) for causing the computer to perform one or more of the functions described in the embodiments when loaded into the computer. The program may be stored on a non-transitory computer readable medium or a tangible storage medium. By way of example and not limitation, computer readable or tangible storage media may include random-access memory (RAM), read-only memory (ROM), flash memory, solid-state drive (SSD) or other memory technology, CD -Includes ROM, digital versatile disc (DVD), Blu-ray disc or other optical disc storage, magnetic cassette, magnetic tape, magnetic disc storage or other magnetic storage device. The program may be transmitted on a transitory computer-readable medium or a communication medium. By way of example and not limitation, transitory computer-readable or communication media includes electrical, optical, acoustic, or other forms of propagating signals.

実施の形態1
まず、劣化判定の対象となる二次電池の特性について説明する。二次電池では、充放電回数の増加、利用期間の長さ、使用される環境の温度等の様々な要因で性能低下の速度が異なる。二次電池が性能低下すると、電池容量が低下したり、内部抵抗が増加したりして、電力供給先への電力供給能力が低下する。このような二次電池の性能が低下すると充放電時に二次電池に流れる電流を同一条件としたときの二次電池の出力電圧(以下、電池電圧と称す)に変化が生じる。
Embodiment 1
First, the characteristics of the secondary battery that is the subject of deterioration determination will be explained. For secondary batteries, the rate of performance deterioration varies depending on various factors such as the increase in the number of charging and discharging times, the length of the period of use, and the temperature of the environment in which the battery is used. When the performance of the secondary battery deteriorates, the battery capacity decreases, internal resistance increases, and the ability to supply power to the power supply destination decreases. When the performance of such a secondary battery decreases, a change occurs in the output voltage of the secondary battery (hereinafter referred to as battery voltage) when the current flowing through the secondary battery during charging and discharging is set to the same condition.

そこで、図1に二次電池の性能低下に伴う電池電圧の変動の差を説明する電圧変化グラフを示す。図1に示すグラフは、二次電池に同じ電流値の充放電電流を与えた時に電池の性能低下がある時とない時に電池電圧にどのような違いが生じたかを示すものである。図1のグラフでは、電圧上昇時に充電が行われ、電圧下降時に放電が行われることを示す。 Therefore, FIG. 1 shows a voltage change graph illustrating the difference in battery voltage fluctuation due to a decrease in the performance of a secondary battery. The graph shown in FIG. 1 shows what difference occurs in the battery voltage when there is and is not a decrease in battery performance when charging and discharging currents of the same current value are applied to the secondary battery. The graph of FIG. 1 shows that charging occurs when the voltage increases, and discharging occurs when the voltage decreases.

図1に示すように、二次電池では、性能低下が生じていない電池に対しては、充放電時の電圧変化の電圧変動範囲が概ね電圧変動初期範囲の範囲内に収まる。一方、二次電池の性能低下が進むと、充放電時の電圧変化の電圧変動範囲が電圧変動初期範囲の上側及び下側に定義される電圧注意領域になることが増える。なお、以下の説明では、この電池電圧の出現頻度を劣化判断の指標に用いる。そして、劣化判断の指標に用いる電圧は、電池電圧が増加から減少に転じる時点の上側電圧と、電池電圧が減少から増加に転じる時点の下側電圧とを含むものとする。 As shown in FIG. 1, for a secondary battery whose performance has not deteriorated, the voltage fluctuation range of the voltage change during charging and discharging generally falls within the initial voltage fluctuation range. On the other hand, as the performance of the secondary battery continues to deteriorate, the voltage fluctuation range of the voltage change during charging and discharging increasingly becomes a voltage caution area defined above and below the initial voltage fluctuation range. In the following explanation, the frequency of appearance of this battery voltage will be used as an index for determining deterioration. The voltage used as an index for determining deterioration includes an upper voltage when the battery voltage changes from increasing to decreasing, and a lower voltage when the battery voltage changes from decreasing to increasing.

ここで、二次電池の性能低下の進行具合により劣化判断の指標に用いる電圧の出現頻度にどのような違いが生じるかについて説明する。以下の説明では、劣化判断の指標に用いる電圧を電池電圧と称して説明を行う。図2に二次電池の劣化に伴う電池電圧の出現頻度の差を説明するグラフを示す。 Here, a description will be given of how the frequency of appearance of a voltage used as an index for determining deterioration varies depending on the progress of performance deterioration of a secondary battery. In the following description, the voltage used as an index for determining deterioration will be referred to as battery voltage. FIG. 2 shows a graph illustrating the difference in frequency of appearance of battery voltage due to deterioration of the secondary battery.

図2に示すように、二次電池の使用初期の段階で得られる電池電圧の出現頻度は、概ね電圧変動初期範囲に入る。これに対して、二次電池の性能低下が進むと、最も出現頻度の高い電池電圧の出現頻度が低下するとともに電圧注意範囲に出現する電池電圧が増加する。つまり、二次電池の性能低下が進むと、電池電圧の出現頻度分布の山の頂点が低く、裾野が広い分布形状となる。 As shown in FIG. 2, the frequency of appearance of the battery voltage obtained at the initial stage of use of the secondary battery generally falls within the initial voltage fluctuation range. On the other hand, as the performance of the secondary battery continues to deteriorate, the frequency of the battery voltage with the highest frequency of occurrence decreases, and the number of battery voltages that appear in the voltage caution range increases. In other words, as the performance of the secondary battery continues to deteriorate, the top of the peak of the battery voltage frequency distribution becomes low and the distribution shape becomes wide.

概念的には、図2に示した電池電圧の出現頻度の違いが二次電池の性能低下に伴い現れるが、二次電池の性能低下要因の違いによっても、電池電圧の出現頻度に違いが生じる。そこで、図3に二次電池の性能低下要因の違いによる電池電圧の出現頻度の差を説明するグラフを示す。 Conceptually, the difference in the frequency of appearance of battery voltage shown in Figure 2 appears as the performance of the secondary battery deteriorates, but differences in the frequency of appearance of battery voltage also occur depending on the factors that cause the performance of the secondary battery to deteriorate. . Therefore, FIG. 3 shows a graph illustrating the difference in the appearance frequency of battery voltage due to the difference in the performance deterioration factors of the secondary battery.

図3に示すように、二次電池の利用初期に取得される初期電池の電池電圧の分布は、性能低下が進行した二次電池に比べて出現頻度の分布は、幅が狭く高い形状となる。実施の形態1にかかる二次電池システム1では、この初期電池の電池電圧の分布を、利用対象の二次電池の使用開始から一定の期間を通じて取得する。そして、実施の形態1にかかる二次電池システム1では、初期の電池電圧の分布を基準電圧分布とし、二次電池の性能低下の進行度合いの判定処理の比較基準として利用する。 As shown in Figure 3, the distribution of battery voltage of the initial battery obtained at the beginning of use of the secondary battery has a narrower and higher frequency distribution than that of the secondary battery whose performance has deteriorated. . In the secondary battery system 1 according to the first embodiment, the battery voltage distribution of this initial battery is acquired over a certain period of time from the start of use of the secondary battery to be used. In the secondary battery system 1 according to the first embodiment, the initial battery voltage distribution is used as a reference voltage distribution, and is used as a comparison standard in the process of determining the degree of progress of performance deterioration of the secondary battery.

図3に示すように、二次電池の性能低下が進むと、基準電圧分布に対して、低電圧側と高電圧側との電池電圧の出現頻度が増加する。このとき、電池容量の劣化が進行する度合いが高い場合は、低電圧側の電池電圧の出現頻度が、内部抵抗の上昇が進行する度合いが低い場合よりも高くなる。また、電池容量の低下が進行する度合いが高い場合は、高電圧側の電池電圧の出現頻度が、内部抵抗の上昇が進行する度合いが低い場合よりも高くなる。このような状況を整理すると、電池容量の低下が進行する度合いが高い場合は、低電圧側の電池電圧の出現頻度の増加量が大、高電圧側の電池電圧の出現頻度の増加量が小となる。また、内部抵抗の上昇する度合いが高い場合は、低電圧側の電池電圧の出現頻度の増加量が中、高電圧側の電池電圧の出現頻度の増加量が中となる。 As shown in FIG. 3, as the performance of the secondary battery continues to deteriorate, the frequency of appearance of battery voltages on the low voltage side and high voltage side increases with respect to the reference voltage distribution. At this time, when the degree to which battery capacity deterioration progresses is high, the frequency of appearance of battery voltage on the low voltage side becomes higher than when the degree to which the increase in internal resistance progresses is low. Furthermore, when the rate at which the battery capacity decreases is high, the frequency of appearance of the battery voltage on the high voltage side becomes higher than when the rate at which the internal resistance increases is low. To put this situation in perspective, if the rate of battery capacity decline is high, the increase in the frequency of appearance of battery voltage on the low voltage side will be large, and the amount of increase in the frequency of appearance of battery voltage on the high voltage side will be small. becomes. Further, when the degree of increase in internal resistance is high, the amount of increase in the frequency of appearance of battery voltage on the low voltage side is medium, and the amount of increase in the frequency of appearance of battery voltage on the high voltage side is medium.

実施の形態1にかかる二次電池システム1では、図3で説明した電池電圧の出現頻度の違いに基づき二次電池の性能低下が予め設定した劣化閾値を越えたか否かを判定する。そこで、実施の形態1にかかる二次電池システム1について詳細に説明する。図4に実施の形態1にかかる二次電池システム1のブロック図を示す。図4に示すように、実施の形態1にかかる二次電池システム1は、劣化判定装置10、蓄電池20、パワーコンディショナー30、システム制御部40を有する。 In the secondary battery system 1 according to the first embodiment, it is determined whether the performance decline of the secondary battery exceeds a preset deterioration threshold based on the difference in the appearance frequency of battery voltages explained in FIG. Therefore, the secondary battery system 1 according to the first embodiment will be explained in detail. FIG. 4 shows a block diagram of the secondary battery system 1 according to the first embodiment. As shown in FIG. 4, the secondary battery system 1 according to the first embodiment includes a deterioration determination device 10, a storage battery 20, a power conditioner 30, and a system control unit 40.

実施の形態1にかかる二次電池システム1では、システム制御部40が劣化判定装置10の上位システムであり、システム制御部40がパワーコンディショナー30を制御して、蓄電池20への充放電を制御する。パワーコンディショナー30は、例えば、系統電源配線から供給される電力を蓄電池20に充電する充電処理と、蓄電池20に蓄えられた電力を電力供給先に供給する電力供給処理とを行う。また、蓄電池20への充電電力は、太陽光パネルを備えていても良い。劣化判定装置10は、蓄電池20の出力電圧である電池電圧Vbatをモニタして、蓄電池20の劣化度を判定する。 In the secondary battery system 1 according to the first embodiment, the system control unit 40 is a host system of the deterioration determination device 10, and the system control unit 40 controls the power conditioner 30 to control charging and discharging of the storage battery 20. . The power conditioner 30 performs, for example, a charging process of charging the storage battery 20 with power supplied from the grid power supply wiring, and a power supply process of supplying the power stored in the storage battery 20 to a power supply destination. Further, the charging power to the storage battery 20 may be provided by a solar panel. The deterioration determination device 10 monitors the battery voltage Vbat, which is the output voltage of the storage battery 20, and determines the degree of deterioration of the storage battery 20.

劣化判定装置10は、後述する処理ブロックの機能を、例えば、プログラムを実行可能な演算部と記憶部としてのメモリを備えるコンピュータにおいて劣化判定プログラムを実行することにより実現でき、また処理ブロックの機能を実現するハードウェアによっても実現することができる。 The deterioration determination device 10 can realize the functions of the processing blocks to be described later, for example, by executing the deterioration determination program in a computer equipped with an arithmetic unit that can execute the program and a memory as a storage unit, and can also realize the functions of the processing blocks. It can also be realized by the hardware that implements it.

劣化判定装置10は、電圧検出部11、電圧分布生成部12、記憶部13、劣化判定部14を有する。電圧検出部11は、二次電池の電池電圧Vbatを検出する。このとき、電圧検出部11は、電池電圧の上側電圧及び下側電圧を後段に配置される電圧分布生成部12に送信する。 The deterioration determination device 10 includes a voltage detection section 11, a voltage distribution generation section 12, a storage section 13, and a deterioration determination section 14. The voltage detection unit 11 detects the battery voltage Vbat of the secondary battery. At this time, the voltage detection section 11 transmits the upper and lower voltages of the battery voltage to the voltage distribution generation section 12 arranged at the subsequent stage.

電圧分布生成部12は、電池電圧Vbatの電圧を受信する毎に、受信した電池電圧を記憶部13の電圧データ蓄積領域にログとして蓄積する。また、電圧分布生成部12は、蓄電池20の利用開始直後の所定期間において、二次電池の判定の基準となる電池電圧の分布を記憶部13に蓄積されたログから取得して基準電圧分布を作成する基準電圧分布生成処理を行う。電圧分布生成部12は、生成した基準電圧分布を記憶部13の基準電圧分布記憶領域に保存する。このようなことから、記憶部13としては電源遮断時においても記憶内容が消えない不揮発性メモリの利用が適している。また、電圧分布生成部12は、蓄電池20の周囲温度や使用履歴の特徴毎に複数パターンの基準電圧分布を作成する。また、電圧分布生成部12は、基準電圧分布作成後の判定時点での二次電池の電池電圧Vbatの分布示す判定用電圧分布を記憶部13に蓄積されたログから作成する判定用電圧分布生成処理を行う。 Every time the voltage distribution generation unit 12 receives the battery voltage Vbat, the voltage distribution generation unit 12 accumulates the received battery voltage in the voltage data storage area of the storage unit 13 as a log. Further, the voltage distribution generation unit 12 acquires the battery voltage distribution, which is a reference for determining the secondary battery, from the log accumulated in the storage unit 13 during a predetermined period immediately after the start of use of the storage battery 20, and generates a reference voltage distribution. Performs the process of generating the reference voltage distribution to be created. The voltage distribution generation unit 12 stores the generated reference voltage distribution in the reference voltage distribution storage area of the storage unit 13. For this reason, it is suitable for the storage unit 13 to use a non-volatile memory whose stored contents do not disappear even when the power is turned off. Further, the voltage distribution generation unit 12 creates multiple patterns of reference voltage distributions for each characteristic of the ambient temperature and usage history of the storage battery 20. Further, the voltage distribution generation unit 12 generates a voltage distribution for determination from the log accumulated in the storage unit 13, which shows the distribution of the battery voltage Vbat of the secondary battery at the time of determination after the creation of the reference voltage distribution. Perform processing.

劣化判定部14は、判定用電圧分布と基準電圧分布とについて低圧側電圧値の出現頻度を比較する第1の比較結果と高圧側電圧値の出現頻度を比較する第2の比較結果とに基づき二次電池の劣化を判定する劣化判定処理を行う。このとき、劣化判定部14は、判定用電圧分布が作成された際の環境温度に対応した温度の基準電圧分布を判定用電圧分布の比較対象とする。 The deterioration determination unit 14 determines the voltage distribution based on the first comparison result that compares the appearance frequency of the low voltage side voltage value and the second comparison result that compares the appearance frequency of the high voltage side voltage value for the determination voltage distribution and the reference voltage distribution. A deterioration determination process is performed to determine deterioration of the secondary battery. At this time, the deterioration determination unit 14 uses a reference voltage distribution of a temperature corresponding to the environmental temperature at the time when the determination voltage distribution was created as a comparison target for the determination voltage distribution.

より具体的には、劣化判定処理では、判定用電圧分布の低圧側電圧値の出現頻度と基準電圧分布の低圧側電圧値の出現頻度との差が出現頻度閾値よりも大きく、かつ、判定用電圧分布の高圧側電圧値の出現頻度と基準電圧分布の高圧側電圧値の出現頻度との差が前記出現頻度閾値よりも小さい場合には二次電池に電池容量の低下があると判定する。また劣化判定処理では、判定用電圧分布の低圧側電圧値の出現頻度と基準電圧分布の低圧側電圧値の出現頻度との差が出現頻度閾値よりも大きく、かつ、判定用電圧分布の高圧側電圧値の出現頻度と基準電圧分布の高圧側電圧値の出現頻度との差が出現頻度閾値よりも大きい場合には二次電池に内部抵抗の上昇が生じたと判定する。そして、劣化判定処理では、電池容量の低下と内部抵抗の上昇とのいずれか一方が予め設定した劣化閾値を超えたことが検出されたことに応じて二次電池に劣化が限界に達したと判定する。 More specifically, in the deterioration determination process, the difference between the appearance frequency of the low voltage side voltage value of the determination voltage distribution and the appearance frequency of the low voltage side voltage value of the reference voltage distribution is larger than the appearance frequency threshold, and If the difference between the appearance frequency of the high-voltage side voltage value of the voltage distribution and the appearance frequency of the high-voltage side voltage value of the reference voltage distribution is smaller than the appearance frequency threshold, it is determined that the battery capacity of the secondary battery has decreased. In addition, in the deterioration determination processing, the difference between the appearance frequency of the low-voltage side voltage value of the determination voltage distribution and the appearance frequency of the low-voltage side voltage value of the reference voltage distribution is larger than the appearance frequency threshold, and If the difference between the appearance frequency of the voltage value and the appearance frequency of the high-voltage side voltage value of the reference voltage distribution is larger than the appearance frequency threshold, it is determined that an increase in internal resistance has occurred in the secondary battery. In the deterioration determination process, it is determined that the deterioration of the secondary battery has reached its limit when it is detected that either a decrease in battery capacity or an increase in internal resistance exceeds a preset deterioration threshold. judge.

ここで、出現頻度閾値は、図3で説明した出現頻度の増加量の中と小を切り分け可能な値であるものとする。 Here, it is assumed that the appearance frequency threshold is a value that can distinguish between medium and small increases in appearance frequency as explained with reference to FIG.

さらに、劣化判定部14は、劣化判定処理において、電池容量の低下、或いは、内部抵抗の上昇が生じたと判定された場合に即座に二次電池の劣化が限界に達したとは判断せず、1度目の劣化判定に応じて二次電池に対してリフレッシュ処理を施すことをシステム制御部40に指示する。ここで、リフレッシュ処理とは、二次電池を一定の充電率以下になるまで放電したあとに二次電池が満充電と判定されるまで充放電サイクルを少なくとも1回行う処理である。このリフレッシュ処理により、二次電池のメモリ効果の影響による劣化の誤判定を防止することができる。 Further, in the deterioration determination process, the deterioration determination unit 14 does not immediately determine that the deterioration of the secondary battery has reached its limit when it is determined that the battery capacity has decreased or the internal resistance has increased. In response to the first deterioration determination, the system control unit 40 is instructed to perform refresh processing on the secondary battery. Here, the refresh process is a process in which after discharging the secondary battery until the charging rate falls below a certain level, a charge/discharge cycle is performed at least once until the secondary battery is determined to be fully charged. This refresh process can prevent erroneous determination of deterioration due to the memory effect of the secondary battery.

続いて、実施の形態1にかかる劣化判定装置10の動作について説明する。そこで、図5に実施の形態1にかかる劣化判定装置10の動作を説明するフローチャートを示す。劣化判定装置10は、二次電池システム1の運用が開始した時点から動作を開始する。 Next, the operation of the deterioration determination device 10 according to the first embodiment will be explained. Therefore, FIG. 5 shows a flowchart illustrating the operation of the deterioration determination device 10 according to the first embodiment. The deterioration determination device 10 starts operating from the time when the operation of the secondary battery system 1 starts.

そして、劣化判定装置10は、運用開始からの所定の期間をかけて二次電池の初期の電圧分布を取得して電圧分布生成部12により基準電圧分布を作成する(ステップS1)。また劣化判定装置10では、気温、季節等を考慮して、基準電圧分布を複数パターン生成する。 Then, the deterioration determination device 10 acquires the initial voltage distribution of the secondary battery over a predetermined period from the start of operation, and creates a reference voltage distribution using the voltage distribution generation unit 12 (step S1). Furthermore, the deterioration determination device 10 generates a plurality of patterns of reference voltage distributions in consideration of temperature, season, and the like.

その後、劣化判定装置10は、現在の電圧の分布を示す判定用電圧分布を電圧分布生成部12により作成する(ステップS2)。また、電圧分布生成部12は、判定用電圧分布の作成に合わせて現在の温度情報を取得する。その後、記憶部13は、現在の温度に対応する基準電圧分布を劣化判定部14が電圧分布生成部12を介して読み出し、電圧分布生成部12が生成した判定用電圧分布と比較する。 After that, the deterioration determination device 10 creates a determination voltage distribution indicating the current voltage distribution using the voltage distribution generation unit 12 (step S2). Further, the voltage distribution generation unit 12 acquires current temperature information in conjunction with creation of the determination voltage distribution. Thereafter, in the storage unit 13, the deterioration determining unit 14 reads out the reference voltage distribution corresponding to the current temperature via the voltage distribution generating unit 12, and compares it with the determination voltage distribution generated by the voltage distribution generating unit 12.

そして、劣化判定部14は、判定用電圧分布の低電圧出現頻度と、基準電圧分布の低電圧出現頻度と、の差分が出現頻度閾値よりも大きいか否かを判断した第1の比較結果を得る(ステップS3)。この第1の比較結果が、判定用電圧分布の低電圧出現頻度と、基準電圧分布の低電圧出現頻度と、の差分が出現頻度閾値以下であった場合、劣化判定部14は、蓄電池20に許容外の性能低下が生じていないと判断する(ステップS4)。一方、第1の比較結果が、判定用電圧分布の低電圧出現頻度と、基準電圧分布の低電圧出現頻度と、の差分が出現頻度閾値よりも大きいものであった場合、劣化判定部14は、第2の比較結果を得る(ステップS5)。

Then, the deterioration determination unit 14 compares the first comparison result of determining whether the difference between the low voltage appearance frequency of the determination voltage distribution and the low voltage appearance frequency of the reference voltage distribution is larger than the appearance frequency threshold. obtained (step S3). If the first comparison result shows that the difference between the low voltage appearance frequency of the determination voltage distribution and the low voltage appearance frequency of the reference voltage distribution is equal to or less than the appearance frequency threshold, the deterioration determination unit 14 determines that the storage battery 20 It is determined that no unacceptable performance degradation has occurred (step S4). On the other hand, if the first comparison result shows that the difference between the low voltage appearance frequency of the determination voltage distribution and the low voltage appearance frequency of the reference voltage distribution is larger than the appearance frequency threshold, the deterioration determination unit 14 , obtain a second comparison result (step S5).

ステップS5では、劣化判定部14は、判定用電圧分布の高電圧出現頻度と、基準電圧分布の高電圧出現頻度と、の差分が出現頻度閾値よりも大きいか否かを判断した第2の比較結果を得る。この第2の比較結果が、判定用電圧分布の高電圧出現頻度と、基準電圧分布の高電圧出現頻度と、の差分が出現頻度閾値以下であった場合、劣化判定部14は、蓄電池20に電池容量の低下が生じている判断する(ステップS7)。一方、第2の比較結果が、判定用電圧分布の高電圧出現頻度と、基準電圧分布の高電圧出現頻度と、の差分が出現頻度閾値よりも大きいものであった場合、劣化判定部14は、蓄電池20に内部抵抗の上昇が生じていると判定する(ステップS6)。 In step S5, the deterioration determination unit 14 performs a second comparison in which it is determined whether the difference between the high voltage appearance frequency of the determination voltage distribution and the high voltage appearance frequency of the reference voltage distribution is larger than the appearance frequency threshold. Get results. If the second comparison result shows that the difference between the high voltage appearance frequency of the determination voltage distribution and the high voltage appearance frequency of the reference voltage distribution is equal to or less than the appearance frequency threshold, the deterioration determination unit 14 determines that the storage battery 20 It is determined that the battery capacity has decreased (step S7). On the other hand, if the second comparison result shows that the difference between the high voltage appearance frequency of the determination voltage distribution and the high voltage appearance frequency of the reference voltage distribution is larger than the appearance frequency threshold, the deterioration determination unit 14 , it is determined that the internal resistance has increased in the storage battery 20 (step S6).

そして、ステップS6及びステップS7では、劣化判定部14がシステム制御部40に蓄電池20のリフレッシュ処理を指示し、システム制御部40は、蓄電池20のリフレッシュ処理を開始する。なお、劣化判定部14がこのステップS6及びステップS7のリフレッシュ処理の指示は、二次電池の電池容量の低下、或いは、内部抵抗の上昇との要因が検出されたあと1回出され、その後二次電池の低下した性能が回復した場合にはリフレッシュ実施回数がリセットされるものとする。 Then, in steps S6 and S7, the deterioration determination unit 14 instructs the system control unit 40 to refresh the storage battery 20, and the system control unit 40 starts the refresh process for the storage battery 20. Note that the deterioration determination unit 14 issues instructions for the refresh processing in steps S6 and S7 once after a factor such as a decrease in the battery capacity of the secondary battery or an increase in internal resistance is detected, and then again When the degraded performance of the next battery is recovered, the number of times refreshing is performed is reset.

その後、劣化判定部14は、ステップS6、ステップS7でリフレッシュ処理が実行され、かつ、内部抵抗と電池容量のいずれか一方が劣化閾値を超えた状態である(例えば、ステップS3とステップS5とでYESの枝の劣化と判断される状態)場合には、蓄電池20の劣化が限界に達したとして運用を終了する(ステップS8)。また、ステップS8で蓄電池20の劣化が限界に達していないと判断された場合(ステップS8のNOの枝)、劣化判定部14は、次回の第1の比較結果及び第2の比較結果を得るための基準電圧分布を準備し(ステップS9)、再びステップS2の判定用電圧分布の作成を行う。 Thereafter, the deterioration determination unit 14 determines that the refresh process has been executed in steps S6 and S7, and that either the internal resistance or the battery capacity has exceeded the deterioration threshold (for example, in step S3 and step S5). If the condition is determined to be YES (deterioration of the branch), it is assumed that the deterioration of the storage battery 20 has reached its limit and the operation is terminated (step S8). Further, if it is determined in step S8 that the deterioration of the storage battery 20 has not reached the limit (NO branch of step S8), the deterioration determination unit 14 obtains the next first comparison result and second comparison result. A reference voltage distribution for the determination is prepared (step S9), and the voltage distribution for determination in step S2 is created again.

上記説明より、実施の形態1にかかる劣化判定装置10では、基準電圧分布を劣化判定の対象となる二次電池の利用開始時に、劣化判定対象の二次電池から取得する。そのため、実施の形態1にかかる劣化判定装置10では、劣化判定対象の二次電池が特性にばらつきのあるリユース電池であったとしても、特性ばらつきの小さな未使用の二次電池であっても高い精度で劣化判定を行うことができる。 As described above, in the deterioration determination device 10 according to the first embodiment, the reference voltage distribution is acquired from the secondary battery that is the target of deterioration determination when the use of the secondary battery that is the target of deterioration determination is started. Therefore, in the deterioration determination device 10 according to the first embodiment, even if the secondary battery to be subjected to deterioration determination is a reused battery with variations in characteristics, even if it is an unused secondary battery with small variations in characteristics, the high Deterioration can be determined with accuracy.

また、実施の形態1にかかる劣化判定装置10では、基準電圧分布及び判定用電圧分布を運用中の蓄電池20から得るのみであるため、二次電池の劣化判定のために蓄電池20の運用を止める必要がない。これにより、劣化判定装置10を用いた二次電池システム1では、高い運用継続性を実現することができる。 Further, in the deterioration determination device 10 according to the first embodiment, since the reference voltage distribution and the determination voltage distribution are only obtained from the storage battery 20 in operation, the operation of the storage battery 20 is stopped in order to determine the deterioration of the secondary battery. There's no need. Thereby, the secondary battery system 1 using the deterioration determination device 10 can achieve high operational continuity.

また、実施の形態1にかかる劣化判定装置10では、劣化判定されたあとにリフレッシュ処理を二次電池に対して施すことで、二次電池のメモリ効果に起因した性能低下に対して劣化したと判定する誤判定を防止することができる。 In addition, in the deterioration determination device 10 according to the first embodiment, by performing a refresh process on the secondary battery after the deterioration is determined, it is possible to detect deterioration due to the performance deterioration due to the memory effect of the secondary battery. Misjudgment can be prevented.

さらに、実施の形態1にかかる劣化判定装置10では、性能低下要因に基づく電圧分布の変化の差から二次電池の性能低下要因を切り分けることができる。このように、性能低下要因の切り分けができると、利用できない劣化状態になる前に性能低下傾向が見えるため、例えば、ユーザーに性能低下が進みにくくなる二次電池の利用方法を提示する、利用する充電率の中心範囲を変更する等の対処を取ることが可能になる。 Furthermore, in the deterioration determination device 10 according to the first embodiment, it is possible to isolate the cause of performance deterioration of the secondary battery from the difference in the change in voltage distribution based on the performance deterioration factor. In this way, if you can isolate the cause of performance deterioration, you can see a tendency for performance deterioration before it reaches a state of deterioration that makes it unusable, so you can, for example, show users how to use a secondary battery that will prevent performance deterioration. It becomes possible to take measures such as changing the central range of the charging rate.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the spirit.

1 二次電池システム
10 劣化判定装置
11 電圧検出部
12 電圧分布生成部
13 記憶部
14 劣化判定部
20 蓄電池
30 パワーコンディショナー
40 システム制御部
1 Secondary battery system 10 Deterioration determination device 11 Voltage detection unit 12 Voltage distribution generation unit 13 Storage unit 14 Deterioration determination unit 20 Storage battery 30 Power conditioner 40 System control unit

Claims (7)

二次電池の電池電圧の変動をコンピュータ上でログに記録し、当該コンピュータを用いて前記ログを解析することで前記二次電池の劣化を判定する二次電池の劣化判定方法であって、
二次電池の判定の基準となる電池電圧の分布を前記ログから取得して基準電圧分布を作成する基準電圧分布生成処理と、
前記基準電圧分布作成後の判定時点での前記二次電池の電池電圧の分布示す判定用電圧分布を前記ログから作成する判定用電圧分布生成処理と、
前記判定用電圧分布と前記基準電圧分布とを比較して、出現頻度が増加した電池電圧範囲のうち低い電圧範囲にある低電圧側の前記電池電圧の出現頻度を比較する第1の比較結果と、前記出現頻度が増加した電池電圧範囲のうち高い電圧範囲にある高電圧側の前記電池電圧の出現頻度を比較する第2の比較結果とに基づき前記二次電池の劣化を判定する劣化判定処理と、を行う二次電池の劣化判定方法。
A method for determining deterioration of a secondary battery, which records fluctuations in battery voltage of a secondary battery in a log on a computer, and determines deterioration of the secondary battery by analyzing the log using the computer, the method comprising:
A reference voltage distribution generation process that creates a reference voltage distribution by acquiring a battery voltage distribution that is a reference for determining a secondary battery from the log;
a determination voltage distribution generation process that creates a determination voltage distribution from the log indicating a battery voltage distribution of the secondary battery at a determination time point after the reference voltage distribution is created;
a first comparison result in which the determination voltage distribution and the reference voltage distribution are compared to compare the frequency of appearance of the battery voltage on the low voltage side in a lower voltage range of the battery voltage range where the frequency of appearance has increased; , a deterioration determination process of determining deterioration of the secondary battery based on a second comparison result of comparing the frequency of occurrence of the battery voltage on the high voltage side in a higher voltage range of the battery voltage range in which the frequency of occurrence has increased; A method for determining deterioration of a secondary battery.
前記劣化判定処理では、
前記判定用電圧分布の前記低電圧側の前記電池電圧の出現頻度と前記基準電圧分布の前記低電圧側の前記電池電圧の出現頻度との差が出現頻度閾値よりも大きく、かつ、前記判定用電圧分布の前記高電圧側の前記電池電圧の出現頻度と前記基準電圧分布の前記高電圧側の前記電池電圧の出現頻度との差が前記出現頻度閾値よりも小さい場合には前記二次電池に電池容量の低下があると判定し、
前記判定用電圧分布の前記低電圧側の前記電池電圧の出現頻度と前記基準電圧分布の前記低電圧側の前記電池電圧の出現頻度との差が前記出現頻度閾値よりも大きく、かつ、前記判定用電圧分布の前記高電圧側の前記電池電圧の出現頻度と前記基準電圧分布の前記高電圧側の前記電池電圧の出現頻度との差が前記出現頻度閾値よりも大きい場合には前記二次電池に内部抵抗の上昇が生じたと判定し、
前記電池容量の低下があると判定された際の前記高電圧側及び前記低電圧側の電池電圧の前記出現頻度と前記内部抵抗の上昇があると判定された際の前記高電圧側及び前記低電圧側の電池電圧の前記出現頻度とのいずれか一方が予め設定した劣化閾値を超えたことが検出されたことに応じて前記二次電池に劣化が限界に達したと判定する請求項1に記載の二次電池の劣化判定方法。
In the deterioration determination process,
The difference between the appearance frequency of the battery voltage on the low voltage side of the determination voltage distribution and the appearance frequency of the battery voltage on the low voltage side of the reference voltage distribution is greater than an appearance frequency threshold, and the determination If the difference between the appearance frequency of the battery voltage on the high voltage side of the voltage distribution and the appearance frequency of the battery voltage on the high voltage side of the reference voltage distribution is smaller than the appearance frequency threshold, It is determined that the battery capacity has decreased,
The difference between the appearance frequency of the battery voltage on the low voltage side of the determination voltage distribution and the appearance frequency of the battery voltage on the low voltage side of the reference voltage distribution is greater than the appearance frequency threshold, and the determination If the difference between the appearance frequency of the battery voltage on the high voltage side of the secondary voltage distribution and the appearance frequency of the battery voltage on the high voltage side of the reference voltage distribution is greater than the appearance frequency threshold, the secondary battery It is determined that an increase in internal resistance has occurred,
The appearance frequency of the battery voltage on the high voltage side and the low voltage side when it is determined that there is a decrease in the battery capacity, and the frequency of appearance of the battery voltage on the high voltage side and the low voltage side when it is determined that there is an increase in the internal resistance. According to claim 1, it is determined that the deterioration of the secondary battery has reached a limit in response to detecting that either one of the appearance frequency of the battery voltage on the voltage side exceeds a preset deterioration threshold. The described method for determining deterioration of a secondary battery.
前記二次電池の前記電池容量の低下と、前記二次電池に前記内部抵抗の上昇と、のいずれか一方が生じていると判定された場合に前記二次電池にリフレッシュ処理を施すリフレッシュ処理を行い、
前記リフレッシュ処理後に前記劣化判定処理を行う請求項2に記載の二次電池の劣化判定方法。
Refresh processing that performs refresh processing on the secondary battery when it is determined that either one of a decrease in the battery capacity of the secondary battery and an increase in the internal resistance of the secondary battery has occurred. conduct,
The method for determining deterioration of a secondary battery according to claim 2, wherein the deterioration determination process is performed after the refresh process .
前記基準電圧分布生成処理では、前記二次電池が利用される環境温度毎に前記基準電圧分布を作成し、
前記劣化判定処理では、前記判定用電圧分布が作成された際の前記環境温度に対応した温度の前記基準電圧分布を前記判定用電圧分布の比較対象とする請求項1乃至3のいずれか1項に記載の二次電池の劣化判定方法。
In the reference voltage distribution generation process, the reference voltage distribution is created for each environmental temperature at which the secondary battery is used;
4. In the deterioration determination process, the reference voltage distribution at a temperature corresponding to the environmental temperature at the time when the determination voltage distribution was created is used as a comparison target for the determination voltage distribution. A method for determining deterioration of a secondary battery described in .
前記基準電圧分布と前記判定用電圧分布に記録される電圧は、前記電池電圧が増加から減少に転じる時点の上側電圧と、前記電池電圧が減少から増加に転じる時点の下側電圧である請求項1乃至4のいずれか1項に記載の二次電池の劣化判定方法。 The voltages recorded in the reference voltage distribution and the determination voltage distribution are an upper voltage when the battery voltage changes from increasing to decreasing, and a lower voltage when the battery voltage changes from decreasing to increasing. 5. The method for determining deterioration of a secondary battery according to any one of 1 to 4. コンピュータ上で実行され、二次電池の電池電圧の変動を前記コンピュータ上でログに記録し、当該コンピュータを用いて前記ログを解析することで前記二次電池の劣化を判定する二次電池の劣化判定プログラムであって、
二次電池の判定の基準となる電池電圧の分布を前記ログから取得して基準電圧分布を作成する基準電圧分布生成処理と、
前記基準電圧分布作成後の判定時点での前記二次電池の電池電圧の分布示す判定用電圧分布を前記ログから作成する判定用電圧分布生成処理と、
前記判定用電圧分布と前記基準電圧分布とを比較して、出現頻度が増加した電池電圧範囲のうち低い電圧範囲にある低電圧側の前記電池電圧の出現頻度を比較する第1の比較結果と、前記出現頻度が増加した電池電圧範囲のうち高い電圧範囲にある高電圧側の前記電池電圧の出現頻度を比較する第2の比較結果とに基づき前記二次電池の劣化を判定する劣化判定処理と、を行う二次電池の劣化判定プログラム。
Deterioration of a secondary battery, which is executed on a computer, records fluctuations in battery voltage of the secondary battery in a log on the computer, and determines deterioration of the secondary battery by analyzing the log using the computer. A determination program,
A reference voltage distribution generation process that creates a reference voltage distribution by acquiring a battery voltage distribution that is a reference for determining a secondary battery from the log;
a determination voltage distribution generation process that creates a determination voltage distribution from the log indicating a battery voltage distribution of the secondary battery at a determination time point after the reference voltage distribution is created;
a first comparison result in which the determination voltage distribution and the reference voltage distribution are compared to compare the frequency of appearance of the battery voltage on the low voltage side in a lower voltage range of the battery voltage range where the frequency of appearance has increased; , a deterioration determination process of determining deterioration of the secondary battery based on a second comparison result of comparing the frequency of occurrence of the battery voltage on the high voltage side in a higher voltage range of the battery voltage range in which the frequency of occurrence has increased; A secondary battery deterioration determination program that performs the following.
二次電池の電池電圧を検出する電圧検出部と、
記憶部と、
前記電池電圧を前記記憶部にログとして蓄積し、前記二次電池の判定の基準となる電池電圧の分布を前記ログから取得して基準電圧分布を作成する基準電圧分布生成処理と、前記基準電圧分布作成後の判定時点での前記二次電池の電池電圧の分布示す判定用電圧分布を前記ログから作成する判定用電圧分布生成処理と、を行う電圧分布生成部と、
前記判定用電圧分布と前記基準電圧分布とを比較して、出現頻度が増加した電池電圧範囲のうち低い電圧範囲にある低電圧側の前記電池電圧の出現頻度を比較する第1の比較結果と、前記出現頻度が増加した電池電圧範囲のうち高い電圧範囲にある高電圧側の前記電池電圧の出現頻度を比較する第2の比較結果とに基づき前記二次電池の劣化を判定する劣化判定部と、を有する劣化判定装置。
a voltage detection unit that detects the battery voltage of the secondary battery;
storage section,
a reference voltage distribution generation process of accumulating the battery voltage as a log in the storage unit, obtaining from the log a battery voltage distribution that is a reference for determining the secondary battery to create a reference voltage distribution; and the reference voltage a voltage distribution generation unit that performs a determination voltage distribution generation process of creating a determination voltage distribution from the log indicating a distribution of battery voltage of the secondary battery at a determination time point after distribution creation;
a first comparison result in which the determination voltage distribution and the reference voltage distribution are compared to compare the frequency of appearance of the battery voltage on the low voltage side in a lower voltage range of the battery voltage range where the frequency of appearance has increased; , a deterioration determination unit that determines deterioration of the secondary battery based on a second comparison result that compares the frequency of occurrence of the battery voltage on the high voltage side in a higher voltage range of the battery voltage range in which the frequency of occurrence has increased; A deterioration determination device comprising:
JP2021125273A 2021-07-30 2021-07-30 Deterioration determination method, deterioration determination program, and deterioration determination device for secondary batteries Active JP7402205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021125273A JP7402205B2 (en) 2021-07-30 2021-07-30 Deterioration determination method, deterioration determination program, and deterioration determination device for secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021125273A JP7402205B2 (en) 2021-07-30 2021-07-30 Deterioration determination method, deterioration determination program, and deterioration determination device for secondary batteries

Publications (2)

Publication Number Publication Date
JP2023020089A JP2023020089A (en) 2023-02-09
JP7402205B2 true JP7402205B2 (en) 2023-12-20

Family

ID=85159883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021125273A Active JP7402205B2 (en) 2021-07-30 2021-07-30 Deterioration determination method, deterioration determination program, and deterioration determination device for secondary batteries

Country Status (1)

Country Link
JP (1) JP7402205B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134438B1 (en) 2015-07-31 2017-05-24 株式会社東芝 Storage battery evaluation device, power storage system, and storage battery evaluation method
WO2019106754A1 (en) 2017-11-29 2019-06-06 株式会社 東芝 Evaluation device, power storage system, evaluation method, and computer program
JP2022169917A (en) 2021-04-28 2022-11-10 株式会社日立ハイテク Battery management device and power system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6647986B2 (en) * 2016-08-04 2020-02-14 プライムアースEvエナジー株式会社 Secondary battery deterioration determination device, secondary battery deterioration determination method, and secondary battery control device
JP2018080982A (en) * 2016-11-16 2018-05-24 株式会社明電舎 Communication system, communication method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134438B1 (en) 2015-07-31 2017-05-24 株式会社東芝 Storage battery evaluation device, power storage system, and storage battery evaluation method
WO2019106754A1 (en) 2017-11-29 2019-06-06 株式会社 東芝 Evaluation device, power storage system, evaluation method, and computer program
JP2022169917A (en) 2021-04-28 2022-11-10 株式会社日立ハイテク Battery management device and power system

Also Published As

Publication number Publication date
JP2023020089A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
JP6295858B2 (en) Battery management device
EP2365605B1 (en) Charging apparatus, program
KR102655790B1 (en) Method and apparatus for estimating battery state
EP2911232A1 (en) Charging method and charger
CN111856283B (en) Battery evaluation system and battery evaluation method
JPH09304490A (en) Method for estimating residual capacity of battery
CN106340920B (en) Control method, device, battery system and the vehicle of the passive equilibrium of battery pack
US10931131B2 (en) Method and apparatus for charging or discharging an energy store
CN109591626B (en) Protection method, system and device for pre-charging resistor and storage medium
KR102238559B1 (en) Battery control appratus and method for detection internal short of battery
US20150372514A1 (en) Electric storage device and deterioration determination method
JP6041040B2 (en) Storage battery, storage battery control method, control device, and control method
JP2022516947A (en) Balancing devices and methods for battery packs connected in parallel
JP6770933B2 (en) Power storage system
CN111913111B (en) Discharge power correction method and device, storage medium and electronic equipment
JPWO2019230130A1 (en) Charge control devices, transportation equipment, and programs
JP2007078506A (en) Lifetime determination device for secondary battery
JP2023532485A (en) Battery state calculation method, calculation device, and storage medium
JP6784731B2 (en) Deterioration judgment system and deterioration judgment method for secondary batteries
SE1950652A1 (en) Method for estimating state of health of a battery
JP2014163921A (en) Charging/discharging test system and control device
KR20160014167A (en) Method for Adjusting Temperature of Battery Management System and BMS using the same
JP7402205B2 (en) Deterioration determination method, deterioration determination program, and deterioration determination device for secondary batteries
KR101399362B1 (en) Method and apparatus for estimating state of health using current integrated offset
WO2017002953A1 (en) Data extracting device, data extracting method, and data extracting program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231208

R150 Certificate of patent or registration of utility model

Ref document number: 7402205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150