JP7401047B2 - Manufacturing method for fuel introduction inlet - Google Patents

Manufacturing method for fuel introduction inlet Download PDF

Info

Publication number
JP7401047B2
JP7401047B2 JP2021215518A JP2021215518A JP7401047B2 JP 7401047 B2 JP7401047 B2 JP 7401047B2 JP 2021215518 A JP2021215518 A JP 2021215518A JP 2021215518 A JP2021215518 A JP 2021215518A JP 7401047 B2 JP7401047 B2 JP 7401047B2
Authority
JP
Japan
Prior art keywords
fuel introduction
fuel
shaft
inlet
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021215518A
Other languages
Japanese (ja)
Other versions
JP2023088230A (en
Inventor
豊司 南田
Original Assignee
株式会社ミナミダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミナミダ filed Critical 株式会社ミナミダ
Priority to JP2021215518A priority Critical patent/JP7401047B2/en
Publication of JP2023088230A publication Critical patent/JP2023088230A/en
Application granted granted Critical
Publication of JP7401047B2 publication Critical patent/JP7401047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Forging (AREA)

Description

本発明は、内燃機関に用いられるデリバリパイプに取り付けられる燃料導入用インレットの製造方法に関する。 The present invention relates to a method of manufacturing a fuel introduction inlet attached to a delivery pipe used in an internal combustion engine.

従来、内燃機関において、燃料供給管から供給される燃料を、各気筒に設けられた燃料噴射弁に分配するデリバリパイプが用いられている。 Conventionally, in internal combustion engines, a delivery pipe has been used that distributes fuel supplied from a fuel supply pipe to fuel injection valves provided in each cylinder.

従来、この種のデリバリパイプは、筒状体からなり、その燃料通路を有する筒状胴部の長手方向には燃料噴射弁を取り付けるための挿入部が所定間隔をおいて複数設けられ、かつ各挿入部には、デリバリパイプの燃料通路に連通する挿入口がそれぞれ設けられており、その挿入口に燃料噴射弁(図示せず)の後端が挿入される。そして、デリバリパイプの一端部には、高圧燃料ポンプに接続された高圧燃料供給管(図示せず)のジョイント部をネジ結合するためのネジ結合端を有する燃料導入口部が一体に設けられている。また、デリバリパイプの筒状胴部にはデリバリパイプを内燃機関のシリンダヘッドに固定するためのボルト穴部が複数設けられている。 Conventionally, this type of delivery pipe has a cylindrical body, and a plurality of insertion parts for attaching fuel injection valves are provided at predetermined intervals in the longitudinal direction of the cylindrical body having a fuel passage. The insertion portions are each provided with an insertion port that communicates with the fuel passage of the delivery pipe, and a rear end of a fuel injection valve (not shown) is inserted into the insertion port. One end of the delivery pipe is integrally provided with a fuel inlet having a threaded connection end for threading a joint of a high-pressure fuel supply pipe (not shown) connected to the high-pressure fuel pump. There is. Further, the cylindrical body of the delivery pipe is provided with a plurality of bolt holes for fixing the delivery pipe to the cylinder head of the internal combustion engine.

特開2007-54884号JP2007-54884

ところで、上記したデリバリパイプにおいて、内燃機関におけるエンジンレイアウトの変更などに対しても最適な高圧燃料供給管におけるジョイント部の燃料導入口部におけるネジ結合端への取り付けが得られるように、高圧燃料供給管との接続部分となる燃料導入口部を、デリバリパイプの長手方向に対して積極的に傾斜させ、これによりネジ結合端が傾斜した姿勢で突出するように設けたものがある。
その場合、上記燃料導入口部がデリバリパイプに対しこれの軸方向に対して傾斜姿勢で突出する複雑な形状となることから、燃料導入口部をデリバリパイプと一体に成形することが非常に煩雑で困難となる。
By the way, in the above-mentioned delivery pipe, the high-pressure fuel supply pipe is designed so that it can be attached to the threaded end of the fuel inlet of the joint part of the high-pressure fuel supply pipe, which is optimal for changing the engine layout of an internal combustion engine. There is one in which the fuel inlet port, which is the connection part with the pipe, is positively inclined with respect to the longitudinal direction of the delivery pipe, so that the threaded connection end protrudes in an inclined position.
In that case, the fuel inlet has a complicated shape that protrudes from the delivery pipe at an angle with respect to its axial direction, making it very complicated to mold the fuel inlet and the delivery pipe integrally. becomes difficult.

そこで、現状ではデリバリパイプとは別に、高圧燃料供給管の接続部分となる燃料導入用インレット(以下インレットという)を熱間鍛造で成形し、その後、後工程でネジの加工と連通孔の加工とを施して形成し、このインレットをデリバリパイプの一端部に取り付けるようにしている。
その場合、図15の(イ)に示す円柱状の成形素材Xを、まず、予熱したうえで熱間鍛造の第1工程で図15の(ロ)に示すように半割の成形凹所を有する半割固定金型(図示せず)と半割の成形凹部を有する半割可動金型(図示せず)で円柱状の成形素材Xの直径方向からバリ出し鍛造をして、先端に円柱状ネジ結合端部21aを有する燃料導入軸部23と、燃料導入軸部23の一端側部からその軸方向に対して直交して突出するデリバリパイプへの取付脚部24とを備えたバリ20a付の中実成形体20Aを成形する。このとき、中実成形体20Aのバリ20aは、燃料導入軸部23と取付脚部24とを左右対称形状に2分割する中央線上の全周位置に厚く形成される。次いで、熱間鍛造の第2工程でバリ付の中実成形体20Aからバリ20a部分を打ち抜き加工により除去して図15の(ハ)に示すインレットの外形をした中実成形体20Aを形成する。その後、中実状成形体20Aを冷却し、後工程でショットブラストによりスケール落としを行い、さらに、円柱状ネジ結合端部21aへのネジの加工と、燃料導入軸部23への燃料導入口と連通孔との加工とを施して求める形状のインレットに形成するようにしている。
そして、このインレットを、その、燃料導入軸部23がデリバリパイプに対しその軸方向に対して傾斜状に突出する姿勢で溶接やロウ付けなどにより取り付けるようにしている。
しかし、上記したようにインレットを熱間鍛造して成形するものにあっては、まず第1工程でバリ出し鍛造によりバリ付中実成形体20Aを成形し、次いで第2工程でバリ付中実成形体20Aからバリ20a部分を打ち抜き加工により除去して中実成形体20Aを形成することから、中実成形体20Aにパーティングラインが大きく残る問題があり、加えて、熱間鍛造にあっては中実成形体20Aの寸法にバラツキが生じ易く、その寸法のバラツキのためネジや燃料導入口と連通孔とを後工程で加工する際のチャックなどによる中実成形体20Aの保持姿勢や保持力が一定化せず、後工程加工時における繰り返し精度が低いといった問題があった。その上、熱間鍛造にあっては金型の寿命が短くまたバリ20a部分を削除するため成形素材Xの材料ロスが多く、全体として不経済となるものであった。
Therefore, currently, apart from the delivery pipe, the fuel introduction inlet (hereinafter referred to as the inlet), which is the connecting part of the high-pressure fuel supply pipe, is formed by hot forging, and then the threads are machined and the communication hole is machined in the subsequent process. The inlet is attached to one end of the delivery pipe.
In that case, the cylindrical forming material The cylindrical molding material A burr 20a comprising a fuel introduction shaft 23 having a columnar threaded connection end 21a, and a mounting leg 24 for attaching to a delivery pipe that protrudes from one end side of the fuel introduction shaft 23 perpendicularly to the axial direction thereof. A solid molded body 20A is molded. At this time, the burr 20a of the solid molded body 20A is formed thickly at the entire circumferential position on the center line that divides the fuel introduction shaft part 23 and the mounting leg part 24 into two symmetrical shapes. Next, in the second step of hot forging, the burr 20a portion is removed from the solid molded body 20A with burrs by punching to form a solid molded body 20A having the outer shape of the inlet shown in FIG. 15(C). . Thereafter, the solid molded body 20A is cooled, scale is removed by shot blasting in a post-process, and a thread is machined to the cylindrical threaded joint end 21a and communicated with the fuel inlet to the fuel inlet shaft 23. The inlet is formed into a desired shape by performing hole processing.
The inlet is attached by welding, brazing, etc., with the fuel introduction shaft portion 23 projecting obliquely relative to the axial direction of the delivery pipe.
However, in the case where the inlet is formed by hot forging as described above, the solid molded body 20A with burrs is first formed by forging to remove burrs in the first step, and then the solid body with burrs is formed in the second step. Since the solid molded body 20A is formed by removing the burr 20a from the molded body 20A by punching, there is a problem in that a large parting line remains on the solid molded body 20A, and in addition, there is a problem in that the parting line remains large during hot forging. The dimensions of the solid molded body 20A tend to vary, and due to the variation in dimensions, the holding posture and retention of the solid molded body 20A by chucks, etc. when machining screws, fuel inlets and communication holes in the post-process are difficult. There was a problem that the force was not constant and the repeatability during post-process processing was low. Moreover, in hot forging, the life of the mold is short, and since the burr 20a portion is removed, there is a lot of material loss of the forming material X, making it uneconomical as a whole.

そこで、本発明は、上記した従来の欠点を解決するために発明したもので、燃料噴射弁を取り付けるための複数の挿入部を備えたデリバリパイプとは別に、高圧燃料供給管の接続部分となる複雑な形状の燃料導入用インレットを成形するに際し、パーティングラインがゼロまたは極力薄く、かつ大きな体積移動でありながら全体寸法のバラツキも小さく抑えて高精度の中実インレット成形体を量産できるようにし、これにより、その成形体をしっかりと挟持したうえでネジや連通孔の後工程加工時における繰り返し精度を高く形成でき、その上、金型の長寿命化と材料ロスをなくし低コスト化も実現できる燃料導入用インレットの製造方法の提供を課題とする。 Therefore, the present invention was invented in order to solve the above-mentioned conventional drawbacks.In addition to the delivery pipe, which has a plurality of insertion parts for attaching fuel injection valves, the present invention serves as a connection part for a high-pressure fuel supply pipe. When molding a fuel introduction inlet with a complex shape, it is possible to mass-produce high-precision solid inlet molded bodies by having no or as thin a parting line as possible, and minimizing variation in overall dimensions despite large volume movement. This makes it possible to securely hold the molded object and form screws and communicating holes with high repeatability during post-process processing, while also extending the life of the mold and reducing costs by eliminating material loss. The object of the present invention is to provide a method for manufacturing a fuel introduction inlet.

本願の請求項1記載の発明は、燃料通路を有しかつ燃料噴射弁を取り付けるための複数の挿入部を備えたデリバリパイプに取り付ける燃料導入用インレットの製造方法であって、まず、金型が超硬合金又は高速度鋼からなる半割の成形凹所を有する半割固定金型と半割の成形凹所を有する半割可動金型とを備えた冷間鍛造機を用い、これら半割可動金型と半割固定金型とにより円柱状の成形素材をその軸方向から冷間鍛造して、先端に円柱状ネジ結合端部を有する燃料導入軸部と、燃料導入軸部の後端下部から燃料導入軸部の軸方向に対して直交又は鈍角状に傾斜して突出するデリバリパイプへの取付脚部を備えた中実成形体を成形し、次に、中実成形体を冷間鍛造機から取り出し、後工程で、成形体の円柱状ネジ結合端部の外周をネジ加工してネジ結合端を形成する共にネジ結合端の中心部に燃料導入口を形成し、さらに、燃料導入口に連通しかつ燃料導入軸部の後端側側面に開口して、燃料導入口を燃料通路に連通させる連通孔を形成したことを特徴とする。 The invention according to claim 1 of the present application is a method for manufacturing a fuel introduction inlet to be attached to a delivery pipe having a fuel passage and a plurality of insertion portions for attaching fuel injection valves. Using a cold forging machine equipped with a fixed half mold having a half forming recess made of cemented carbide or high speed steel and a half movable mold having a half forming recess, these halves are A cylindrical molded material is cold-forged from the axial direction using a movable mold and a fixed half-split mold to form a fuel introduction shaft having a cylindrical threaded connection end at the tip, and a rear end of the fuel introduction shaft. A solid molded body is formed with a mounting leg for the delivery pipe that protrudes from the lower part at an angle perpendicular or obtuse to the axial direction of the fuel introduction shaft, and then the solid molded body is cold-rolled. After taking it out of the forging machine, in a post-process, the outer periphery of the cylindrical threaded end of the molded body is threaded to form a threaded end, and a fuel inlet is formed in the center of the threaded end. The present invention is characterized in that a communication hole is formed that communicates with the fuel inlet and opens on the side surface of the rear end side of the fuel inlet shaft to communicate the fuel inlet with the fuel passage.

本願の請求項2記載の発明は、上記した本願の請求項1記載の燃料導入用インレットの製造方法において、円柱状ネジ結合端部を燃料導入軸部の先端に段部を介して燃料導入軸部よりも小径に設定する一方、円柱状成形素材の軸径が円柱状ネジ結合端部の軸径と同径もしくは小径のものを用い、成形素材をその軸方向から冷間鍛造して荷重が掛った時、成形素材と燃料導入軸部との軸径差による隙間空間を利用して成形素材の両金型における燃料導入軸部成形部分及び取付脚部成形部分への体積移動を一気に行なって、燃料導入軸部と、燃料導入軸部の後端下部から突出する取付脚部とを同時的に成形するようにしたことを特徴とする。 The invention according to claim 2 of the present application is the method for manufacturing a fuel introduction inlet according to claim 1 of the present application, in which the cylindrical threaded joint end is connected to the tip of the fuel introduction shaft through a stepped part. On the other hand, the diameter of the cylindrical forming material is the same or smaller than that of the cylindrical screw connection end, and the forming material is cold forged from the axial direction to reduce the load. When it hangs, the volume of the molding material is transferred to the fuel introduction shaft molding part and the mounting leg molding part in both molds at once by using the gap space due to the shaft diameter difference between the molding material and the fuel introduction shaft part. , the fuel introduction shaft and the mounting leg protruding from the lower rear end of the fuel introduction shaft are simultaneously molded.

本発明の燃料導入用インレットの製造方法によれば、上記した構成により、デリバリパイプとは別に形成するインレットを、金型が超硬合金又は高速度鋼からなる冷間鍛造機により円柱状の成形素材をその軸方向から冷間鍛造して成形するようにしたから、その冷間鍛造された中実成形体のパーティングラインはゼロまたは極力薄くでき、かつ全体寸法のバラツキも小さく高精度の中実成形体を量産できる。これにより、後工程の加工用チャックに安定よく正確に保持でき、ネジや連通孔の加工時における繰り返し精度を著しく高め加工品質を維持できる。その上、冷間鍛造にあっては金型の長寿命化が図れると同時に成形素材の材料ロスを抑え、全体としての低コスト化が実現できる。 According to the method for manufacturing a fuel introduction inlet of the present invention, the inlet formed separately from the delivery pipe is formed into a cylindrical shape by a cold forging machine whose mold is made of cemented carbide or high-speed steel. Since the material is cold-forged from the axial direction, the parting line of the cold-forged solid molded product can be zero or as thin as possible, and the overall dimension variation is small and high precision can be achieved. It is possible to mass produce actual molded objects. As a result, it can be stably and accurately held in a chuck for machining in the subsequent process, and the repeatability during machining of screws and communicating holes can be significantly increased and machining quality can be maintained. In addition, cold forging can extend the life of the mold and at the same time reduce the loss of forming material, resulting in lower costs overall.

また、円柱状ネジ結合端部を燃料導入軸部の先端に段部を介して燃料導入軸部よりも小径に設定する一方、円柱状の成形素材として、燃料導入軸部における円柱状ネジ結合端部の軸径と同径もしくは小径のもの、つまり燃料導入軸部の軸径よりも小径に設定したものを用いるようにすれば、成形素材をその軸方向から冷間鍛造して成形素材に荷重がかかった時点で、成形素材と燃料導入軸部との軸径差による隙間空間を利用して成形素材の両金型における燃料導入軸部成形部分及び取付脚部成形部分への大きな体積移動を一気に行なって、燃料導入軸部と、燃料導入軸部の後端下部から突出する取付脚部とを同時的に一気に成形することができる。その結果、円柱状ネジ結合端部を有する燃料導入軸部と、燃料導入軸部の後端下部から突出する取付脚部を備えた中実成形体を、全体寸法のバラツキがより小さく、より高精度の中実成形体を成形できる。 In addition, while the cylindrical threaded joint end is set to have a smaller diameter than the fuel introduction shaft through a step at the tip of the fuel introduction shaft, the cylindrical threaded joint end at the fuel introduction shaft is set as a cylindrical molded material. If you use one with the same diameter or a smaller diameter than the shaft diameter of the fuel introduction shaft, the material will be cold forged from the axial direction and the load will be applied to the material. At this point, a large volume movement of the molding material to the fuel introduction shaft molding part and the mounting leg molding part in both molds is carried out using the gap space due to the shaft diameter difference between the molding material and the fuel introduction shaft part. By doing so, the fuel introduction shaft portion and the mounting leg portion protruding from the lower rear end of the fuel introduction shaft portion can be formed simultaneously and at once. As a result, we have created a solid molded body with a fuel introduction shaft having a cylindrical screw connection end and a mounting leg protruding from the lower rear end of the fuel introduction shaft, with less variation in overall dimensions and higher height. It is possible to mold solid molded objects with high precision.

本発明に係る製造方法で製造されたインレットを取り付けたデリバリパイプの一部省略斜視図である。FIG. 2 is a partially omitted perspective view of a delivery pipe to which an inlet manufactured by the manufacturing method according to the present invention is attached. 本発明に係る製造方法で製造されたインレットの側面図である。FIG. 2 is a side view of an inlet manufactured by the manufacturing method according to the present invention. 同インレットの正面図である。It is a front view of the same inlet. 同インレットの正面図中央縦断面図である。It is a front view center vertical cross-sectional view of the same inlet. 同インレットの冷間鍛造状態を示す説明図である。It is an explanatory view showing the cold forging state of the same inlet. 円柱状の成形素材の正面図である。FIG. 3 is a front view of a cylindrical molded material. 冷間鍛造された中実成形体の側面図である。FIG. 2 is a side view of a cold-forged solid molded body. 取付脚部を別の形状としたインレットの側面図である。FIG. 7 is a side view of an inlet with a mounting leg having a different shape. 同インレットの正面図である。It is a front view of the same inlet. 同インレットの正面図中央縦断面図である。It is a front view center vertical cross-sectional view of the same inlet. 同インレットの冷間鍛造状態を示す説明図である。It is an explanatory view showing the cold forging state of the same inlet. 同冷間鍛造された中実成形体の側面図である。FIG. 3 is a side view of the same cold-forged solid molded body. 別の閉塞冷間鍛造状態を示す説明図である。It is an explanatory view showing another closed cold forging state. さらに別の閉塞冷間鍛造状態を示す説明図である。It is an explanatory view showing still another closed cold forging state. 従来の説明図である。It is a conventional explanatory diagram.

以下本発明に係る燃料導入用インレットの製造方法の実施例を図に基づいて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the method for manufacturing a fuel introduction inlet according to the present invention will be described below with reference to the drawings.

まず、図1は、本発明の製造方法で製造されたインレット10を装着した内燃機関用デリバリパイプ1を示す。
デリバリパイプ1は、筒状を呈する鋳造体であって、燃料通路(図示せず)を有する筒状胴部1aにおける長手方向には燃料噴射弁(図示せず)を取り付けるための挿入部2…2が所定間隔ごとに複数設けられ、各挿入部2…2には、デリバリパイプ1における筒状胴部1aの燃料通路に連通する挿入口2a…2aがそれぞれ設けられ、かつ、その挿入口2a…2aに燃料噴射弁の後端が挿入される。また、デリバリパイプ1の筒状胴部1aにはデリバリパイプ1を内燃機関のシリンダヘッドに固定するためのボルト穴部3…3が複数設けられている。
そして、デリバリパイプ1の一端部は、高圧燃料ポンプ(図示せず)に接続された高圧燃料供給管4の先端部5がネジ結合で固定される部位であって、この部位には同デリバリパイプ1からその軸方向に対して傾斜した姿勢で突出する燃料導入用インレット10が溶接やロウ付けなどにより別設されている。
First, FIG. 1 shows a delivery pipe 1 for an internal combustion engine equipped with an inlet 10 manufactured by the manufacturing method of the present invention.
The delivery pipe 1 is a cast body having a cylindrical shape, and has a cylindrical body portion 1a having a fuel passage (not shown).In the longitudinal direction thereof, an insertion portion 2 for attaching a fuel injection valve (not shown) is provided. 2 are provided at predetermined intervals, and each insertion portion 2...2 is provided with an insertion port 2a...2a that communicates with the fuel passage of the cylindrical body portion 1a of the delivery pipe 1, and the insertion port 2a... ...The rear end of the fuel injection valve is inserted into 2a. Further, the cylindrical body portion 1a of the delivery pipe 1 is provided with a plurality of bolt holes 3 for fixing the delivery pipe 1 to the cylinder head of an internal combustion engine.
One end of the delivery pipe 1 is a part to which a tip 5 of a high-pressure fuel supply pipe 4 connected to a high-pressure fuel pump (not shown) is fixed with a screw connection. A fuel introduction inlet 10 is separately provided by welding or brazing.

インレット10は、図2~4に示すようにデリバリパイプ1とは別に金型が超硬合金又はハイス高速度鋼(ハイス)からなる冷間鍛造機により成形された鍛造体からなる。
そして具体的には、図2~図4に示すように先端に高圧燃料供給管4の接続部分となるネジ結合端11を有しかつ中心部に燃料導入口12を有する円柱状の燃料導入軸部13と、燃料導入軸部13の長さ方向中間部からその軸方向に対し直交して横出し状に突出するデリバリパイプ1への取付脚部14(図2~図4においては下方に突出)を備え、かつ、燃料導入軸部13の後端側に、上記取付脚部14を介する燃料導入軸部13のデリバリパイプ1への取り付け時、燃料導入口12をデリバリパイプ1の燃料通路に連通させる連通孔15が形成されている。
As shown in FIGS. 2 to 4, the inlet 10 is a forged body formed separately from the delivery pipe 1 by a cold forging machine whose mold is made of cemented carbide or high speed steel.
Specifically, as shown in FIGS. 2 to 4, the cylindrical fuel introduction shaft has a threaded joint end 11 at its tip that serves as a connection part for the high-pressure fuel supply pipe 4, and a fuel introduction port 12 at its center. 13, and a mounting leg 14 (projecting downward in FIGS. 2 to 4) for the delivery pipe 1 that protrudes laterally from the intermediate portion in the longitudinal direction of the fuel introduction shaft 13 at right angles to the axial direction. ) on the rear end side of the fuel introduction shaft 13, and when the fuel introduction shaft 13 is attached to the delivery pipe 1 via the mounting leg 14, the fuel introduction port 12 is connected to the fuel passage of the delivery pipe 1. A communication hole 15 is formed for communication.

インレット10は、図1に示すようにデリバリパイプ1の一端部にその長手方向に対して傾斜した姿勢で溶接やロウ付けなどにより取り付けられる。このようにインレット10をデリバリパイプ1に対して傾斜させた姿勢で、デリバリパイプ1の一端に取り付けられることにより、内燃機関におけるエンジンレイアウトの変更などに対しても幅広く対応させて最適な状態で高圧燃料供給管4における先端部5を燃料導入軸部13のネジ結合端11への取り付けが可能となされている。
また、インレット10をデリバリパイプ1に対して傾斜させた姿勢で、デリバリパイプ1の一端に例えば溶接で取り付けたとき、インレット10における燃料導入口12が、連通孔15を介してデリバリパイプ1の燃料通路に漏れなく連通連結されることになる。
As shown in FIG. 1, the inlet 10 is attached to one end of the delivery pipe 1 by welding, brazing, etc. in an attitude inclined with respect to its longitudinal direction. By attaching the inlet 10 to one end of the delivery pipe 1 with the inlet 10 inclined relative to the delivery pipe 1 in this way, it can be widely adapted to changes in the engine layout of internal combustion engines, and maintains high pressure in an optimal state. The tip 5 of the fuel supply pipe 4 can be attached to the threaded end 11 of the fuel introduction shaft 13.
Furthermore, when the inlet 10 is attached to one end of the delivery pipe 1 by, for example, welding in an inclined position with respect to the delivery pipe 1, the fuel inlet 12 of the inlet 10 is connected to the fuel inlet of the delivery pipe 1 through the communication hole 15. It will be connected to the passage without any leakage.

これにより、高圧燃料供給管4から供給された燃料は、インレット10の燃料導入口12から連通孔13を介してデリバリパイプ1における筒状胴部1aの燃料通路を通り、各挿入部2…2の挿入口2a…2aを介して各燃料噴射弁に分配され、エンジンの燃料室内に供給される。 Thereby, the fuel supplied from the high-pressure fuel supply pipe 4 passes through the fuel passage of the cylindrical body portion 1a of the delivery pipe 1 from the fuel introduction port 12 of the inlet 10 through the communication hole 13, and passes through each insertion portion 2...2. The fuel is distributed to each fuel injection valve through the insertion ports 2a...2a, and is supplied into the fuel chamber of the engine.

次に、以上のように形成されかつ使用される燃料導入用インレット10の製造方法について述べる。
このインレット10の製造方法としては、まず、図5に示すように金型が超硬合金又は高速度鋼からなる半割の成形凹所31aを有する半割固定金型(ダイ)31と半割の成形凹所32aを有する半割可動金型(パンチ)32とを備えた冷間鍛造機30を用い、これら半割固定金型31と半割可動金型32とにより図6に示すような円柱状の成形素材Xをその軸方向から冷間鍛造して、図7に示す先端に円柱状ネジ結合端部11aを有する燃料導入軸部13と、燃料導入軸部13の長さ方向中間部からその軸方向に対し直交して突出するデリバリパイプ1への取付脚部14を備えた中実成形体10Aを成形する。
ここで、図5において中実成形体10A上の点線は中実成形体10Aを成形する場合における下側の半割固定金型31と上側の半割可動金型32との突合せ面を示す。この突合せ面は、図5において取付脚部14の厚みを上下でほぼ2分割する水平ラインの延長線上に形成されており、半割固定金型31の成形孔31aとノックアウトピン33とで図7における中実成形体10Aの半割下部分の成形空間を形成し、また半割可動金型32の底面に形成した成形凹所32aで中実成形体10Aの半割上部分の成形空間を形成している。そして、これら下側の半割固定金型31と上側の半割可動金型32との間に成形素材Xを介在させた状態で上側の半割可動金型32を下側の半割固定金型31側へ移動させ、半割固定金型31と半割可動金型32とによる成形力と閉塞力により成形素材Xを冷間鍛造して取付脚部14が横出しされた求める形状の中実成形体10Aを成形する。
Next, a method for manufacturing the fuel introduction inlet 10 formed and used as described above will be described.
As a manufacturing method of this inlet 10, first, as shown in FIG. Using a cold forging machine 30 equipped with a half-split movable mold (punch) 32 having a forming recess 32a, the half-split fixed mold 31 and the half-split movable mold 32 are used to form a mold as shown in FIG. A cylindrical forming material X is cold forged from its axial direction to form a fuel introduction shaft 13 having a cylindrical threaded connection end 11a at the tip shown in FIG. 7, and a longitudinally intermediate portion of the fuel introduction shaft 13. A solid molded body 10A having a mounting leg portion 14 for attaching to the delivery pipe 1 protruding perpendicularly to the axial direction thereof is molded.
Here, in FIG. 5, the dotted line on the solid molded body 10A indicates the abutting surface between the lower half-split fixed mold 31 and the upper half-split movable mold 32 when molding the solid molded body 10A. This abutment surface is formed on an extension of a horizontal line that roughly divides the thickness of the mounting leg 14 into upper and lower halves in FIG. A molding space is formed for the lower half of the solid molded body 10A, and a molding space for the upper half of the solid molded body 10A is formed by the molding recess 32a formed on the bottom of the movable half mold 32. are doing. Then, with the molding material X interposed between the lower half-split fixed mold 31 and the upper half-split movable mold 32, the upper half-split movable mold 32 is replaced with the lower half-split fixed mold. The molding material X is moved to the mold 31 side and cold forged by the forming force and closing force of the half-split fixed mold 31 and the half-split movable mold 32 into the desired shape in which the mounting leg 14 is laterally drawn out. An actual molded body 10A is molded.

その後、図7のように成形された中実成形体10Aを冷間鍛造機30から取り出し、後工程で、円柱状ネジ結合端部11aの外周部分に適宜ネジ加工機(図示せず)でネジ切り加工を施して図2に示すようなネジ結合端11を形成すると共に、ネジ結合端11の中心部に適宜穴あけ加工機(図示せず)により穴あけ加工して燃料導入口12を形成し、さらに、この燃料導入口12に連通しかつ燃料導入軸部13の後端側側面に開口して、燃料導12をデリバリパイプ1の燃料通路に連通させる連通孔15を形成し、これにより最終目的の燃料導入用インレット10を形成する。 Thereafter, the solid molded body 10A formed as shown in FIG. Cutting is performed to form a threaded joint end 11 as shown in FIG. 2, and a hole is suitably drilled in the center of the threaded joint end 11 using a drilling machine (not shown) to form a fuel inlet 12. Furthermore, a communication hole 15 is formed which communicates with this fuel inlet 12 and opens on the side surface of the rear end side of the fuel inlet shaft portion 13 to communicate the fuel guide 12 with the fuel passage of the delivery pipe 1. A fuel introduction inlet 10 is formed.

以上のように本発明の燃料導入用インレットの製造方法によれば、デリバリパイプとは別に形成するインレット10を、金型が超硬合金又は高速度鋼からなる冷間鍛造機により円柱状の成形素材Xをその軸方向から冷間鍛造して、成形するようにしたから、その冷間鍛造された中実成形体10Aのパーティングラインは、ゼロまたは極力薄くできかつ全体寸法のバラツキも小さく高精度の中実成形体10Aを量産できる。これにより、後工程の加工用チャックに安定よく正確に保持でき、ネジや連通孔の加工時における繰り返し精度を著しく高め加工品質を維持できる。その上、冷間鍛造にあっては金型の長寿命化が図れると同時に成形素材の材料ロスを抑え、全体としての低コスト化が実現できる。
なお、仮に中実成形体のパーティングラインが僅かに薄く出る場合があったとしても、バレル処理などで容易に除去でき、次工程の切削チャックに安定して保持でき、加工品質を維持できる。
As described above, according to the method for manufacturing a fuel introduction inlet of the present invention, the inlet 10 formed separately from the delivery pipe is formed into a cylindrical shape using a cold forging machine whose mold is made of cemented carbide or high-speed steel. Since the material It is possible to mass produce 10A of solid molded bodies with high precision. As a result, it can be stably and accurately held in a chuck for machining in the subsequent process, and the repeatability during machining of screws and communicating holes can be significantly increased and machining quality can be maintained. In addition, cold forging can extend the life of the mold and at the same time reduce the loss of forming material, resulting in lower costs overall.
Even if the parting line of the solid molded body appears slightly thin, it can be easily removed by barrel processing, etc., and it can be stably held in a cutting chuck in the next process, maintaining processing quality.

また、上記した実施例では、円柱状ネジ結合端部11aを燃料導入軸部13の先端に段部を介して燃料導入軸部13よりも小径に設定する一方、円柱状の成形素材として、燃料導入軸部13における円柱状ネジ結合端部11aの軸径と同径もしくは小径のもの、つまり燃料導入軸部13の軸径よりも小径に設定されたものを用いている。このように設定した場合には、成形素材をその軸方向から冷間鍛造して成形素材に荷重がかかった時点で、成形素材と燃料導入軸部13との軸径差による隙間空間を利用して成形素材の両金型における燃料導入軸部成形部分及び取付脚部成形部分への大きな体積移動を一気に行なて、燃料導入軸部13と、燃料導入軸部13の後端下部から突出する取付脚部14とを同時的に一気に成形することができる。その結果、円柱状ネジ結合端部11aを有する燃料導入軸部13と、燃料導入軸部13の後端下部から突出する取付脚部14を備えた中実成形体10Aを、全体寸法のバラツキがより小さく、より高精度の中実成形体10Aを成形できる。 In addition, in the embodiment described above, the cylindrical threaded joint end 11a is set at the tip of the fuel introduction shaft 13 via a stepped part to have a smaller diameter than the fuel introduction shaft 13, and the cylindrical molded material is The diameter is the same as or smaller than the shaft diameter of the cylindrical threaded connection end 11a of the introduction shaft 13, that is, the diameter is set smaller than the shaft diameter of the fuel introduction shaft 13. In this case, when the forming material is cold forged from its axial direction and a load is applied to the forming material, the gap space due to the difference in shaft diameter between the forming material and the fuel introduction shaft portion 13 is utilized. A large volume movement of the molding material to the fuel introduction shaft molding portion and the mounting leg molding portion in both molds is performed at once, and the fuel introduction shaft portion 13 and the fuel introduction shaft portion 13 protrude from the lower rear end thereof. The mounting leg portion 14 can be simultaneously molded in one go. As a result, the solid molded body 10A, which includes the fuel introduction shaft 13 having the cylindrical threaded joint end 11a and the mounting leg 14 protruding from the lower rear end of the fuel introduction shaft 13, can be manufactured without variations in overall dimensions. A smaller, more precise solid molded body 10A can be molded.

また、上記した実施例では、燃料導入軸部13の軸方向に対し直交して突出する(横出し状の)デリバリパイプ1への取付脚部14を備えたインレット10について説明したけれども、この他、例えば図8~図10に示すような燃料導入軸部13の長さ方向中間部から燃料導入軸部13の軸方向に対して鈍角状に傾斜して斜め出し状に突出するデリバリパイプ1への取付脚部14(図8~図10においては下方に突出)を備えたインレット10についても、図11に示す冷間鍛造機30により先の実施例と同様に本発明の製造方法にて製造でき、同様の作用効果を得ることができる。 Further, in the above-described embodiment, the inlet 10 is provided with the attachment leg portion 14 to the delivery pipe 1 (laterally extending) that protrudes perpendicularly to the axial direction of the fuel introduction shaft portion 13. , for example, as shown in FIGS. 8 to 10, from a longitudinally intermediate portion of the fuel introduction shaft 13 to a delivery pipe 1 that projects obliquely at an obtuse angle with respect to the axial direction of the fuel introduction shaft 13. The inlet 10 having the mounting leg portion 14 (projecting downward in FIGS. 8 to 10) is also manufactured by the manufacturing method of the present invention using the cold forging machine 30 shown in FIG. 11 in the same manner as in the previous embodiment. It is possible to obtain similar effects.

その場合、図11における中実成形体10Bの図中点線で示す箇所は下側の半割固定金型31と上側の半割可動金型32との突合せ面を示す。つまり、この突合せ面は、図11において斜めに突出する取付脚部14の厚みをその厚み方向でほぼ2分割する傾斜線と、その傾斜線の基端に繋がる燃料導入軸部13の直交線とを結ぶ線上において形成されることになる。そして、半割固定金型31の成形孔31aとノックアウトピン33とで中実成形体10Bの半割下部分の成形空間を形成し、また半割可動金型32の底面に形成した成形凹所32aで中実成形体10Aの半割上部分の成形空間を形成することになる。 In that case, the portion indicated by the dotted line in the solid molded body 10B in FIG. 11 represents the abutment surface between the lower half-split fixed mold 31 and the upper half-split movable mold 32. In other words, this abutment surface is formed by an inclined line that roughly divides the thickness of the mounting leg 14 that projects obliquely into two in the thickness direction in FIG. It will be formed on the line connecting the . The molding hole 31a of the fixed half mold 31 and the knockout pin 33 form a molding space for the lower half of the solid molded body 10B, and a molding recess formed on the bottom of the movable half mold 32 32a forms a molding space for the upper half of the solid molded body 10A.

なお、図12における中実成形体10Bでは、その燃料導入軸部13における両側面を扁平面13a,13aで小判型状を呈する形状としているので、その扁平面13a,13a部分を利用して機台側のチャックにより確実強固に固定したうえでネジ加工や切削加工などの二次加工を高精度に行うことが可能となる。 In addition, in the solid molded body 10B in FIG. 12, both sides of the fuel introduction shaft portion 13 are shaped into an oval shape with flat surfaces 13a, 13a. It is possible to perform secondary processing such as screw processing and cutting with high precision after firmly fixing the product using the chuck on the table side.

また、本発明における冷間鍛造とは、上記した実施例の構成の冷間鍛造に限らず閉塞冷間鍛造をも含む概念である。そこで、別の実施例として例えば図13及び図14にそれぞれ示すように、上記した二つの実施例の冷間鍛造機30における各半割可動金型31の内に、半割り凹所31a側に向って出退動する可動成形ピン34を内蔵させた閉塞冷間鍛造構造とし、冷間鍛造時に半割可動金型31の半割固定金型31への押圧による閉塞力を加えたうえで、さらに可動成形ピン34の半割り凹所32a側への前進(下動)による成形力を加えて閉塞冷間鍛造を行ない、これにより中実成形体10A又は中実成形体10Bを成形するようにしてもよい。 Furthermore, the term "cold forging" in the present invention is a concept that includes not only the cold forging having the structure of the above-described embodiments but also closed cold forging. Therefore, as another embodiment, for example, as shown in FIGS. 13 and 14, each of the half-split movable molds 31 in the cold forging machine 30 of the two embodiments described above has a half-split recess 31a side. It has a closed cold forging structure with a built-in movable forming pin 34 that moves forward and backward, and after applying a closing force by pressing the half-split movable mold 31 to the half-split fixed mold 31 during cold forging, Further, a forming force is applied by advancing (downwardly moving) the movable forming pin 34 toward the half-split recess 32a to perform closed cold forging, thereby forming the solid formed body 10A or the solid formed body 10B. You can.

また、上記した実施例では、いずれも1段の冷間鍛造工程で上記した中実成形体10A又は10Bを成形するようにしたものについて説明したけれども、何ら上記した実施例に限定されるものではなく、例えば前工程で円柱状の成形素材Xに一端予備成形を施すなど複数段の冷間鍛造工程とし、上記した中実成形体10A又は中実成形体10Bを段階的に冷間鍛造成形するようにしてもよい。 Further, in the above-mentioned embodiments, the above-mentioned solid molded body 10A or 10B is formed in one stage of cold forging process, but this is not limited to the above-mentioned embodiments. Rather, a multi-stage cold forging process is performed, for example, preforming one end of the cylindrical forming material You can do it like this.

1 デリバリパイプ
1a 筒状胴部
2 挿入部
2a 挿入口
10 燃料導入用インレット
10A 中実成形体
10B 中実成形体
11 ネジ結合端
11a 円柱状ネジ結合端部
12 燃料導入口
13 燃料導入軸部
14 取付脚部
15 連通孔
X 成形素材
1 Delivery pipe 1a Cylindrical body 2 Insertion part 2a Insertion port 10 Fuel introduction inlet 10A Solid molded body 10B Solid molded body 11 Threaded joint end 11a Cylindrical screw joint end 12 Fuel introduction port 13 Fuel introduction shaft part 14 Mounting leg 15 Communication hole X Molding material

Claims (2)

燃料通路を有しかつ燃料噴射弁を取り付けるための複数の挿入部を備えたデリバリパイプにおける燃料導入用インレットの製造方法であって、まず、金型が超硬合金又は高速度鋼からなる半割の成形凹所を有する半割固定金型と半割の成形凹所を有する半割可動金型とを備えた冷間鍛造機を用い、これら半割可動金型と半割固定金型とにより円柱状の成形素材をその軸方向から冷間鍛造して、先端に円柱状ネジ結合端部を有する燃料導入軸部と、燃料導入軸部の後端下部から燃料導入軸部の軸方向に対して直交又は鈍角状に傾斜して突出するデリバリパイプへの取付脚部を備えた中実成形体を成形し、次に、中実成形体を冷間鍛造機から取り出し、後工程で、成形体の円柱状ネジ結合端部の外周をネジ加工してネジ結合端を形成する共にネジ結合端の中心部に燃料導入口を形成し、さらに、燃料導入口に連通しかつ燃料導入軸部の後端側側面に開口して、燃料導入口を燃料通路に連通させる連通孔を形成したことを特徴とする燃料導入用インレットの製造方法。 A method for manufacturing a fuel introduction inlet in a delivery pipe having a fuel passage and a plurality of insertion portions for attaching fuel injection valves, the method first involves forming a mold in half made of cemented carbide or high-speed steel. Using a cold forging machine equipped with a half-split fixed mold having a forming recess and a half-split movable mold having a half-split forming recess, these half-split movable molds and half-split fixed molds are used. A cylindrical forming material is cold forged from the axial direction, and a fuel introduction shaft having a cylindrical screw connection end at the tip and a fuel introduction shaft from the lower rear end of the fuel introduction shaft in the axial direction of the fuel introduction shaft are formed. A solid molded body is formed with mounting legs for the delivery pipe that protrude at right angles or obtuse angles, and then the solid molded body is taken out of the cold forging machine, and in a post-process, the molded body is The outer periphery of the cylindrical threaded joint end is threaded to form a threaded joint end, and at the same time, a fuel inlet is formed in the center of the threaded joint end. 1. A method of manufacturing a fuel introduction inlet, characterized in that a communication hole is formed in an end side surface and communicates a fuel introduction port with a fuel passage. 円柱状ネジ結合端部を燃料導入軸部の先端に段部を介して燃料導入軸部よりも小径に設定する一方、円柱状の成形素材としてその軸径が円柱状ネジ結合端部の軸径と同径もしくは小径のものを用い、成形素材をその軸方向から冷間鍛造して荷重が掛った時、成形素材と燃料導入軸部との軸径差による空間を利用して成形素材の両金型における燃料導入軸部成形部分及び取付脚部成形部分への体積移動を一気に行ない、燃料導入軸部と、燃料導入軸部の後端下部から突出する取付脚部とを同時的に成形するようにしたことを特徴とする請求項1記載の燃料導入用インレットの製造方法。 The cylindrical screw connection end is set to have a smaller diameter than the fuel introduction shaft through a step at the tip of the fuel introduction shaft, while the shaft diameter of the cylindrical molded material is the same as the shaft diameter of the cylindrical screw connection end. When the forming material is cold forged from the axial direction using a material with the same diameter or a smaller diameter, when a load is applied to the forming material from the axial direction, the space created by the difference in shaft diameter between the forming material and the fuel introduction shaft is used to The volume is transferred to the fuel introduction shaft molding portion and the mounting leg molding portion of the mold at once, and the fuel introduction shaft and the mounting leg protruding from the lower rear end of the fuel introduction shaft are simultaneously molded. The method of manufacturing a fuel introduction inlet according to claim 1, characterized in that the method is characterized in that:
JP2021215518A 2021-12-14 2021-12-14 Manufacturing method for fuel introduction inlet Active JP7401047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021215518A JP7401047B2 (en) 2021-12-14 2021-12-14 Manufacturing method for fuel introduction inlet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021215518A JP7401047B2 (en) 2021-12-14 2021-12-14 Manufacturing method for fuel introduction inlet

Publications (2)

Publication Number Publication Date
JP2023088230A JP2023088230A (en) 2023-06-26
JP7401047B2 true JP7401047B2 (en) 2023-12-19

Family

ID=86899849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021215518A Active JP7401047B2 (en) 2021-12-14 2021-12-14 Manufacturing method for fuel introduction inlet

Country Status (1)

Country Link
JP (1) JP7401047B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214836A (en) 2000-01-31 2001-08-10 Murakoshi Koki:Kk Fuel injector part of diesel engine for automobile and manufacturing method therefor
JP2007054884A (en) 2005-08-26 2007-03-08 Toyota Motor Corp Casting body
JP2019138240A (en) 2018-02-13 2019-08-22 トヨタ自動車株式会社 Fuel pipe
JP2021186844A (en) 2020-06-02 2021-12-13 セイコーインスツル株式会社 Forging die, forging method and forged article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214836A (en) 2000-01-31 2001-08-10 Murakoshi Koki:Kk Fuel injector part of diesel engine for automobile and manufacturing method therefor
JP2007054884A (en) 2005-08-26 2007-03-08 Toyota Motor Corp Casting body
JP2019138240A (en) 2018-02-13 2019-08-22 トヨタ自動車株式会社 Fuel pipe
JP2021186844A (en) 2020-06-02 2021-12-13 セイコーインスツル株式会社 Forging die, forging method and forged article

Also Published As

Publication number Publication date
JP2023088230A (en) 2023-06-26

Similar Documents

Publication Publication Date Title
KR101346078B1 (en) Work holding device of holding turbocharger housing
US9616529B2 (en) Piston and method of making a piston
BR9903363A (en) Method for producing split threaded inserts, with refrigeration, by injection molding
CN108857268B (en) Machining process of high-abrasion-resistance oil pressure ejector rod
KR100236462B1 (en) Method of producing nozzle for solenoid valve
JP7401047B2 (en) Manufacturing method for fuel introduction inlet
US4888252A (en) Mould sets for plastics moulding machines
JP5337364B2 (en) Method for producing thin-walled cylindrical metal member with bottom
US7104109B2 (en) Double-cavity heading die
CN207495337U (en) A kind of die-cast product localization tool
CN208467846U (en) A kind of processing unit (plant) of automobile engine eccentric wheel
JPH0890135A (en) Joint metal tool and manufacture of this half-made product
CN208304517U (en) A kind of lathe chuck fixture for the processing of stainless steel forging rail
JP2018008281A (en) Horizontal continuous multistage forging machine
JP5932863B2 (en) Fuel injection valve and nozzle processing method
CN109130098B (en) Injection compression molding die
CN108406396A (en) A kind of lathe chuck fixture for the processing of stainless steel forging rail
KR200401103Y1 (en) Apparatus for manufacturing pillow ball
JPH0544594A (en) Manufacture of fuel distributing pipe made of synthetic resin
CN104259879B (en) Piston inner cavity head shape follow positioning device
JP2009148792A (en) Method for manufacturing connecting rod, and die for forging connecting rod
JP5412537B2 (en) Method for producing thin-walled cylindrical metal member with bottom
CN113458831A (en) Composite tool for thin-wall thrust chamber and anti-deformation processing method
CN209753988U (en) Long-shaft steering gear shell center hole core deviation preventing mechanism
JP2024059519A (en) Method for manufacturing mold component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231122

R150 Certificate of patent or registration of utility model

Ref document number: 7401047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150