JP7401046B2 - Brain function measurement device and brain function measurement method - Google Patents

Brain function measurement device and brain function measurement method Download PDF

Info

Publication number
JP7401046B2
JP7401046B2 JP2019189092A JP2019189092A JP7401046B2 JP 7401046 B2 JP7401046 B2 JP 7401046B2 JP 2019189092 A JP2019189092 A JP 2019189092A JP 2019189092 A JP2019189092 A JP 2019189092A JP 7401046 B2 JP7401046 B2 JP 7401046B2
Authority
JP
Japan
Prior art keywords
magnetic field
brain function
brain
generating means
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019189092A
Other languages
Japanese (ja)
Other versions
JP2021062100A (en
Inventor
治 樋脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima City University
Original Assignee
Hiroshima City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima City University filed Critical Hiroshima City University
Priority to JP2019189092A priority Critical patent/JP7401046B2/en
Publication of JP2021062100A publication Critical patent/JP2021062100A/en
Application granted granted Critical
Publication of JP7401046B2 publication Critical patent/JP7401046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁石等の磁界発生手段と、当該磁界発生手段のループ状の経路で帰還する磁力線の検出手段とを用いた、脳機能計測装置及び脳機能計測方法に関する。 The present invention relates to a brain function measuring device and a brain function measuring method using magnetic field generating means such as a magnet, and means for detecting magnetic lines of force returning in a loop-shaped path of the magnetic field generating means.

近年、非侵襲で脳機能を計測する方法として、例えば機能的近赤外分光法(Near Infra-Red Spectroscopy:NIRS)が提案されている。この方法は、目や耳等の感覚器から取り込んだ視覚や聴覚等の情報を電気信号に変えて脳に伝搬する際の神経細胞の情報伝達機能を、脳の毛細血管を流れる酸素化ヘモグロビン量の変化として、近赤外光を使用して計測する方法である。 In recent years, for example, functional near-infrared spectroscopy (NIRS) has been proposed as a method for non-invasively measuring brain function. This method calculates the amount of oxygenated hemoglobin flowing through the brain's capillaries by controlling the information transmission function of nerve cells, which converts visual and auditory information taken in from sensory organs such as the eyes and ears into electrical signals and propagates them to the brain. This method uses near-infrared light to measure changes in

特許文献1及び2は、機能的近赤外分光法を利用して大脳皮質における脳活動を計測する非侵襲的脳機能計測装置を開示している。この計測装置は、被験者の頭皮部(以下、頭皮と略記することがある。)に配置した光源から脳に近赤外光を照射し、この照射により生じた反射光及び散乱光を同じく頭皮上に配置した受光器によって受光することで、脳の活動状態を脳の毛細血管の血流変化として計測する発明である。 Patent Documents 1 and 2 disclose non-invasive brain function measurement devices that measure brain activity in the cerebral cortex using functional near-infrared spectroscopy. This measurement device irradiates the brain with near-infrared light from a light source placed on the subject's scalp (hereinafter sometimes abbreviated as scalp), and the reflected and scattered light generated by this irradiation is also reflected onto the scalp. This invention measures the state of brain activity as changes in blood flow in the brain's capillaries by receiving light with a light receiver placed in the brain.

また、脳を透過した近赤外光の計測による非侵襲的脳機能計測法として、特許文献3に係る発明が開示されており、近赤外光の発光源を口腔内に配置して脳底部から頭皮方向に近赤外光を照射し、頭皮上に配置した受光器によって透過光を受光することで、脳の活動状況を脳の毛細血管の血流変化として計測している。この場合、脳の深い部分を近赤外光が透過するため、脳内部の活動を反映した脳機能計測が可能である。 Furthermore, as a non-invasive brain function measurement method by measuring near-infrared light transmitted through the brain, an invention according to Patent Document 3 has been disclosed, in which a near-infrared light source is placed in the oral cavity and the base of the brain is By emitting near-infrared light from the head toward the scalp and receiving the transmitted light with a receiver placed on the scalp, brain activity is measured as changes in blood flow in the brain's capillaries. In this case, near-infrared light passes through deep parts of the brain, making it possible to measure brain function that reflects internal brain activity.

さらに、磁界発生手段を用いた非侵襲的脳機能計測装置として、特許文献4に係る発明が開示されており、磁石等の磁界発生源を口腔内に配置し、脳底部から頭皮方向に磁界を発生させ、頭皮上に配置した磁界検出手段によって透過磁界を計測することで、脳の活動状況を磁界の変化として計測している。 Furthermore, an invention related to Patent Document 4 is disclosed as a non-invasive brain function measuring device using a magnetic field generating means, in which a magnetic field generating source such as a magnet is placed in the oral cavity, and the magnetic field is applied from the base of the brain toward the scalp. By generating a magnetic field and measuring the transmitted magnetic field using magnetic field detection means placed on the scalp, brain activity can be measured as changes in the magnetic field.

また、磁石を用いた非侵襲的脳機能計測装置として、非特許文献1に係る発明が開示されており、頭皮上に設置した磁界発生手段から静磁界を頭部内部に照射し、脳最外部の大脳皮質を経由して頭皮部に帰還した磁力線の強度(以下、磁界強度と表記することがある。)を頭皮部に設置した磁界検出手段によって計測することで、脳の活動状況を磁界強度の変化として計測している。 Furthermore, an invention according to Non-Patent Document 1 has been disclosed as a non-invasive brain function measuring device using a magnet, in which a static magnetic field is irradiated inside the head from a magnetic field generating means installed on the scalp, and the outermost part of the brain is By measuring the strength of the magnetic field lines that return to the scalp via the cerebral cortex (hereinafter sometimes referred to as magnetic field strength) using a magnetic field detection means installed in the scalp, brain activity can be determined by measuring the magnetic field strength. It is measured as a change in

特開昭57-115232号公報Japanese Patent Application Publication No. 57-115232 特開昭63-275323号公報Japanese Unexamined Patent Publication No. 63-275323 特開2010-082370号公報Japanese Patent Application Publication No. 2010-082370 特開2018-122019号公報JP 2018-122019 Publication

樋脇治、大脳皮質を透過する静磁界を用いた非侵襲的脳信号計測技術の開発、NEURO2019(第42回日本神経科学大会、第62回日本神経化学会大会合同大会)抄録集、1O-08a1-3、2019年7月25―28日、新潟Osamu Hiwaki, Development of non-invasive brain signal measurement technology using static magnetic fields that penetrate the cerebral cortex, NEURO2019 (42nd Japan Neuroscience Congress, 62nd Japan Neurochemistry Society Joint Meeting) Abstracts, 1O-08a1 -3, July 25-28, 2019, Niigata

上記特許文献1及び2に開示されている計測装置では、近赤外光の光源がその反射光及び散乱光を受光する受光器と同じ頭皮上に位置するため、例えば数cm程度の隔たり距離となり、空間分解能が低く、脳の浅い部分の脳活動しか計測することができず、脳内部の脳機能を高精度に計測することができない。
また、酸素化ヘモグロビンと脱酸素化ヘモグロビンの吸光度変化を高々数秒オーダーでしか計測することができず、時間的な分解能も低い。
In the measuring devices disclosed in Patent Documents 1 and 2, the near-infrared light source is located on the same scalp as the light receiver that receives the reflected light and scattered light, so the distance is, for example, several centimeters. , their spatial resolution is low and they can only measure brain activity in shallow parts of the brain, making it impossible to measure brain function inside the brain with high precision.
Furthermore, changes in the absorbance of oxygenated hemoglobin and deoxygenated hemoglobin can only be measured on the order of several seconds at most, and the temporal resolution is also low.

特許文献3に開示されている脳機能計測装置では、近赤外光の発光源を口腔内に配置するため、発光源に電源を供給しなければならず、例えばリード線や信号線を口腔内に引き込んだり、電池を口腔内に置いたりする必要があり、被験者に不快感を与えると共に、計測作業が煩雑になる。また、近赤外光が脳底部に位置するため、脳底部に近い感覚器である、例えば目の網膜に悪影響を与えることも懸念される。さらに、受光器を頭皮に密着させなければならず、頭髪等が受光器と頭皮の間に挟まると計測感度が低下してしまう。 In the brain function measuring device disclosed in Patent Document 3, the near-infrared light emitting source is placed in the oral cavity, so power must be supplied to the light emitting source. For example, lead wires and signal lines are connected to the oral cavity. It is necessary to pull the battery into the mouth or place the battery in the oral cavity, which causes discomfort to the subject and complicates the measurement work. Furthermore, since near-infrared light is located at the base of the brain, there is concern that it may have an adverse effect on sensory organs near the base of the brain, such as the retina of the eye. Furthermore, the light receiver must be brought into close contact with the scalp, and if hair or the like gets caught between the light receiver and the scalp, measurement sensitivity will decrease.

特許文献4に開示されている脳機能計測装置では、磁石等の磁界発生源を口腔内に配置し、脳底部から頭皮方向に磁界を発生させ、頭皮上に配置した磁界検出器によって透過磁界を計測することで、特許文献3に開示された脳機能計測装置のいくつかの課題が解消されている。しかしながら、良く知られているように磁石等からの静磁界はN極からS極にループ状の経路で帰還するため、脳の活動部位と頭皮上の計測点にずれが生じ、磁石と磁界検出器を結んだ直線近傍の大脳皮質部を活動部位として特定することが困難になるという問題がある。 In the brain function measurement device disclosed in Patent Document 4, a magnetic field generation source such as a magnet is placed in the oral cavity to generate a magnetic field from the base of the brain toward the scalp, and a magnetic field detector placed on the scalp detects the transmitted magnetic field. By measuring, some of the problems of the brain function measuring device disclosed in Patent Document 3 are solved. However, as is well known, the static magnetic field from a magnet etc. returns from the north pole to the south pole in a loop-like path, which causes a misalignment between the active area of the brain and the measurement point on the scalp, causing the magnet and magnetic field to be detected. There is a problem in that it becomes difficult to identify areas of the cerebral cortex near the straight line connecting the organs as active areas.

非特許文献1に開示されている脳機能計測装置では、頭皮上に設置した永久磁石からなる磁界発生手段から磁界を頭部内部に照射し、脳最外部の大脳皮質を経由して頭皮部に帰還した磁界強度を頭皮部に設置した磁界検出手段によって計測することで、特許文献4に開示された脳機能計測装置のいくつかの課題が解消されている。しかしながら、磁界発生手段と磁界検出手段を所定の距離を隔ててセットとして頭皮上に設置する必要があり磁界検出手段の高密度化が困難になる、磁界発生手段として永久磁石を用いているため頭部内部に照射する磁界強度や磁界方向を容易に変更することができないという問題がある。 In the brain function measuring device disclosed in Non-Patent Document 1, a magnetic field is irradiated into the head from a magnetic field generating means made of a permanent magnet placed on the scalp, and is applied to the scalp via the cerebral cortex at the outermost part of the brain. Some of the problems of the brain function measuring device disclosed in Patent Document 4 are solved by measuring the returned magnetic field strength using a magnetic field detection means installed in the scalp. However, it is necessary to install the magnetic field generating means and the magnetic field detecting means as a set on the scalp with a predetermined distance apart, which makes it difficult to increase the density of the magnetic field detecting means. There is a problem in that the strength and direction of the magnetic field applied to the inside of the part cannot be easily changed.

本発明は、上記の課題に鑑み、脳の活動部位を正確かつ簡便に特定できる高精度な計測を可能とする脳機能計測装置及び脳機能計測方法を提供することを目的とする。
より詳細には、頭皮上に配置した電磁石から磁界を頭部内部に照射し、電磁石からの磁力線がループ状の経路で帰還する現象を利用して、脳最外部の大脳皮質部を経由して頭皮に帰還した磁力線の強度を電磁石の直上に設置した磁界検出器で計測することで脳の活動部位及び活動状態を計測する。
In view of the above-mentioned problems, an object of the present invention is to provide a brain function measuring device and a brain function measuring method that enable highly accurate measurement that can accurately and easily identify active areas of the brain.
More specifically, a magnetic field is applied to the inside of the head from an electromagnet placed on the scalp, and by utilizing the phenomenon in which the magnetic field lines from the electromagnet return in a loop-like path, the magnetic field is transmitted via the cerebral cortex, the outermost part of the brain. By measuring the intensity of the magnetic field lines that return to the scalp with a magnetic field detector placed directly above the electromagnet, the active areas and state of the brain are measured.

係る目的を達成するための本発明の脳機能計測装置は、頭皮上に配置された磁界発生手段と、前記磁界発生手段の直上に配置され、前記磁界発生手段によって発生した磁界を検出する磁界検出手段とを備えた脳機能計測装置であって、前記磁界発生手段から脳最外部の大脳皮質部に磁界を照射し、前記磁界発生手段からの磁力線がループ状の経路で帰還する現象を利用して、前記大脳皮質部の活動状態を反映した信号として帰還する磁力線の強度を前記磁界検出手段で検出することで、非侵襲で脳機能を計測することを特徴とする。 The brain function measuring device of the present invention for achieving the above object includes a magnetic field generating means placed on the scalp, and a magnetic field detection device placed directly above the magnetic field generating means to detect the magnetic field generated by the magnetic field generating means. A brain function measuring device comprising means for irradiating a magnetic field from the magnetic field generating means to the outermost cerebral cortex of the brain, and utilizing a phenomenon in which lines of magnetic force from the magnetic field generating means return in a loop-shaped path. The present invention is characterized in that brain function is measured non-invasively by detecting with the magnetic field detection means the intensity of magnetic lines of force that return as a signal reflecting the activity state of the cerebral cortex.

前記磁界発生手段は、磁界を脳の局所的な位置に照射するために、それぞれに所定の方向の電流が印加されるように構成・配置された複数個のコイルからなる電磁石としても良い。 The magnetic field generating means may be an electromagnet consisting of a plurality of coils configured and arranged so that a current in a predetermined direction is applied to each coil in order to irradiate a magnetic field to a localized position of the brain.

前記磁界発生手段を構成する電磁石は、電流の印加方向及び印加強度によって複数個のコイルから発生する磁力線の方向及び強度の変更設定が可能としても良い。 The electromagnet constituting the magnetic field generating means may be capable of changing the direction and intensity of magnetic lines of force generated from the plurality of coils by changing the direction and intensity of current application.

前記大脳皮質部の神経細胞の活動状態を反映した信号として帰還する磁界を検出する前記磁界検出手段は、前記磁界発生手段の直上に配置された、1軸磁界検出器、又は2軸磁界検出器、又は3軸磁界検出器としても良い。 The magnetic field detection means for detecting a magnetic field returned as a signal reflecting the activity state of neurons in the cerebral cortex is a single-axis magnetic field detector or a two-axis magnetic field detector disposed directly above the magnetic field generation means. , or a three-axis magnetic field detector.

前記磁界発生手段と前記磁界検出手段は一組のセット(以下、検出端と略記することがある。)として、他の磁界発生手段あるいは測定環境に存在する地磁気等の磁界との干渉を回避するため、磁気シールド容器内に設置することとしても良い。 The magnetic field generation means and the magnetic field detection means are used as a set (hereinafter sometimes abbreviated as a detection end) to avoid interference with other magnetic field generation means or magnetic fields such as terrestrial magnetism existing in the measurement environment. Therefore, it may be installed inside a magnetically shielded container.

係る目的を達成するための本発明の脳機能計測方法は、頭皮上に配置された磁界発生手段を用いて脳最外部の大脳皮質部に磁界を照射し、前記磁界発生手段からの磁力線がループ状の経路で帰還する現象を利用して、前記大脳皮質部の神経細胞の活動状態を反映した信号として帰還する磁力線の強度を磁界検出手段で検出することで、非侵襲で脳機能を計測することを特徴とする。 The method for measuring brain function of the present invention to achieve the above object irradiates a magnetic field to the outermost part of the brain, the cerebral cortex, using a magnetic field generating means placed on the scalp, and causes lines of magnetic force from the magnetic field generating means to loop. Brain function is measured non-invasively by using a magnetic field detection means to detect the strength of the magnetic field lines that return as a signal reflecting the activity state of neurons in the cerebral cortex by utilizing the phenomenon of returning along a path like this. It is characterized by

前記磁界発生手段としては、複数個のコイルからなる電磁石を用いることができる。 As the magnetic field generating means, an electromagnet consisting of a plurality of coils can be used.

前記磁界発生手段を構成する電磁石としては、電流の印加方向及び印加強度によって複数個のコイルから発生する磁力線の方向及び強度の変更設定が可能な電磁石を用いることができる。 As the electromagnet constituting the magnetic field generating means, it is possible to use an electromagnet that can change the direction and intensity of magnetic lines of force generated from a plurality of coils by changing the direction and intensity of current application.

前記大脳皮質部の神経細胞の活動状態を反映した信号として帰還する磁界を検出する前記磁界検出手段としては、前記磁界発生手段の直上に配置された、1軸磁界検出器、又は2軸磁界検出器、又は3軸磁界検出器を用いることができる。 The magnetic field detection means for detecting a magnetic field returned as a signal reflecting the activity state of neurons in the cerebral cortex may be a single-axis magnetic field detector or a two-axis magnetic field detector disposed directly above the magnetic field generating means. A magnetic field detector or a three-axis magnetic field detector can be used.

前記磁界発生手段と前記磁界検出手段は一組のセット(以下、検出端と略記することがある。)として、他の磁界発生手段あるいは測定環境に存在する地磁気等の磁界との干渉を回避するため、磁気シールド容器内に設置して用いることができる。 The magnetic field generation means and the magnetic field detection means are used as a set (hereinafter sometimes abbreviated as a detection end) to avoid interference with other magnetic field generation means or magnetic fields such as terrestrial magnetism existing in the measurement environment. Therefore, it can be installed and used inside a magnetically shielded container.

前記磁界発生手段に印加する電流の方向及び強度を変更することで、磁力線の方向及び強度を変更選択して、大脳皮質部の活性状態を検出することとしてもよい。 By changing the direction and intensity of the current applied to the magnetic field generating means, the direction and intensity of the magnetic lines of force may be changed and selected to detect the activation state of the cerebral cortex.

また、コイルの磁界方向の長さを変えることによって生体内部に照射する磁界の深度を調整し、大脳皮質部の深さ位置によって異なる活性状態を検出することとしてもよい。 Alternatively, the depth of the magnetic field applied to the inside of the living body may be adjusted by changing the length of the coil in the magnetic field direction, and different activation states may be detected depending on the depth position of the cerebral cortex.

本発明の脳機能計測装置及び脳機能計測方法によれば、比較的簡便な装置構成で大脳皮質部の神経細胞の活性状態を非侵襲で計測することができ、磁界信号を用いることで、検出端と頭皮の間に頭髪等が挟みこまれた時にも、その影響を受けることなく高精度な計測が可能となる。また、電気や光を使用する計測方法のような頭皮との接触をよくするための頭髪等の処置を行なう必要がない。
また、磁界発生手段としてそれぞれに所定の方向の電流が印加されるように構成・配置された複数個のコイルからなる電磁石を用いることで、複数個のコイル位置の重心点の略下方の局所的な位置に磁界を照射することが可能になる。
さらに、コイルに印加する電流の方向及び強度の変更調整によって磁力線の方向及び強度の変更設定が可能になり、一度の検出端装着で照射する磁力線の方向や強度を可変とすることができ、大脳皮質部の神経線維の活性化状態を詳細に把握することができる。
According to the brain function measuring device and the brain function measuring method of the present invention, the activation state of neurons in the cerebral cortex can be measured non-invasively with a relatively simple device configuration, and by using magnetic field signals, the activation state of neurons can be measured non-invasively. Even when hair or the like is caught between the ends and the scalp, highly accurate measurement is possible without being affected by it. Furthermore, there is no need to treat the hair or the like to improve contact with the scalp, unlike measurement methods that use electricity or light.
In addition, by using an electromagnet consisting of multiple coils configured and arranged so that a current is applied to each coil in a predetermined direction as a magnetic field generating means, local It becomes possible to irradiate a magnetic field to a certain position.
Furthermore, by adjusting the direction and intensity of the current applied to the coil, it is possible to change the direction and intensity of the magnetic lines of force, making it possible to change the direction and intensity of the magnetic lines of force irradiated with a single detection end, making it possible to change the direction and intensity of the magnetic lines of force. The activation status of nerve fibers in the cortex can be understood in detail.

二つのコイルからなる電磁石の場合を例に、本発明の脳機能計測装置及び脳機能計測方法の概念を示す図である。FIG. 2 is a diagram illustrating the concept of a brain function measuring device and a brain function measuring method of the present invention, taking as an example the case of an electromagnet consisting of two coils. 二つのコイルからなる電磁石の場合を例に、磁気シールドされた検出端を用いた計測の概念を示す図である。FIG. 3 is a diagram illustrating the concept of measurement using a magnetically shielded detection end, taking as an example the case of an electromagnet consisting of two coils. 二つのコイルからなる電磁石の場合を例に、磁界発生手段の極性を変えた計測の概念を示す図であり、(a)は磁界検出手段に近いコイルから頭皮に向かう方向に磁界を発生するようにしたもの、(b)は磁界検出手段に近いコイルから頭皮に向かう方向とは反対向きに磁界が発生するようにしたものである。This is a diagram illustrating the concept of measurement in which the polarity of the magnetic field generating means is changed, taking as an example an electromagnet consisting of two coils. (b) is one in which a magnetic field is generated from a coil close to the magnetic field detection means in the opposite direction to the direction toward the scalp. 脳活動計測実験状態を示す図である。FIG. 3 is a diagram showing the state of a brain activity measurement experiment. 右手首正中神経刺激時の脳活動計測方法と計測結果を示す図であり、(a)は頭皮上への16個の検出端の配置を示したもの、(b)はそれぞれの検出端で計測した時系列信号を示したものである。Figures illustrating the brain activity measurement method and measurement results during right wrist median nerve stimulation; (a) shows the arrangement of 16 detection ends on the scalp, and (b) shows the measurement with each detection end. This shows the time-series signal.

本発明は磁界を利用した方式であることから、頭皮上の複数点での計測結果から脳のどの部位が活性化しているのかを評価する逆問題の解を求めるに当たり、脳波方式(Electro-encephalography:EEG)に比べ、以下のような優位性を備えている。
1.頭部の透磁率が略均一であることから、神経細胞から頭皮までに介在する物質(脳脊髄液、硬膜、骨等、以下、介在物質と略記することがある。)の誘電率が異なることによる影響を受けやすい脳波方式に比べ、精度の高い計測値が得られる。
2.上記逆問題の解を求める際の介在物質の考慮が不要となり、アルゴリズムの簡略化が可能となる。
Since the present invention uses a method that uses magnetic fields, electroencephalography (EEG) is used to solve the inverse problem of evaluating which parts of the brain are activated from the measurement results at multiple points on the scalp. :EEG) has the following advantages.
1. Since the magnetic permeability of the head is approximately uniform, the permittivity of the substances intervening between nerve cells and the scalp (cerebrospinal fluid, dura mater, bone, etc., hereinafter sometimes abbreviated as intervening substances) is different. Compared to the electroencephalogram method, which is easily influenced by various factors, highly accurate measurement values can be obtained.
2. There is no need to consider intervening substances when finding a solution to the above inverse problem, and the algorithm can be simplified.

以下、図面を参照して、本発明の実施形態を説明する。図中、同一機能を有するものについては同一番号を付し、説明を割愛することがある。 Embodiments of the present invention will be described below with reference to the drawings. In the drawings, parts having the same functions are given the same numbers and explanations may be omitted.

図1は二つのコイルからなる電磁石の場合を例に、本発明の脳機能計測装置及び脳機能計測方法の概念を示したものであり、被験者の頭皮1の上部に配置した二つのコイルに逆方向の電流が印加されるように構成・配置された電磁石からなる磁界発生手段2によって、脳活動状態の計測対象となる大脳皮質部3に磁界4を照射する。
この時、図に示すように、磁界は二つのコイルの中間点の略下方の局所的な位置に照射されることになる。
脳の活動との相互作用によって変化を受けた後に頭皮1に帰還した磁界4を磁界検出手段5によって計測することで、大脳皮質部3の活性状態を計測する。
磁界検出手段5で計測した大脳皮質部3の活性状態を示す信号は、図には示さなかったアナログ/デジタル変換器等を介して、時系列信号として図には示さなかったパソコン等で構成される機器に格納され、必要に応じで信号処理・演算等が行われる。
また、図1では一組の磁界発生手段2と磁界検出手段5による計測状態のみを示したが、必要に応じて、複数組の磁界発生手段2と磁界検出手段5を被験者の頭皮1の上部に配置し、複数点の大脳皮質部3の活動状態を同時に計測できることは勿論である。
Figure 1 shows the concept of the brain function measuring device and brain function measuring method of the present invention, taking as an example the case of an electromagnet consisting of two coils. A magnetic field 4 is irradiated onto the cerebral cortex 3, which is the target of brain activity measurement, by a magnetic field generating means 2 consisting of an electromagnet configured and arranged so that a directional current is applied.
At this time, as shown in the figure, the magnetic field is applied to a local position approximately below the midpoint between the two coils.
The activation state of the cerebral cortex 3 is measured by measuring the magnetic field 4 that returns to the scalp 1 after undergoing changes due to interaction with brain activity using the magnetic field detection means 5.
The signal indicating the activation state of the cerebral cortex 3 measured by the magnetic field detection means 5 is transmitted as a time-series signal via an analog/digital converter (not shown), etc., to a personal computer (not shown). The signal is stored in the device, and signal processing, calculations, etc. are performed as necessary.
Although FIG. 1 only shows the measurement state using one set of magnetic field generating means 2 and magnetic field detecting means 5, if necessary, multiple sets of magnetic field generating means 2 and magnetic field detecting means 5 may be connected to the upper part of the subject's scalp 1. Of course, it is possible to measure the activity state of the cerebral cortex 3 at a plurality of points at the same time.

図2は二つのコイルからなる電磁石の場合を例に、他の磁界発生手段2あるいは測定環境に存在する地磁気等の磁界との干渉を回避するため、空洞円柱容器型の磁気シールド容器の中に検出端(磁界発生手段2と磁界検出手段5)を配置した状態を示したものであり、検出端は磁気シールド容器の底面部に載置され、取り付け盤を介して頭皮1に配置されている。検出端を磁気シールド容器で覆うことにより、計測時のノイズとなる磁界の影響を抑制した、高精度な計測が可能となる。
なお、磁界の照射、磁界の検出を可能とするため、磁気シールド容器の底面部は磁気シールド効果を有しない材料で作製されていることは勿論である。
FIG. 2 takes as an example the case of an electromagnet consisting of two coils. In order to avoid interference with other magnetic field generating means 2 or magnetic fields such as the earth's magnetism existing in the measurement environment, a hollow cylindrical magnetic shielding container 8 is used. The detection end (magnetic field generation means 2 and magnetic field detection means 5) is shown in the figure, and the detection end is placed on the bottom of the magnetically shielded container 8 and placed on the scalp 1 via the mounting board 6 . has been done. By covering the detection end with the magnetic shield container 8 , it is possible to perform highly accurate measurement while suppressing the influence of the magnetic field that causes noise during measurement.
Note that, in order to enable magnetic field irradiation and magnetic field detection, the bottom portion of the magnetic shielding container 8 is of course made of a material that does not have a magnetic shielding effect.

図3は二つのコイルからなる電磁石の場合を例に、電磁石を構成する二つのコイルに印加する電流の方向を変更することで、磁界発生手段2から大脳皮質部3に照射される磁界4の極性を変更した検出端構造を示したものである。図において(a)は磁界検出手段5に近いコイルから頭皮1に向かう方向に磁界4を発生するようにしたもの、(b)は磁界検出手段5に近いコイルから頭皮1に向かう方向とは反対方向に磁界4を発生するようにしたものである。
磁界4と大脳皮質の活動の相互作用はそれらの相対的な方向によって変化するため、必要に応じて(a)、(b)の方式を使い分けることで、大脳皮質内の神経線維の活動の方向に対応した磁界検出手段5での計測値を得ることが可能となる。
また、電磁石に印加する電流の強度を変更することで磁界発生手段2から大脳皮質部3に照射される磁界4の強度を変更することができ、大脳皮質内の神経線維の活動を、磁界4の強度を変更した形で計測することが可能となる。
FIG. 3 shows an example of an electromagnet consisting of two coils. By changing the direction of the current applied to the two coils constituting the electromagnet, the magnetic field 4 irradiated from the magnetic field generating means 2 to the cerebral cortex 3 can be increased. This figure shows a detection end structure with changed polarity. In the figure, (a) shows the magnetic field 4 generated in the direction from the coil close to the magnetic field detection means 5 toward the scalp 1, and (b) shows the magnetic field 4 generated in the opposite direction from the coil close to the magnetic field detection means 5 toward the scalp 1. A magnetic field 4 is generated in this direction.
Since the interaction between the magnetic field 4 and the activity of the cerebral cortex changes depending on their relative direction, by using methods (a) and (b) separately as necessary, the direction of the activity of nerve fibers in the cerebral cortex can be determined. It becomes possible to obtain a measured value by the magnetic field detection means 5 corresponding to the above.
Furthermore, by changing the intensity of the current applied to the electromagnet, the intensity of the magnetic field 4 irradiated from the magnetic field generating means 2 to the cerebral cortex 3 can be changed, and the activity of nerve fibers in the cerebral cortex can be controlled by the magnetic field 4. It becomes possible to measure the strength of

また、コイルの磁界方向の長さを変えることによって生体内部に照射する磁界の深度を調整し、大脳皮質部の深さ位置によって異なる活性状態を検出することが可能である。 Furthermore, by changing the length of the coil in the magnetic field direction, it is possible to adjust the depth of the magnetic field irradiated inside the living body, and to detect different activation states depending on the depth position of the cerebral cortex.

図1から図3では磁界発生手段として印加電流方向が異なる二つのコイルからなる電磁石を用いた例を示したが、どちらか一方のコイルを省略して1個のコイルからなる電磁石を磁界発生手段として使用することも可能であることは勿論である。 1 to 3 show an example in which an electromagnet consisting of two coils with different applied current directions is used as a magnetic field generating means, but one of the coils is omitted and an electromagnet consisting of one coil is used as a magnetic field generating means. Of course, it can also be used as

また、磁界発生手段として、電磁石に替えて、環境に存在する地磁気等を利用することもできる。 Furthermore, instead of an electromagnet, it is also possible to use earth's magnetism existing in the environment as the magnetic field generating means.

本発明の脳機能計測装置及び脳機能計測方法の一実施例とその結果について、図を用いて説明する。図中、同一機能を有するものについては同一番号を付し、説明を割愛することがある。 An example of the brain function measuring device and the brain function measuring method of the present invention and its results will be described with reference to the drawings. In the drawings, parts having the same functions are given the same numbers and explanations may be omitted.

図4は16個の検出端を用いて、左手首の正中神経の電気刺激試験に対して大脳皮質部3に誘発される信号の計測を行った時の実験状態を示したものである。
磁界発生手段2には脳の局所的な部位に磁界を発生する直径10mm、30巻きの8字型コイルの電磁石を用い、磁界検出手段5は、アイチ・マイクロ・インテリジェント社製の高感度センサMI-CB-1DHを用いた。また、取り付け盤6は直径13mmのプラスチック円板で作製した。
実験では、磁界発生手段2と磁界検出手段5は、頭皮部に近接させて配置した。磁界発生手段2は脳を通過する磁界4の方向が被験者頭部の前後方向になるように設置し、磁界検出手段5は前側のコイルの中央軸付近に配置した。磁界発生手段2により発生する磁界が脳において前向きになるように磁界発生手段2であるコイルに200mAの電流を流した。
なお、電気刺激は、正中神経にパルス幅300µs、強度3.6mAの電気刺激を表面刺激電極により与えた。刺激間隔は0.8sに設定し、刺激前100msから刺激後500msまでの信号を計測し、500回の計測データの加算平均を計算することにより体性感覚誘発信号を得た。
FIG. 4 shows an experimental state in which signals induced in the cerebral cortex 3 were measured in response to an electrical stimulation test of the median nerve of the left wrist using 16 detection terminals.
The magnetic field generating means 2 uses a figure-8 coil electromagnet with a diameter of 10 mm and 30 turns that generates a magnetic field in a localized area of the brain, and the magnetic field detecting means 5 uses a high-sensitivity sensor MI manufactured by Aichi Micro Intelligent. -CB-1DH was used. Furthermore, the mounting board 6 was made of a plastic disc with a diameter of 13 mm.
In the experiment, the magnetic field generating means 2 and the magnetic field detecting means 5 were placed close to the scalp. The magnetic field generating means 2 was installed so that the direction of the magnetic field 4 passing through the brain was in the front-back direction of the subject's head, and the magnetic field detecting means 5 was placed near the central axis of the front coil. A current of 200 mA was passed through the coil serving as the magnetic field generating means 2 so that the magnetic field generated by the magnetic field generating means 2 was directed forward in the brain.
The electrical stimulation was applied to the median nerve with a pulse width of 300's and an intensity of 3.6 mA using a surface stimulation electrode. The stimulation interval was set to 0.8 s, the signal was measured from 100 ms before stimulation to 500 ms after stimulation, and the somatosensory evoked signal was obtained by calculating the average of the 500 measurement data.

図5は実験結果の概要を示したものであり、(a)は被験者頭皮部への16個検出端配置部位を、(b)は16個の磁気検出手段5から得られた実際の時系列信号波形を示したものである。
なお、検出端の配置部位は脳波計測に用いられる拡張国際10-20法の電極配置におけるCFz, CF2, CF4, CF6, Cz, C2, C4, C6, CPz, CP2, CP4, CP6, Pz, P2, P4, P6の16か所である。
Figure 5 shows an overview of the experimental results, with (a) showing the locations where the 16 detection ends were placed on the subject's scalp, and (b) showing the actual time series obtained from the 16 magnetic detection means 5. This shows the signal waveform.
The location of the detection end is CFz, CF2, CF4, CF6, Cz, C2, C4, C6, CPz, CP2, CP4, CP6, Pz, P2 in the electrode placement of the expanded international 10-20 method used for electroencephalogram measurement. , P4, and P6.

右手の正中神経刺激に対して活動する大脳皮質の部位は左大脳半球の第一次体性感覚野の手を支配する領域であるが、この部位に最も近い拡張国際10-20法の位置はCP4である。試作した脳機能計測装置及び脳機能計測方法によって計測した結果、図5(b)に示す通り、このCP4の部位に限局して大きな振幅の信号が観察され、本発明の有効性が確認された。 The part of the cerebral cortex that is activated in response to median nerve stimulation of the right hand is the area that controls the hand in the primary somatosensory cortex of the left cerebral hemisphere, but the location of the extended international 10-20 method closest to this part is It is CP4. As a result of measurement using the prototype brain function measurement device and brain function measurement method, as shown in Figure 5(b), a large amplitude signal was observed localized to this CP4 region, confirming the effectiveness of the present invention. .

本発明によれば、簡便な装置構成と簡単な手順で脳の活性状態を時間的にも空間的にも高精度に計測することが可能となり、非侵襲での脳機能計測に適用することができる。 According to the present invention, it is possible to measure the activation state of the brain with high accuracy both temporally and spatially using a simple device configuration and a simple procedure, and it can be applied to non-invasive brain function measurement. can.

1 被験者の頭皮
2 磁界発生手段
3 大脳皮質部
4 磁界
5 磁界検出手段
6 取り付け盤
7 磁界発生手段であるコイルに流れる電流の向き
8 磁気シールド容器




















1 Scalp of the subject 2 Magnetic field generating means 3 Cerebral cortex 4 Magnetic field 5 Magnetic field detecting means 6 Mounting board 7 Direction of current flowing through the coil which is the magnetic field generating means 8 Magnetic shielding container




















Claims (12)

被験者の頭皮上に配置され、かつ、発生する磁力線の方向及び強度の変更設定が可能な電磁石からなる磁界発生手段と、前記頭皮上に配置され、前記磁界発生手段から発生し、大脳皮質部の活動状態を反映した信号としてループ状の経路で前記大脳皮質部を経由して帰還する磁力線の強度を検出する磁界検出手段とを備えることを特徴とする脳機能計測装置。 A magnetic field generating means is placed on the scalp of the subject and is composed of an electromagnet that can change the direction and intensity of the generated magnetic lines of force ; A brain function measuring device comprising magnetic field detection means for detecting the intensity of magnetic lines of force returning via the cerebral cortex in a loop-like path as a signal reflecting an activity state . 前記電磁石が、ループ状の磁界を脳の局所的な部位に発生させるコイルであることを特徴とする、請求項1に記載の脳機能計測装置。 The brain function measuring device according to claim 1, wherein the electromagnet is a coil that generates a loop-shaped magnetic field in a localized region of the brain. 前記電磁石が、複数個のコイルへの電流の印加方向及び印加強度によって磁力線の方向及び強度の変更設定が可能な電磁石であることを特徴とする、請求項2に記載の脳機能計測装置。 3. The brain function measuring device according to claim 2, wherein the electromagnet is an electromagnet that can change the direction and intensity of magnetic lines of force by changing the direction and intensity of current applied to a plurality of coils. 前記磁界検出手段が、前記磁界発生手段の直上に配置された、1軸磁界検出器、又は2軸磁界検出器、又は3軸磁界検出器であることを特徴とする、請求項1に記載の脳機能計測装置。 2. The magnetic field detector according to claim 1, wherein the magnetic field detection means is a 1-axis magnetic field detector, a 2-axis magnetic field detector, or a 3-axis magnetic field detector arranged directly above the magnetic field generating means. Brain function measurement device. 前記磁界発生手段と前記磁界検出手段とが磁気シールド容器内に設置されていることを特徴とする、請求項1に記載の脳機能計測装置。 The brain function measuring device according to claim 1, wherein the magnetic field generating means and the magnetic field detecting means are installed in a magnetically shielded container. 被験者の頭皮上に配置され、かつ、発生する磁力線の方向及び強度の変更設定が可能な電磁石からなる磁界発生手段を用いて脳最外部の大脳皮質部に磁界を照射し、前記磁界発生手段からの磁力線がループ状の経路で帰還する現象を利用して、前記大脳皮質部の活動状態を反映した信号として当該大脳皮質部を経由して帰還する磁力線の強度を頭皮上に配置された磁界検出手段で検出することで、非侵襲で脳機能を計測することを特徴とする、脳機能計測方法。 A magnetic field generating means consisting of an electromagnet placed on the scalp of the subject and capable of changing the direction and intensity of the generated magnetic lines of force is used to irradiate a magnetic field to the cerebral cortex at the outermost part of the brain, and from the magnetic field generating means. Utilizing the phenomenon that magnetic lines of force return in a loop-like path, a magnetic field placed on the scalp detects the strength of the magnetic lines of force that return via the cerebral cortex as a signal reflecting the activity state of the cerebral cortex. A brain function measurement method characterized by non-invasively measuring brain function by detecting it using a means. 前記電磁石として、ループ状の磁界を脳の局所的な部位に発生させる複数個のコイルを用いることを特徴とする、請求項6に記載の脳機能計測方法。 7. The brain function measuring method according to claim 6, wherein a plurality of coils are used as the electromagnets to generate a loop-shaped magnetic field in a local region of the brain. 前記電磁石として、複数個のコイルへの電流の印加方向及び印加強度によって磁力線の方向及び強度の変更設定が可能な電磁石を用いることを特徴とする、請求項7に記載の脳機能計測方法。 8. The brain function measuring method according to claim 7, wherein the electromagnet is an electromagnet whose direction and intensity of magnetic lines of force can be changed by changing the direction and intensity of current applied to a plurality of coils. 前記磁界検出手段として、前記磁界発生手段の直上に配置された、1軸磁界検出器、又は2軸磁界検出器、又は3軸磁界検出器を用いることを特徴とする、請求項6に記載の脳機能計測方法。 7. The magnetic field detector according to claim 6, wherein a 1-axis magnetic field detector, a 2-axis magnetic field detector, or a 3-axis magnetic field detector arranged directly above the magnetic field generating means is used as the magnetic field detection means. Brain function measurement method. 前記磁界発生手段と前記磁界検出手段とを、磁気シールド容器内に設置して用いることを特徴とする、請求項6に記載の脳機能計測方法。 7. The brain function measuring method according to claim 6, wherein the magnetic field generating means and the magnetic field detecting means are installed and used in a magnetically shielded container. 前記電磁石を構成する複数個のコイルに印加する電流の方向及び強度を変更することで、磁力線の方向及び強度を変更選択して、前記磁界検出手段で磁界を検出することを特徴とする、請求項7乃至請求項10のうち、いずれか1に記載の脳機能計測方法。 The magnetic field is detected by the magnetic field detection means by changing the direction and intensity of the current applied to the plurality of coils constituting the electromagnet to change and select the direction and intensity of the magnetic lines of force . The method for measuring brain function according to any one of claims 7 to 10 . 前記磁界発生手段の磁界方向の長さを変えることにより、生体内部に照射する磁界の深度を調整して、前記磁界検出手段で磁界を検出することを特徴とする、請求項7乃至請求項11のうち、いずれか1に記載の脳機能計測方法。
Claims 7 to 11, characterized in that the depth of the magnetic field applied to the inside of the living body is adjusted by changing the length of the magnetic field generating means in the magnetic field direction, and the magnetic field is detected by the magnetic field detecting means. The method for measuring brain function according to any one of these methods .
JP2019189092A 2019-10-16 2019-10-16 Brain function measurement device and brain function measurement method Active JP7401046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019189092A JP7401046B2 (en) 2019-10-16 2019-10-16 Brain function measurement device and brain function measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019189092A JP7401046B2 (en) 2019-10-16 2019-10-16 Brain function measurement device and brain function measurement method

Publications (2)

Publication Number Publication Date
JP2021062100A JP2021062100A (en) 2021-04-22
JP7401046B2 true JP7401046B2 (en) 2023-12-19

Family

ID=75487262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019189092A Active JP7401046B2 (en) 2019-10-16 2019-10-16 Brain function measurement device and brain function measurement method

Country Status (1)

Country Link
JP (1) JP7401046B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097713A1 (en) 2006-02-27 2007-08-30 Nanyang Polytechnic Apparatus and method for non-invasively sensing pulse rate and blood flow anomalies
JP2008543416A (en) 2005-06-16 2008-12-04 ブレインズウェイ インコーポレイテッド Transcranial magnetic stimulation system and method
JP2012152515A (en) 2011-01-28 2012-08-16 Konica Minolta Holdings Inc Magnetism sensor and biomagnetism measurement apparatus using the same
US20150219732A1 (en) 2012-08-24 2015-08-06 The Trustees Of Dartmouth College Method and Apparatus For Magnetic Susceptibility Tomography, Magnetoencephalography, and Taggant Or Contrast Agent Detection
JP2015217144A (en) 2014-05-19 2015-12-07 Tdk株式会社 Biological information analysis device
US20190059760A1 (en) 2017-08-26 2019-02-28 Xiaoping Li Method and an apparatus of actively sensing neuronal firing frequency at a functional site in a brain

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543416A (en) 2005-06-16 2008-12-04 ブレインズウェイ インコーポレイテッド Transcranial magnetic stimulation system and method
WO2007097713A1 (en) 2006-02-27 2007-08-30 Nanyang Polytechnic Apparatus and method for non-invasively sensing pulse rate and blood flow anomalies
JP2009528081A (en) 2006-02-27 2009-08-06 ナンヤン ポリテクニック Apparatus and method for non-invasive detection of pulse rate and blood flow abnormalities
JP2012152515A (en) 2011-01-28 2012-08-16 Konica Minolta Holdings Inc Magnetism sensor and biomagnetism measurement apparatus using the same
US20150219732A1 (en) 2012-08-24 2015-08-06 The Trustees Of Dartmouth College Method and Apparatus For Magnetic Susceptibility Tomography, Magnetoencephalography, and Taggant Or Contrast Agent Detection
JP2015217144A (en) 2014-05-19 2015-12-07 Tdk株式会社 Biological information analysis device
US20190059760A1 (en) 2017-08-26 2019-02-28 Xiaoping Li Method and an apparatus of actively sensing neuronal firing frequency at a functional site in a brain

Also Published As

Publication number Publication date
JP2021062100A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
Hari et al. Recording and interpretation of cerebral magnetic fields
WO2009122485A1 (en) Biological measurement system and biological stimulation system
US11241187B2 (en) Electromagnetic wave sensing and modulating of neuronal activities
JP4992034B2 (en) Biological measurement device and biostimulation device
JP2008546465A (en) Method and apparatus for inductively measuring bioimpedance of a user's body
JP2005528138A (en) Device for positioning electrodes at target points for brain stimulation, especially deep brain stimulation
JP2002238869A (en) Organism magnetic field measuring device
US20100249577A1 (en) Synergistic Electromagnetic Tracking With TMS Systems
JP7401046B2 (en) Brain function measurement device and brain function measurement method
KR102493679B1 (en) Magnetic field and sound wave application apparatus and controlling method thereof
Seki et al. Simultaneous measurement of neuronal activity and cortical hemodynamics by unshielded magnetoencephalography and near-infrared spectroscopy
WO2010127044A1 (en) Methods and systems for targeting, dosing and conducting neuronal stimulation protocols and detecting responses
JP7460155B2 (en) Brain function measurement device and brain function measurement method
CN115485015B (en) Active implantable stimulation device for use with MRI devices
Burton et al. Development of a mobile platform for acoustoelectric brain imaging in rats
Song et al. In vivo transcranial acoustoelectric brain imaging of different steady-state visual stimulation paradigms
KR101617005B1 (en) Apparatus and method for brain-brain interface using brainwave magnetic resonance and transcranial laser
Chen et al. In vivo transcranial measurement of brain-activated sources with acoustoelectric brain imaging
WO2018142642A1 (en) Brain function measuring device
Körber et al. Simultaneous measurements of somatosensory evoked AC and near-DC MEG signals
Hartwigsen et al. Combining Transcranial Magnetic
Hiwaki Non-Invasive Techniques in Brain Activity Measurement Using Light or Static Magnetic Fields Passing Through the Brain
RU160334U1 (en) METHOD FOR INCREASING ANTIDROMOUS FUNCTION OF SENSOR PEPTIDERGIC PERIVASCULAR FIBERS AND REACTIVITY OF MICRO-VESSELS
JP2004081894A (en) Living body magnetic field measuring device
Hari Activation of the human auditory cortex by various sound sequences: neuromagnetic studies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220810

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230711

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231122

R150 Certificate of patent or registration of utility model

Ref document number: 7401046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150