JP7400706B2 - battery system - Google Patents

battery system Download PDF

Info

Publication number
JP7400706B2
JP7400706B2 JP2020198643A JP2020198643A JP7400706B2 JP 7400706 B2 JP7400706 B2 JP 7400706B2 JP 2020198643 A JP2020198643 A JP 2020198643A JP 2020198643 A JP2020198643 A JP 2020198643A JP 7400706 B2 JP7400706 B2 JP 7400706B2
Authority
JP
Japan
Prior art keywords
battery
soc
load
genuine
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020198643A
Other languages
Japanese (ja)
Other versions
JP2022086562A (en
Inventor
啓太 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020198643A priority Critical patent/JP7400706B2/en
Publication of JP2022086562A publication Critical patent/JP2022086562A/en
Application granted granted Critical
Publication of JP7400706B2 publication Critical patent/JP7400706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本開示は、電池システムに関し、電池が正規品であるかの判定をすることができる電池システムに関する。 The present disclosure relates to a battery system, and more particularly, to a battery system that can determine whether a battery is a genuine product.

特許文献1には、出荷時の電池パック重量と現在の電池パック重量とを比較してその差に基づいて電池パックの正規品と非正規品との判定を行うことが開示されている。また特許文献2には電池の内部抵抗に基づいて電池の交換の有無、特許文献3には電圧値に基づいて電池の正規品と非正規品との判定をすることが開示されている。 Patent Document 1 discloses that the weight of a battery pack at the time of shipment is compared with the current weight of the battery pack, and based on the difference, it is determined whether a battery pack is a genuine product or a non-genuine product. Further, Patent Document 2 discloses determining whether or not a battery should be replaced based on the internal resistance of the battery, and Patent Document 3 discloses determining whether a battery is a genuine product or a non-genuine product based on a voltage value.

特開2012-174487号公報Japanese Patent Application Publication No. 2012-174487 特開2008-65989号公報Japanese Patent Application Publication No. 2008-65989 特開2012-252896号公報JP2012-252896A

上記した従来の方法では電池が全固体タイプの電池の場合、重量、内部抵抗、電圧が正規品と一致していたら非正規品でも正規品と区別することが難しい。よって、正規品か非正規品(互換品)かを判定する精度が高いとは言えなかった。全固体タイプの電池の場合、正規品、非正規品を区別するための特有のパラメータを考慮しないと精度が高い判定は難しいと言える。
本開示は上記実情に鑑みてなされものであり、より高い精度で正規品の電池と非正規品の電池との判定が可能な電池システムを提供することを主目的とする。
In the conventional method described above, if the battery is an all-solid-state type battery, it is difficult to distinguish a non-genuine product from a genuine product if the weight, internal resistance, and voltage match those of a genuine product. Therefore, it could not be said that the accuracy of determining whether a product is a genuine product or a non-genuine product (compatible product) is high. In the case of all-solid-state batteries, it is difficult to make highly accurate determinations unless specific parameters are taken into consideration to distinguish between genuine and non-genuine products.
The present disclosure has been made in view of the above-mentioned circumstances, and its main purpose is to provide a battery system that can determine with higher accuracy whether a genuine battery is a non-genuine battery.

本願は上記課題を解決するための一つの手段として、電池の正規及び非正規を判定する電池システムであって、電池の正規及び非正規を判定する演算装置を有し、演算装置は、予め取得しておいた正規品の電池の充電中における充電状態と電池セルの荷重値との関係であるPxを、実際の電池セルの充電中における充電状態と電池セルの荷重値との関係であるPyと対比し、PxとPyとが同等である場合は正規品と判定し、PxとPyとが同等でない場合は非正規品と判定する、演算を行う、電池システムを開示する。 As one means for solving the above problems, the present application provides a battery system that determines whether a battery is regular or non-genuine, and includes a calculation device that determines whether the battery is regular or non-regular, and the calculation device has a predetermined Px, which is the relationship between the state of charge and the load value of the battery cell during charging of the original battery, is expressed as Py, which is the relationship between the state of charge and the load value of the battery cell during charging of the actual battery cell. In contrast, a battery system is disclosed that performs calculations to determine that the product is a genuine product when Px and Py are equivalent, and to determine that it is a non-genuine product when Px and Py are not equivalent.

本開示によれば、電池が正規品か非正規品かの判定精度を高めることができる。 According to the present disclosure, it is possible to improve the accuracy of determining whether a battery is a genuine product or a non-genuine product.

図1は電池システム10を概念的に表した図である。FIG. 1 is a diagram conceptually showing a battery system 10. As shown in FIG. 図2は電池の判定方法S10の流れを示した図である。FIG. 2 is a diagram showing the flow of the battery determination method S10. 図3は予め取得したSOCと荷重値との関係Pxを示した図である。FIG. 3 is a diagram showing the relationship Px between the SOC and the load value obtained in advance. 図4は実際に取得したSOCと荷重値との関係Pyを示した図である。FIG. 4 is a diagram showing the relationship Py between the actually acquired SOC and load value. 図5はPxとPy(Py1、Py2)との対比の例を示した図である。FIG. 5 is a diagram showing an example of comparison between Px and Py (Py1, Py2).

1.電池システム
以下、本開示の電池システムについて形態例により説明する。図1には1つの例にかかる電池システム10を概念的に表した。本形態では自動車に搭載される電池システム10を例に説明する。図1からわかるように、電池システム10は、電池11、充放電制御器12、荷重センサ13、SOC検出器14、及び、電池判定器15を有している。以下、各構成要素について説明する。
1. Battery System Hereinafter, the battery system of the present disclosure will be described by way of example embodiments. FIG. 1 conceptually shows a battery system 10 according to one example. In this embodiment, a battery system 10 installed in a car will be described as an example. As can be seen from FIG. 1, the battery system 10 includes a battery 11, a charge/discharge controller 12, a load sensor 13, an SOC detector 14, and a battery determiner 15. Each component will be explained below.

1.1.電池
電池11は充放電可能な二次電池であり、本形態ではその中でも全固体電池を例に説明する。全固体電池は公知の通りであるが、正極層、負極層、及び、正極層と負極層との間に配置された固体電解質層が組となって電池セルをなし、当該電池セルが複数積層された電池である。
1.1. Battery The battery 11 is a rechargeable and dischargeable secondary battery, and in this embodiment, an all-solid-state battery will be described as an example. All-solid-state batteries are well-known, but a positive electrode layer, a negative electrode layer, and a solid electrolyte layer arranged between the positive electrode layer and the negative electrode layer form a battery cell, and a plurality of the battery cells are stacked together. It is a battery that has been used.

1.2.充放電制御器
充放電制御器12は、電池の状態(電流、電圧、温度等)を監視しながら電池の充放電を制御する機器であり、例えば電子制御装置(以下、「ECU(Electronic Control Unit)」)が挙げられ、電池11に接続されている。このような充放電機器は公知のものを適用することができる。
1.2. Charge/Discharge Controller The charge/discharge controller 12 is a device that controls charging/discharging of a battery while monitoring battery status (current, voltage, temperature, etc.). )") is connected to the battery 11. Known charging/discharging equipment can be used as such charging/discharging equipment.

1.3.荷重センサ
荷重センサ13は電池に含まれる電池セルが受ける荷重を検知するセンサであり電池11に配置されている。センサの種類は特に限定されることはないが、タクタイルセンサやロードセルを挙げることができる。例えばセンサを隣り合う電池セルの間に配置する場合にはタクタイルセンサを用いることができ、複数の電池セルの積層体全体としての荷重を得る場合にはロードセルを適用することもできる。
荷重センサ13の配置位置は荷重を測定することができれば特に限定されることはなく、1か所であってもよく複数か所であってもよい。
1.3. Load Sensor The load sensor 13 is a sensor that detects the load applied to the battery cells included in the battery, and is disposed in the battery 11. The type of sensor is not particularly limited, but examples include tactile sensors and load cells. For example, a tactile sensor can be used when the sensor is arranged between adjacent battery cells, and a load cell can also be used when obtaining the load of the entire stack of battery cells.
The placement position of the load sensor 13 is not particularly limited as long as it can measure the load, and may be placed at one location or at multiple locations.

1.4.SOC検出器
SOC検出器14は電池のSOC(State Of Charge、電池の充電状態)を検出する機器であり電池11に接続されている。SOC検出器は公知のものを用いることができ、ここでは満充電時の電池の容量に対する残りの充電の容量の比率を演算することでSOCを得る。なお、SOC検出器14は独立して配置する必要はなく上記した充放電制御器12と一体であってもよい。
1.4. SOC Detector The SOC detector 14 is a device that detects the SOC (State of Charge, state of charge of the battery) of the battery, and is connected to the battery 11 . A known SOC detector can be used, and here, the SOC is obtained by calculating the ratio of the remaining charge capacity to the battery capacity when fully charged. Note that the SOC detector 14 does not need to be arranged independently and may be integrated with the charge/discharge controller 12 described above.

1.5.電池判定器
電池判定器15は、電池11が本来備えられるべき正規品であるか、互換品等の非正規品であるかを判定する機器である。電池判定器15は以下で示す方法で演算を行うことで当該判定を行う演算機器を備え、少なくとも荷重センサ13及びSOC検出器14に接続されており、荷重センサ13及びSOC検出器14が取得した情報を取得することができるように構成されている。従って電池判定器15は電子計算機により構成され、例えばCPU、記憶手段、RAM、受信手段、送信手段等を有している。電子計算機は公知のものを用いることができる。なお、電池判定器15は独立して配置する必要はなく上記した充放電制御器12と一体であってもよい。
以下、電池判定器15により行われる演算方法を説明する。
1.5. Battery Determiner The battery determiner 15 is a device that determines whether the battery 11 is a genuine product that should originally be provided or a non-genuine product such as a compatible product. The battery determiner 15 is equipped with a calculation device that performs the determination by performing calculations in the method shown below, is connected to at least the load sensor 13 and the SOC detector 14, and is connected to at least the load sensor 13 and the SOC detector 14, and is connected to the load sensor 13 and the SOC detector 14. It is configured so that information can be obtained. Therefore, the battery determiner 15 is constituted by an electronic computer, and includes, for example, a CPU, a storage means, a RAM, a receiving means, a transmitting means, and the like. A known electronic computer can be used. Note that the battery determiner 15 does not need to be arranged independently and may be integrated with the charge/discharge controller 12 described above.
The calculation method performed by the battery determiner 15 will be described below.

1.5a.電池の判定方法
図2には1つの例にかかる電池の判定方法S10の流れを示した。図2からわかるように、電池の判定方法S10は、現在のSOCの取得の過程S11、既存荷重変動Pxの取得の過程S12、充電開始の過程S13、荷重変動Pyの取得の過程S14、PxとPyとの対比の過程S15、PxとPyとが同等であるかを判定する過程S16、正規品であると決定する過程S17、及び、非正規品であると決定する過程S18を含んでいる。
1.5a. Battery Determination Method FIG. 2 shows the flow of a battery determination method S10 according to one example. As can be seen from FIG. 2, the battery determination method S10 includes a process S11 of acquiring the current SOC, a process S12 of acquiring the existing load fluctuation Px, a process S13 of starting charging, a process S14 of acquiring the load fluctuation Py, and a process S14 of acquiring the current SOC. It includes a step S15 of comparing with Py, a step S16 of determining whether Px and Py are equivalent, a step S17 of determining that it is a genuine product, and a step S18 of determining that it is a non-genuine product.

[現在のSOCの取得の過程S11]
現在のSOC値の取得の過程S11(以下、「過程S11」と記載することがある。)では、現時点(充電開始前)におけるSOCを取得する。本形態では現在のSOCは、SOC検出器14で得た値を電池判定器15が受信手段を通じて取得する。
現在のSOCは一定の時間間隔で取得し最新の情報が更新される。
[Current SOC acquisition process S11]
In the process S11 of acquiring the current SOC value (hereinafter sometimes referred to as "process S11"), the SOC at the present time (before the start of charging) is acquired. In this embodiment, the battery determiner 15 obtains the current SOC from the value obtained by the SOC detector 14 through the receiving means.
The current SOC is acquired at regular time intervals and updated with the latest information.

[既存荷重変動Pxの取得の過程S12]
既存荷重変動Pxの取得の過程S12(以下、「過程S12」と記載することがある。)では、過程S11で取得したSOCに基づいて、予め準備しておりたデータベースから、このSOCで充電を開始した際の正規品の電池におけるSOCと電池セルの荷重との関係Pxを取得する。
全固体電池ではSOCの変動により電池セルを構成する部材の膨張及び収縮が顕著であり、SOCの変化により電池セルへの荷重も変化する。図3に1つの例にかかるSOC(%)と電池セルの荷重値(N、Pa等)の関係Pxをグラフに表した。
なお、SOCと荷重値との関係Pxは充電を開始するときのSOCにより異なるため、充電開始時のSOCごとにその関係Pxを予め取得しておき、データベースとして例えば電池判定器15の保存手段に保存しておく。そして、過程S11で取得したSOCを充電開始のSOCとしてデータベースからPxを取得してこれを正規品のPxとする。
[Process S12 of acquiring existing load fluctuation Px]
In step S12 of acquiring the existing load fluctuation Px (hereinafter sometimes referred to as "process S12"), based on the SOC acquired in step S11, charging is performed at this SOC from a database prepared in advance. Obtain the relationship Px between the SOC of the genuine battery and the load of the battery cell at the time of starting.
In an all-solid-state battery, the members constituting the battery cell significantly expand and contract due to changes in SOC, and changes in SOC also change the load on the battery cell. FIG. 3 shows a graph of the relationship Px between the SOC (%) and the load value (N, Pa, etc.) of the battery cell according to one example.
Note that the relationship Px between the SOC and the load value differs depending on the SOC at the time of starting charging, so the relationship Px is obtained in advance for each SOC at the time of starting charging, and stored as a database in the storage means of the battery determination device 15, for example. Save it. Then, the SOC obtained in step S11 is used as the SOC for starting charging, and Px is obtained from the database, and this is set as Px of the genuine product.

なお、荷重センサ13を複数設けた場合には、さらに荷重センサ13を配置した位置ごとに予めPxを得てデータベースに保存しておき、データベースから位置及び開始SOCに基づいて複数のPxを取得してもよい。 In addition, when multiple load sensors 13 are provided, Px is obtained in advance for each position where the load sensor 13 is placed and stored in a database, and multiple Px are obtained from the database based on the position and starting SOC. You can.

[充電開始の過程S13]
充電開始過程S13(以下、「過程S13」と記載することがある。)で電池の充電が開始される。充電の開始は公知の通りである。
[Charging start process S13]
Charging of the battery is started in a charging start process S13 (hereinafter sometimes referred to as "process S13"). The start of charging is as known.

[荷重変動Pyの取得の過程S14]
荷重変動Pyの取得の過程S14(以下、「過程S14」と記載することがある。)では、過程S13で充電が開始された後におけるSOCと荷重値との関係Pyを実測により得る。本形態では例えば電池判定器15が、SOC検出器14からSOCを取得するとともに、荷重センサ14から荷重値を取得する。これを一定の間隔で続けることにより充電が進むとともに増加するSOCごとに荷重値を得ることができ、図4のようなPyを得ることができる。ここで、充電開始(過程S13)SOCは過程S13で充電を開始する直前に過程S11で取得したSOCが用いられる。
[Process S14 of acquiring load fluctuation Py]
In step S14 of acquiring the load fluctuation Py (hereinafter sometimes referred to as "step S14"), the relationship Py between the SOC and the load value after charging is started in step S13 is obtained by actual measurement. In this embodiment, for example, the battery determiner 15 acquires the SOC from the SOC detector 14 and the load value from the load sensor 14 . By continuing this at regular intervals, a load value can be obtained for each SOC that increases as charging progresses, and Py as shown in FIG. 4 can be obtained. Here, as the charge start (step S13) SOC, the SOC obtained in step S11 immediately before starting charging in step S13 is used.

[PxとPyとの対比の過程S15]
PxとPyとの対比の過程S15(以下、「過程S15」と記載することがある。)では、過程S12で取得したPxと過程S14で取得したPyとを対比する。対比においてPyは繰返し測定している結果ではないため、ばらつきが大きく出ている可能性があることから当該ばらつきを考慮して対比することが好ましい。具体的には±数%の範囲は許容差とすること等を挙げることができる。
[Process S15 of comparing Px and Py]
In step S15 of comparing Px and Py (hereinafter sometimes referred to as "step S15"), Px obtained in step S12 and Py obtained in step S14 are compared. In the comparison, Py is not the result of repeated measurements, so there may be large variations, so it is preferable to take this variation into account when comparing. Specifically, a range of ±several percent may be considered as a tolerance.

[PxとPyとが同等であるかを判定する過程S16]
PxとPyとが同等であるかを判定する過程S16(以下、「過程S16」と記載することがある。)では、過程S15の対比に基づいてPxとPyとが同等であるかを判定する。判定基準は特に限定されることはないが例えば次のように行うことができる。
荷重センサ13を1つとして電池11の一か所で荷重値を測定している場合には、充電後における最大荷重値、最大荷重値と充電開始前(充電直前)の荷重値との差、及び、所定の範囲におけるSOC変化に対する荷重値の変化速度等のいずれか、または、複数を組み合わせて対比し、PxとPyとが所定の範囲内に入っているかで判定することができる。
荷重センサ13を複数配置して電池11の複数の位置で荷重値を測定している場合には、充電後において最も荷重値が高くなる位置及び荷重値、最も荷重が低くなる位置及び荷重値、充電後において最も荷重値が高くなる位置と最も荷重が低くなる位置とでの荷重値の差、並びに、電池内における荷重分布(荷重勾配)等のいずれか、または、複数を組み合わせて対比し、PxとPyとが所定の範囲内に入っているかで判定することができる。なお、複数の位置で荷重を測定した場合にはさらにそれぞれの位置において一か所で荷重値を測定したときの判定基準を併せて用いてもよい。
[Step S16 of determining whether Px and Py are equivalent]
In step S16 (hereinafter sometimes referred to as "process S16") of determining whether Px and Py are equivalent, it is determined whether Px and Py are equivalent based on the comparison in step S15. . Although the criteria for determination are not particularly limited, the determination can be made as follows, for example.
When the load value is measured at one location on the battery 11 using one load sensor 13, the maximum load value after charging, the difference between the maximum load value and the load value before charging starts (immediately before charging), It is possible to determine whether Px and Py are within a predetermined range by comparing one or a combination of the change speed of the load value with respect to the SOC change in a predetermined range, or the like.
When a plurality of load sensors 13 are arranged to measure load values at a plurality of positions on the battery 11, the position and load value where the load value is the highest after charging, the position and load value where the load is the lowest, Compare the difference in load values between the position where the load value is the highest and the position where the load is the lowest after charging, and the load distribution (load gradient) within the battery, or any combination of these, It can be determined whether Px and Py are within a predetermined range. In addition, when the load is measured at a plurality of positions, the criteria for determining the load value when the load value is measured at one place at each position may also be used.

図5にPx、Py1(1つの例にかかるPy)、及びPy2(他の例にかかるPy)を例示した。この例によればPy1はPxに同等であり、Py2はPxと同等ではないとなる。
過程S16では、PxとPyとが同等である場合にはYesが選択されて正規品であると決定する過程S17に進み、PxとPyとが同等でない場合にはNoが選択されて非正規品であると決定する過程S18に進む。
FIG. 5 illustrates Px, Py1 (Py according to one example), and Py2 (Py according to another example). According to this example, Py1 is equivalent to Px, and Py2 is not equivalent to Px.
In step S16, if Px and Py are equivalent, Yes is selected and the process proceeds to step S17 in which the product is determined to be genuine; if Px and Py are not equivalent, No is selected and the product is determined to be non-genuine. The process proceeds to step S18 of determining that.

[正規品であると決定する過程S17]
正規品であると決定する過程S17(以下、「過程S17」と記載することがある。)では、過程S16でPxとPyとが同等であると判定されたときに、現在の電池は正規品であると決定し、必要に応じてその旨を報知する。
[Step S17 of determining that the product is genuine]
In step S17 (hereinafter sometimes referred to as "process S17") of determining that the battery is a genuine product, when it is determined that Px and Py are equivalent in step S16, the current battery is a genuine product. It will be determined that this is the case and will notify that fact as necessary.

[非正規品であると決定する過程S18]
非正規品であると決定する過程S18(以下、「過程S18」と記載することがある。)では、過程S16でPxとPyとが同等でないと判定されたときに、現在の電池は非正規品であると決定し、必要に応じてその旨を報知する。
[Step S18 of determining that the product is non-genuine]
In step S18 of determining that the battery is non-genuine (hereinafter sometimes referred to as "process S18"), when it is determined in step S16 that Px and Py are not equivalent, the current battery is non-genuine. It is determined that the product is a defective product, and notification to that effect is made as necessary.

1.5b.電池の判定方法の適用
上記した電池の判定方法S10は電池判定装置15においてプログラムとして電池判定装置15の保存装置に保存されることにより実行することができる。すなわち、電池の判定方法S10に含まれる過程S11から過程S18の各過程に相当するステップを有するコンピュータプログラムとすることができる。そしてこのコンピュータプログラムが必要に応じて保存装置から呼び出されてCPUで演算されることで、電池判定装置15により電池の判定方法S10と同じ結果を得ることが可能である。
1.5b. Application of Battery Determination Method The above-described battery determination method S10 can be executed in the battery determination device 15 by being stored as a program in the storage device of the battery determination device 15. That is, the computer program may have steps corresponding to each process from process S11 to process S18 included in battery determination method S10. Then, this computer program is called up from the storage device as needed and calculated by the CPU, so that the battery determination device 15 can obtain the same result as in the battery determination method S10.

2.効果等
本開示の電池システム10、電池の判定方法S10、これに対応するコンピュータプログラムによれば、現在使用されている電池が正規品か非正規品かを判定することができ、その精度が従来に比べて高められている。すなわち、充電中の電池セルの荷重変動パターンは正規品であれば充電開始時のSOCによって決まるので、実際に充電している電池セルのSOCと電池セルの荷重値の関係を比較基準となるものと比較することにより正規品か否かが正確に判定できる。
2. Effects, etc. According to the battery system 10, the battery determination method S10, and the corresponding computer program of the present disclosure, it is possible to determine whether the battery currently being used is a genuine product or a non-genuine product, and the accuracy is higher than that of the conventional battery. is higher than that of In other words, if the battery cell is a genuine product, the load fluctuation pattern of the battery cell during charging is determined by the SOC at the start of charging, so the relationship between the SOC of the battery cell actually being charged and the battery cell load value is used as a comparison standard. By comparing with the actual product, it is possible to accurately determine whether the product is genuine or not.

10 電池システム
11 電池
12 充放電制御器
13 荷重センサ
14 SOC検出器
15 電池判定器
S10 電池の判定方法
S11 現在のSOCの取得の過程
S12 既存荷重変動Pxの取得の過程
S13 充電開始の過程
S14 荷重変動Pyの取得の過程
S15 PxとPyとの対比の過程
S16 PxとPyとが同等であるかを判定する過程
S17 正規品であると決定する過程
S18 非正規品であると決定する過程
10 Battery System 11 Battery 12 Charge/Discharge Controller 13 Load Sensor 14 SOC Detector 15 Battery Determiner S10 Battery Determination Method S11 Process of Acquiring Current SOC S12 Process of Acquiring Existing Load Fluctuation Px S13 Process of Starting Charging S14 Load Process of obtaining fluctuation Py S15 Process of comparing Px and Py S16 Process of determining whether Px and Py are equivalent S17 Process of determining that it is a genuine product S18 Process of determining that it is a non-genuine product

Claims (1)

電池の正規及び非正規を判定する電池システムであって、
前記電池の正規及び非正規を判定する演算装置を有し、
前記演算装置は、
予め取得しておいた正規品の電池の充電中における充電状態と電池セルの荷重値との関係であるPxを、
実際の電池セルの充電中における充電状態と電池セルの荷重値との関係であるPyと対比し、
前記Pxと前記Pyとが同等である場合は正規品と判定し、前記Pxと前記Pyとが同等でない場合は非正規品と判定する、演算を行う、
電池システム。
A battery system for determining whether a battery is genuine or non-genuine, the battery system comprising:
comprising an arithmetic device that determines whether the battery is regular or non-regular;
The arithmetic device is
Px, which is the relationship between the charging state of a genuine battery obtained in advance and the load value of the battery cell, is
In comparison with Py, which is the relationship between the charging state and the load value of the battery cell during actual charging of the battery cell,
If the Px and the Py are equivalent, the product is determined to be a genuine product, and if the Px and the Py are not equivalent, the product is determined to be a non-genuine product.
battery system.
JP2020198643A 2020-11-30 2020-11-30 battery system Active JP7400706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020198643A JP7400706B2 (en) 2020-11-30 2020-11-30 battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020198643A JP7400706B2 (en) 2020-11-30 2020-11-30 battery system

Publications (2)

Publication Number Publication Date
JP2022086562A JP2022086562A (en) 2022-06-09
JP7400706B2 true JP7400706B2 (en) 2023-12-19

Family

ID=81894035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020198643A Active JP7400706B2 (en) 2020-11-30 2020-11-30 battery system

Country Status (1)

Country Link
JP (1) JP7400706B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174487A (en) 2011-02-22 2012-09-10 Sony Corp Battery pack, electronic apparatus, power system and electric vehicle
US20140107949A1 (en) 2012-10-11 2014-04-17 The Trustees Of Princeton University Mechanical measurement of state of health and state of charge for intercalation batteries
JP2019105520A (en) 2017-12-12 2019-06-27 トヨタ自動車株式会社 Secondary battery system and soc estimation method of secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174487A (en) 2011-02-22 2012-09-10 Sony Corp Battery pack, electronic apparatus, power system and electric vehicle
US20140107949A1 (en) 2012-10-11 2014-04-17 The Trustees Of Princeton University Mechanical measurement of state of health and state of charge for intercalation batteries
JP2019105520A (en) 2017-12-12 2019-06-27 トヨタ自動車株式会社 Secondary battery system and soc estimation method of secondary battery

Also Published As

Publication number Publication date
JP2022086562A (en) 2022-06-09

Similar Documents

Publication Publication Date Title
US7688032B2 (en) Battery remaining capacity detecting apparatus and battery remaining capacity detecting method
JP5873113B2 (en) Battery state detection device
US10012700B2 (en) Electric storage apparatus
EP3064952B1 (en) Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
US9482722B2 (en) State of charge estimation device and method of estimating state of charge
CN105938181B (en) Storage element management device, management method, module, recording medium, and moving object
US9018897B2 (en) Electric storage device condition determination device, electrically chargeable device, and method of determining electric storage device condition
EP1835297B1 (en) A method and device for determining characteristics of an unknown battery
EP3149500B1 (en) Method for determining the reliability of state of health parameter values
US20160061907A1 (en) Battery state determination device
EP2664938B1 (en) Open circuit voltage estimation device, condition estimation device, and method of estimating open circuit voltage
EP3842815B1 (en) Soc and soh estimation methods of battery pack
US20140365150A1 (en) Method and device for determining a charge state of an electric energy store
EP3379277B1 (en) Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
JP2017167163A (en) Power storage element management device and power storage element soc estimation method
US20210190879A1 (en) Soh estimation method of battery pack
JP2020079723A (en) Secondary battery system
JP5886225B2 (en) Battery control device and battery control method
JP7400706B2 (en) battery system
JP2003257504A (en) Over-discharging detecting method of secondary battery
CN111796192B (en) Method and device for calculating short-circuit current of battery and electronic product
JP7107240B2 (en) Reuse judgment system for secondary batteries
US20220352736A1 (en) Charging/discharging control device and charging/discharging control method
KR20240058619A (en) Battery abnormality detection device and method using charge/discharge capacity ratio
CN116706274A (en) Battery pack voltage balance control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R151 Written notification of patent or utility model registration

Ref document number: 7400706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151